Lecture: Fri 9/9/05

1. Prop: If $m/n \in \mathbb{Q}$ in lowest terms, and $\sqrt{m/n} \in \mathbb{Q}$, then $\sqrt{m}, \sqrt{n} \in \mathbb{Z}$.

• First Proof (based on Fund Thm of Arithmetic). Assume a/b in lowest terms with $(a/b)^2 = m/n$, so that $a^2n = b^2m$. Let p_1, \ldots, p_r be all primes dividing a, b, n, m, and let $a = p_1^{a_1} \cdots p_r^{a_r}$, $b = p_1^{b_1} \cdots p_r^{b_r}$, etc., with integers $a_i, b_i, m_i, n_i \ge 0$. Then $a^2 = b^2m$ is equivalent (by the Fund Thm) to $2a_i + n_i = 2b_i + m_i$.

We have gcd(a, b) = gcd(m, n) = 1. We will show $2a_i = m_i$ and $2b_i = n_i$ for all i, so $a^2 = m$, $b^2 = n$.

- Suppose $p_i|a$. We have: $p_i \not| b$. Also $p_i|a^2n = b^2m$, so $p_i|m$ and $p_i \not| n$. Thus: $a_i, m_i > 0$ and $b_i = n_i = 0$. Thus $2a_i + n_i = 2b_i + m_i$ means $2a_i = m_i$ and $2b_i = n_i = 0$.
- Suppose $p_i|b$. Similarly we get $a_i = m_i = 0$ and $b_i, n_i > 0$ and $2a_i = m_i = 0$, $2b_i = n_i$.
- Suppose $p_i \not| a, b$. If $p_i | m$ then $p_i | b^2 m$ and $p_i | b^2$ and $p_i | b$. But then gcd(a, b) > 1, so this cannot happen. Similarly $p_i | n$ cannot happen. Thus $p_i \not| a, b, m, n$, so forget about p_i .

First Proof is done.

- Lemma on Uniqueness of Fractions. If a/b = c/d are both positive fractions in lowest terms, then a = c and b = d. Proof of Lemma: We have gcd(a, b) = 1, so we can write 1 = ma + nb, so c = mac + nbc = mac + nad = a(mc + nd), so a|c. Also d = mad + nbd = mbc + nbd = b(mc + nd) so b|d. Similarly use 1 = pc + qd to get c|a and d|b. Conclude a = c and b = d.
- Second Proof of Prop (based on Uniqueness of Fractions). Suppose a/b in lowest terms with $(a/b)^2 = m/n$. Then $a^2/b^2 = m/n$ with both sides in lowest terms (prove!), $a^2 = m$ and $b^2 = n$.
- Both proofs ultituately rest on the key lemma resulting from the Euclidean algorithm: we can always write gcd(a, b) = ma + nb for some $m, n \in \mathbb{Z}$.
- 2. Fermat's Little Theorem: If p is prime, then $p \mid n^p n$ for any $n \in \mathbb{Z}$.
 - Proof (David Krcatovic): Use induction on n. For n = 1, the statement is obvious. Now assume $p \mid n^p n$. By the Binomial Theorem:

$$(n+1)^p - (n+1) = n^p + pn^{p-1} + \frac{1}{2}p(p-1)n^{p-2} + \dots + pn + 1 - (n+1)$$

= $(n^p - n) + \sum_{k=1}^{p-1} \frac{p!}{k!(p-k)!} n^{p-k} .$

In the last expression, p divides the first term by the inductive hypothesis, and p divides each term in the summation because the numerator contains the prime p, and every term in the denominator is less than p. Conclusion: $p \mid (n+1)^p - (n+1)$, so the induction proceeds, and the Theorem is true for every positive integer n.