Homework: math.msu.edu/~magyar/Math482/Old.htm\#4-21.

1. Easy from the definitions.
2. We have:

$$
\sum_{n \geq 0} \Delta a_{n} x^{n}=\sum_{n \geq 0} a_{n} x^{n}-\sum_{n \geq 0} a_{n-1} x^{n}=f(x)-x f(x)=(1-x) f(x)
$$

Similarly to this, we can derive the rules:

$$
\begin{array}{rll}
\left\{a_{n}\right\}_{n \geq 0} & \stackrel{\text { ops }}{\longleftrightarrow} & f(x) \\
\left\{\Delta a_{n}\right\}_{n \geq 0} & \stackrel{\text { ops }}{\longleftrightarrow} & (1-x) f(x) \\
\left\{\Delta^{+} a_{n}\right\}_{n \geq 0} & \stackrel{\text { ops }}{\longleftrightarrow} & \frac{1}{x}\left((1-x) f(x)-a_{0}\right) \\
\left\{\Sigma a_{n}\right\}_{n \geq 0} & \stackrel{\text { ops }}{\longleftrightarrow} & \frac{1}{1-x} f(x) .
\end{array}
$$

The third formula uses Wilf's Rule 1 (p. 34); the fourth formula is just Rule 5 (p. 37).
3. By translating the statement to generating function language, it becomes obvious:

$$
\begin{array}{rll}
\left\{a_{n}\right\}_{n \geq 0} & \stackrel{\text { ops }}{\longleftrightarrow} & f(x) \\
\left\{\Delta a_{n}\right\}_{n \geq 0} & \stackrel{\mathrm{ops}}{\longleftrightarrow} & (1-x) f(x) \\
\left\{\Sigma \Delta a_{n}\right\}_{n \geq 0} & \stackrel{\mathrm{ops}}{\longleftrightarrow} & \frac{1}{1-x}(1-x) f(x)=f(x)
\end{array}
$$

Since the sequences $\left\{\Sigma \Delta a_{n}\right\}_{n \geq 0}$ and $\left\{a_{n}\right\}_{n \geq 0}$ have the same generating function, they must be equal sequences: $\Sigma \Delta a_{n}=a_{n}$ for all $n \geq 0$.
4. The equation $\Delta^{+} a_{n}=a_{n}$ simply says $a_{n+1}-a_{n}=a_{n}$ or $a_{n+1}=2 a_{n}$, which has the obvious solution $a_{n}=a_{0} 2^{n}$, where a_{0} is an arbitrary initial value.

Alternatively, translating to generating functions, the equation becomes:

$$
\frac{(1-x) f(x)-a_{0}}{x}=f(x) \quad \Longleftrightarrow \quad f(x)=\frac{a_{0}}{1-2 x} \quad \stackrel{\text { ops }}{\longleftrightarrow}\left\{a_{0} 2^{n}\right\}_{n \geq 0}
$$

This is closely analogous to the corresponding differential equation $a^{\prime}(x)=a(x)$, which can be solved by separation of variables:

$$
\frac{d a}{d x}=a \quad \Leftrightarrow \quad \frac{d a}{a}=d x \quad \Leftrightarrow \quad \int \frac{d a}{a}=\int d x \quad \Leftrightarrow \quad \log (a)=x+c \quad \Leftrightarrow \quad a=e^{x+c}=a_{0} e^{x}
$$

where $a_{0}=a(0)$ is an arbitrary initial value. Thus we may say that the discete analog of $e=2.71 \ldots$ is just 2 .
5. Easy from the definitions.
6. The difference equation $\Delta^{+} \Delta^{-} a_{n}=-a_{n}$ can be rewritten: $a_{n+1}-2 a_{n}+a_{n-1}=-a_{n}$ for $n \geq 1$, or $a_{n}=a_{n-1}-a_{n-2}$ for $n \geq 2$. This does not have any obvious solution, though it is clearly similar to the Fibonacci recurrence $F_{n}=F_{n-1}+F_{n-2}$. We will have to use generating functions.
Step 1: We must find a simple formula for $f(x)=\sum_{n \geq 0} a_{n} x^{n}$.
First Method. We use the recurrence to find an equation involving $f(x)$:

$$
\begin{aligned}
f(x) & =a_{0}+a_{1} x+\sum_{n \geq 2} a_{n} x^{n} \\
& =a_{0}+a_{1} x+\sum_{n \geq 2} a_{n-1} x^{n}-\sum_{n \geq 2} a_{n-2} x^{n} \\
& =a_{0}+a_{1} x+x\left(f(x)-a_{0}\right)-x^{2} f(x)
\end{aligned}
$$

Solving this equation:

$$
f(x)=\frac{a_{0}-a_{0} x+a_{1} x}{1-x+x^{2}} .
$$

Second Method. Directly translate the difference equation into a generating function equation:

$$
\Delta^{+} \Delta^{-} a_{n}=-a_{n} \text { for } n \geq 1 \quad \stackrel{\text { ops }}{\longleftrightarrow} \quad \frac{(1-x)^{2} f(x)-a_{0}}{x}-\left(-2 a_{0}+a_{1}\right)=-f(x)-\left(-a_{0}\right) .
$$

(The constant terms are subtracted from the generating functions because the sequence equation is not valid for $n=0$. Also $\lim _{x \rightarrow 0} \frac{(1-x)^{2} f(x)-a_{0}}{x}=-2 a_{0}+a_{1}$.) Solving, we get the same expression for $f(x)$.
Step 2. We must compute an explicit Taylor series for $f(x)$. As usual, we try to write the formula for $f(x)$ in terms of known series: in this case, a partial fracition decomposition into geometric series. Our answer will contain the arbitrary initial values a_{0}, a_{1}.

The roots of the denominator $1-x+x^{2}$ are complex numbers ${ }^{1} \alpha=\frac{1+i \sqrt{3}}{2}, \beta=\frac{1-i \sqrt{3}}{2}$. We have: $1-x+x^{2}=(1-x / \alpha)(1-x / \beta)$. This is clear, because both sides have roots at $x=\alpha, \beta$, and the same constant coefficient 1 .

The partial fraction decomposition must have the same vertical and horizontal asymptotes as $f(x)$:

$$
f(x)=\frac{a_{0}-a_{0} x+a_{1} x}{1-x+x^{2}}=\frac{A}{1-x / \alpha}+\frac{B}{1-x / \beta}
$$

Clearing denominators and simplifying $\frac{1}{\alpha}=\beta$ and $\frac{1}{\beta}=\alpha$ gives:

$$
a_{0}-a_{0} x+a_{1} x=A\left(1-\frac{x}{\beta}\right)+B\left(1-\frac{x}{\alpha}\right)=A(1-\alpha x)+B(1-\beta x) .
$$

Substituting $x=\alpha$ and $x=\beta$ gives:

$$
A=\frac{a_{0}-a_{0} \alpha+a_{1} \alpha}{1-\alpha^{2}}, \quad B=\frac{a_{0}-a_{0} \beta+a_{1} \beta}{1-\beta^{2}} .
$$

Expanding the geometric series $\frac{A}{1-x / \alpha}=\frac{A}{1-\beta x}=\sum_{n \geq 0} A \beta^{n}$, and similarly for the other term, we conclude:

$$
a_{n}=A \beta^{n}+B \alpha^{n} \quad \text { for } n \geq 0 .
$$

This might be simplified a bit by manipulating the expressions for A and B. The dependence on a_{0}, a_{1} cannot be eliminated, since these are arbitrary constants. Of course, if a_{0}, a_{1} are integers, then so are all the a_{n} 's: the imaginary numbers and irrationals in the above formula all cancel out.
Analysis. As an example, consider $a_{0}=0, a_{1}=1$, so that:

n	0	1	2	3	4	5	6	7	8	9	10
a_{n}	0	1	1	0	-1	-1	0	1	1	0	-1

Now, we have $A=\frac{\alpha}{1-\alpha^{2}}=\frac{i 2 \sqrt{3}}{3}, B=\frac{\beta}{1-\beta^{2}}=-\frac{i 2 \sqrt{3}}{3}$, so

$$
a_{n}=\frac{i 2 \sqrt{3}}{3}\left(\beta^{n}-\alpha^{n}\right)
$$

Since $\alpha^{6}=\beta^{6}=1$, this sequence has a period of 6 : that is, $a_{n+6}=a_{n}$. This periodicity is analogous to the solutions of the corresponing continuous differential equation, the Hooke

[^0]equation $a^{\prime \prime}(x)=-a(x)$. These are the wave functions $a(x)=a(0) \cos (x)+a^{\prime}(0) \sin (x)$ with period 2π. Thus, we may say that the discrete analog of $\pi=3.14 \ldots$ is 3 .
7. We seek a simple formula for $f(x)=\sum_{n \geq 0} n^{\underline{k}} x^{n}$. Consider $D^{k}\left(x^{n}\right)=n(n-1) \cdots(n-k+1) x^{n-k}$. Then $D^{k} \sum_{n \geq 0} x^{n}=\sum_{n \geq 0} n^{\underline{k}} x^{n-k}$, and:
$f(x)=x^{k} D^{k}\left(\frac{1}{1-x}\right)=x^{k} D^{k}(1-x)^{-1}=x^{k}(1)(2) \cdots(k)(1-x)^{-k-1}=\frac{k!x^{k}}{(1-x)^{k+1}}$.
8. PROPOSITION: $\Delta\left(n^{\underline{k}}\right)=k(n-1) \underline{k-1}$.

Proof: Come to think of it, induction is not needed here. For any $n, k \geq 1$, we directly compute:

$$
\begin{aligned}
\Delta\left(n^{\underline{k}}\right)= & n(n-1) \cdots(n-k+1)-(n-1) \cdots(n-k+1)(n-k) \\
& =(n-(n-k))(n-1) \frac{k-1}{\underline{n}}=k(n-1) \frac{k-1}{\underline{k}} .
\end{aligned}
$$

9. The sequence $\left\{c_{n}\right\}_{n \geq 0}$ with $c_{n}=0$ for $n<k$ and $c_{k}=1$ for $n \geq k$ has generating function $\sum_{n \geq k} x^{n}=\frac{x^{k}}{1-x}$. Thus:

$$
\sum_{n \geq 0} n^{\underline{k}} x^{n}=\sum_{n \geq 0} k!\Sigma^{k}\left(c_{n}\right) x^{n}=k!\left(\frac{1}{1-x}\right)^{k} \sum_{n \geq 0} c_{n} x^{n}=\frac{k!}{(1-x)^{k}} \cdot \frac{x^{k}}{1-x}
$$

which is the same as in Prob. 7.
10. We seek a transformation proof for the formula: $n^{k}=\sum_{i=0}^{k}\left\{\begin{array}{c}k \\ i\end{array}\right\} n \underline{\text { n }}$.

The left side n^{k} is Twelvefold Way \#1, counting all functions $f:[k] \rightarrow[n]$. On the right side, the Stirling partition number $\left\{\begin{array}{l}k \\ i\end{array}\right\}$ is TW $\# 9$, counting the set partitions $\left\{S_{1}, \ldots, S_{i}\right\}$ where S_{1}, \ldots, S_{i} are disjoint sets with $S_{1} \cup \cdots \cup S_{i}=[k]$. Also, n^{i} is TW \#2, counting injective functions $g:[i] \rightarrow[n]$.

We must transform the data of a function f into a pair: a set partition of $[k]$, and an injection g :

$$
f \quad \longleftrightarrow \quad\left(S_{1}, \ldots, S_{i} ; g\right) \text { for some } i
$$

Given f, first define i to be the size of the output set of f (the image). Second, define the partition of $[k]$ by thinking of f as k labeled balls in n ordered bins; remove empty bins, and move the remaining bins into a standard order, so that $\min \left(S_{1}\right)<\min \left(S_{2}\right)<\cdots<\min \left(S_{i}\right)$, where $\min (S)$ means the smallest element of S. Third, define $g(j)=f\left(S_{j}\right)$, the common output of the elements in S_{j}.

The inverse transformation takes a pair $\left(S_{1}, \ldots, S_{i} ; g\right)$, where $\min \left(S_{1}\right)<\cdots<\min \left(S_{i}\right)$, to the function f defined by $f(m)=g(j)$, for $m \in S_{j}$.
example: Consider the function $f:[7] \rightarrow[5]$ described either by a list of outputs $f=$ $(f(1), \ldots, f(7))$, or 7 marked balls in 5 ordered bins:

$$
f=(4,1,1,5,4,1,5)=236| ||15| 47 .
$$

First, we set $i=3$, since f has 3 outputs $1,4,5$. Second, we get a set partition by dropping empty baskets, considering the remaining baskets as unordered, exchangeable, and putting the baskets in standard order based on their minimal elements:

$$
236|15| 47=15|236| 47
$$

The injective function $g:[3] \rightarrow[5]$ is $g(1)=f(1)=f(5)=4$, and $g(2)=f(2)=f(3)=$ $f(6)=1$, and $g(3)=f(4)=f(7)=5$. That is,

$$
f=(3,1,1,5,3,1,5)=236| ||15| 47 \quad \longleftrightarrow \quad 15|236| 47, g=(4,1,5)
$$

[^0]: ${ }^{1}$ Actually, these numbers are reciprocals of each other, $\alpha \beta=1$; and they are complex sixth roots of unity, $\alpha, \beta=\cos \left(\frac{2 \pi}{6}\right) \pm i \sin \left(\frac{2 \pi}{6}\right)$, satisfying $\alpha^{6}=\beta^{6}=1$. This is because $x^{6}-1=(x+1)\left(x^{2}-x+1\right)\left(x^{3}-1\right)$.)

