Lecture: Wed 11/31

- 1. Subgroups
 - Subgroup: $H \subset G$ closed under multiplication and inverses: if $a, b \in H$, then $ab, a^{-1} \in H$.
 - Informally, if G = Sym(X) is the symmetries of an object X, then $H = \text{Sym}(\widetilde{X})$ is the symmetries of \widetilde{X} , which is X with some "decorations" added to make it less symmetric.
- 2. Cyclic subgroups
 - Abstract cyclic group: $C_n = \{\iota, x, x^2, \dots, x^{n-1}\}$ with the relation $x^n = \iota$. An isomorphic group is $(\mathbb{Z}_n, +)$, clock addition modulo n, with the isomorphism $\mathbb{Z}_n \to C_n$, $j \mapsto x^j$.
 - Abstract infinite cyclic group: $C_{\infty} = \{\dots, x^{-2}, x^{-1}, \iota, x, x^2, \dots\},\$ with no relations. This is isomorphic to $(\mathbb{Z}, +)$.
 - An element $a \in G$ generates the cyclic subgroup

$$\langle a \rangle := \{\ldots, a^{-2}, a^{-1}, \iota, a, a^2, \ldots\}.$$

This group can be finite (if $a^k = \iota$ for some $k \neq 0$) or infinite (if $a^k \neq \iota$ for all $k \neq 0$).

- Order of an element: $\operatorname{ord}(a) := \min\{k > 0 \mid a^k = \iota\}$; also $\operatorname{ord}(a) := \infty$ if there is no such k > 0.
- Proposition: $\langle a \rangle \cong C_m$, where $m = \operatorname{ord}(a)$.

Proof. Suppose m is finite. I claim $a^j = a^k$ if and only if $j \equiv k \mod m$. Indeed, if $a^j = a^k$, then $a^{j-k} = \iota$. Taking j-k = qm+r for $0 \leq r < m$, we have $\iota = a^{j-k} = a^{qm}a^r = a^r$. Since there cannot be any 0 < r < m with $a^r = \iota$, we must have r = 0, so m|(j-k), meaining $j \equiv k \mod m$. The reverse claim is obvious.

Now consider the map $\langle a \rangle \to C_m$ defined by $a^j \mapsto x^j$. This is welldefined, since if $a^j = a^k$, then j = qm + k and $x^j = x^{qm}x^k = x^k$. It is one-to-one since if $x^j = x^k$, then $j \equiv k \mod m$, so $a^j = a^k$. It is clearly onto and respects multiplication.

If m is infinite, then clearly $a^j \neq a^k$ for any $j \neq k$, and the isomorphism is obvious.

- 3. Product of groups
 - For groups G_1, G_2 , the product is the set

 $G_1 \times G_2 := \{ (g_1, g_2) \mid g_1 \in G_1, g_2 \in G_2 \},\$

with componentwise multiplication: $(a_1, a_2)(b_1, b_2) := (a_1b_1, a_2b_2)$. The identity is $\iota := (\iota_1, \iota_2)$, and $(g_1, g_2)^{-1} := (g_1^{-1}, g_2^{-1})$.

• The product group contains copies of its factors: $G_1 \times \iota_2 \cong G_1$ and $\iota_1 \times G_2 \cong G_2$. These copies commute:

$$(g_1, \iota_2)(\iota_1, g_2) = (g_1, g_2) = (\iota_1, g_2)(g_1, \iota_2).$$

• Theorem: Every abelian (commutative) group G is isomorphic to a product of cyclic groups: $G \cong C_{n_1} \times C_{n_2} \times C_{n_3} \times \cdots$, where n_j are positive integers or ∞ .

This is a difficult theorem which we will not prove.

- 4. Cosets and Lagrange's Theorem
 - Given $H \subset G$ a subgroup, the *H*-coset of $g \in G$ is the set $gH := \{gh \mid h \in H\}$. For example, for any $h \in H$ we have hH = H, since hH is a row of the multiplication table of *H*.
 - $G/H = \{gH \mid g \in G\}$ is the collection of all cosets.
 - Lemma: If two cosets overlap, then they are identical. That is, for $a, b \in G$, either $aH \cap bH = \emptyset$ or aH = bH.

Proof. Suppose $aH \cap bH \neq \emptyset$. An element in the intersection is of the form $ah_1 = bh_2$, so that $b = ah_1h_2^{-1}$. Thus $bH = ah_1h_2^{-1}H = aH$, since hH = H for any $h \in H$.

• Lemma: Any two cosets have the same number of elements: |aH| = |bH| for any $a, b \in G$.

Proof. The map $aH \to bH$, $ah \to bh$ is one-to-one, since if $bh_1 = bh_2$ then $h_1 = h_2$ and $ah_1 = ah_2$. The map is obviously onto. Thus it is a bijection, a one-to-one correspondence between the cosets, which must thus have the same size.

- 5. Lagrange's Theorem
 - Theorem: If G is a finite group with |G| = n elements and H is a subgroup with |H| = m elements, then m|n: the order of a subgroup evenly divides the order of the group.

Proof. By the above two lemmas, the cosets partition the n elements of G into disjoint subsets: $G = g_1 H \cup \cdots \cup g_\ell H$, with each coset having m elements. Thus, $n = \ell m$ meaning m|n. That is:

$$|G| = |G/H| |H|.$$

• Theorem: If |G| = p a prime, then $G \cong C_p$ a cyclic group.

Proof. Let $g \neq \iota \in G$. Then $\operatorname{ord}(g) := k > 1$, and by Lagrange's Theorem, k|p, so k = p. Thus the cyclic subgroup $\langle g \rangle \cong C_k = C_p$ is all of G, and $G \cong C_p$.