
Math 482 Homework 4/21 Solutions Spring 2014

Homework: math.msu.edu/∼magyar/Math482/Old.htm#4-21.

1. Easy from the definitions.

2. We have:∑
n≥0

∆anx
n =

∑
n≥0

anx
n −

∑
n≥0

an−1x
n = f(x)− xf(x) = (1−x)f(x).

Similarly to this, we can derive the rules:

{an}n≥0
ops←→ f(x)

{∆an}n≥0
ops←→ (1−x)f(x)

{∆+an}n≥0
ops←→ 1

x ((1−x)f(x)− a0)

{Σan}n≥0
ops←→ 1

1−x f(x).

The third formula uses Wilf’s Rule 1 (p. 34); the fourth formula is just Rule 5 (p. 37).

3. By translating the statement to generating function language, it becomes obvious:

{an}n≥0
ops←→ f(x)

{∆an}n≥0
ops←→ (1−x)f(x)

{Σ∆an}n≥0
ops←→ 1

1−x (1−x)f(x) = f(x)

Since the sequences {Σ∆an}n≥0 and {an}n≥0 have the same generating function, they must
be equal sequences: Σ∆an = an for all n ≥ 0.

4. The equation ∆+an = an simply says an+1 − an = an or an+1 = 2an, which has the
obvious solution an = a0 2n, where a0 is an arbitrary initial value.

Alternatively, translating to generating functions, the equation becomes:

(1−x)f(x)− a0
x

= f(x) ⇐⇒ f(x) =
a0

1− 2x

ops←→ {a0 2n}n≥0

This is closely analogous to the corresponding differential equation a′(x) = a(x), which can
be solved by separation of variables:

da
dx = a ⇔ da

a = dx ⇔
∫
da
a =

∫
dx ⇔ log(a) = x+ c ⇔ a = ex+c = a0 e

x

where a0 = a(0) is an arbitrary initial value. Thus we may say that the discete analog of
e = 2.71 . . . is just 2.

5. Easy from the definitions.

6. The difference equation ∆+∆−an = −an can be rewritten: an+1 − 2an + an−1 = −an
for n ≥ 1, or an = an−1 − an−2 for n ≥ 2. This does not have any obvious solution, though
it is clearly similar to the Fibonacci recurrence Fn = Fn−1 + Fn−2. We will have to use
generating functions.

Step 1: We must find a simple formula for f(x) =
∑

n≥0 anx
n.

First Method. We use the recurrence to find an equation involving f(x):

f(x) = a0 + a1x+
∑

n≥2 anx
n

= a0 + a1x+
∑

n≥2 an−1x
n −

∑
n≥2 an−2x

n

= a0 + a1x+ x(f(x)− a0)− x2f(x)
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Solving this equation:

f(x) =
a0 − a0x+ a1x

1− x+ x2
.

Second Method. Directly translate the difference equation into a generating function equa-
tion:

∆+∆−an = −an for n ≥ 1
ops←→ (1− x)2f(x)− a0

x
− (−2a0+a1) = −f(x)− (−a0).

(The constant terms are subtracted from the generating functions because the sequence

equation is not valid for n = 0. Also limx→0
(1−x)2f(x)−a0

x = −2a0 + a1.) Solving, we get
the same expression for f(x).

Step 2. We must compute an explicit Taylor series for f(x). As usual, we try to write the
formula for f(x) in terms of known series: in this case, a partial fracition decomposition
into geometric series. Our answer will contain the arbitrary initial values a0, a1.

The roots of the denominator 1− x+ x2 are complex numbers1 α = 1+i
√
3

2 , β = 1−i
√
3

2 .
We have: 1− x+ x2 = (1− x/α)(1− x/β). This is clear, because both sides have roots at
x = α, β, and the same constant coefficient 1.

The partial fraction decomposition must have the same vertical and horizontal asymp-
totes as f(x):

f(x) =
a0 − a0x+ a1x

1− x+ x2
=

A

1− x/α
+

B

1− x/β

Clearing denominators and simplifying 1
α = β and 1

β = α gives:

a0 − a0x+ a1x = A(1− x
β ) +B(1− x

α) = A(1− αx) +B(1− βx).

Substituting x = α and x = β gives:

A =
a0 − a0α+ a1α

1− α2
, B =

a0 − a0β + a1β

1− β2
.

Expanding the geometric series A
1−x/α = A

1−βx =
∑

n≥0Aβ
n, and similarly for the other

term, we conclude:
an = Aβn +Bαn for n ≥ 0.

This might be simplified a bit by manipulating the expressions for A andB. The dependence
on a0, a1 cannot be eliminated, since these are arbitrary constants. Of course, if a0, a1 are
integers, then so are all the an’s: the imaginary numbers and irrationals in the above
formula all cancel out.

Analysis. As an example, consider a0 = 0, a1 = 1, so that:

n 0 1 2 3 4 5 6 7 8 9 10

an 0 1 1 0 −1 −1 0 1 1 0 −1

Now, we have A = α
1−α2 = i2

√
3

3 , B = β
1−β2 = − i2

√
3

3 , so

an =
i2
√

3

3
(βn − αn)

Since α6 = β6 = 1, this sequence has a period of 6: that is, an+6 = an. This periodicity is
analogous to the solutions of the corresponing continuous differential equation, the Hooke

1Actually, these numbers are reciprocals of each other, αβ = 1; and they are complex sixth roots of unity,
α, β = cos( 2π

6
)±i sin( 2π

6
), satisfying α6 = β6 = 1. This is because x6 − 1 = (x+1)(x2−x+1)(x3−1).)



equation a′′(x) = −a(x). These are the wave functions a(x) = a(0) cos(x) + a′(0) sin(x)
with period 2π. Thus, we may say that the discrete analog of π = 3.14 . . . is 3.

7. We seek a simple formula for f(x) =
∑

n≥0 n
kxn. ConsiderDk(xn) = n(n−1) · · · (n−k+1)xn−k.

Then Dk
∑

n≥0 x
n =

∑
n≥0 n

kxn−k, and:

f(x) = xkDk

(
1

1− x

)
= xkDk(1−x)−1 = xk(1)(2) · · · (k)(1−x)−k−1 =

k!xk

(1− x)k+1
.

8. proposition: ∆(nk) = k (n−1)k−1.
Proof: Come to think of it, induction is not needed here. For any n, k ≥ 1, we directly
compute:

∆(nk) = n(n−1) · · · (n−k+1) − (n−1) · · · (n−k+1)(n−k)

= (n−(n−k))(n−1)k−1 = k (n−1)k−1.

9. The sequence {cn}n≥0 with cn = 0 for n < k and ck = 1 for n ≥ k has generating

function
∑

n≥k x
n = xk

1−x . Thus:

∑
n≥0

nkxn =
∑
n≥0

k! Σk(cn)xn = k!

(
1

1− x

)k ∑
n≥0

cnx
n =

k!

(1− x)k
· xk

1− x
,

which is the same as in Prob. 7.

10. We seek a transformation proof for the formula: nk =
∑k

i=0

{
k
i

}
ni.

The left side nk is Twelvefold Way #1, counting all functions f : [k]→ [n]. On the right
side, the Stirling partition number

{
k
i

}
is TW #9, counting the set partitions {S1, . . . , Si}

where S1, . . . , Si are disjoint sets with S1 ∪ · · · ∪ Si = [k]. Also, ni is TW #2, counting
injective functions g : [i]→ [n].

We must transform the data of a function f into a pair: a set partition of [k], and an
injection g:

f ←→ (S1, . . . , Si ; g) for some i.

Given f , first define i to be the size of the output set of f (the image). Second, define the
partition of [k] by thinking of f as k labeled balls in n ordered bins; remove empty bins, and
move the remaining bins into a standard order, so that min(S1) < min(S2) < · · · < min(Si),
where min(S) means the smallest element of S. Third, define g(j) = f(Sj), the common
output of the elements in Sj .

The inverse transformation takes a pair (S1, . . . , Si; g), where min(S1) < · · · < min(Si),
to the function f defined by f(m) = g(j), for m ∈ Sj .
example: Consider the function f : [7] → [5] described either by a list of outputs f =
(f(1), . . . , f(7)), or 7 marked balls in 5 ordered bins:

f = (4, 1, 1, 5, 4, 1, 5) = 236| | |15|47.

First, we set i = 3, since f has 3 outputs 1,4,5. Second, we get a set partition by dropping
empty baskets, considering the remaining baskets as unordered, exchangeable, and putting
the baskets in standard order based on their minimal elements:

236|15|47 = 15|236|47.

The injective function g : [3] → [5] is g(1) = f(1) = f(5) = 4, and g(2) = f(2) = f(3) =
f(6) = 1, and g(3) = f(4) = f(7) = 5. That is,

f = (3, 1, 1, 5, 3, 1, 5) = 236| | |15|47 ←→ 15|236|47 , g = (4, 1, 5).


