1. If H is a subgroup of G, the index $[G: H]$ is the number of distinct right cosets $g H$, where $g \in G$. Note that this is also the number of left cosets $H g$, since the bijection $G \xrightarrow{\sim} G, g \mapsto g^{-1}$ takes each right coset $g H$ to a left coset $H g^{-1}$.
2. Proposition: If $[G: H]=2$, then H is a normal subgroup of G.

PROOF: If $[G: H]=2$, then G partitions into right and left cosets as $G=$ $H \cup g H=H \cup H g$, where g is any element not in H. Thus:

$$
g H=G \backslash H=H g,
$$

or equivalently $g \mathrm{Hg}^{-1}=H$, which is the definition of a normal subgroup. (Here $G \backslash H$ means G with the elements of H removed.)
3. Proposition: If $n, m>0$ with $\operatorname{gcd}(n, m)=1$, then the product of the cyclic groups C_{n} and C_{m} is isomorphic to the cyclic group $C_{n m}$:

$$
C_{n} \times C_{m} \cong C_{n m}
$$

PROOF: Let $C_{n}=\langle x\rangle$ and $C_{m}=\langle y\rangle$, so that $C_{n} \times C_{m}=\left\{\left(x^{i}, y^{j}\right) \mid i, j \in \mathbb{Z}\right\}$. Of course, these are not all distinct elements, since $x^{k}=1$ whenever $n \mid k$, and $y^{k}=1$ whenever $m \mid k$. Now, let $z:=(x, y)$.

I claim z has order $n m$. Clearly $z^{n m}=\left(x^{n m}, y^{n m}\right)=(1,1)=1$, so $\operatorname{ord}(z) \leq n m$. Now, since $\operatorname{gcd}(n, m)=1$, we can write $a n+b m=1$ for integers a, b. Thus $z^{k}=1$ means $\left(x^{k}, y^{k}\right)=(1,1)$, i.e., $n \mid k$ and $m \mid k$, so that:

$$
n m \mid(a n k+b m k)=k .
$$

That is, $\quad z^{k}=1 \Longrightarrow n m \mid k, \quad$ and $\operatorname{ord}(z)=n m$.
Therefore $C_{n} \times C_{m}=\left\{z, z^{2}, \ldots, z^{n m}=1\right\}$, which is clearly a cyclic group $C_{n m}$.

NOTE: Let us rewrite this as: $C_{n} \times C_{m} \cong \mathbb{Z}_{n}^{+} \times \mathbb{Z}_{m}^{+}$, so that $z \leftrightarrow(1 \bmod n, 1 \bmod m)$ and $z^{k} \leftrightarrow k(1,1)=(k \bmod n, k \bmod m)$. Thus, we have the isomorphism:

$$
\begin{aligned}
\mathbb{Z}_{n m}^{+} & \rightarrow \mathbb{Z}_{n}^{+} \times \mathbb{Z}_{m}^{+} \\
k \bmod n m & \mapsto(k \bmod n, k \bmod m) .
\end{aligned}
$$

Since this is an bijection, we get the remarkable fact:
Chinese Remainder Theorem: Suppose n, m are relatively prime. Then for any $i \bmod n$ and $j \bmod m$, there is a unique $k \bmod n m$ such that $k \equiv i \bmod n$ and $k \equiv j \bmod m$.
4. Proposition: If G is a group with 6 elements, then G is isomorphic to the cyclic group C_{6} or the dihedral group D_{3}.

Proof: CASE (1) Suppose G has an element x of order 6. Then the cyclic
subgroup $\langle x\rangle=\left\{1, x, x^{2}, \ldots, x^{5}\right\}$ has 6 elements and is all of G, so that G is cyclic.

CASE (2) Suppose G has an element x of order 3, but none of order 6 . Taking some element $y \notin\langle x\rangle=\left\{1, x, x^{2}\right\}$, we have:

$$
G=\langle x\rangle \cup y\langle x\rangle=\left\{\begin{array}{ccc}
1, & x, & x^{2} \\
y, & y x, & y x^{2}
\end{array}\right\} .
$$

QUestion: Which of these 6 elements is y^{2} ?

- Since the index $[G:\langle x\rangle]=2$, the subgroup $\langle x\rangle$ is normal by Quiz Question 2. Thus we have a quotient group $G /\langle x\rangle=\{\overline{1}, \bar{y}\}$, and clearly $\bar{y}^{2}=\overline{1}$, i.e., $y^{2} \in\langle x\rangle$.
- If $y^{2}=x$, what is the order of y ? We have $y^{6}=x^{3}=1$, so $\operatorname{ord}(y)$ divides 6 , and $\operatorname{ord}(y) \neq 1,2$. If $\operatorname{ord}(y)=3$, then $1=y^{3}=x y$ and $y=x^{-1}=x^{2}$, which is false. Thus $\operatorname{ord}(y)=6$, contrary to our assumption. Hence $y^{2}=x$ is impossible.
- We can show $y^{2}=x^{2}$ is impossible by an exactly similar argument. For example, if $\operatorname{ord}(y)=3$, then $1=y^{3}=x^{2} y$, so that $y=x^{-2}=x$, which is false.
- The only remaining possiblility is $y^{2}=1$.

Question: What is $y x y^{-1}$?

- Since as noted $\langle x\rangle$ is normal, we have $y\langle x\rangle y^{-1}=\langle x\rangle$ and $y x y^{-1} \in\langle x\rangle$
- Since conjugating does not change the order of an element, we have $\operatorname{ord}\left(y x y^{-1}\right)=\operatorname{ord}(x)=3$. Thus $y x y^{-1}=x$ or x^{2}.
- If $y x y^{-1}=x$, then $y x=x y$ and:

$$
\langle x y\rangle=\left\{1, x y, x^{2} y^{2}, x^{3} y^{3}, x^{4} y^{4}, x^{5} y^{5}\right\}=\left\{1, x y, x^{2}, y, x, x^{2} y\right\},
$$

so that $\operatorname{ord}(x y)=6$, contrary to assumption. (In other words: $C_{2} \times$ $C_{3} \cong C_{6}$.)

- The only remaining possibility is: $y x y^{-1}=x^{2}$.

SUMmARY: G is generated by elements x, y with $x^{3}=y^{2}=1$ and $y x=x^{2} y$. But we know that this defines the multiplication table of D_{3}, and we have $G \cong D_{3}$.

CASE (3) Suppose G has only elements of order 1 and 2 . Then for any $x \in G$, we have $x^{-1}=x$. For any $x, y \in G$, we have $x y=(x y)^{-1}=y^{-1} x^{-1}=y x$, so G is abelian.

Now consider two distinct elements $x, y \neq 1$, which clearly generate the subgroup:

$$
H:=\langle x, y\rangle=\{1, x, y, x y\} \cong C_{2} \times C_{2} .
$$

But then G, with 6 elements, could not possibly be partitioned into disjoint cosets of H, each with 4 elements. (Indeed, for any subgroup $H \subset G$, we have $\# H \mid \# G$ for this same reason.) Thus this case is impossible.

