Homework: math.msu.edu/~magyar/Math482/Old.htm\#4-16.
1a. We have the chiral hexahedron graph $G$ :


Given fixed external vertex positions:

$$
v_{4}=(1,1), \quad v_{5}=(2,0), \quad v_{6}=(0,0),
$$

we wish to find the equilibrium positions of the mobile internal vertices $v_{1}, v_{2}, v_{3}$, where $v_{i}=\left(x_{i}, y_{i}\right)$. By HW 4/11, we must solve the matrix equations: $L \cdot \vec{x}=\vec{b}$ and $L \cdot \vec{y}=\vec{c}$. Here the partial Laplacian matrix $L$ has rows and columns corresponding to the internal vertices $v_{1}, v_{2}, v_{3}$; diagonal entries are the degrees of these vertices; and there is an off-diagonal -1 for each edge $v_{i} v_{j}$ :

$$
L=\left[\begin{array}{rrr}
4 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right] .
$$

The constant vectors $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right), \vec{c}=\left(c_{1}, c_{2}, c_{3}\right)$ are defined as $b_{i}$ being the sum of $x$-coordinates of the fixed external neighbors of $v_{i}$, and similarly for $c_{i}$ and $y$-coordinates: $\vec{b}=(1+0,2,0), \vec{c}=(1+0,0,0)$. To solve these equations, we reduce the doubly-augmented matrix:

$$
[L|\vec{b}| \vec{c}]=\left[\begin{array}{rrr|r|r}
4 & -1 & -1 & 1 & 1 \\
-1 & 3 & -1 & 2 & 0 \\
-1 & -1 & 3 & 0 & 0
\end{array}\right] \xrightarrow{\text { row red }}\left[\begin{array}{lll|l|l}
1 & 0 & 0 & \frac{2}{3} & \frac{1}{3} \\
0 & 1 & 0 & \frac{13}{12} & \frac{1}{6} \\
0 & 0 & 1 & \frac{7}{12} & \frac{1}{6}
\end{array}\right]
$$

Hence:

$$
v_{1}=\left(\frac{2}{3}, \frac{1}{3}\right), \quad v_{2}=\left(\frac{13}{12}, \frac{1}{6}\right), \quad v_{3}=\left(\frac{7}{12}, \frac{1}{6}\right) .
$$

Note that $v_{3} v_{1} v_{4}$ are collinear, and $v_{3} v_{2}$ is a horizontal segment.
1b. We get a three-dimensional vector $q_{j}$ for each of the 5 internal regions in the picture. For two adjacent regions $R_{\text {left }}, R_{\text {right }}$ separated by an edge with top and bottom vertices $v_{\text {top }} v_{\text {bot }}$, we find the vector for the right region from the known one for the left region, by the recursive rule:

$$
q_{\mathrm{right}}=q_{\mathrm{left}}+\left(v_{\mathrm{top}}, 1\right) \times\left(v_{\mathrm{bot}}, 1\right)
$$

Starting with $q_{1}=(0,0,0)$, we obtain:

$$
\begin{gathered}
q_{2}=q_{1}+\left(v_{4}, 1\right) \times\left(v_{1}, 1\right)=(1,1,1) \times\left(\frac{2}{3}, \frac{1}{3}, 1\right)=\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right) \\
q_{3}=q_{2}+\left(v_{5}, 1\right) \times\left(v_{2}, 1\right)=q_{2}+(2,0,1) \times\left(\frac{13}{12}, \frac{1}{6}, 1\right)=\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right)+\left(-\frac{1}{6},-\frac{11}{12}, \frac{1}{3}\right)=\left(\frac{1}{2},-\frac{5}{4}, 0\right) \\
q_{4}=q_{1}+\left(v_{1}, 1\right) \times\left(v_{6}, 1\right)=\left(\frac{2}{3}, \frac{1}{3}, 1\right) \times(0,0,1)=\left(\frac{1}{3},-\frac{2}{3}, 0\right) \\
q_{5}=q_{4}+\left(v_{1}, 1\right) \times\left(v_{3}, 1\right)=q_{4}+\left(\frac{2}{3}, \frac{1}{3}, 1\right) \times\left(\frac{7}{12}, \frac{1}{6}, 1\right)=\left(\frac{1}{3},-\frac{2}{3}, 0\right)+\left(\frac{1}{6},-\frac{1}{12},-\frac{1}{12}\right)=\left(\frac{1}{2},-\frac{3}{4},-\frac{1}{12}\right)
\end{gathered}
$$

As a check, we alternatively compute:

$$
q_{5}^{\text {alt }}=q_{3}+\left(v_{3}, 1\right) \times\left(v_{2}, 1\right)=q_{3}+\left(\frac{7}{12}, \frac{1}{6}, 1\right) \times\left(\frac{13}{12}, \frac{1}{6}, 1\right)=\left(\frac{1}{2},-\frac{5}{4}, 0\right)+\left(0, \frac{1}{2},-\frac{1}{12}\right)=\left(\frac{1}{2},-\frac{3}{4},-\frac{1}{12}\right)
$$

Recall Lemma 1: We must have $q_{5}=q_{5}^{\text {alt }}$. This is because the difference of the two sides corresponds to a sum of vector increments $\left(v_{\mathrm{top}}, 1\right) \times\left(v_{\mathrm{bot}}, 1\right)$ stepping around a cycle of neighboring regions, and this can can be rearranged as a sum of vector increments for the edges around vertices $v_{1}$ and $v_{2}$ :

$$
\begin{aligned}
q_{5}-q_{5}^{\text {alt }}= & \left(v_{1}, 1\right) \times\left(v_{6}, 1\right)+\left(v_{1}, 1\right) \times\left(v_{3}, 1\right)-\left(v_{3}, 1\right) \times\left(v_{2}, 1\right)-\left(v_{5}, 1\right) \times\left(v_{2}, 1\right)-\left(v_{4}, 1\right) \times\left(v_{1}, 1\right) \\
= & {\left[\left(v_{1}, 1\right) \times\left(v_{6}, 1\right)+\left(v_{1}, 1\right) \times\left(v_{3}, 1\right)+\left(v_{1}, 1\right) \times\left(v_{2}, 1\right)+\left(v_{1}, 1\right) \times\left(v_{4}, 1\right)\right] } \\
& \quad+\left[\left(v_{2}, 1\right) \times\left(v_{1}, 1\right)+\left(v_{2}, 1\right) \times\left(v_{3}, 1\right)+\left(v_{2}, 1\right) \times\left(v_{5}, 1\right)\right]
\end{aligned}
$$

But now, from the first sum around $v_{1}$, we factor $\left(v_{1}, 1\right)$, leaving the other factor: $\left(v_{6}, 1\right)+$ $\left(v_{3}, 1\right)+\left(v_{2}, 1\right)+\left(v_{4}, 1\right)=4\left(v_{1}, 1\right)$ by the equilibrium condition; and $\left(v_{1}, 1\right) \times 4\left(v_{1}, 1\right)=$ $(0,0,0)$. Similarly, the second sum around $v_{2}$ is also $(0,0,0)$.

1c. For $v_{i}$ a corner of region $R_{j}$, we associate the height $h_{i}=q_{j} \cdot\left(v_{i}, 1\right)$, which lifts the plane vector $v_{i}=\left(x_{i}, y_{i}\right)$ to the space vector $\left(v_{i}, h_{i}\right)=\left(x_{i}, y_{i}, h_{i}\right)$. We have:

$$
\begin{aligned}
& h_{1}=q_{1} \cdot\left(v_{1}, 1\right)=0, \quad h_{2}=q_{3} \cdot\left(v_{2}, 1\right)=\frac{1}{3}, \quad h_{3}=q_{3} \cdot\left(v_{3}, 1\right)=\frac{1}{12} \\
& h_{4}=q_{1} \cdot\left(v_{4}, 1\right)=0, \quad h_{5}=q_{3} \cdot\left(v_{5}, 1\right)=1, \quad h_{6}=q_{1} \cdot\left(v_{6}, 1\right)=0
\end{aligned}
$$

Therefore the vertices of $P$ are:

$$
\begin{aligned}
v_{1}^{\prime}=\left(\frac{2}{3}, \frac{1}{3}, 0\right), & v_{2}^{\prime}=\left(\frac{13}{12}, \frac{1}{6}, \frac{1}{3}\right), & v_{3}^{\prime}=\left(\frac{7}{12}, \frac{1}{6}, \frac{1}{12}\right), \\
v_{4}^{\prime}=(1,1,0), & v_{5}^{\prime}=(2,0,1), & v_{6}^{\prime}=(0,0,0) .
\end{aligned}
$$

1d. Each point $v \in R_{j}$ (not just corner vertices) gets a height $h(v)=q_{j} \cdot(v, 1)$, so that $v$ corresponds to a point $v^{\prime}=(v, h(v))$ on a face of the polyhedron $P$. Letting $q_{j}=\left(a_{j}, b_{j}, c_{j}\right)$, we see that $v^{\prime}=(x, y, z)$ satisfies the equation:

$$
z=h(v)=a_{j} x+b_{j} y+c_{j}
$$

We can rewrite this as a vector equation defining the face of $P$ corresponding to $R_{j}$ :

$$
-a_{j} x-b_{j} y+z=c_{j} \quad \Longleftrightarrow \quad\left(-a_{j},-b_{j}, 1\right) \cdot(x, y, z)=c_{j}
$$

This is $q_{j}^{\prime} \cdot v^{\prime}=c_{j}$ for $q_{j}^{\prime}=\left(-a_{j},-b_{j}, 1\right)$.

1e. Here is a table of $q_{j}^{\prime}$ heights for the vertices of $P$ :

|  | $v_{1}^{\prime}$ | $v_{2}^{\prime}$ | $v_{3}^{\prime}$ | $v_{4}^{\prime}$ | $v_{5}^{\prime}$ | $v_{6}^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $q_{1}^{\prime}$ | 0 | $\frac{1}{3}$ | $\frac{1}{12}$ | 0 | 1 | 0 |
| $q_{2}^{\prime}$ | $-\frac{1}{3}$ | $-\frac{1}{3}$ | $-\frac{1}{4}$ | $-\frac{1}{3}$ | $-\frac{1}{3}$ | 0 |
| $q_{3}^{\prime}$ | $\frac{1}{12}$ | 0 | 0 | $\frac{3}{4}$ | 0 | 0 |
| $q_{4}^{\prime}$ | 0 | $\frac{1}{12}$ | 0 | $\frac{1}{3}$ | $\frac{1}{3}$ | 0 |
| $q_{5}^{\prime}$ | $-\frac{1}{12}$ | $-\frac{1}{12}$ | $-\frac{1}{12}$ | $\frac{1}{4}$ | 0 | 0 |

For each region $R_{j}$, the vertices at its corners have the same $q_{j}^{\prime}$-height, while the other vertices have greater $q_{j}^{\prime}$-height. For example, the face above $R_{2}$ has its corners $v_{1}^{\prime}, v_{2}^{\prime}, v_{4}^{\prime}, v_{5}^{\prime}$ all at $q_{2}^{\prime}$-height $-\frac{1}{3}$, whereas the other vertices $v_{3}^{\prime}, v_{6}^{\prime}$ have the greater heights $-\frac{1}{4}$ and 0 .

This shows that the polyhedron $P$ is defined by the conditions $q_{j}^{\prime} \cdot(x, y, z) \geq d_{j}$ for $j=1, \ldots 5$, along with one more condition coming from the top triangle (lid) with corners $v_{4}^{\prime}, v_{5}^{\prime}, v_{6}^{\prime}$ : this corresponds to an inequality $q_{0}^{\prime} \cdot(x, y, z) \leq d_{0}$ by HW $3 / 21 \# 2$.
2. Lemma 2: If $v$ is a corner of two regions $S$ and $R$, then the heights associated to $v$ by the vectors $q_{S}$ and $q_{R}$ are the same.
Proof: Once we know this for adjacent regions $S, R$, we can make a chain of equalities to connect any two regions around $v$.

Thus, it is enough to prove the Lemma in the case that $S, R$ are neighbors across the boundary edge $u v$. Then $q_{R}=q_{S}+(v, 1) \times(u, 1)$, so that the two heights associated to $v$ are $h_{S}(v)=q_{S} \cdot(v, 1)$, and:

$$
h_{R}(v)=q_{R} \cdot(v, 1)=q_{S} \cdot(v, 1)+((v, 1) \times(u, 1)) \cdot(v, 1) .
$$

But a basic property of the cross product is that $(v, 1) \times(u, 1)$ is orthogonal to $(v, 1)$ so the dot product on the very right of the equality is zero. The remaining term is precisely $h_{S}(v)$, as desired.

