

Grothendieck scheme \mathcal{S}
any ideal $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$
sum of ideals $(y)+\left(y-x^{2}\right)$
$=\left(y, x^{2}\right)$ non-radical ideal
any finitely generated \mathbb{C}-algebra R

$$
\begin{gathered}
R=\mathbb{C}[\bar{x}, \bar{y}]=\mathbb{C} 1 \oplus \mathbb{C} \bar{x} \\
\text { relations } \bar{x}^{2}=0, \bar{y}=0
\end{gathered}
$$

Hilbert Nullstellensatz

Strong: For any ideal $I \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, we have $I(V(I))=\sqrt{I}=\left\{f \mid f^{k} \in I\right.$ for some $\left.k>0\right\}$, radical of I.
Weak: Every ideal $I \subsetneq \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is contained in some maximal ideal $M_{a}=\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$.
Every variety $V(I)$ for $I \neq(1)$ contains some point $a=\left(a_{1}, \ldots, a_{n}\right) \in V(I)$

