We count the number of possible functions f with input set $[k]=\{1,2, \ldots, k\}$ and output set $[n]=\{1,2, \ldots, n\}$, subject to restrictions (injective or surjective). We may picture f as a way of distributing k balls (marked $1, \ldots, k$) into n baskets (marked $1, \ldots, n$). A map is injective if each basket contains at most one ball, or surjective if no basket is empty.

Indistinguishable $[k]$ means we consider two functions the same whenever they differ by a permutation of the inputs $[k]$; so we picture the k balls as identical, unmarked. Similarly, indistinguishable $[n]$ means we consider classes of functions up to permutation of the outputs $[n]$, so we picture the n baskets as identical and movable, and we cannot distinguish a first basket, second basket, etc.

$f:[k] \rightarrow[n]$	ALL FUNCTIONS	INJECTIONS	SURJECTIONS
DIST DIST	(1) $\begin{gathered} n^{k} \\ n^{k}=n \cdot n^{k-1} \end{gathered}$	(2) $\begin{gathered} n^{\underline{k}} \\ n^{\underline{k}}=(n-k+1) n^{\underline{k-1}} \end{gathered}$	$\begin{aligned} & \text { (3) } \quad \operatorname{surj}(k, n)=\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}(n-i)^{k} \\ & \operatorname{surj}(k, n)=n \operatorname{surj}(k-1, n-1)+n \operatorname{surj}(k-1, n) \end{aligned}$
IND DIST	$\begin{aligned} &(4) \\ &\left(\binom{n}{k}\right)=\frac{n^{\bar{k}}}{k!} \\ &\left(\binom{n}{k}\right)=\left(\binom{n}{k-1}\right)+\left(\binom{n-1}{k}\right) \end{aligned}$	$\begin{aligned} & (5) \quad\binom{n}{k}=\frac{n^{\underline{k}}}{k!} \\ & \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \end{aligned}$	(6) $\left(\binom{n}{k-n}\right)=\binom{k-1}{n-1}$
DIST IND	(7) $\left\{\begin{array}{l} k \\ 1 \end{array}\right\}+\left\{\begin{array}{l} k \\ 2 \end{array}\right\}+\cdots+\left\{\begin{array}{l} k \\ n \end{array}\right\}$	(8) $\left[\begin{array}{ll} 1 & \text { if } k \leq n \\ 0 & \text { otherwise } \end{array}\right.$	(9) $\begin{gathered} \left\{\begin{array}{l} k \\ n \end{array}\right\}=\frac{\operatorname{surj}(k, n)}{n!} \\ \left\{\begin{array}{l} k \\ n \end{array}\right\}=\left\{\begin{array}{l} k-1 \\ n-1 \end{array}\right\}+n\left\{\begin{array}{c} k-1 \\ n \end{array}\right\} \end{gathered}$
IND IND	(10) $p_{\leq n}(k)=p_{1}(k)+p_{2}(k)+\cdots+p_{n}(k)$	(11) $\left[\begin{array}{ll}1 & \text { if } k \leq n \\ 0 & \text { otherwise }\end{array}\right.$	(12) $\begin{gathered} p_{n}(k) \\ p_{n}(k)=p_{n-1}(k-1)+p_{n}(k-n) \end{gathered}$

- Binomial coefficient or choose-number $\binom{n}{k}$. Multiset number or multi-choose number $\binom{n}{k}$. Stirling partition number (second kind) $\left\{\begin{array}{l}k \\ n\end{array}\right\}$.
- Stirling cycle number (first kind) $\left[\begin{array}{l}n \\ k\end{array}\right]$ counts permutations of n having k cycles. Recurrence: $\left[\begin{array}{c}n \\ k\end{array}\right]=\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]+(n-1)\left[\begin{array}{c}n-1 \\ k\end{array}\right]$.
- Bell number $B(k)=\left\{\begin{array}{l}k \\ 1\end{array}\right\}+\left\{\begin{array}{c}k \\ 2\end{array}\right\}+\cdots+\left\{\begin{array}{c}k \\ k\end{array}\right\}$. Ordered Bell number $R(k)=\operatorname{surj}(k, 1)+\operatorname{surj}(k, 2)+\cdots+\operatorname{surj}(k, k)$.
- partition number $p(k)=p_{\leq k}(k)=p_{1}(k)+p_{2}(k)+\cdots+p_{k}(k)$.
- Fibonacci number $F_{k}=F_{k-1}+F_{k-2}$ from $F_{0}=0, F_{1}=1$; formula $F_{k}=\frac{1}{\sqrt{5}}\left(\phi^{k}-(-\psi)^{k}\right)$, where $\phi=\frac{\sqrt{5}+1}{2}, \psi=\frac{\sqrt{5}-1}{2}$.
- Catalan number $C_{k}=\sum_{i=0}^{k-1} C_{i} C_{k-i}$ from $C_{0}=1$; formula $C_{k}=\frac{1}{k+1}\binom{2 k}{k}$.
- Derangement number (permutations without fixed points) $D_{k}=n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{n}}{n!}\right)$
- Number of Cayley (labeled) trees: $T_{n}=n^{n-2}$. Number of unlabeled trees: $t_{n}=$??

