Lecture: Wed 9/7/05

1. Fundamental Theorem of Arithmetic (Unique Factorization)

- Any positive integer n can be expressed in only one way as:

$$
n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}
$$

for some primes p_{1}, \ldots, p_{r} and integers $k_{1}, \ldots, k_{n} \geq 0$. That is, n can be uniquely identified by how many powers of each prime divide it.

- Proof: Division algorithm \Longrightarrow Euclidean algorithm for gcd \Longrightarrow Key property of primes (if $p \mid a b$ then $p \mid a$ or $p \mid b) \Longrightarrow$ Fundamental Theorem
- Proposition: If $m / n \in \mathbb{Q}$ is in lowest terms, and $\sqrt{m / n} \in \mathbb{Q}$, then $\sqrt{m}, \sqrt{n} \in \mathbb{Z}$.
Proof: Suppose a / b in lowest terms with $\sqrt{m / n}=a / b$. Let p_{1}, \ldots, p_{r} be all the primes which divide any one of a, b, m, n, and write: $a=p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}, \quad b=p_{1}^{b_{1}} \cdots p_{r}^{b_{r}}$, etc. Now write out $a^{2} n=b^{2} m$ in terms of prime products, and show that $m=a^{2}$ and $n=b^{2}$.

2. Sieve of Eratosthenes to list primes

- Make list of numbers $1,2, \ldots, n$. Cross out 1 (not a prime). Circle first uncrossed number 2, cross out all multiples of 2 . Again circle first uncrossed number 3, cross out all multiples of 3 . Repeat until all numbers are circled or crossed out: circled ones are the primes.
- In fact, after you circle a given prime p, the first new number you cross out will be p^{2}. Thus, you can stop crossing out when $p^{2}>$ n, and just circle all remaining numbers. (Thanks to Benjamin Osborn \& Alan Kish for the explanation.)

3. The sequence of primes

- $\mathrm{p}=2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61$, $67,71,73,79,83,89,97, \ldots$
- Theorem: There exist infinitely many primes.

Proof (Euclid): Consider any list of primes: $p_{1}, p_{2}, \ldots, p_{r}$, and let $n:=p_{1} p_{2} \cdots p_{r}+1$. Now if $p_{i} \mid n$, then $p_{i} \mid\left(n-p_{1} \cdots p_{r}\right)=1$, but no prime divides 1 , so this is impossible. Thus the prime factors of n are different from p_{1}, \ldots, p_{r}, and we can extend our list with new primes. Repeating, we can extend the list indefinitely.

- Example: $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13+1=30031=59 \cdot 509$, so the new primes are 59 and 509 . We skip over many primes this way, but we do get an infinite list.
- Fermat's formula: $F(n)=2^{2^{n}}+1$ takes values: $F(0)=3$, $F(1)=5, \quad F(2)=17, F(3)=257$, which are all prime. Fermat conjectured $F(n)$ is always prime, but this is false. Primes $p=F(n)$ are called Fermat primes, but only 5 such p are known! (What are they?)
- Is there any formula $f(n)$ giving only primes? None is known.

4. Prime Number Theorem

- Let $p_{n}=$ the $n^{\text {th }}$-largest prime; and $\pi(n):=$ the number of primes $\leq n$.
- For two sequences $f(n), g(n)$, we write $f(n) \approx g(n)$ to mean that the percentage difference between the two sides approaches zero for large n :

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

- Theorem:

$$
p_{n} \approx n \log (n) \quad \text { and } \quad \pi(n) \approx \frac{n}{\log (n)},
$$

where \log means natural logarithm (base e).

- Proof uses sophisticated complex analysis, encoding the sequence of primes in terms of the Riemann zeta function

$$
\zeta(s):=\prod_{p \text { prime }} \frac{1}{1-p^{s}} .
$$

5. Twin Primes

- Pairs of primes (p, q) with $q=p+2$. E.g. $(11,13)$ and $(71,73)$.
- Conjecture: There are infinitely many pairs of twin primes. If you prove it, you'll be famous!

