Homework: math.msu.edu/~magyar/Math482/Old.htm\#4-14.
1a,b. We work with the equilibrium stressed graph:

Starting with $q_{1}=(0,0,0)$, we use the recursive formula based on the paradigm of neighboring regions:

In our case, we have the left region $S=R_{1}$, the right region $R=R_{2}$, the top vertex $v=v_{3}$, and the bottom vertex $u=v_{1}$, so that:

$$
\begin{aligned}
q_{2} & =q_{R}=q_{S}+(v, 1) \times(u, 1) \\
& =q_{1}+\left(v_{3}, 1\right) \times\left(v_{1}, 1\right)=(0,0,0)+(1,1,1) \times\left(1, \frac{1}{3}, 1\right) \\
& =\operatorname{det}\left[\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
1 & 1 & 1 \\
1 & \frac{1}{3} & 1
\end{array}\right]=\left(1-\frac{1}{3},-0, \frac{1}{3}-1\right)=\left(\frac{2}{3}, 0,-\frac{2}{3}\right)
\end{aligned}
$$

To get q_{3}, we use the recursive formula with $S=R_{2}$ at left and $R=R_{3}$ at right:

$$
q_{3}=q_{2}+\left(v_{4}, 1\right) \times\left(v_{1}, 1\right)=\left(\frac{2}{3}, 0,-\frac{2}{3}\right)+(2,0,1) \times\left(1, \frac{1}{3}, 1\right)=\left(\frac{1}{3},-1,0\right) .
$$

On the other hand, we could get q_{3} by tilting our view to see $S=R_{1}$ at left, $R=R_{3}$ at right, $v=v_{1}$ at top, $u=v_{2}$ at bottom:

$$
q_{3}=q_{1}+\left(v_{1}, 1\right) \times\left(v_{2}, 1\right)=(0,0,0)+\left(1, \frac{1}{3}, 1\right) \times(0,0,1)=\left(\frac{1}{3},-1,0\right) .
$$

It is no coincidence that we get the same q_{3} both ways.
Lemma: Let G be any equilibrium stressed graph, with a vertex u having neighbors v_{1}, \ldots, v_{d} and surrounding regions R_{1}, \ldots, R_{d}. If we apply the recursive rule to q_{1} to successively obtain $q_{2}, \ldots, q_{d}, q_{1}^{\prime}$, then $q_{1}=q_{1}^{\prime}$.

Proof: Let us assume that, looking from u along the edge $u v_{i}$, we have R_{i} on the left and R_{i+1} on the right. Then $q_{i+1}=q_{i}+\left(v_{i}, 1\right) \times(u, 1)$, and iterating this all the way around u gives:

$$
q_{1}^{\prime}=q_{1}+\sum_{i=1}^{d}\left(v_{i}, 1\right) \times(u, 1)=q_{1}+\left(\sum_{i=1}^{d} v_{i}, d\right) \times(u, 1) .
$$

Now, the vertices are in equilibrium position, so $\sum_{i=1}^{d}\left(v_{i}-u\right)=0$, i.e. $\sum_{i=1}^{d} v_{i}=$ $d u$. Therefore:

$$
q_{1}^{\prime}=q_{1}+(d u, d) \times(u, 1)=q_{1}+d(u, 1) \times(u, 1)=q_{1},
$$

since $(u, 1) \times(u, 1)=0$.
1c. The dot product of two vectors in the $x y$-plane is always vertical. The effect of raising the v_{i} positions to $\left(v_{i}, 1\right)$ is to tilt the q_{j} 's, making them independent directions, perpedicular to independent face-planes of P.
$\mathbf{1 d}$. Now, v_{1} is a corner of R_{1}, R_{2}, R_{3}, so we may compute:

$$
\begin{aligned}
h_{1} & =q_{1} \cdot\left(v_{1}, 1\right)=(0,0,0) \cdot\left(1, \frac{1}{3}, 1\right)=0 \\
& =q_{2} \cdot\left(v_{1}, 1\right)=\left(\frac{2}{3}, 0,-\frac{2}{3}\right) \cdot\left(1, \frac{1}{3}, 1\right)=0 \\
& =q_{3} \cdot\left(v_{1}, 1\right)=\left(\frac{1}{3},-1,0\right) \cdot\left(1, \frac{1}{3}, 1\right)=0 .
\end{aligned}
$$

Also, v_{2} is a corner of R_{1}, R_{3}, so: $h_{2}=q_{1} \cdot\left(v_{2}, 1\right)=\left(\frac{1}{3},-1,0\right) \cdot(0,0,1)=$ 0 , or alternatively $h_{2}=q_{3} \cdot\left(v_{2}, 1\right)=\left(\frac{1}{3},-1,0\right) \cdot(0,0,1)=0$; and similarly $h_{3}=q_{2} \cdot\left(v_{3}, 1\right)=0$. This means that the polyhedron P has a triangular face corresponding to region R_{1}, with vertices:

$$
\left(v_{1}, h_{1}\right)=\left(1, \frac{1}{3}, 0\right),\left(v_{2}, h_{2}\right)=(0,0,0),\left(v_{3}, h_{3}\right)=(1,1,0) .
$$

That is, this face is horizontal at level 0 . The final vertex is: $h_{4}=q_{2} \cdot\left(v_{4}, 1\right)=$ $\left(\frac{2}{3}, 0,-\frac{2}{3}\right) \cdot(2,0,1)=\frac{2}{3}$, so the final vertex is: $\left(v_{4}, h_{4}\right)=\left(2,0, \frac{2}{3}\right)$. The faces of P are defined as the triangles between the given vertices. The faces above the interior regions R_{1}, R_{2}, R_{3} are normal to the corresponding vectors q_{j}, with an extra triangle on top corresponding to the external triangle v_{2}, v_{3}, v_{4}.

