Homework: math.msu.edu/~magyar/Math482/Old.htm#4-14.

1a,b. We work with the equilibrium stressed graph:

Starting with $q_1 = (0, 0, 0)$, we use the recursive formula based on the paradigm of neighboring regions:

In our case, we have the left region $S = R_1$, the right region $R = R_2$, the top vertex $v = v_3$, and the bottom vertex $u = v_1$, so that:

$$q_{2} = q_{R} = q_{S} + (v, 1) \times (u, 1)$$

$$= q_{1} + (v_{3}, 1) \times (v_{1}, 1) = (0, 0, 0) + (1, 1, 1) \times (1, \frac{1}{3}, 1)$$

$$= \det \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ 1 & 1 & 1 \\ 1 & \frac{1}{3} & 1 \end{bmatrix} = (1 - \frac{1}{3}, -0, \frac{1}{3} - 1) = (\frac{2}{3}, 0, -\frac{2}{3})$$

To get q_3 , we use the recursive formula with $S = R_2$ at left and $R = R_3$ at right:

$$q_3 = q_2 + (v_4, 1) \times (v_1, 1) = (\frac{2}{3}, 0, -\frac{2}{3}) + (2, 0, 1) \times (1, \frac{1}{3}, 1) = (\frac{1}{3}, -1, 0).$$

On the other hand, we could get q_3 by tilting our view to see $S = R_1$ at left, $R = R_3$ at right, $v = v_1$ at top, $u = v_2$ at bottom:

$$q_3 = q_1 + (v_1, 1) \times (v_2, 1) = (0, 0, 0) + (1, \frac{1}{3}, 1) \times (0, 0, 1) = (\frac{1}{3}, -1, 0).$$

It is no coincidence that we get the same q_3 both ways.

LEMMA: Let G be any equilibrium stressed graph, with a vertex u having neighbors v_1, \ldots, v_d and surrounding regions R_1, \ldots, R_d . If we apply the recursive rule to q_1 to successively obtain q_2, \ldots, q_d, q'_1 , then $q_1 = q'_1$.

Proof: Let us assume that, looking from u along the edge uv_i , we have R_i on the left and R_{i+1} on the right. Then $q_{i+1} = q_i + (v_i, 1) \times (u, 1)$, and iterating this all the way around u gives:

$$q'_1 = q_1 + \sum_{i=1}^d (v_i, 1) \times (u, 1) = q_1 + (\sum_{i=1}^d v_i, d) \times (u, 1).$$

Now, the vertices are in equilibrium position, so $\sum_{i=1}^{d} (v_i - u) = 0$, i.e. $\sum_{i=1}^{d} v_i = du$. Therefore:

$$q'_1 = q_1 + (du, d) \times (u, 1) = q_1 + d(u, 1) \times (u, 1) = q_1,$$

since $(u, 1) \times (u, 1) = 0$.

- 1c. The dot product of two vectors in the xy-plane is always vertical. The effect of raising the v_i positions to $(v_i, 1)$ is to tilt the q_j 's, making them independent directions, perpedicular to independent face-planes of P.
- 1d. Now, v_1 is a corner of R_1, R_2, R_3 , so we may compute:

$$h_1 = q_1 \cdot (v_1, 1) = (0, 0, 0) \cdot (1, \frac{1}{3}, 1) = 0$$

= $q_2 \cdot (v_1, 1) = (\frac{2}{3}, 0, -\frac{2}{3}) \cdot (1, \frac{1}{3}, 1) = 0$
= $q_3 \cdot (v_1, 1) = (\frac{1}{3}, -1, 0) \cdot (1, \frac{1}{3}, 1) = 0.$

Also, v_2 is a corner of R_1 , R_3 , so: $h_2 = q_1 \cdot (v_2, 1) = (\frac{1}{3}, -1, 0) \cdot (0, 0, 1) = 0$, or alternatively $h_2 = q_3 \cdot (v_2, 1) = (\frac{1}{3}, -1, 0) \cdot (0, 0, 1) = 0$; and similarly $h_3 = q_2 \cdot (v_3, 1) = 0$. This means that the polyhedron P has a triangular face corresponding to region R_1 , with vertices:

$$(v_1, h_1) = (1, \frac{1}{3}, 0), (v_2, h_2) = (0, 0, 0), (v_3, h_3) = (1, 1, 0).$$

That is, this face is horizontal at level 0. The final vertex is: $h_4 = q_2 \cdot (v_4, 1) = (\frac{2}{3}, 0, -\frac{2}{3}) \cdot (2, 0, 1) = \frac{2}{3}$, so the final vertex is: $(v_4, h_4) = (2, 0, \frac{2}{3})$. The faces of P are defined as the triangles between the given vertices. The faces above the interior regions R_1, R_2, R_3 are normal to the corresponding vectors q_j , with an extra triangle on top corresponding to the external triangle v_2, v_3, v_4 .