Lecture: Wed 11/31

1. Subgroups

- Subgroup: $H \subset G$ closed under multiplication and inverses: if $a, b \in H$, then $a b, a^{-1} \in H$.
- Informally, if $G=\operatorname{Sym}(X)$ is the symmetries of an object X, then $H=\operatorname{Sym}(\widetilde{X})$ is the symmetries of \widetilde{X}, which is X with some"decorations" added to make it less symmetric.

2. Cyclic subgroups

- Abstract cyclic group: $C_{n}=\left\{\iota, x, x^{2}, \ldots, x^{n-1}\right\}$ with the relation $x^{n}=\iota$. An isomorphic group is $\left(\mathbb{Z}_{n},+\right)$, clock addition modulo n, with the isomorphism $\mathbb{Z}_{n} \rightarrow C_{n}, j \mapsto x^{j}$.
- Abstract infinite cyclic group: $C_{\infty}=\left\{\ldots, x^{-2}, x^{-1}, \iota, x, x^{2}, \ldots\right\}$, with no relations. This is isomorphic to $(\mathbb{Z},+)$.
- An element $a \in G$ generates the cyclic subgroup

$$
\langle a\rangle:=\left\{\ldots, a^{-2}, a^{-1}, \iota, a, a^{2}, \ldots\right\} .
$$

This group can be finite (if $a^{k}=\iota$ for some $k \neq 0$) or infinite (if $a^{k} \neq \iota$ for all $k \neq 0$).

- Order of an element: $\operatorname{ord}(a):=\min \left\{k>0 \mid a^{k}=\iota\right\}$; also $\operatorname{ord}(a):=\infty$ if there is no such $k>0$.
- Proposition: $\langle a\rangle \cong C_{m}$, where $m=\operatorname{ord}(a)$.

Proof. Suppose m is finite. I claim $a^{j}=a^{k}$ if and only if $j \equiv$ $k \bmod m$. Indeed, if $a^{j}=a^{k}$, then $a^{j-k}=\iota$. Taking $j-k=q m+r$ for $0 \leq r<m$, we have $\iota=a^{j-k}=a^{q m} a^{r}=a^{r}$. Since there cannot be any $0<r<m$ with $a^{r}=\iota$, we must have $r=0$, so $m \mid(j-k)$, meaining $j \equiv k \bmod m$. The reverse claim is obvious.
Now consider the map $\langle a\rangle \rightarrow C_{m}$ defined by $a^{j} \mapsto x^{j}$. This is welldefined, since if $a^{j}=a^{k}$, then $j=q m+k$ and $x^{j}=x^{q m} x^{k}=x^{k}$. It is one-to-one since if $x^{j}=x^{k}$, then $j \equiv k \bmod m$, so $a^{j}=a^{k}$. It is clearly onto and respects multiplication.
If m is infinite, then clearly $a^{j} \neq a^{k}$ for any $j \neq k$, and the isomorphism is obvious.

3. Product of groups

- For groups G_{1}, G_{2}, the product is the set

$$
G_{1} \times G_{2}:=\left\{\left(g_{1}, g_{2}\right) \mid g_{1} \in G_{1}, g_{2} \in G_{2}\right\}
$$

with componentwise multiplication: $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right):=\left(a_{1} b_{1}, a_{2} b_{2}\right)$. The identity is $\iota:=\left(\iota_{1}, \iota_{2}\right)$, and $\left(g_{1}, g_{2}\right)^{-1}:=\left(g_{1}^{-1}, g_{2}^{-1}\right)$.

- The product group contains copies of its factors: $G_{1} \times \iota_{2} \cong G_{1}$ and $\iota_{1} \times G_{2} \cong G_{2}$. These copies commute:

$$
\left(g_{1}, \iota_{2}\right)\left(\iota_{1}, g_{2}\right)=\left(g_{1}, g_{2}\right)=\left(\iota_{1}, g_{2}\right)\left(g_{1}, \iota_{2}\right) .
$$

- Theorem: Every abelian (commutative) group G is isomorphic to a product of cyclic groups: $G \cong C_{n_{1}} \times C_{n_{2}} \times C_{n_{3}} \times \cdots$, where n_{j} are positive integers or ∞.
This is a difficult theorem which we will not prove.

4. Cosets and Lagrange's Theorem

- Given $H \subset G$ a subgroup, the H-coset of $g \in G$ is the set $g H:=$ $\{g h \mid h \in H\}$. For example, for any $h \in H$ we have $h H=H$, since $h H$ is a row of the multiplication table of H.
- $G / H=\{g H \mid g \in G\}$ is the collection of all cosets.
- Lemma: If two cosets overlap, then they are identical. That is, for $a, b \in G$, either $a H \cap b H=\emptyset$ or $a H=b H$.
Proof. Suppose $a H \cap b H \neq \emptyset$. An element in the intersection is of the form $a h_{1}=b h_{2}$, so that $b=a h_{1} h_{2}^{-1}$. Thus $b H=a h_{1} h_{2}^{-1} H=$ $a H$, since $h H=H$ for any $h \in H$.
- Lemma: Any two cosets have the same number of elements: $|a H|=$ $|b H|$ for any $a, b \in G$.
Proof. The map $a H \rightarrow b H, a h \rightarrow b h$ is one-to-one, since if $b h_{1}=b h_{2}$ then $h_{1}=h_{2}$ and $a h_{1}=a h_{2}$. The map is obviously onto. Thus it is a bijection, a one-to-one correspondence between the cosets, which must thus have the same size.

5. Lagrange's Theorem

- Theorem: If G is a finite group with $|G|=n$ elements and H is a subgroup with $|H|=m$ elements, then $m \mid n$: the order of a subgroup evenly divides the order of the group.
Proof. By the above two lemmas, the cosets partition the n elements of G into disjoint subsets: $G=g_{1} H \cup \cdots \cup g_{\ell} H$, with each coset having m elements. Thus, $n=\ell m$ meaning $m \mid n$. That is:

$$
|G|=|G / H||H|
$$

- Theorem: If $|G|=p$ a prime, then $G \cong C_{p}$ a cyclic group.

Proof. Let $g \neq \iota \in G$. Then $\operatorname{ord}(g):=k>1$, and by Lagrange's Theorem, $k \mid p$, so $k=p$. Thus the cyclic subgroup $\langle g\rangle \cong C_{k}=C_{p}$ is all of G, and $G \cong C_{p}$.

