Lecture: Mon 10/17

1. Why bother with complex numbers \mathbb{C} ?

- Define new number systems to solve equations that have no solutions in old number systems.
- $x+1=0$ has no soln in \mathbb{N}, so define \mathbb{Z} (negative numbers)
- $2 x-1=0$ has no soln in \mathbb{Z}, so define \mathbb{Q} (fractions)
- $x^{2}-2$ has no soln in \mathbb{Q}, so define \mathbb{R} (irrational numbers)
- $x^{2}+1=0$ has no soln in \mathbb{R}, so define \mathbb{C} (imaginary numbers)

2. Formal definition of \mathbb{C}

- As with \mathbb{Q} and \mathbb{R}, we do not try to uncover the "essence" of a new number like $i=\sqrt{-1}$. We just define it by enough information to determine all its properties.
- $\mathbb{C}=\mathbb{R} \times \mathbb{R}=\{(a, b) \mid a, b \in \mathbb{R}\}$, pairs of real numbers: (a, b) represents the complex number $a+b i$.
- Addition: $(a, b)+(c, d):=(a+c, b+d)$.

Motivation: $(a+b i)+(c+d i)=(a+c)+(b+d) i$.

- Multiplication: $(a, b) \cdot(c, d):=(a c-b d, a d+b c)$.

Motivation: $(a+b i) \cdot(c+d i)=a c+b d i^{2}+a d i+b c i=(a c-b d)+(a d+b c) i$.

- Check the field axioms for \mathbb{C}. Identity elements: $(0,0),(1,0)$. Multiplicative associativity:

$$
\begin{aligned}
{[(a, b) \cdot(c, d)] \cdot(e, f) } & =(a c e-a d f-b c f-b d e)+(a c f+a d e+b c e-b d f) i \\
& =(a, b) \cdot[(c, d) \cdot(e, f)] .
\end{aligned}
$$

- The only tricky property is the existence of multiplicative inverses. We should have:

$$
\frac{1}{a+b i}=\frac{a-b i}{(a+b i)(a-b i)}=\frac{a-b i}{a^{2}+b^{2}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i .
$$

This is motivation, but proves nothing, because we have not established that $1 /(a+b i)$ even exists.

- Given $(a, b) \neq(0,0)$, we define the multiplicative inverse as:

$$
(a, b)^{-1}:=\left(\frac{a}{a^{2}+b^{2}},-\frac{b}{a^{2}+b^{2}}\right) .
$$

Now we prove that $(a, b) \cdot(a, b)^{-1}=(1,0)$ by applying the definition of multiplication.

- Notation: a real number $a \in \mathbb{R}$ is identified with $(a, 0)$, so we can regard $\mathbb{R} \subset \mathbb{C}$. Define $i:=(0,1)$.
- Prove that $i^{2}=-1$ and $(a, b)=a+b \cdot i$.

3. Geometric picture of \mathbb{C}

- Picture: $\mathbb{C}=\mathbb{R}^{2}, x+i y=(x, y)$, vectors in the real plane
- Addition of complex numbers $=$ usual addition of vectors (diagonal of parallelogram)
- Multiplication of complex numbers $=$ some kind of multiplication of plane vectors:

$$
(a+i b) \cdot(x+i y)=(a, b) \cdot(x, y)
$$

- Multiplying by $a=(a, 0)$, we have

$$
a \cdot(x, y)=(a x, a y)=\operatorname{stretch}(x, y) \text { by } a,
$$

the usual scalar multiple of a vector

- Multiplying by $i=(0,1)$, we have

$$
i \cdot(1,0)=(0,1), \quad i \cdot(0,1)=(-1,0)
$$

and: $(x, y) \mapsto i \cdot(x, y)=(-y, x)$ is an \mathbb{R}-linear map. Thus:

$$
i \cdot(x, y)=\operatorname{rotate}(x, y) \text { by } 90^{\circ} .
$$

- Multiplying by a unit-length vector $u=\cos \theta+i \sin \theta=(\cos \theta, \sin \theta)$:

$$
u \cdot(1,0)=(\cos \theta, \sin \theta) \quad, \quad u \cdot(0,1)=(-\sin \theta, \cos \theta)
$$

and $(x, y) \mapsto u \bullet(x, y)$ is an \mathbb{R}-linear map. Thus:

$$
u \bullet(x, y)=\operatorname{rotate}(x, y) \text { by } \theta
$$

Lecture: Wed 10/19

1. Complex multiplication $=$ rotation

- For $v=(a, b) \in \mathbb{C}$, consider the multiplication map

$$
\begin{aligned}
M_{v}: \mathbb{R}^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto u \cdot(x, y)
\end{aligned}
$$

This map is \mathbb{R}-linear:

$$
\begin{gathered}
M_{v}(c x, c y)=c M_{v}(x, y) \\
M_{v}\left(x_{1}+x_{2}, y_{1}+y_{2}\right)=M_{v}\left(x_{1}, y_{1}\right)+M_{v}\left(x_{2}, y_{2}\right) .
\end{gathered}
$$

for all $c \in \mathbb{R}$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$. Thus:

$$
M_{v}(x, y)=x M_{v}(1,0)+y M_{v}(0,1)
$$

- Multiply by $i=(0,1)$:

$$
\begin{gathered}
i \cdot(1,0)=(0,1), \quad i \cdot(0,1)=(-1,0) \\
i \cdot(x, y)=\operatorname{rotate}(x, y) \text { by } 90^{\circ} .
\end{gathered}
$$

- Multiply by a unit-length vector $u=\cos \theta+i \sin \theta=(\cos \theta, \sin \theta)$:

$$
\begin{gathered}
u \cdot(1,0)=(\cos \theta, \sin \theta) \quad, \quad u \cdot(0,1)=(-\sin \theta, \cos \theta) . \\
u \cdot(x, y)=\operatorname{rotate}(x, y) \text { by } \theta .
\end{gathered}
$$

- Write an arbitrary vector in polar coordinates: $v=r u$, where $r \in \mathbb{R}$ and $u=\cos \theta+i \sin \theta$. Then:

$$
v \cdot(x, y)=\operatorname{rotate}(x, y) \text { by } \theta, \text { then stretch by } r .
$$

2. Complex multiplication: add angles, multiply lengths

- Consider the complex product: $v_{3}=v_{1} \cdot v_{2}$, and write each number in polar form: $v_{j}=r_{j}\left(\cos \theta_{j}+i \sin \theta_{j}\right.$ for $j=1,2,3$. Then:

$$
\theta_{3}=\theta_{1}+\theta_{2} \quad, \quad r_{3}=r_{1} r_{2}
$$

that is: to multiply complex numbers, add their angles and multiply their lengths.

- First proof: Since the multiplcation map $(x, y) \mapsto v_{j} \bullet(x, y)$ is rotating by θ_{j} and stretching by r_{j}, we can describe the product $v_{1} \cdot v_{2}=v_{1} \cdot v_{2} \cdot 1$ as follows: start with unit vector 1 ; rotate by θ_{2}; stretch by r_{2}; rotate by θ_{1}; stretch by r_{1}. Result: rotate by $\theta_{1}+\theta_{2}$, and stretch by $r_{1} r_{2}$.
- Second proof: From the formula for complex multiplication:

$$
\begin{gathered}
r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
=r_{1} r_{2}\left(\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}\right)\right) \\
\stackrel{!}{=} r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)
\end{gathered}
$$

by the angle-addition formulas .
3. Complex powers

- $2 v$ is the vector v stretched by 2
- $-v$ is the vector opposite to v
- Let $v=r(\cos \theta+i \sin \theta)$.
$v^{2}=v \cdot v$ is the vector with length r^{2} and angle 2θ
- \sqrt{v} is a vector with length \sqrt{r} and angle $\frac{1}{2} \theta$.
- There are 2 square roots because the angle θ is amiguous. We could just as well write:

$$
v=r(\cos (\theta+2 \pi)+i \sin (\theta+2 \pi))
$$

so that

$$
\begin{aligned}
\sqrt{v} & =\sqrt{r}\left(\cos \left(\frac{1}{2} \theta+\pi\right)+i \sin \left(\frac{1}{2} \theta+\pi\right)\right) \\
& =-\sqrt{r}\left(\cos \frac{1}{2} \theta+i \sin \frac{1}{2} \theta\right)
\end{aligned}
$$

- DeMoivre's Theorem: $v^{1 / n}$ is any vector with length $r^{1 / n}$ and angle

$$
\frac{\theta+2 k \pi}{n}=\frac{\theta}{n}+\frac{2 \pi k}{n} .
$$

There are n such vectors evenly spaced around the circle, corresponding to the values $k=0,1, \ldots, n-1$.
4. Complex numbers as matrices

- Any linear mapping $M: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by a 2×2 matrix. If $M(1,0)=(a, b)$ and $M(0,1)=(c, d)$, then: $M=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$, and:

$$
M(x, y)=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

Here we use row vectors and column vectors interchangeably: $(x, y)=\left[\begin{array}{l}x \\ y\end{array}\right]$

- The linear mapping M_{u} for $u=\cos \theta+i \sin \theta$ is given by the matrix:

$$
M_{u}(x, y)=v \cdot(x, y)=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

This is called the rotation matrix of θ.

- The linear mapping M_{v} for $v=a+b i=r u$ is rotation by θ and stretching by r. Its matrix is:

$$
M_{v}(x, y)=v \cdot(x, y)=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

This is called a complex multiplication matrix.

- Consider the set of all complex mult matrices:

$$
M_{\mathrm{C}}:=\left\{\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \quad \text { where } a, b \in \mathbb{R}\right\} .
$$

This is a "copy" of the complex number field inside the ring of 2×2 matrices. That is, there is an isomorphism of fields from the complex numbers to this ring of matrices:

$$
\begin{array}{rll}
\phi: \quad \mathbb{C} & \rightarrow & M_{\mathrm{C}} \\
a+b i & \mapsto & {\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]}
\end{array}
$$

satisfies:

$$
\phi\left(v_{1}+v_{2}\right)=\phi\left(v_{1}\right)+\phi\left(v_{2}\right) \quad \text { and } \quad \phi\left(v_{1} \cdot v_{2}\right)=\phi\left(v_{1}\right) \cdot \phi\left(v_{2}\right),
$$

where the operation on the left side of each equation is in \mathbb{C}, and the operation on the right side is an operation of matrices.

Lecture: Mon 10/24

1. Picturing complex functions

- A complex function $f: \mathbb{C} \rightarrow \mathbb{C}, f(x+i y)=u(x, y)+i v(x, y)$ has real component $u(x, y)$ and imaginary component $v(x, y)$, where $u, v: \mathbb{R}^{2} \rightarrow R$ are real functions on $\mathbb{C}=\mathbb{R}^{2}$.
- This is the same thing as a vector field $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=$ $(u(x, y), v(x, y))$, with x-component $u(x, y)$ and y-component $v(x, y)$. This can be pictured by a field plot: draw each arrow $f(x, y)$ with its base at the point (x, y).
- Example 1: The complex function $f(z)=i z$ is equivalent to the vector field: $f(x, y)=(-y, x)$ whose field plot has arrows circulating around the origin, with length proportional to their distance from the origin. This is the velocity field of a turn-table.
For a general $\alpha=r \operatorname{cis} \theta$, the field plot of $f(z)=\alpha z$ is a vortex centered at the origin, with the arrows rotated by angle θ away from the outward direction, like the velocity field of water swirling down the drain.
- Example 2: The complex function $f(z)=z^{2}+(1+i) z+1$ is equivalent to the vector field $f(x, y)=\left(x^{2}-y^{2}+x-y+1,2 x y+y+x\right)$
- Example 3: The complex function $f(z)=\bar{z}$, complex conjugate, is equivalent to the vector field $f(x, y)=(x,-y)$.

2. Derivative of a vector field

- An arbitrary vector field $f(x, y)=(u(x, y), v(x, y))$ has a derivative matrix:

$$
D f:=\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]
$$

where

$$
u_{x}(x, y)=\frac{\partial u}{\partial x}:=\lim _{\epsilon \rightarrow 0} \frac{u(x+\epsilon, y)-u(x, y)}{\epsilon}
$$

is the partial derivative of $u(x, y)$ in the x-direction, etc.

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an ordinary real function, its derivative $f^{\prime}(a)$ gives the slope of the best linear approximation to $f(x)$ near $x=a$: for small ϵ, we have:

$$
f(a+\epsilon) \approx f(a)+f^{\prime}(a) \epsilon,
$$

which is just unravelling the definition of derivative:

$$
f^{\prime}(a) \approx \frac{f(a+\epsilon)-f(a)}{\epsilon}
$$

Similarly, for a vector field $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, the derivative matrix $D f(a, b)$ gives the best linear-function approximation near the point (a, b) : for small $\left(\epsilon_{1}, \epsilon_{2}\right)$, we have:

$$
f\left(a+\epsilon_{1}, b+\epsilon_{2}\right) \approx f(a, b)+D f(a, b) \cdot\left[\begin{array}{l}
\epsilon_{1} \\
\epsilon_{2}
\end{array}\right]
$$

where the last operation is matrix multiplication.

- Example 2: For $f(x, y)=\left(x^{2}-y^{2}+x-y+1,2 x y+y+x\right)$, we have:

$$
D f(x, y)=\left[\begin{array}{rr}
2 x+1 & 2 y+1 \\
-2 y-1 & 2 x+1
\end{array}\right]
$$

- Example 3: For $f(x, y)=(x,-y)$, we have:

$$
D f(x, y)=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

3. Complex analytic functions

- We say a complex function $f(x+i y)=u(x, y)+i v(x, y)$ is complex analytic (or just analytic) if any of the following equivalent conditions apply.
- The partial derivatives of $f(z)=f(x+i y)$ in the real and imaginary directions are equal:

$$
\begin{aligned}
\frac{\partial f(x+i y)}{\partial x} & =\lim _{\epsilon \rightarrow 0} \frac{f(z+\epsilon)-f(z)}{\epsilon}=u_{x}(x, y)+i v_{x}(x, y) \\
\stackrel{!}{=} \frac{\partial f(x+i y)}{\partial i y} & =\lim _{\epsilon \rightarrow 0} \frac{f(z+i \epsilon)-f(z)}{i \epsilon}=v_{y}(x, y)-i u_{y}(x, y) .
\end{aligned}
$$

We define the complex derivative $f^{\prime}(z)$ to be the common value of these partial derivatives.

- For every value $z=x+i y$, the derivative matrix $D f(x, y)$ is a complex multiplication matrix $M_{c+i d}$ for some $c+i d \in \mathbb{C}$:

$$
D f:=\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right] .
$$

We define the complex derivative $f^{\prime}(z)$ to be the complex number in this multiplication matrix:

$$
f^{\prime}(z):=c+i d=u_{x}+i v_{x}=v_{y}-i u_{y} .
$$

- The component functions of $f(x+i y)=u(x, y)+i v(x, y)$ satisfy the Cauchy-Riemann partial differential equations:

$$
u_{x}=v_{y} \quad, \quad v_{x}=-u_{y} .
$$

4. Examples: analytic and non-analytic functions

- Example 1: $f(z)=i z, f(x, y)=(-y, x)$,

$$
f^{\prime}(z)=\left(u_{x}, v_{x}\right)=\left(v_{y},-u_{y}\right)=(0,1)=i .
$$

- Example 2: $f(z)=z^{2}+(1+1) z+1, f(x, y)=\left(x^{2}-y^{2}+x-y+1,2 x y+y+x\right)$,

$$
f^{\prime}(z)=\left(u_{x}, v_{x}\right)=\left(v_{y},-u_{y}\right)=(2 x+1,2 y+1)=2 z+1 .
$$

- Example 3: $f(z)=\bar{z}, f(x, y)=(x,-y)$,

$$
f^{\prime}(z)=\left(u_{x}, v_{x}\right)=(1,0) \stackrel{?}{=}\left(v_{y},-u_{y}\right)=(-1,0) .
$$

The equality does not hold, so $f(z)$ is not analytic at any z !

- For a general complex analytic $f(z)$ with roots $z=r_{1}, \ldots, r_{n}$, the field plot has a vortex around each r_{i} which looks approximately like the vortex of $g(z)=\alpha z$ for $\alpha=f^{\prime}\left(r_{i}\right)$.

5. Combining analytic functions

- $f(z)=\alpha$ (constant function) and $f(z)=z$ are analytic
- If $f(z)$ and $g(z)$ are analytic, then:
$-f(z)+g(z)$ is analytic and $(f(z)+g(z))^{\prime}=f^{\prime}(z)+g^{\prime}(z)$.
$-f(z) g(z)$ is analytic and $(f(z) g(z))^{\prime}=f^{\prime}(z) g(z)+f(z) g^{\prime}(z)$.
- $f(z) / g(z)$ is analytic for all z where $g(z) \neq 0$, and

$$
\left(\frac{f(z)}{g(z)}\right)^{\prime}=\frac{f^{\prime}(z) g(z)-f(z) g^{\prime}(z)}{g(z)^{2}} .
$$

- Corollary: All polynomial functions $f(z) \in \mathbb{C}[z]$ are complex analytic for every z. All rational functions $f(z) / g(z)$ are complex analytic except at the points z where $g(z)=0$.

6. Fundamental Theorem of Algebra

- Theorem: Any polynomial

$$
f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n} \in \mathbb{C}[z]
$$

of degree $n \geq 1$ has at least one complex root $z=\alpha$ with $f(\alpha)=0$.

- This means: the field plot of any polynomial $f(z)$ has at least one vortex. The plot of a high-degree polynomial is very complicated, so this is not at all obvious!

Alternatively: any complex polynomial of degree n can be completely split into n linear factors:

$$
f(z)=a_{n}\left(z-r_{1}\right) \cdots\left(z-r_{n}\right) .
$$

This will have fewer than n vortices if some of the r_{i} 's coincide.

- Strategy of Proof: First, Cauchy's Mean Value Theorem says that for any circle in the complex plane, the value of an analytic function at the center is a certain average of the values on the circle.
- Next, Liouville's Theorem: Let $f(z)$ be complex analytic on the whole plane, with $\lim _{|z| \rightarrow \infty} f(z)=0$, meaning that $f(z)$ becomes very small when z is far from the origin. Then $f(z)$ can only be the zero constant function: $f(z)=0$ for all z.
Proof: Consider any particular α, and take a very large circle centered at α. Given $\epsilon>0$, by assumption we can take an α centered circle large enough so that $|f(z)|<\epsilon$ for z on the circle. By Cauchy, the value $f(\alpha)$ is the average of the values $f(z)$ on the circle, so $|f(\alpha)|<\epsilon$. Since this is true for any $\epsilon>0$, we must have $|f(\alpha)|=0$, so $f(\alpha)=0$. This holds for each $\alpha \in \mathbb{C}$.
- Finally, suppose there were a polynomial function $g(z)$ with no roots. Then the function $f(z)=1 / g(z)$ would be analytic on the whole plane, and $|g(z)|=1 /|f(z)| \rightarrow 0$ for $|z| \rightarrow \infty$, since $\operatorname{deg} g(z) \geq 1$. But by Liouville, $f(z)$ can only be the zero constant function, a contradiction.
- Note that the innocent-looking non-analytic function:

$$
f(z)=z \bar{z}+1=|z|^{2}+1
$$

has no roots! Analytic functions are very special.

$$
f(z)=z^{\wedge} 2+(1+i) z+1
$$

$$
f(z)=z^{\wedge} 2-1
$$

$$
f(z)=z^{\wedge} 2
$$

Lecture: Mon 10/31

1. Electromagnetic vector fields

- Let $g(x, y)=(r(x, y), s(x, y))$ be any vector field.
- Divergence of g measures rate of outflow from each point:

$$
\operatorname{div} g(x, y):=\frac{\partial r}{\partial x}+\frac{\partial s}{\partial y}=r_{x}(x, y)+s_{y}(x, y)
$$

- Curl of g measures counter-clockwise torque (rotational force) around each point:

$$
\operatorname{curl} g(x, y):=\frac{\partial s}{\partial x}-\frac{\partial r}{\partial y}=s_{x}(x, y)-r_{y}(x, y)
$$

- An electric force field $g(x, y)$ satisfies Maxwell's equations: the curl and divergence must vanish at all points:

$$
\operatorname{curl} g(x, y)=\operatorname{div} g(x, y)=0
$$

That is:

$$
\text { (Maxwell) } \quad r_{x}=-s_{y} \quad, \quad r_{y}=s_{x}
$$

These equations hold in a region with no charge present. In general, $\operatorname{div} g$ is the charge density at each point.
2. Complex analytic vs electric vector fields

- Let $f(x+i y)=u(x, y)+i v(x, y)$ be complex analytic, meaning it satisfies:

$$
\text { (Cauchy-Riemann) } \quad u_{x}=v_{y} \quad, \quad u_{y}=-v_{x}
$$

- Proposition: Given $f(x+i y)$, let $g(x, y)$ be the complex conjugate vector field: $g(z):=\overline{f(x+i y)}$,

$$
g(x, y):=(u(x, y),-v(x, y)) .
$$

Then clearly:

$$
f(x, y) \text { complex analytic } \Longleftrightarrow g(x, y) \text { satisfies Maxwell. }
$$

- Example: $f(z)=z, \quad g(x, y)=(x,-y)$. Then $f(z)$ is analytic everywhere and curl $g=\operatorname{div} g=0$.
- Example: $f(z)=1 / z$,

$$
g(x, y)=\frac{(x, y)}{x^{2}+y^{2}}=\text { point-charge }
$$

an outward force proportional to inverse of distance (which is the 2-dimensional version of Coulomb's Law). Then $f(z)$ is analytic except at the origin, and $g(x, y)$ satisfies Maxwell except at the origin, where there is a point-charge with infinite charge-density: $\operatorname{div} g(0,0)=\infty$.

- Example: $g(z)=(x, y)$ corresponds to $f(z)=\bar{z}$. Then $f(z)$ is not analytic, and $g(x, y)$ does not satisfy Maxwell's equations, since $\operatorname{curl} g(x, y)=0$ but $\operatorname{div} g(x, y)=2$ everywhere.

3. Parametrized curves in the plane

- Parametrized curve: $\mathcal{C}=c(t)=(x(t), y(t))$ for $a \leq t \leq b$.

We can imagine $c(t)$ as the position at time t of a particle moving along \mathcal{C} from the start point $c(a)=(x(a), y(a))$ to the end point $c(b)=(x(b), y(b)) \cdot \mathcal{C}$ is a closed curve if $c(a)=c(b)$.

- Tangent vector at point $c(t)$:

$$
c^{\prime}(t)=\lim _{\epsilon \rightarrow 0} \frac{c(t+\epsilon)-c(t)}{\epsilon}=\left(x^{\prime}(t), y^{\prime}(t)\right)
$$

Rephrasing: for two points $c_{0}=c\left(t_{0}\right)$ and $c_{1}=c\left(t_{1}\right)$ close together along \mathcal{C}, the increment vector between them is approximately the velocity vector multiplied by the time increment:

$$
c_{1}-c_{0} \approx c^{\prime}\left(t_{1}\right)\left(t_{1}-t_{0}\right)=c^{\prime}\left(t_{1}\right) \Delta t_{1} .
$$

- Example: $\mathcal{C}=c(t)=(\cos t, \sin t)$ for $0 \leq t \leq 2 \pi$, unit circle. Tangent vector at $c(t)$ is: $c^{\prime}(t)=(-\sin t, \cos t)$.
For $t=\pi / 2, \quad c(t)=(0,1), \quad c^{\prime}(t)=(-1,0)$.

4. Circulation around a curve

- We wish to measure the total drag or circulation of $g(x, y)$ pushing around a closed curve \mathcal{C}. This is a large-scale version of curl g, which measures the rate of circulation of $g(x, y)$ near a particular point.
- Drag: The drag of a constant vector field $g(x, y)=(c, d)$ along the line segment from $(0,0)$ to (p, q) is the dot-product:

$$
(c, d) \cdot(p, q)=c p+d q
$$

the product of vector lengths times cos of the angle between.

- Circulation line integral of $g(x, y)$ along \mathcal{C}. Mark N points of \mathcal{C} :

$$
c_{0}, c_{1}, \ldots, c_{N}=c_{0}
$$

with $c_{j}=c\left(t_{j}\right)$. We have:

$$
c_{j}-c_{j-1} \approx c^{\prime}\left(t_{j}\right)\left(t_{j}-t_{j-1}\right)=c^{\prime}\left(t_{j}\right) \Delta t_{j}
$$

We can compute the total circulation of $g(x, y)$ around \mathcal{C} by adding up the drag along each tiny line segment from c_{j-1} to c_{j} :

$$
\begin{aligned}
\oint_{\mathcal{C}} g(x, y) \cdot d c & :=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} g\left(c_{j}\right) \cdot\left(c_{j}-c_{j-1}\right) \\
& :=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} g\left(c\left(t_{j}\right)\right) \cdot c^{\prime}\left(t_{j}\right) \Delta t_{j} \\
& =\int_{t=a}^{b} g(c(t)) \cdot c^{\prime}(t) d t
\end{aligned}
$$

Note that $g(c(t)) \cdot c^{\prime}(t)$ is a scalar-valued function of t, so the last line is an ordinary integral.

- Example: Let $\mathcal{C}=(\cos t, \sin t)$ for $0 \leq t \leq 2 \pi$, and $g(x, y)=(1,0)$ a horizontal constant vector field. Since the drag on top of the curve cancels the opposite drag on the bottom, we expect zero circulation. In fact:

$$
\begin{aligned}
\oint_{\mathcal{C}} g(c) \cdot d c & =\int_{t=0}^{2 \pi} g(\cos t, \sin t) \cdot\left(\cos ^{\prime} t, \sin ^{\prime} t\right) d t \\
& =\int_{t=0}^{2 \pi}(1,0) \cdot(-\sin t, \cos t) d t=\int_{t=0}^{2 \pi}-\sin t d t=0
\end{aligned}
$$

5. Global outflow via line integrals

- We wish to measure the total outflow or flux of $g(x, y)$ across a closed curve \mathcal{C}. This is a large-scale version of $\operatorname{div} g(x, y)$, which measures the rate of outflow near a particular point.
- Flux: The flow of a constant vector field $g(x, y)=(c, d)$ across a line segment from $(0,0)$ to (p, q) is the cross-product:

$$
(c, d) \times(p, q)=c q-d p
$$

the product of vector lengths times sin of the angle between.

- Flux line integral of $g(x, y)$ along \mathcal{C}. As before, we compute the total outflow as:

$$
\oint_{\mathcal{C}} g(x, y) \times d c=\lim _{N \rightarrow \infty} \sum_{j=1}^{N} g\left(c_{j}\right) \times\left(c_{j}-c_{j-1}\right)=\int_{t=a}^{b} g(c(t)) \times c^{\prime}(t) d t
$$

- Example: Again let $\mathcal{C}=(\cos t, \sin t)$ and $g(x, y)=(1,0)$. Since inflow on the left should cancel outflow on the right, we expect zero flux. In fact:

$$
\oint_{\mathcal{C}} g(c) \times d c=\int_{t=0}^{2 \pi}(1,0) \times(-\sin t, \cos t) d t=\int_{t=0}^{2 \pi} \cos t d t=0 .
$$

6. Green's Theorems: global versus local

- Let R be a region on the plane whose boundary is a simple closed curve \mathcal{C} (oriented counter-clockwise). Let $g(x, y)$ be vector field which is defined and differentiable at every point of R.
- Theorem: The circulation of g around the boundary curve is equal to the total curl of g inside the region:

$$
\oint_{\mathcal{C}} g(c) \cdot d c=\iint_{R} \operatorname{curl} g(x, y) d x d y
$$

where the right side is a double integral over the region R.

- Theorem: The flux of g around the boundary curve is equal to the total divergence of g inside the region:

$$
\oint_{\mathcal{C}} g(c) \times d c=\iint_{R} \operatorname{div} g(x, y) d x d y .
$$

- Proof: Divide R into little regions, and write the total line integral as a sum of line integrals over tiny regions. Inside each tiny region, $g(x, y)$ can be replaced by its linear approximation, so that we can compute the tiny line integrals to be the area times curl g or $\operatorname{div} g$.
- Corollary: If $g(x, y)$ is an electical force field with curl $g=\operatorname{div} g=$ 0 inside the region R, then g has zero circulation and flux over the boundary curve \mathcal{C} :

$$
\oint_{\mathcal{C}} g(c) \cdot d c=\oint_{\mathcal{C}} g(c) \times d c=0
$$

Lecture: Wed 11/2

1. Complex line integral

- Given a complex derivative $F^{\prime}(z)$, we would like to recover the orginal function $F(z)$ by integrating. This is done as follows: let \mathcal{C} be a non-closed curve with start-point $\alpha=c(a)$ and end-point $\beta=c(b)$. Mark N points $\alpha=c_{0}, c_{1}, \ldots, c_{N}=\beta$, with $c_{j}=c\left(t_{j}\right)$. Then:

$$
\begin{aligned}
F(\beta)-F(\alpha) & =\lim _{N \rightarrow \infty} \sum_{j=1}^{N} F\left(c_{j}\right)-F\left(c_{j-1}\right) \\
& =\lim _{N \rightarrow \infty} \sum_{j=1}^{N} \frac{F\left(c_{j}\right)-F\left(c_{j-1}\right)}{c_{j}-c_{j-1}} \frac{c_{j}-c_{j-1}}{\Delta t_{j}} \Delta t_{j} \\
& =\int_{t=a}^{b} F^{\prime}(c(t)) c^{\prime}(t) d t
\end{aligned}
$$

- Thus, the correct integral to use is the complex line integral:

$$
\oint_{\mathcal{C}} f(z) d z:=\int_{t=a}^{b} f(c(t)) c^{\prime}(t) d t
$$

where the product in the integral is complex multiplication, and the result is a complex number. That is, if $f(x+i y)=u(x, y)+$ $i v(x, y)$ and $c(t)=x(t)+i y(t)$, then:

$$
\begin{aligned}
\oint_{\mathcal{C}} f(z) d z= & \int_{t=a}^{b} u(c(t)) x^{\prime}(t)-v(c(t)) y^{\prime}(t) d t \\
& +i \int_{t=a}^{b} u(c(t)) y^{\prime}(t)+v(c(t)) x^{\prime}(t) d t
\end{aligned}
$$

- Fundamental Theorem of Calculus: If $F(z)$ is analytic, and \mathcal{C} is a (not necessarily closed) curve from α to β, then:

$$
F(\beta)-F(\alpha)=\oint_{\mathcal{C}} F^{\prime}(z) d z
$$

- Example: $f(z)=1 / z, \mathcal{C}=c(t)=(r \cos t, r \sin t)$. Then $f(x+i y)=$ $(x-i y) /\left(x^{2}+y^{2}\right)$, and:

$$
\begin{aligned}
\oint_{\mathcal{C}} f(z) d z & =\int_{t=0}^{2 \pi} f(r \cos t+i r \sin t)\left(r \cos ^{\prime} t+i r \sin ^{\prime} t\right) d t \\
& =\int_{t=0}^{2 \pi} \frac{1}{r^{2}}(r \cos t-i r \sin t)(-r \sin t+i r \cos t) d t \\
& =\int_{t=0}^{2 \pi} i\left(\cos ^{2} t+\sin ^{2} t\right) d t=2 \pi i
\end{aligned}
$$

2. Cauchy Integral Theorem

- Theorem: If R is a plane region whose boundary is the closed curve \mathcal{C}, and $f(z)$ is complex analytic for every $z \in R$, then the complex line integral of $f(z)$ over \mathcal{C} is zero:

$$
\oint f(z) d z=0
$$

- First Proof: If we can find $F(z)$ with $f(z)=F^{\prime}(z)$, and we take $\alpha=\beta$ being the start- and end-point of the closed curve \mathcal{C}, then:

$$
\int_{\mathcal{C}} f(z) d z=F(\alpha)-F(\beta)=0
$$

For example, if $f(z)=z^{2}+1$ then we can take $F(z)=\frac{1}{3} z^{3}+z$. But how do we find such an $F(z)$ in general? For example, $f(z)=1 / z$ does not satisfy the Theorem, so it cannot be the derivative of any function $F(z)$. We need a better proof.

- Second Proof: We reduce the complex line integral of $f(z)$ to circulation and flux integrals of the corresponding electric field, the conjugate $g(z):=\overline{f(z)}$ with curl $g=\operatorname{div} g=0$. First, note that the complex product relates to the dot and cross products as follows:

$$
\alpha \beta=\bar{\alpha} \cdot \beta+\bar{\alpha} \times \beta .
$$

(Just write out real and imaginary parts of both sides.) Thus:

$$
\begin{aligned}
\oint_{\mathcal{C}} f(z) d z & =\int_{t=a}^{b} f(c(t)) c^{\prime}(t) d t \\
& =\int_{t=a}^{b} \overline{f(c(t))} \cdot c^{\prime}(t) d t+i \int_{t=a}^{b} \overline{f(c(t))} \times c^{\prime}(t) d t \\
& =\oint_{\mathcal{C}} g(c) \cdot d c+i \oint_{\mathcal{C}} g(c) \times d c \\
& =\iint_{R} \operatorname{curl} g(x, y) d x d y+i \iint_{R} \operatorname{div} g(x, y) d x d y=0
\end{aligned}
$$

3. Cauchy Mean Value Theorem

- Let $\mathcal{C}=\mathcal{C}(r, \gamma)$ be a circle with radius r and center γ, and suppose $f(z)$ is complex analytic in the disk bounded by \mathcal{C}. Then the average value of $f(z)$ on the circle \mathcal{C} is equal to the value $f(\gamma)$ in the center:

$$
\left.\left.\frac{1}{2 \pi r} \int_{\mathcal{C}(r, \gamma)} f(c(t)) \right\rvert\, c^{\prime}(t)\right) \mid d t=f(\gamma)
$$

- Proof: First, note that $c^{\prime}(t)=i(c(t)-\gamma)$, so:

$$
\begin{aligned}
\oint_{\mathcal{C}} \frac{f(z)}{z-\gamma} d z & =\int_{t=0}^{2 \pi} \frac{f(c(t))}{c(t)-\gamma} c^{\prime}(t) d t \\
& =i \int_{t=0}^{2 \pi} f(c(t)) d t \\
& =\frac{i}{r} \int_{t=0}^{2 \pi} f(c(t))\left|c^{\prime}(t)\right| d t .
\end{aligned}
$$

Thus, the average value can be computed as:

$$
\left.A(r): \left.=\frac{1}{2 \pi r} \int_{\mathcal{C}(r, \gamma)} f(c(t)) \right\rvert\, c^{\prime}(t)\right) \left\lvert\, d t=\frac{1}{2 \pi i} \oint_{\mathcal{C}(r, \gamma)} \frac{f(z)}{z-\gamma} d z\right.
$$

Let \mathcal{D} be the closed curve which first rounds the circle $\mathcal{C}(r, \gamma)$ counterclockwise, then traverses a radial line segment from radius r to a smaller radius ϵ, then rounds the circle $\mathcal{C}(\epsilon, \gamma)$ clockwise, then goes back along the same radis from ϵ to r.
The closed curve \mathcal{D} is the boundary of a ring-shaped region in which $f(z) /(z-\gamma)$ is analytic, so that the complex integral vanishes by Cauchy's Theorem:
$0=\oint_{\mathcal{D}} \frac{f(z)}{z-\gamma} d z=\oint_{\mathcal{C}(r, \gamma)} \frac{f(z)}{z-\gamma} d z-\oint_{\mathcal{C}(\epsilon, \gamma)} \frac{f(z)}{z-\gamma} d z .=A(r)-A(\epsilon)$.
That is, the average does not depend on the radius of the circle. But $f(z)$ is continuous, so as the circle $\mathcal{C}(r, \epsilon)$ approaches the central point γ, the average value of $f(z)$ on the circle approaches $f(\gamma)$:

$$
A(r)=A(\epsilon)=\lim _{\epsilon \rightarrow 0} A(\epsilon)=f(\gamma) .
$$

Lecture: Mon 11/7

1. Fundamental Theorem of Algebra

- Theorem: Any polynomial

$$
f(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n} \in \mathbb{C}[z]
$$

of degree $n \geq 1$ has at least one complex root $z=\alpha$ with $f(\alpha)=0$.

- First step: We give a proof by contradiction. Suppose $f(z)$ were a polynomial with no roots. Then its reciprocal $g(z):=1 / f(z)$ would be analytic everywhere. Furthermore:

$$
\lim _{|z| \rightarrow \infty}|f(z)|=\lim _{|z| \rightarrow \infty}\left|a_{n} z^{n}\right|=\infty,
$$

meaning that $f(z)$ has large radius if z is far from the origin. Thus $\lim _{|z| \rightarrow \infty} g(z)=0$, meaning that $g(z)$ has small radius when z is far from the origin.

- Second step, Liouville's Theorem: Let $g(z)$ be a function which is complex analytic on the whole plane, with $\lim _{|z| \rightarrow \infty} g(z)=0$. Then $g(z)$ can only be the zero constant function: $g(z)=0$ for all z.
Proof: Consider any particular $\gamma \in \mathbb{C}$, and take a very large circle $\mathcal{C}(r, \gamma)$ with radius r and center γ. Given $\epsilon>0$, by assumption we can take radius large enough so that $|g(z)|<\epsilon$ for z on the circle $\mathcal{C}(r, \gamma)$. By Cauchy's Mean Value Theorem, the value $g(\gamma)$ at the center is the average of the value of $g(z)$ on the circle $\mathbb{C}(r, \gamma)=c(t)$:

$$
g(\gamma)=\underset{c \in \mathcal{C}(r, \gamma)}{\operatorname{Avg}} g(c):=\frac{1}{2 \pi r} \int g(c(t))\left|c^{\prime}(t)\right| d t .
$$

Taking lengths and applying the triangle inequality,

$$
|\underset{\mathcal{C}}{\operatorname{Avg}} F(c)| \leq \underset{\mathcal{C}}{\operatorname{Avg}}|F(c)|,
$$

we have:

$$
|g(\gamma)|=|\underset{\mathcal{C}(r, \gamma)}{\operatorname{Avg}} g(c)| \leq \underset{\mathcal{C}(r, \gamma)}{\operatorname{Avg}}|g(c)| \leq \epsilon
$$

Since this is true for any $\epsilon>0$, we must have $|g(\gamma)|=0$. This holds for each $\gamma \in \mathbb{C}$.

- Third step: Since $g(z)=1 / f(z)$ is not the zero constant function, we have a contradiction. Thus there cannot exist any non-vanishing polynomial $f(z) \in \mathbb{C}[z]$.
- Paraphrasing: Liouville's Theorem says that if a non-constant analytic function becomes very small as $|z| \rightarrow \infty$, then $g(z)$ must compensate for this by having non-anlytic points somewhere (for example, blowing up to infinity). Hence, if an analytic $f(z)$ becomes very large as $|z| \rightarrow \infty$ (as does a polynomial), then $f(z)$ must compensate for this by vanishing somewhere, i.e., having roots.
- This is a pure existence proof: it shows that a root-free polynomial function $f(z)$ would lead to an analytic function $g(z)$ violating the Cauchy Mean Value Theorem. The proof gives no clue how to find a root for a given $f(z)$: we will give an algorithm for this next time.

2. Factoring polynomials

- Proposition: Every monic complex polynomial $f(z)$ of degree n can be uniquely factored in $\mathbb{C}[z]$ as a product of n linear functions.

$$
f(z)=\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{n}\right) .
$$

That is, the irreducible polynomials of $\mathbb{C}[z]$ are linear.
Proof: By the Fundamental Theorem, $f(z)$ has a root $z=\alpha$ and thus a linear factor: $f(z)=\left(z-\alpha_{1}\right) f_{1}(z)$, where $f_{1}(z)$ has degree $n-1$. Repeat this for $f_{1}(z)$ until all factors are linear.

- Proposition: Every monic real polynomial $f(z)$ of degree n can be uniquely factored in $\mathbb{R}[z]$ as a product of linear and quadratic functions:

$$
f(z)=\left(z-\alpha_{1}\right) \cdots\left(z-\alpha_{k}\right) q_{1}(z) \cdots q_{\ell}(z),
$$

where $\alpha_{j} \in \mathbb{R}, q_{j}(z) \in \mathbb{R}[z]$ has degree 2 , and $k+2 \ell=n$. That is, the irreducible polynomials of $\mathbb{R}[z]$ are linear and quadratic.
Proof: A real polynomial $f(z) \in \mathbb{R}[z]$ can be factored into complex linear factors as above. But if $f(\alpha)=0$, then $f(\bar{\alpha})=\overline{f(\alpha)}=0$, so the non-real roots come in complex conjugate pairs. Each such pair $\alpha \neq \bar{\alpha}$ with $\alpha=a+b i$ gives a real factor:

$$
(z-\alpha)(z-\bar{\alpha})=z^{2}+(\alpha+\bar{\alpha}) z+\alpha \bar{\alpha}=z^{2}+2 a z+\left(a^{2}+b^{2}\right) \in \mathbb{R}[z] .
$$

These factors are irreducible in $\mathbb{R}[z]$ since their roots $\alpha, \bar{\alpha}$ are not in \mathbb{R} by assumption.

- Example: Let $f(z)=z^{4}+1$, having roots $\alpha_{1}=\operatorname{cis}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}(1+i)$, $\alpha_{2}=\operatorname{cis}\left(\frac{3 \pi}{4}\right)=\frac{\sqrt{2}}{2}(-1+i)$, and their conjugates $\bar{\alpha}_{1}, \bar{\alpha}_{2}$. Factoring:

$$
\begin{aligned}
f(z) & =\left(z-\alpha_{1}\right)\left(z-\bar{\alpha}_{1}\right)\left(z-\alpha_{2}\right)\left(z-\bar{\alpha}_{2}\right) \\
& =\left(z^{2}+\left(\alpha_{1}+\bar{\alpha}_{1}\right) z+\alpha_{1} \bar{\alpha}_{1}\right)\left(z^{2}+\left(\alpha_{2}+\bar{\alpha}_{2}\right) z+\alpha_{2} \bar{\alpha}_{2}\right) \\
& =\left(z^{2}+\sqrt{2} z+1\right)\left(z^{2}-\sqrt{2} z+1\right)
\end{aligned}
$$

