1. Euclidean Algorithm: Given polynomials $f(x), g(x) \in F[x]$ for F a field, with $\operatorname{deg} f(x) \leq \operatorname{deg} g(x)$, we perform repeated polynomial division to write:

$$
\begin{aligned}
f(x) & =q_{1}(x) g(x)+r_{1}(x) \\
g(x) & =q_{2}(x) r_{1}(x)+r_{2}(x) \\
& \vdots \\
r_{i}(x) & =q_{i+2}(x) r_{i+1}(x)+r_{i+2}(x) \\
& \vdots \\
r_{k-2}(x) & =q_{k}(x) r_{k-1}(x)+r_{k}(x) \\
r_{k-1}(x) & =q_{k+1}(x) r_{k}(x)+0 .
\end{aligned}
$$

For consistency, we may denote $f(x)=r_{-1}(x)$ and $g(x)=r_{0}(x)$.
a. PROPOSITION: $r_{k}(x)$ is a polynomial divisor of $f(x)$ and $g(x)$.

Proof: We show $r_{k} \mid r_{i}$ by induction on $i=k, k-1, \ldots, 1,0,-1$, ending with $r_{k} \mid r_{0}=g$ and $r_{k} \mid r_{-1}=f$. The base cases $r_{k} \mid r_{k}, r_{k-1}$ are clear. Now assume inductively that $r_{k} \mid r_{i+1}, r_{i+2}, \ldots, r_{k}$. Then $r_{k} \mid q_{i+2} r_{i+1}+r_{i+2}=r_{i}$, so the induction proceeds, and the Proposition holds.
b. PROPOSITION: $r_{k}(x)=a(x) f(x)+b(x) g(x)$ for some $a(x), b(x) \in F[x]$.

Proof: We show $r_{k}=a_{i-1} r_{i-1}+b_{i-1} r_{i}$ by induction on $i=k-2, k-3, \ldots, 0,-1$, ending with $r_{k}=a_{-1} f+b_{-1} g$. The base case is $r_{k}=r_{k-2}-q_{k} r_{k-1}$. Now assume inductively that $r_{k}=a_{i+1} r_{i+1}+b_{i+1} r_{i+2}$. By definition $r_{i}=q_{i+2} r_{i+1}+r_{i+2}$, so:

$$
\begin{aligned}
r_{k} & =a_{i+1} r_{i+1}+b_{i+1} r_{i+2}=a_{i+1} r_{i+1}+b_{i+1}\left(r_{i}-q_{i+2} r_{i+1}\right) \\
& =b_{i+1} r_{i}+\left(a_{i+1}-b_{i+1} q_{i+2}\right) r_{i+1}=a_{i} r_{i}+b_{i} r_{i+1}
\end{aligned}
$$

c. PROPOSITION: The polynomial $d(x)=r_{k}(x)$ has the defining properties of a greatest common divisor $\operatorname{gcd}(f(x), g(x))$: namely $d(x) \mid f(x), g(x)$, and for any common divisor $c(x) \mid f(x), g(x)$, we have $c(x) \mid d(x)$.
Proof: We know $d=r_{k} \mid f, g$ by $\# 1(\mathrm{a})$. Now if $c \mid f, g$, then by $\# 1(\mathrm{~b})$ we have:

$$
c \mid(a f+b g)=r_{k}=d
$$

Note: A gcd is unique up to multiplication by units: if d, e both have the defining properties, then $d \mid e$ and $e \mid d$, meaning $d=a e$ and $e=b d$, so that $d=a b d$ and $a b=1$. That is, d and e are multiples of each other by units (here, constant polynomials).
d. Proposition: Any ideal $I \subset F[x]$ must be a principal ideal comprising all multiples of some $f(x) \in F[x]$: that is, $I=(f(x))=\{q(x) f(x)$ for $q(x) \in F[x]\}$.
Proof: Except when $I=\{0\}=(0)$, we can find a non-zero element $f(x) \in I$ having minimal degree. By definition of ideals, $q(x) f(x) \in I$ for any $q(x)$, so $(f(x)) \subset I$.

For the reverse inclusion, take any $g(x) \in I$. We can write $g(x)=q(x) f(x)+r(x)$, where the remainder satisfies $r(x)=g(x)-q(x) f(x) \in I$ by the closure properties of an ideal, but also $\operatorname{deg} r(x)<\operatorname{deg} f(x)$. Since $f(x)$ has the lowest degree of any nonzero polynomial in I, we can only have $r(x)=0$. That is, $g(x)=q(x) f(x) \in(f(x))$, and hence $I \subset(f(x))$. We conclude $I=(f(x))$.
2. We construct the field of 8 elements as the quotient ring:

$$
\mathbb{F}_{8}=\mathbb{F}_{2}[x] / I=\left\{\overline{f(x)}=f(x)+I \text { for } f(x) \in \mathbb{F}_{2}[x]\right\}
$$

for the principal ideal $I=\left(x^{3}+x+1\right) \subset \mathbb{F}_{2}[x]$.
If we define $\alpha=\bar{x} \in \mathbb{F}_{8}$, so that $f(\alpha)=\overline{f(x)}$, we can rewrite the definition:

$$
\mathbb{F}_{8}=\mathbb{F}_{2}[\alpha]=\left\{f(\alpha) \text { for } f(x) \in \mathbb{F}_{2}[x]\right\}, \text { where } \alpha^{3}+\alpha+1=0
$$

We proceed to prove the main properties of \mathbb{F}_{8} from the definition.
a. CLAIM: $p(x)=x^{3}+x+1$ is an irreducible polynomial in $\mathbb{F}_{2}[x]$.

If the cubic $p(x)$ had a non-trivial factorization, at least one of the factors would have to be a linear polynomial $a x+b \in \mathbb{F}_{2}[x]$, meaning $p(x)$ would have a root $x=-\frac{b}{a} \in \mathbb{F}_{2}$. But $p(0)=p(1)=1 \neq 0 \in \mathbb{F}_{2}$, so there can be no such factorization.
Note: Since $p(x)$ is irreducible, we can compute reciprocals in $\mathbb{F}_{2}[x] /(p(x))$ using the Euclidean Algorithm, so the quotient ring is in fact a field.
b. CLAIM: The set $\left\{1, \alpha, \alpha^{2}\right\}$ is a basis of \mathbb{F}_{8} as a vector space over \mathbb{F}_{2}, and $\# \mathbb{F}_{8}=8$. Proof: The set spans \mathbb{F}_{8}, since any element is of the form $f(\alpha)$ for a polynomial $f(x)=$ $q(x) p(x)+r(x) \in \mathbb{F}_{2}[x]$ with $\operatorname{deg} r(x)<\operatorname{deg} p(x)=3$. That is, $r(x)=a_{0}+a_{1} x+a_{2} x^{2}$ for $a_{i} \in \mathbb{F}_{2}$, and:

$$
f(\alpha)=q(\alpha) p(\alpha)+r(\alpha)=r(\alpha)=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}
$$

The set is linearly independent, since any linear relation $r(\alpha)=a_{0}+a_{1} \alpha+a_{2} \alpha^{2}=$ $0 \in \mathbb{F}_{8}=\mathbb{F}_{2}[x] / I$ must have $r(x) \in I=(p(x))$. That is, $p(x)$ of degree 3 divides $r(x)$ of degree ≤ 2, which can only mean $r(x)=0$ and $a_{0}=a_{1}=a_{2}=0$, allowing only the trivial linear relation.

Thus, any element of \mathbb{F}_{8} can be written as $a_{0}+a_{1} \alpha+a_{2} \alpha^{2}$ for unique coordinates $a_{0}, a_{1}, a_{2} \in \mathbb{F}_{2}$. Independently choosing each $a_{i}=0$ or 1 gives $\# \mathbb{F}_{8}=2^{3}=8$.
c. Find reciprocals in \mathbb{F}_{8}

Method 1: To find α^{-1}, take $0=p(\alpha)=\left(\alpha^{2}+1\right) \alpha+1$, giving a pair of reciprocals $\left(\alpha^{2}+1\right) \alpha=-1=1$.

To find $(\alpha+1)^{-1}$, use the Euclidean Algorithm on $p(x)$ and $x+1$ to get:

$$
p(x)=x^{3}+x+1=\left(x^{2}+x\right)(x+1)+1 \Rightarrow p(x)+\left(x^{2}+x\right)(x+1)=1
$$

Substituting $x=\alpha$ gives the pair of reciprocals $\left(\alpha^{2}+\alpha\right)(\alpha+1)=1$.
To find $\left(\alpha^{2}+\alpha+1\right)^{-1}$, use the Euclidean Algorithm on $p(x)$ and $x^{2}+x+1$ to get:

$$
\left\{\begin{array}{c}
p(x)=(x+1)\left(x^{2}+x+1\right)+x \\
x^{2}+x+1=(x+1) x+1
\end{array} \Rightarrow(x+1) p(x)+x^{2}\left(x^{2}+x+1\right)=1\right.
$$

Substituting $x=\alpha$ gives the pair of reciprocals $\alpha^{2}\left(\alpha^{2}+\alpha+1\right)=1$.
Together with $1 \cdot 1=1$, this accounts for all the reciprocal pairs in \mathbb{F}_{8}.

Method 2. The non-zero elements of \mathbb{F}_{8} form a cyclic group under multiplication:

$$
\alpha, \quad \alpha^{2}, \quad \alpha^{3}=\alpha+1, \quad \alpha^{4}=\alpha^{2}+\alpha, \quad \alpha^{5}=\alpha^{2}+\alpha+1, \quad \alpha^{6}=\alpha^{2}+1, \quad \alpha^{7}=1
$$

This gives the reciprocal pairs $\alpha^{i} \alpha^{7-i}=1$ for $i=1,2,3$:

$$
\alpha\left(\alpha^{2}+1\right)=\alpha^{2}\left(\alpha^{2}+\alpha+1\right)=(\alpha+1)\left(\alpha^{2}+\alpha\right)=1
$$

Note: This works for any finite field \mathbb{F}_{q} : the non-zero elements under multiplication always form a cyclic group of order $q-1$, as we shall prove later.
d. Find the minimal polynomial of every element $\beta \in \mathbb{F}_{8}$.

Method 1. The minimal polynomial has degree at most 3, since the 4 elements $1, \beta, \beta^{2}, \beta^{3}$ must be linearly dependent over \mathbb{F}_{2}. If we define an \mathbb{F}_{2}-linear operator $L_{\beta}: \mathbb{F}_{2}^{4} \rightarrow \mathbb{F}_{8}$ by $L_{\beta}\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=a_{0}+a_{1} \beta+a_{2} \beta^{2}+a_{3} \beta^{3}$, and we write L_{β} in terms of the standard basis of \mathbb{F}_{2}^{4} and the basis $\left\{1, \alpha, \alpha^{2}\right\}$ of \mathbb{F}_{8}, we get a 3×4 matrix. Any kernel vector $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$ gives a polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ with $f(\beta)=0$. Taking such $f(x)$ of smallest degree gives the minimal polynomial.
Method 2. The minimal polynomial of $\beta \in \mathbb{F}_{8}$ must divide any $f(x) \in \mathbb{F}_{2}[x]$ with $f(\beta)=0$, so an irreducible $f(x)$ with $f(\beta)=0$ must be the minimal polynomial.

The minimal polynomial of $a=0,1 \in \mathbb{F}_{2}$ is obviously $x-a$. It is easy to see that the only irreducible cubic polynomials in $\mathbb{F}_{2}[x]$ are:

$$
\begin{gathered}
p(x)=x^{3}+x+1 \text { with roots } \alpha, \alpha^{2}, \alpha^{2}+\alpha \\
q(x)=x^{3}+x^{2}+1 \text { with roots } \alpha+1, \alpha^{2}+1, \alpha^{2}+\alpha+1
\end{gathered}
$$

Note: If β is a root of $f(x) \in \mathbb{F}_{2}[x]$, then β^{2} is also a root. To see this, define the Frobenius automorphism $\Phi: \mathbb{F}_{8} \rightarrow \mathbb{F}_{8}$ by $\Phi(\beta)=\beta^{2}$, satisfying $\Phi(\beta+\gamma)=$ $\Phi(\beta)+\Phi(\gamma), \Phi(\beta \gamma)=\Phi(\beta) \Phi(\gamma)$, and $\Phi(a)=a$ for $a \in \mathbb{F}_{2}$. If $f(\beta)=0$, then $0=\Phi(f(\beta))=f(\Phi(\beta))=f\left(\beta^{2}\right)$.

Thus $p(x)=(x-\alpha)\left(x-\alpha^{2}\right)\left(x-\alpha^{4}\right)$, and:

$$
q(x)=\left(x-\alpha^{3}\right)\left(x-\alpha^{6}\right)\left(x-\alpha^{12}\right)=\left(x-\alpha^{3}\right)\left(x-\alpha^{6}\right)\left(x-\alpha^{5}\right)
$$

e. CLAIm: \mathbb{F}_{8} does not contain a field with 4 elements.

Proof 1. Recall from $\# 2(\mathrm{~b})$ that $\left[\mathbb{F}_{8}: \mathbb{F}_{2}\right]=\operatorname{dim}_{\mathbb{F}_{2}}\left(\mathbb{F}_{8}\right)=3$, and similarly $\left[\mathbb{F}_{4}: \mathbb{F}_{2}\right]=$ 2. If we had $\mathbb{F}_{4} \subset \mathbb{F}_{8}$, we would have the prime field $\{0,1\}=\mathbb{F}_{2} \subset \mathbb{F}_{4}$, and the degree-multiplication formula would give:

$$
3=\left[\mathbb{F}_{8}: \mathbb{F}_{2}\right]=\left[\mathbb{F}_{8}: \mathbb{F}_{4}\right]\left[\mathbb{F}_{4}: \mathbb{F}_{2}\right]=(k)(2)
$$

for a whole number k, which is impossible. Thus there is no such $\mathbb{F}_{4} \subset \mathbb{F}_{8}$.
Proof 2. If $\mathbb{F}_{4} \subset \mathbb{F}_{8}$, then the 7 -element multiplicative group $\mathbb{F}_{8}^{\times}=\mathbb{F}_{8}-\{0\}$ would contain the 3 -element group $\mathbb{F}_{4}^{\times}=\mathbb{F}_{4}-\{0\}$, which is impossible since $3 \nmid 7$.

