
Math 482 Homework 2/26 Solutions Spring 2014

Homework: math.msu.edu/∼magyar/Math482/Old.htm#2-26.

1-1. In HW 2/24 #1, we considered an, the number of unlabeled ordered trees with n
vertices, whose ordinary generating function f(x) satisfies the recurrence equations:

f(x)− f(x)2 = x , f(x) = x/(1−f(x)) .

In fact, f(x) is the inverse function of g(x) = x− x2.
Now, the first version of Lagrange Inversion tells us that:
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That is, we must determine the x−1 term of the Laurent series x−n(1−x)−n. This
is clearly the xn−1 term of (1−x)−n, which is a negative binomial from the Known
Series: (1−x)−n =

∑
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j ))xj . We conclude that:
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We could also obtain this more quickly from the second version of Lagrange inversion.
Given f(x) = xφ(f(x)), with φ(x) = 1

1−x , we have:
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Incidentally, this means Cn = an+1 = 1
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, which we obtained with some difficul-

tiy from the explicit formula for the generating function (HW 1/24 #4).

1-2 For unlabeled ordered binary trees, the generating function recurrence equaton is:
f(x) = x(1 + f(x)2), i.e. f(x) = xφ(f(x)) for φ(x) = 1 + x2. By the second version
of Lagrange Inversion:
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where we define
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This simplifies to a2k+1 = Ck (Solutions 2/24 #2a).

1-3 For unlabeled ordered ternary trees, the generating function recurrence equation is:
f(x) = xφ(f(x)) with φ(x) = 1 + x3. Just as in Prob 1-2, we get: an = 1
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That is, a3k+1 = 1
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, which is a new analog of Catalan numbers.

1-4 For labeled rooted trees, the exponential generating function recurrence equation is:
f̃(x) = x ef(x) = xφ(f(x)) with φ(x) = ex, so Lagrange Inversion gives:
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That is, an = nn−1, gives another proof of Cayley’s Theorem (considering HW 2/24
#4a).

2a. Let an be the number of conjugal trees, meaning unlabeled ordered trees in which
each node has weight 1 (a single) or weight 2 (a couple). Recursive choice algorithm:
a conjugal family tree is either a single or couple ancestor node, and a list of: no
children or child trees (T1) or (T1, T2) or . . . .
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2b. Since these are unlabeled trees, we use an ordinary generating function f(x) =∑
n≥0 anx

n. The choice algorithm implies:

f(x) = (x+ x2)(1 + f(x) + f(x)2 + · · · ) =
x+ x2

1− f(x)
.

Thus, f(x)2 − f(x) + (x+x2) = 0 and f(x) = 1
2(1−

√
1−4x−4x2).

2c. Wolfram give the x20 series coefficient as: a20 = 83, 015, 133, 184. Lagrange inversion
is not directly applicable, since the recurrence equation cannot be put in the form
g(f(x)) = x.

2d. Let g(x) be the ordinary generating function of unlabeled ordered trees (without any
consideration of single or couple nodes). Then our function f(x) enumerating conjugal
family trees is simply: f(x) = g(x+x2).

You should think of this as follows. In an ordinary labeled tree, the variable x = x1

represents a node. To get a conjugal tree, replace each node by a single or couple
node, substituting x+x2 for x in the generating function. This kind of substitution
is generally applicable when you replace the nodes of one family by the objects of
another family.

3. Given that only couple nodes can have children, the recurrence becomes:

f(x) = x+
x2

1− f(x)
.

This shows how simple it is to adapt the recurrence mechanism to various rules for
tree-construction. The rest is similar to Prob. 2.


