Consider the exponential family whose pictures are directed cycles of n labeled vertices (i.e., cyclegraphs with edges oriented clockwise). For example, the pictures of weight 4 are:

Also the pictures of weight 1 and 2 are: (1) and (1) $\leftrightarrows(2)$. Since the label 1 can always be rotated to the top, and the remaining $n-1$ labels form a list after it, there are exactly $(n-1)$! directed cycles for each weight $n \geq 1$.

1. What kind of objects are the hands in this family? Describe in words.

A card is a directed cycle with specified number labels replacing the standard labels. A hand is a set of cards whose label sets make $[n]=\{1,2, \ldots, n\}$, with no repeated labels. For example, the hand:

is a set of 3 cards (directed cycles) with total label set $\{4\} \cup\{2,5\} \cup\{1,7,3,6\}=[7]$.
2. Give a simple formula for the deck-enumerator function $\tilde{d}(x)$ of this family, the exponential generating function of the deck-enumerator sequence $\left\{d_{n}\right\}_{n \geq 1}$.

The deck enumerator number d_{n} is the number of pictures of weight n, namely $d_{n}=(n-1)!$. The generating function is:

$$
\tilde{d}(x)=\sum_{n \geq 1}(n-1)!\frac{x^{n}}{n!}=\sum_{n \geq 1} \frac{x^{n}}{n}=\log \left(\frac{1}{1-x}\right)
$$

3. Give a simple formula for the hand-enumerator function $\tilde{h}(x)$ of this family, the exponential generating function of the hand-enumerator sequence $\left\{h_{n}\right\}_{n \geq 0}$.

By the Exponential Formula:

$$
\tilde{h}(x)=\exp d(x)=\exp \log \left(\frac{1}{1-x}\right)=\frac{1}{1-x} .
$$

This implies $h_{n} / n!=1$, so $h_{n}=n!$, and indeed a hand can be thought of as the cycle notation for a permutation of $[n]$.

