Claim: There is no faithful representation of the 8-element quaternion group $Q=$ $\{ \pm 1, \pm i, \pm j, \pm k\}$ on a 3 -dimensional real vector space \mathbb{R}^{3}.
Proof. Suppose we had such a representation on \mathbb{R}^{3} with matrices given by a group homomorphism $R: Q \rightarrow \mathrm{GL}_{3}(\mathbb{R})$; any other basis of \mathbb{R}^{3} would also give real matrices. The same matrices act on the complex space \mathbb{C}^{3}, and we know from earlier problems that this must split as $\mathbb{C}^{3}=\mathbb{C}_{\rho} \oplus V_{2}$, a sum of a complex 1-dimensional representation and the complex irreducible 2-dimensional representation $R_{2}: Q \rightarrow \mathrm{SU}_{2}$,

$$
R_{2}(\pm 1)= \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), R_{2}(\pm i)= \pm\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right), R_{2}(\pm j)= \pm\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), R_{2}(\pm k)= \pm\left(\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right)
$$

Since $\mathbb{C}^{3}=\mathbb{R}^{3} \oplus i \mathbb{R}^{3}$ as real vector spaces, we can define the complex conjugate of the subspace V_{2}, making another complex subspace \bar{V}_{2}. But since V_{2} and \bar{V}_{2} are both irreducible representations, they must be disjoint (which is impossible inside \mathbb{C}^{3}), or the same space. Thus $\bar{V}_{2}=V_{2}$, and we have the \mathbb{R}-linear conjugation mapping C : $V_{2} \rightarrow V_{2}, C(v)=\bar{v}$, with $C^{2}=I$. Then $V_{2}=V_{+} \oplus V_{-}$splits into ± 1 eigenspaces of C, and $V_{-}=i V_{+}$, so that $\operatorname{dim}_{\mathbb{R}}\left(V_{+}\right)=2$. Clearly $V_{+} \subset \mathbb{R}^{3}$, so we can find $\left\{v_{1}, v_{2}\right\} \subset \mathbb{R}^{3}$ with $V_{+}=\mathbb{R} v_{1} \oplus \mathbb{R} v_{2}$, and $V_{2}=\mathbb{C} v_{1} \oplus \mathbb{C} v_{2}$. With respect to this basis of $V_{+} \subset \mathbb{R}^{3}$, the representation matrices of R_{2} acting on V_{2} are real: $M R_{2}(g) M^{-1} \in \mathrm{GL}_{2}(\mathbb{R})$ for a change-of-basis matrix M.

Now, $V_{+} \subset \mathbb{R}^{3}$ has the usual dot product, and we can average this over the group Q to get an invariant positive-definite dot product on V_{+}. Changing to an orthonormal basis of V_{+}makes the representation matrices orthogonal, and since $R_{2}(g)$ has determinant 1 , so does the conjugated matrix: $L M R_{2}(g) M^{-1} L^{-1} \in \mathrm{SO}_{2}$. Since R_{2} is faithful, we get an embedding of the non-abelian group Q into the abelian group SO_{2}, which is impossible.

There could not have been such a representation \mathbb{R}^{3} to begin with.

