Inversion of Formal Power Series. We extend the ring of formal power series $\mathbb{C} \llbracket x \rrbracket$ to the field of formal Laurent series $\mathbb{C}((x))$:

$$
\mathbb{C}((x))=\left\{\sum_{n \geq-N} a_{n} x^{n} \mid N \in \mathbb{Z}, a_{j} \in \mathbb{C}\right\} .
$$

These are the series in x and x^{-1} with a lowest term x^{-N}, but not necessarily a highest term. We define the operator $\left[x^{n}\right]$ which extracts the x^{n} coefficient of a series: $\left[x^{n}\right]\left(\sum_{j} a_{j} x^{j}\right)=$ a_{n}. The coefficient of x^{-1} is the residue of a Laurent series; $\left[x^{-1}\right]$ is the residue operator.
lemma: (i) For $h(x) \in \mathbb{C}((x))$, we have $\left[x^{-1}\right] h^{\prime}(x)=0$.
(ii) For $h(x) \in x \mathbb{C} \llbracket x \rrbracket$ with $\left[x^{1}\right] h(x) \neq 0$, and $j \in \mathbb{Z}$, we have:

$$
\left[x^{-1}\right] h(x)^{j} h^{\prime}(x)= \begin{cases}1 & \text { if } j=-1 \\ 0 & \text { else } .\end{cases}
$$

That is, the residue of $h(x)^{j} h^{\prime}(x)$ is always zero, except for $h(x)^{-1} h^{\prime}(x)$.
Proof. (i) Obvious from the definition of derivative: $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for $n \in \mathbb{Z}$.
(ii) For $j \neq-1$, this follows from (i), since $h(x)^{j} h^{\prime}(x)=\frac{1}{j+1}\left(h(x)^{j+1}\right)^{\prime}$. For $j=-1$ and $h(x)=\sum_{n \geq 1} c_{n} x^{n}$ with $c_{1} \neq 0$:

$$
\begin{aligned}
\frac{h^{\prime}(x)}{h(x)} & =\frac{c_{1}+2 c_{2} x+\cdots}{c_{1} x+c_{2} x^{2}++\cdots}=\frac{c_{1}+2 c_{2} x+\cdots}{c_{1} x} \cdot \frac{1}{1+\left(\frac{c_{2}}{c_{1}} x+\frac{c_{3}}{c_{1}} x^{2}+\cdots\right)} \\
& =\left(x^{-1}+\frac{2 c_{2}}{c_{1}}+\frac{3 c_{3}}{c_{1}} x+\cdots\right)\left(1-x\left(\frac{c_{2}}{c_{1}}+\frac{c_{3}}{c_{1}} x+\cdots\right)+\cdots\right)
\end{aligned}
$$

from which $\left[x^{-1}\right] h(x)^{-1} h^{\prime}(x)=1$ is evident.
Lagrange inversion theorem: Let $f(x), g(x) \in x \mathbb{C} \llbracket x \rrbracket$ be inverses: $g(f(x))=x$. Then:

$$
\left[x^{n}\right] f(x)=\frac{1}{n}\left[x^{-1}\right] \frac{1}{g(x)^{n}}
$$

In particular, if $g(x)=x / \phi(x)$ and $f(x)=x \phi(f(x))$, then:

$$
\left[x^{n}\right] f(x)=\frac{1}{n}\left[x^{n-1}\right] \phi(x)^{n}
$$

Proof. Letting $f(x)=\sum_{i \geq 1} a_{j} x^{j}$, our goal is to to compute a particular a_{n} in terms of $g(x)$. Since $g=f^{-1}$, we have:

$$
x=f(g(x))=\sum_{j \geq 1} a_{j} g(x)^{j} .
$$

We need to extract a_{n} from this summation, making all other a_{j} 's vanish. We will manipulate the summation to get a_{n} as the coefficient of $g(x)^{-1} g^{\prime}(x)$, and all the rest of the a_{j} 's as coefficients of $g(x)^{j} g^{\prime}(x)$; then apply the residue operator $\left[x^{-1}\right]$ in the Lemma. First, we take the derivative:

$$
1=\sum_{j \geq 1} j a_{j}\left(g(x)^{j}\right)^{\prime}=\sum_{j \geq 1} j a_{j} g(x)^{j-1} g^{\prime}(x) .
$$

Next, we move the a_{n} term to be the coefficient of $g(x)^{-1} g^{\prime}(x)$, dividing by $g(x)^{n}$:

$$
\begin{aligned}
\frac{1}{g(x)^{n}} & =\sum_{j \geq 1} j a_{j} g(x)^{j-1-n} g^{\prime}(x) \\
& =\sum_{j=1}^{n-1} \frac{j a_{j}}{i-n}\left(g(x)^{j-n}\right)^{\prime}+n a_{n} \frac{g^{\prime}(x)}{g(x)}+\sum_{j>n} \frac{j a_{j}}{j-n}\left(g(x)^{j-n}\right)^{\prime} .
\end{aligned}
$$

Applying $\left[x^{-1}\right]$, we obtain essentially the first part of the Theorem: $\left[x^{-1}\right]\left[1 / g(x)^{n}\right]=n a_{n}$.
For the second part, take $g(x)=x / \phi(x)$ so that $x=g(f(x))=f(x) / \phi(f(x))$ is equivalent to $f(x)=x \phi(f(x))$. Now, evidently $\left[x^{-1}\right] h(x)=\left[x^{n-1}\right]\left(x^{n} h(x)\right)$, so:

$$
a_{n}=\frac{1}{n}\left[x^{-1}\right] \frac{1}{g(x)^{n}}=\frac{1}{n}\left[x^{n-1}\right] \frac{x^{n}}{g(x)^{n}}=\frac{1}{n}\left[x^{n-1}\right] \frac{x^{n}}{x^{n} / \phi(x)^{n}}=\frac{1}{n}\left[x^{n-1}\right] \phi(x)^{n} .
$$

Reference: Richard Stanley, Enumerative Combinatorics, Vol. 2, Ch. 5.
Inversion of Analytic Functions. We give an analytic derivation of Lagrange Inversion. Consider an analytic function $g(u)$ with $g(0)=0$ and $g^{\prime}(0) \neq 0$, so that by the Inverse Function Theorem, $g(u)$ is one-to-one inside a small circle \mathcal{C} defined by $|u|=\delta$. Then $z=g(u)$ takes \mathcal{C} to a simple closed curve $g(\mathcal{C})$ around $z=0$, and there is a unique inverse function $f(z)$ defined inside $g(\mathcal{C})$.

Our aim is to compute the Taylor coefficients of $f(z)=\sum_{n \geq 0} a_{n} z^{n}$ in terms of its inverse function $g(u)$.

Recall the idea behind Cauchy's Integral Formula. In the complex plane, for any simple closed curve around $z=0$, we have the line integral $\oint z^{n} d z=0$ if $n \neq-1$, and $\oint z^{-1} d z=2 \pi i$. Hence, for any meromorphic function $h(z)=\sum_{n \geq-N} c_{n} z^{n}$, the residue is $c_{1}=\left[z^{-1}\right] h(z)=\frac{1}{2 \pi i} \oint h(z) d z$, and we can extract any coefficient of the Laurent series as: $c_{n}=\frac{1}{2 \pi i} \oint h(z) / z^{n+1} d z$.

In our case, we have:

$$
a_{n}=\frac{1}{2 \pi i} \oint_{g(\mathcal{C})} \frac{f(z)}{z^{n+1}} d z
$$

Making the change of variable $z=g(u), u=f(z), d z=g^{\prime}(u) d u$:

$$
a_{n}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{u}{g(u)^{n+1}} g^{\prime}(u) d u=\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{g^{\prime}(u)}{g(u)^{n+1}} u d u .
$$

Performing integration by parts, we have: $\left(\frac{-1}{n g(u)^{n}}\right)^{\prime}=\frac{g^{\prime}(u)}{g(u)^{n+1}}$ and:

$$
a_{n}=\left[\frac{-1}{n g(u)^{n}} u\right]_{u=\delta}^{u=\delta}-\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{1}{n} \frac{-1}{g(u)^{n}} d u=\frac{1}{n} \frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{1}{g(u)^{n}} d u .
$$

The last integral is the residue:

$$
a_{n}=\frac{1}{n}\left[u^{-1}\right] \frac{1}{g(u)^{n}} .
$$

Generalization. We can use the same reasoning as above to find the Taylor coefficients of the composition $h(f(x))$ for any power series $h(x) \in x \mathbb{C} \llbracket x \rrbracket$:

$$
\left[x^{n}\right] h(f(x))=\frac{1}{n}\left[x^{-1}\right] \frac{h^{\prime}(x)}{g(x)^{n}} .
$$

