Math 482

Homework: math.msu.edu/~magyar/Math482/Old.htm#4-16.

1a. We have the chiral hexahedron graph G:



Given fixed external vertex positions:

$$v_4 = (1, 1), \quad v_5 = (2, 0), \quad v_6 = (0, 0),$$

we wish to find the equilibrium positions of the mobile internal vertices v_1, v_2, v_3 , where $v_i = (x_i, y_i)$. By HW 4/11, we must solve the matrix equations: $L \cdot \vec{x} = \vec{b}$ and $L \cdot \vec{y} = \vec{c}$. Here the partial Laplacian matrix L has rows and columns corresponding to the internal vertices v_1, v_2, v_3 ; diagonal entries are the degrees of these vertices; and there is an off-diagonal -1 for each edge $v_i v_j$:

$$L = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{bmatrix}.$$

The constant vectors $\vec{b} = (b_1, b_2, b_3)$, $\vec{c} = (c_1, c_2, c_3)$ are defined as b_i being the sum of *x*-coordinates of the fixed external neighbors of v_i , and similarly for c_i and *y*-coordinates: $\vec{b} = (1+0, 2, 0)$, $\vec{c} = (1+0, 0, 0)$. To solve these equations, we reduce the doubly-augmented matrix:

$$\begin{bmatrix} L \mid \vec{b} \mid \vec{c} \end{bmatrix} = \begin{bmatrix} 4 & -1 & -1 \mid 1 \mid 1 \\ -1 & 3 & -1 \mid 2 \mid 0 \\ -1 & -1 & 3 \mid 0 \mid 0 \end{bmatrix} \xrightarrow{\text{row red}} \begin{bmatrix} 1 & 0 & 0 \mid \frac{2}{3} \mid \frac{1}{3} \\ 0 & 1 & 0 \mid \frac{13}{12} \mid \frac{1}{6} \\ 0 & 0 & 1 \mid \frac{7}{12} \mid \frac{1}{6} \end{bmatrix}.$$

Hence:

$$v_1 = (\frac{2}{3}, \frac{1}{3}), \quad v_2 = (\frac{13}{12}, \frac{1}{6}), \quad v_3 = (\frac{7}{12}, \frac{1}{6}).$$

Note that $v_3v_1v_4$ are collinear, and v_3v_2 is a horizontal segment.

1b. We get a three-dimensional vector q_j for each of the 5 internal regions in the picture. For two adjacent regions R_{left} , R_{right} separated by an edge with top and bottom vertices $v_{\text{top}}v_{\text{bot}}$, we find the vector for the right region from the known one for the left region, by the recursive rule:

$$q_{\text{right}} = q_{\text{left}} + (v_{\text{top}}, 1) \times (v_{\text{bot}}, 1)$$

Starting with $q_1 = (0, 0, 0)$, we obtain:

$$q_{2} = q_{1} + (v_{4}, 1) \times (v_{1}, 1) = (1, 1, 1) \times (\frac{2}{3}, \frac{1}{3}, 1) = (\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3})$$

$$q_{3} = q_{2} + (v_{5}, 1) \times (v_{2}, 1) = q_{2} + (2, 0, 1) \times (\frac{13}{12}, \frac{1}{6}, 1) = (\frac{2}{3}, -\frac{1}{3}, -\frac{1}{3}) + (-\frac{1}{6}, -\frac{11}{12}, \frac{1}{3}) = (\frac{1}{2}, -\frac{5}{4}, 0)$$

$$q_{4} = q_{1} + (v_{1}, 1) \times (v_{6}, 1) = (\frac{2}{3}, \frac{1}{3}, 1) \times (0, 0, 1) = (\frac{1}{3}, -\frac{2}{3}, 0)$$

$$q_{5} = q_{5} + (v_{5}, 1) \times (v_{5}, 1) = q_{4} + (\frac{2}{3}, \frac{1}{3}, 1) \times (\frac{7}{3}, \frac{1}{3}, 1) = (\frac{1}{3}, -\frac{2}{3}, 0)$$

 $q_5 = q_4 + (v_1, 1) \times (v_3, 1) = q_4 + (\frac{2}{3}, \frac{1}{3}, 1) \times (\frac{7}{12}, \frac{1}{6}, 1) = (\frac{1}{3}, -\frac{2}{3}, 0) + (\frac{1}{6}, -\frac{1}{12}, -\frac{1}{12}) = (\frac{1}{2}, -\frac{3}{4}, -\frac{1}{12}).$

As a check, we alternatively compute:

$$q_5^{\text{alt}} = q_3 + (v_3, 1) \times (v_2, 1) = q_3 + (\frac{7}{12}, \frac{1}{6}, 1) \times (\frac{13}{12}, \frac{1}{6}, 1) = (\frac{1}{2}, -\frac{5}{4}, 0) + (0, \frac{1}{2}, -\frac{1}{12}) = (\frac{1}{2}, -\frac{3}{4}, -\frac{1}{12}).$$

Recall Lemma 1: We must have $q_5 = q_5^{\text{alt}}$. This is because the difference of the two sides corresponds to a sum of vector increments $(v_{\text{top}}, 1) \times (v_{\text{bot}}, 1)$ stepping around a cycle of neighboring regions, and this can can be rearranged as a sum of vector increments for the edges around vertices v_1 and v_2 :

$$\begin{aligned} q_5 - q_5^{\text{alt}} &= (v_1, 1) \times (v_6, 1) + (v_1, 1) \times (v_3, 1) - (v_3, 1) \times (v_2, 1) - (v_5, 1) \times (v_2, 1) - (v_4, 1) \times (v_1, 1) \\ &= [(v_1, 1) \times (v_6, 1) + (v_1, 1) \times (v_3, 1) + (v_1, 1) \times (v_2, 1) + (v_1, 1) \times (v_4, 1)] \\ &+ [(v_2, 1) \times (v_1, 1) + (v_2, 1) \times (v_3, 1) + (v_2, 1) \times (v_5, 1)] \end{aligned}$$

But now, from the first sum around v_1 , we factor $(v_1, 1)$, leaving the other factor: $(v_6, 1) + (v_3, 1) + (v_2, 1) + (v_4, 1) = 4(v_1, 1)$ by the equilibrium condition; and $(v_1, 1) \times 4(v_1, 1) = (0, 0, 0)$. Similarly, the second sum around v_2 is also (0, 0, 0).

1c. For v_i a corner of region R_j , we associate the height $h_i = q_j \cdot (v_i, 1)$, which lifts the plane vector $v_i = (x_i, y_i)$ to the space vector $(v_i, h_i) = (x_i, y_i, h_i)$. We have:

$$h_1 = q_1 \cdot (v_1, 1) = 0, \quad h_2 = q_3 \cdot (v_2, 1) = \frac{1}{3}, \quad h_3 = q_3 \cdot (v_3, 1) = \frac{1}{12},$$

$$h_4 = q_1 \cdot (v_4, 1) = 0, \quad h_5 = q_3 \cdot (v_5, 1) = 1, \quad h_6 = q_1 \cdot (v_6, 1) = 0.$$

Therefore the vertices of P are:

$$\begin{aligned} v_1' &= (\frac{2}{3}, \frac{1}{3}, 0), \qquad v_2' &= (\frac{13}{12}, \frac{1}{6}, \frac{1}{3}), \qquad v_3' &= (\frac{7}{12}, \frac{1}{6}, \frac{1}{12}), \\ v_4' &= (1, 1, 0), \qquad v_5' &= (2, 0, 1), \qquad v_6' &= (0, 0, 0). \end{aligned}$$

1d. Each point $v \in R_j$ (not just corner vertices) gets a height $h(v) = q_j \cdot (v, 1)$, so that v corresponds to a point v' = (v, h(v)) on a face of the polyhedron P. Letting $q_j = (a_j, b_j, c_j)$, we see that v' = (x, y, z) satisfies the equation:

$$z = h(v) = a_j x + b_j y + c_j.$$

We can rewrite this as a vector equation defining the face of P corresponding to R_i :

$$-a_j x - b_j y + z = c_j \quad \Longleftrightarrow \quad (-a_j, -b_j, 1) \cdot (x, y, z) = c_j \,,$$

This is $q'_j \cdot v' = c_j$ for $q'_j = (-a_j, -b_j, 1)$.

1e. Here is a table of q'_i heights for the vertices of P:

	v_1'	v'_2	v'_3	v'_4	v'_5	v'_6
q_1'	0	$\frac{1}{3}$	$\frac{1}{12}$	0	1	0
q_2'	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{4}$	$-\frac{1}{3}$	$-\frac{1}{3}$	0
q'_3	$\frac{1}{12}$	0	0	$\frac{3}{4}$	0	0
q'_4	0	$\frac{1}{12}$	0	$\frac{1}{3}$	$\frac{1}{3}$	0
q_5'	$-\frac{1}{12}$	$-\frac{1}{12}$	$-\frac{1}{12}$	$\frac{1}{4}$	0	0

For each region R_j , the vertices at its corners have the same q'_j -height, while the other vertices have greater q'_j -height. For example, the face above R_2 has its corners v'_1, v'_2, v'_4, v'_5 all at q'_2 -height $-\frac{1}{3}$, whereas the other vertices v'_3, v'_6 have the greater heights $-\frac{1}{4}$ and 0.

This shows that the polyhedron P is defined by the conditions $q'_j \cdot (x, y, z) \ge d_j$ for $j = 1, \ldots 5$, along with one more condition coming from the top triangle (lid) with corners v'_4, v'_5, v'_6 : this corresponds to an inequality $q'_0 \cdot (x, y, z) \le d_0$ by HW 3/21 #2.

2. Lemma 2: If v is a corner of two regions S and R, then the heights associated to v by the vectors q_S and q_R are the same.

Proof: Once we know this for adjacent regions S, R, we can make a chain of equalities to connect any two regions around v.

Thus, it is enough to prove the Lemma in the case that S, R are neighbors across the boundary edge uv. Then $q_R = q_S + (v, 1) \times (u, 1)$, so that the two heights associated to v are $h_S(v) = q_S \cdot (v, 1)$, and:

$$h_R(v) = q_R \cdot (v, 1) = q_S \cdot (v, 1) + ((v, 1) \times (u, 1)) \cdot (v, 1).$$

But a basic property of the cross product is that $(v, 1) \times (u, 1)$ is orthogonal to (v, 1) so the dot product on the very right of the equality is zero. The remaining term is precisely $h_S(v)$, as desired.