Homework: math.msu.edu/~magyar/Math482/01d.htm\#4-4.

1. Let G be a polyhedral graph with n vertices, q edges, r regions.

Claim (a): $q \leq 3 r-6$. Pf: By Edge-Vertex, $3 n \leq \sum_{v} \operatorname{deg}(v)=2 q$. By Euler, this means $3(2-r+q) \leq 2 q$, which rearranges to the desired formula.
Claim (b): $n \leq 2 r-4$. Pf: As before, $3 n \leq 2 q=2(n+r-2)$, rearranging to the Claim.
Claim (c): There is some region with $\operatorname{deg}(R) \leq 5$.
$P f$: The average degree of the regions is:

$$
A_{r}=\frac{1}{r} \sum_{R} \operatorname{deg}(R)=\frac{2 q}{r} \leq \frac{2(3 r-6)}{r}=6-\frac{12}{r}<6 .
$$

Thus there is some R with $\operatorname{deg}(R) \leq A_{R}<6$, meaing $\operatorname{deg}(R) \leq 5$.
2a. The potential energy of $F(x)=-x$ is: $P E\left(x_{1}\right)=-\int_{0}^{x_{1}}(-x) d x=\frac{1}{2} x_{1}^{2}$.
2b. For $F(x)=-\left(x-a_{1}\right)-\left(x-a_{2}\right)=-2 x+a_{1}+a_{2}$, we have:

$$
P E(x)=x^{2}-\left(a_{1}+a_{2}\right) x .
$$

Completing the square gives: $P E(x)=(x-c)^{2}-e$, where $c=\frac{1}{2}\left(a_{1}+a_{2}\right)$ and $e=c^{2}$. This is clearly a parabola having a unique minimum.
Also, an equilibrium point $x=x_{0}$ means $0=F\left(x_{0}\right)=-P E^{\prime}\left(x_{0}\right)$ since $-P E(x)$ is the anti-derivative of $F(x)$. Thus, each equilibrium point of $F(x)$ is a critical point of $P E(x)$; but $P E(x)$ has only one critical point (its minimum $x=c$).
2c. The same reasoning applies for $F(x)=-\left(x-a_{1}\right)-\cdots-\left(x-a_{n}\right)$ as for $n=2$ above.
3a. We compute the line integral of $\vec{F}(x, y)=-(x, y)$ over $\vec{r}(t)=\left(t x_{1}, t y_{1}\right)$ for constants $\left(x_{1}, y_{1}\right)$ and $0 \leq t \leq 1$:

$$
\begin{aligned}
P E\left(x_{1}, y_{1}\right) & =-\oint \vec{F}(\vec{r}) \cdot d \vec{r}=-\int_{0}^{1} \vec{F}(x(t), y(t)) \cdot \vec{r}^{\prime}(t) d t \\
& =\int_{0}^{1}\left(t x_{1}, t y_{1}\right) \cdot\left(x_{1}, y_{1}\right) d t=\int_{0}^{1}\left(x_{1}^{2}+y_{1}^{2}\right) t d t=\frac{1}{2}\left(x_{1}^{2}+y_{1}^{2}\right) .
\end{aligned}
$$

This is an upward-curving paraboloid.
3c. Let us examine the case of two Hooke forces: $\vec{F}(x, y)=-\left((x, y)-\left(a_{1}, b_{1}\right)\right)-\left((x, y)-\left(a_{2}, b_{2}\right)\right)=$ $-2(x, y)+\left(a_{1}+a_{2}, b_{1}+b_{2}\right)$. This integrates as before to:

$$
\begin{aligned}
P E(x, y) & =x^{2}+y^{2}+\left(a_{1}+a_{2}\right) x+\left(b_{1}+b_{2}\right) x \\
& =(x-c)^{2}+(y-d)^{2}-e,
\end{aligned}
$$

where we have completed the square: $c=\frac{1}{2}\left(a_{1}+a_{2}\right), d=\frac{1}{2}\left(b_{1}+b_{2}\right)$, $e=c^{2}+d^{2}$. This is once again a paraboloid with a unique minimum $\left(x_{0}, y_{0}\right)=(c, d)$.
The minimum point is a critcal point, where:

$$
\operatorname{grad} P E\left(x_{0}, y_{0}\right)=\nabla P E\left(x_{0}, y_{0}\right) \quad=\left(\frac{\partial}{\partial x} P E\left(x_{0}, y_{0}\right), \frac{\partial}{\partial y} P E\left(x_{0}, y_{0}\right)\right)=(0,0)
$$

But, by the Fundamental Theorem of Calculus for line integrals (or by direct computation), we have $\nabla P E(x, y)=\vec{F}(x, y)$, so that again, the critical points of $P E(x, y)$ are precisely the equilibrium points where $\vec{F}(x, y)=(0,0)$; but $P E(x, y)$ has only one critical point, its minimum.

