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1. If H is a subgroup of G, the index [G:H] is the number of distinct right
cosets gH, where g ∈ G. Note that this is also the number of left cosets Hg,
since the bijection G

∼→ G, g 7→ g−1 takes each right coset gH to a left coset
Hg−1.

2. Proposition: If [G:H] = 2, then H is a normal subgroup of G.

proof: If [G:H] = 2, then G partitions into right and left cosets as G =
H ∪ gH = H ∪Hg, where g is any element not in H. Thus:

gH = G r H = Hg ,

or equivalently gHg−1 = H, which is the definition of a normal subgroup.
(Here G r H means G with the elements of H removed.)

3. Proposition: If n, m > 0 with gcd(n, m) = 1, then the product of the
cyclic groups Cn and Cm is isomorphic to the cyclic group Cnm :

Cn × Cm
∼= Cnm .

proof: Let Cn = 〈x〉 and Cm = 〈y〉, so that Cn ×Cm = {(xi, yj) | i, j ∈ Z}.
Of course, these are not all distinct elements, since xk = 1 whenever n|k ,
and yk = 1 whenever m|k . Now, let z := (x, y).

I claim z has order nm. Clearly znm = (xnm, ynm) = (1, 1) = 1, so
ord(z) ≤ nm. Now, since gcd(n, m) = 1, we can write an + bm = 1 for
integers a, b. Thus zk = 1 means (xk, yk) = (1, 1), i.e., n|k and m|k, so that:

nm | (ank + bmk) = k .

That is, zk = 1 =⇒ nm|k , and ord(z) = nm.
Therefore Cn×Cm = {z, z2, . . . , znm = 1}, which is clearly a cyclic group

Cnm.

note: Let us rewrite this as: Cn×Cm
∼= Z+

n×Z+
m, so that z ↔ (1 mod n, 1 mod m)

and zk ↔ k(1, 1) = (k mod n, k mod m). Thus, we have the isomorphism:

Z+
nm → Z+

n × Z+
m

k mod nm 7→ (k mod n , k mod m) .

Since this is an bijection, we get the remarkable fact:

Chinese Remainder Theorem: Suppose n, m are relatively prime. Then for
any i mod n and j mod m, there is a unique k mod nm such that k ≡ i mod n
and k ≡ j mod m.

4. Proposition: If G is a group with 6 elements, then G is isomorphic to the
cyclic group C6 or the dihedral group D3.

Proof: case (1) Suppose G has an element x of order 6. Then the cyclic



subgroup 〈x〉 = {1, x, x2, . . . , x5} has 6 elements and is all of G, so that G is
cyclic.

case (2) Suppose G has an element x of order 3, but none of order 6.
Taking some element y 6∈ 〈x〉 = {1, x, x2} , we have:

G = 〈x〉 ∪ y〈x〉 =

{
1, x, x2

y, yx, yx2

}
.

question: Which of these 6 elements is y2 ?

• Since the index [G:〈x〉] = 2, the subgroup 〈x〉 is normal by Quiz Ques-
tion 2. Thus we have a quotient group G/〈x〉 = {1, y}, and clearly
y2 = 1 , i.e., y2 ∈ 〈x〉 .

• If y2 = x, what is the order of y ? We have y6 = x3 = 1, so ord(y)
divides 6, and ord(y) 6= 1, 2. If ord(y) = 3, then 1 = y3 = xy and
y = x−1 = x2, which is false. Thus ord(y) = 6, contrary to our
assumption. Hence y2 = x is impossible.

• We can show y2 = x2 is impossible by an exactly similar argument. For
example, if ord(y) = 3, then 1 = y3 = x2y, so that y = x−2 = x, which
is false.

• The only remaining possiblility is y2 = 1 .

question: What is yxy−1 ?

• Since as noted 〈x〉 is normal, we have y〈x〉y−1 = 〈x〉 and yxy−1 ∈ 〈x〉
.

• Since conjugating does not change the order of an element, we have
ord(yxy−1) = ord(x) = 3. Thus yxy−1 = x or x2.

• If yxy−1 = x , then yx = xy and:

〈xy〉 = {1, xy, x2y2, x3y3, x4y4, x5y5} = {1, xy, x2, y, x, x2y} ,

so that ord(xy) = 6, contrary to assumption. (In other words: C2 ×
C3

∼= C6.)

• The only remaining possibility is: yxy−1 = x2.

summary: G is generated by elements x, y with x3 = y2 = 1 and yx = x2y .
But we know that this defines the multiplication table of D3 , and we have
G ∼= D3 .

case (3) Suppose G has only elements of order 1 and 2. Then for any x ∈ G,
we have x−1 = x. For any x, y ∈ G, we have xy = (xy)−1 = y−1x−1 = yx, so
G is abelian.

Now consider two distinct elements x, y 6= 1, which clearly generate the
subgroup:

H := 〈x, y〉 = {1, x, y, xy} ∼= C2 × C2 .

But then G, with 6 elements, could not possibly be partitioned into disjoint
cosets of H, each with 4 elements. (Indeed, for any subgroup H ⊂ G, we
have #H |#G for this same reason.) Thus this case is impossible.


