Math 419H

Homework 6 Solutions

1. Euclidean Algorithm: Given polynomials $f(x), g(x) \in F[x]$ for F a field, with deg $f(x) \leq \deg g(x)$, we perform repeated polynomial division to write:

$$f(x) = q_1(x)g(x) + r_1(x)$$

$$g(x) = q_2(x)r_1(x) + r_2(x)$$

$$\vdots$$

$$r_i(x) = q_{i+2}(x)r_{i+1}(x) + r_{i+2}(x)$$

$$\vdots$$

$$r_{k-2}(x) = q_k(x)r_{k-1}(x) + r_k(x)$$

$$r_{k-1}(x) = q_{k+1}(x)r_k(x) + 0.$$

For consistency, we may denote $f(x) = r_{-1}(x)$ and $g(x) = r_0(x)$.

a. PROPOSITION: $r_k(x)$ is a polynomial divisor of f(x) and g(x).

Proof: We show $r_k | r_i$ by induction on i = k, k-1, ..., 1, 0, -1, ending with $r_k | r_0 = g$ and $r_k | r_{-1} = f$. The base cases $r_k | r_k, r_{k-1}$ are clear. Now assume inductively that $r_k | r_{i+1}, r_{i+2}, ..., r_k$. Then $r_k | q_{i+2}r_{i+1} + r_{i+2} = r_i$, so the induction proceeds, and the Proposition holds.

b. PROPOSITION: $r_k(x) = a(x)f(x) + b(x)g(x)$ for some $a(x), b(x) \in F[x]$. *Proof:* We show $r_k = a_{i-1}r_{i-1} + b_{i-1}r_i$ by induction on $i = k-2, k-3, \ldots, 0, -1$, ending with $r_k = a_{-1}f + b_{-1}g$. The base case is $r_k = r_{k-2} - q_k r_{k-1}$. Now assume inductively that $r_k = a_{i+1}r_{i+1} + b_{i+1}r_{i+2}$. By definition $r_i = q_{i+2}r_{i+1} + r_{i+2}$, so:

$$r_k = a_{i+1}r_{i+1} + b_{i+1}r_{i+2} = a_{i+1}r_{i+1} + b_{i+1}(r_i - q_{i+2}r_{i+1})$$

= $b_{i+1}r_i + (a_{i+1} - b_{i+1}q_{i+2})r_{i+1} = a_ir_i + b_ir_{i+1}.$

c. PROPOSITION: The polynomial $d(x) = r_k(x)$ has the defining properties of a greatest common divisor gcd(f(x), g(x)): namely d(x) | f(x), g(x), and for any common divisor c(x) | f(x), g(x), we have c(x) | d(x).

Proof: We know $d = r_k | f, g$ by #1(a). Now if c | f, g, then by #1(b) we have:

$$c \mid (af + bg) = r_k = d.$$

Note: A gcd is unique up to multiplication by units: if d, e both have the defining properties, then d|e and e|d, meaning d = ae and e = bd, so that d = abd and ab = 1. That is, d and e are multiples of each other by units (here, constant polynomials).

d. PROPOSITION: Any ideal $I \subset F[x]$ must be a principal ideal comprising all multiples of some $f(x) \in F[x]$: that is, $I = (f(x)) = \{q(x)f(x) \text{ for } q(x) \in F[x]\}$. *Proof:* Except when $I = \{0\} = (0)$, we can find a non-zero element $f(x) \in I$ having minimal degree. By definition of ideals, $q(x)f(x) \in I$ for any q(x), so $(f(x)) \subset I$.

For the reverse inclusion, take any $g(x) \in I$. We can write g(x) = q(x)f(x) + r(x), where the remainder satisfies $r(x) = g(x) - q(x)f(x) \in I$ by the closure properties of an ideal, but also deg $r(x) < \deg f(x)$. Since f(x) has the lowest degree of any nonzero polynomial in I, we can only have r(x) = 0. That is, $g(x) = q(x)f(x) \in (f(x))$, and hence $I \subset (f(x))$. We conclude I = (f(x)). 2. We construct the field of 8 elements as the quotient ring:

$$\mathbb{F}_8 = \mathbb{F}_2[x]/I = \left\{ \overline{f(x)} = f(x) + I \text{ for } f(x) \in \mathbb{F}_2[x] \right\}$$

for the principal ideal $I = (x^3 + x + 1) \subset \mathbb{F}_2[x]$.

If we define $\alpha = \overline{x} \in \mathbb{F}_8$, so that $f(\alpha) = \overline{f(x)}$, we can rewrite the definition:

$$\mathbb{F}_8 = \mathbb{F}_2[\alpha] = \{f(\alpha) \text{ for } f(x) \in \mathbb{F}_2[x]\}, \text{ where } \alpha^3 + \alpha + 1 = 0.$$

We proceed to prove the main properties of \mathbb{F}_8 from the definition.

a. CLAIM: $p(x) = x^3 + x + 1$ is an irreducible polynomial in $\mathbb{F}_2[x]$. If the cubic p(x) had a non-trivial factorization, at least one of the factors would have to be a linear polynomial $ax + b \in \mathbb{F}_2[x]$, meaning p(x) would have a root $x = -\frac{b}{a} \in \mathbb{F}_2$. But $p(0) = p(1) = 1 \neq 0 \in \mathbb{F}_2$, so there can be no such factorization. *Note:* Since p(x) is irreducible, we can compute reciprocals in $\mathbb{F}_2[x]/(n(x))$ using the

Note: Since p(x) is irreducible, we can compute reciprocals in $\mathbb{F}_2[x]/(p(x))$ using the Euclidean Algorithm, so the quotient ring is in fact a field.

b. CLAIM: The set $\{1, \alpha, \alpha^2\}$ is a basis of \mathbb{F}_8 as a vector space over \mathbb{F}_2 , and $\#\mathbb{F}_8 = 8$. *Proof:* The set spans \mathbb{F}_8 , since any element is of the form $f(\alpha)$ for a polynomial $f(x) = q(x)p(x) + r(x) \in \mathbb{F}_2[x]$ with deg $r(x) < \deg p(x) = 3$. That is, $r(x) = a_0 + a_1x + a_2x^2$ for $a_i \in \mathbb{F}_2$, and:

$$f(\alpha) = q(\alpha)p(\alpha) + r(\alpha) = r(\alpha) = a_0 + a_1\alpha + a_2\alpha^2.$$

The set is linearly independent, since any linear relation $r(\alpha) = a_0 + a_1\alpha + a_2\alpha^2 = 0 \in \mathbb{F}_8 = \mathbb{F}_2[x]/I$ must have $r(x) \in I = (p(x))$. That is, p(x) of degree 3 divides r(x) of degree ≤ 2 , which can only mean r(x) = 0 and $a_0 = a_1 = a_2 = 0$, allowing only the trivial linear relation.

Thus, any element of \mathbb{F}_8 can be written as $a_0 + a_1\alpha + a_2\alpha^2$ for unique coordinates $a_0, a_1, a_2 \in \mathbb{F}_2$. Independently choosing each $a_i = 0$ or 1 gives $\#\mathbb{F}_8 = 2^3 = 8$.

c. Find reciprocals in \mathbb{F}_8

Method 1: To find α^{-1} , take $0 = p(\alpha) = (\alpha^2 + 1)\alpha + 1$, giving a pair of reciprocals $(\alpha^2 + 1)\alpha = -1 = 1$.

To find $(\alpha+1)^{-1}$, use the Euclidean Algorithm on p(x) and x+1 to get:

$$p(x) = x^3 + x + 1 = (x^2 + x)(x + 1) + 1 \implies p(x) + (x^2 + x)(x + 1) = 1$$

Substituting $x = \alpha$ gives the pair of reciprocals $(\alpha^2 + \alpha)(\alpha + 1) = 1$.

To find $(\alpha^2 + \alpha + 1)^{-1}$, use the Euclidean Algorithm on p(x) and $x^2 + x + 1$ to get:

$$\begin{cases} p(x) = (x+1)(x^2+x+1) + x \\ x^2+x+1 = (x+1)x+1 \end{cases} \Rightarrow (x+1)p(x) + x^2(x^2+x+1) = 1.$$

Substituting $x = \alpha$ gives the pair of reciprocals $\alpha^2(\alpha^2 + \alpha + 1) = 1$.

Together with $1 \cdot 1 = 1$, this accounts for all the reciprocal pairs in \mathbb{F}_8 .

Method 2. The non-zero elements of \mathbb{F}_8 form a cyclic group under multiplication:

$$\alpha, \quad \alpha^2, \quad \alpha^3 = \alpha + 1, \quad \alpha^4 = \alpha^2 + \alpha, \quad \alpha^5 = \alpha^2 + \alpha + 1, \quad \alpha^6 = \alpha^2 + 1, \quad \alpha^7 = 1.$$

This gives the reciprocal pairs $\alpha^i \alpha^{7-i} = 1$ for i = 1, 2, 3:

$$\alpha(\alpha^{2}+1) = \alpha^{2}(\alpha^{2}+\alpha+1) = (\alpha+1)(\alpha^{2}+\alpha) = 1.$$

Note: This works for any finite field \mathbb{F}_q : the non-zero elements under multiplication always form a cyclic group of order q-1, as we shall prove later.

d. Find the minimal polynomial of every element $\beta \in \mathbb{F}_8$.

Method 1. The minimal polynomial has degree at most 3, since the 4 elements $1, \beta, \beta^2, \beta^3$ must be linearly dependent over \mathbb{F}_2 . If we define an \mathbb{F}_2 -linear operator $L_{\beta}: \mathbb{F}_2^4 \to \mathbb{F}_8$ by $L_{\beta}(a_0, a_1, a_2, a_3) = a_0 + a_1\beta + a_2\beta^2 + a_3\beta^3$, and we write L_{β} in terms of the standard basis of \mathbb{F}_2^4 and the basis $\{1, \alpha, \alpha^2\}$ of \mathbb{F}_8 , we get a 3×4 matrix. Any kernel vector (a_0, a_1, a_2, a_3) gives a polynomial $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ with $f(\beta) = 0$. Taking such f(x) of smallest degree gives the minimal polynomial.

Method 2. The minimal polynomial of $\beta \in \mathbb{F}_8$ must divide any $f(x) \in \mathbb{F}_2[x]$ with $f(\beta) = 0$, so an irreducible f(x) with $f(\beta) = 0$ must be the minimal polynomial.

The minimal polynomial of $a = 0, 1 \in \mathbb{F}_2$ is obviously x-a. It is easy to see that the only irreducible cubic polynomials in $\mathbb{F}_2[x]$ are:

$$p(x) = x^3 + x + 1 \text{ with roots } \alpha, \alpha^2, \alpha^2 + \alpha,$$

$$q(x) = x^3 + x^2 + 1 \text{ with roots } \alpha + 1, \alpha^2 + 1, \alpha^2 + \alpha + 1.$$

Note: If β is a root of $f(x) \in \mathbb{F}_2[x]$, then β^2 is also a root. To see this, define the Frobenius automorphism $\Phi : \mathbb{F}_8 \to \mathbb{F}_8$ by $\Phi(\beta) = \beta^2$, satisfying $\Phi(\beta+\gamma) = \Phi(\beta) + \Phi(\gamma)$, $\Phi(\beta\gamma) = \Phi(\beta) \Phi(\gamma)$, and $\Phi(a) = a$ for $a \in \mathbb{F}_2$. If $f(\beta) = 0$, then $0 = \Phi(f(\beta)) = f(\Phi(\beta)) = f(\beta^2)$.

Thus $p(x) = (x-\alpha)(x-\alpha^2)(x-\alpha^4)$, and:

$$q(x) = (x - \alpha^3)(x - \alpha^6)(x - \alpha^{12}) = (x - \alpha^3)(x - \alpha^6)(x - \alpha^5).$$

e. CLAIM: \mathbb{F}_8 does not contain a field with 4 elements. *Proof 1.* Recall from #2(b) that $[\mathbb{F}_8 : \mathbb{F}_2] = \dim_{\mathbb{F}_2}(\mathbb{F}_8) = 3$, and similarly $[\mathbb{F}_4 : \mathbb{F}_2] = 2$.

2. If we had $\mathbb{F}_4 \subset \mathbb{F}_8$, we would have the prime field $\{0,1\} = \mathbb{F}_2 \subset \mathbb{F}_4$, and the degree-multiplication formula would give:

$$3 = [\mathbb{F}_8 : \mathbb{F}_2] = [\mathbb{F}_8 : \mathbb{F}_4] [\mathbb{F}_4 : \mathbb{F}_2] = (k)(2)$$

for a whole number k, which is impossible. Thus there is no such $\mathbb{F}_4 \subset \mathbb{F}_8$. *Proof 2.* If $\mathbb{F}_4 \subset \mathbb{F}_8$, then the 7-element multiplicative group $\mathbb{F}_8^{\times} = \mathbb{F}_8 - \{0\}$ would contain the 3-element group $\mathbb{F}_4^{\times} = \mathbb{F}_4 - \{0\}$, which is impossible since $3 \nmid 7$.