Math 482 Lagrange Inversion Formula Spring 2014

Inversion of Formal Power Series. We extend the ring of formal power series C[z] to
the field of formal Laurent series C((x)):
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These are the series in 2 and 2! with a lowest term 2™V, but not necessarily a highest term.
We define the operator [z"] which extracts the 2™ coefficient of a series: [z"] (Z ; a;jx’! ) =

an- The coefficient of 27! is the residue of a Laurent series; [z7!] is the residue operator.

LEMMA: (i) For h(z) € C((x)), we have [z~ ]h/(x) = 0.
(ii) For h(x) € xC[z] with [z!]h(x) # 0, and j € Z, we have:

1 if j=-1
0 else.
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That is, the residue of h(z)/h/(z) is always zero, except for h(z)~'h/(x).
Proof. (i) Obvious from the definition of derivative: (z") = nz"~! for n € Z.
(ii) For j # —1, this follows from (i), since h(z)/h/(x) = j%(h(x)j‘*'l)’.

For j = —1 and h(z) =), ~ cpa™ with ¢ #0:
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from which [z~!] h(x)~!h/(x) = 1 is evident. O

LAGRANGE INVERSION THEOREM: Let f(x),g(z) € zC[z] be inverses: g(f(z)) = z. Then:

" f(x) = 1 z! L

) (0) = ol
In particular, if g(z) = z/¢(z) and f(x) =z ¢(f(z)), then:

2")f(@) = 1" ()"

Proof. Letting f(x) = > ;51 a;a7, our goal is to to compute a particular a, in terms of
g(z). Since g = f~!, we have:

z=flg(x) =) ajg(x).

j>1

We need to extract a, from this summation, making all other a;'s vanish. We will manip-
ulate the summation to get a,, as the coefficient of g(z)~!¢/(x), and all the rest of the a;'s

as coefficients of g(z)7¢/(x); then apply the residue operator [z~!] in the Lemma. First, we

take the derivative:
) N, ) i
1= ja; (9(x))) = jajglx) g (x).
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Next, we move the a,, term to be the coefficient of g(x)~'¢/(z), dividing by g(x)":
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Applying [x7!], we obtain essentially the first part of the Theorem: [z~!][1/g(2)"] = nay,.
For the second part, take g(x) = z/¢(x) so that z = g(f(z)) = f(z)/é(f(x)) is equiva-

lent to f(x) = z ¢(f(x)). Now, evidently [z~ h(z) = [2"7](z"h(z)), so:
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an = Ll = e = e e = L e O

Reference: Richard Stanley, Enumerative Combinatorics, Vol. 2, Ch. 5.

Inversion of Analytic Functions. We give an analytic derivation of Lagrange Inversion.
Consider an analytic function g(u) with ¢g(0) = 0 and ¢’(0) # 0, so that by the Inverse
Function Theorem, g(u) is one-to-one inside a small circle C defined by |u| = 6. Then
z = g(u) takes C to a simple closed curve g(C) around z = 0, and there is a unique inverse
function f(z) defined inside ¢(C).

Our aim is to compute the Taylor coefficients of f(z) = >, <an2" in terms of its
inverse function g(u). -

Recall the idea behind Cauchy’s Integral Formula. In the complex plane, for any
simple closed curve around z = 0, we have the line integral §2"dz =0 if n#—1, and
¢ 271 dz = 2mi. Hence, for any meromorphic function h(z) = >, o cn2™, the residue is

c1 = [¢7Yh(2) = 5 § h(z) dz, and we can extract any coefficient of the Laurent series as:
en = 5 $ h(2)/2" T de.
In our case, we have:
1 z
an = /(z) dz.

Making the change of variable z = g(u), v = f(2), dz = ¢'(u) du:
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Performing integration by parts, we have: (n!;(lu)n) = gg(é;‘,zﬂ and:

[ 1 ]“:5 1 7{1 1 11 1
Gy = |——u e du = = — du.
ng(w)® | .,_s 27t Jon g(u)” n 2w Jo g(u)®

The last integral is the residue:

Generalization. We can use the same reasoning as above to find the Taylor coefficients
of the composition h(f(x)) for any power series h(z) € zC[x]:
1

n z)) = = $—1 h/(l')
() = e




