
ar
X

iv
:m

at
h/

04
11

40
0v

2 
 [

m
at

h.
M

G
] 

 7
 D

ec
 2

00
5

IAS/Park City Mathematics Series
Volume 14, 2004

Convex Polytopes:

Extremal Constructions

and f -Vector Shapes

Günter M. Ziegler

Introduction

These lecture notes treat some current aspects of two closely interrelated top-
ics from the theory of convex polytopes: the shapes of f -vectors, and extremal
constructions.

The study of f -vectors has had huge successes in the last forty years. The
most fundamental one is undoubtedly the “g-theorem,” conjectured by McMullen
in 1971 and proved by Billera & Lee and Stanley in 1980, which characterizes the
f -vectors of simplicial and of simple polytopes combinatorially. See also Section ??
of Forman’s article in this volume, where h-vectors are discussed in connection
with the Charney–Davis conjecture. Nevertheless, on some fundamental problems
embarassingly little progress was made; one notable such problem concerns the
shapes of f -vectors of 4-polytopes.

A number of striking and fascinating polytope constructions has been proposed
and analyzed over the years. In particular, the Billera–Lee construction produces
“all possible f -vectors” of simplicial polytopes. Less visible progress was made out-
side the range of simple or simplicial polytopes — where our measure of progress
is that new polytopes “with interesting f -vectors” should be produced. Thus, still
“it seems that overall, we are short of examples. The methods for coming up with
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2 GÜNTER M. ZIEGLER, CONVEX POLYTOPES

useful examples in mathematics (or counterexamples to commonly believed conjec-
tures) are even less clear than the methods for proving mathematical statements”
(Gil Kalai, 2000).

These lecture notes are meant to display a fruitful interplay of these two ar-
eas of study: The discussion of f -vector shapes suggests the notion of “extremal”
polytopes, that is, of polytopes with “extremal f -vector shapes.” Our choice of con-
structions to be discussed here is guided by this: We will be looking at constructions
that produce interesting f -vector shapes.

After treating 3-polytopes in the first lecture and the f -vector shapes of very
high-dimensional polytopes in the second one, we will start to analyze the case of
4-dimensional polytopes in detail. Thus the third lecture will explain a surprisingly
simple construction for 2-simple 2-simplicial 4-polytopes, which have symmetric f -
vectors. Lecture four sketches the geometry of the cone of f -vectors for 4-polytopes,
and thus identifies the existence/construction of 4-polytopes of high “fatness” as a
key problem. In this direction, the last lecture presents a very recent construction
of “projected products of polygons,” whose fatness reaches 9− ε. This shows that,
on the topic of f -vectors of 4-polytopes, there is a narrowing gap between “the
constraints we know” and “the examples we can construct.”
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The main sources, and the basis for the presentation in these lecture notes, are as
follows. The proof of Steinitz’ theorem in Lecture 1 is due to Alexander Bobenko
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in [79, Sect. 8.6]; see also [13] and [15]. The “deep vertex truncation” construc-
tion presented in Lecture 3 is from joint work with Andreas Paffenholz [57]; my
understanding of 2-simple 2-simplicial polytopes benefits also from my previous
work with David Eppstein and Greg Kuperberg [26]. Lecture 4 draws heavily on
my 2002 Beijing ICM report [80], which was relying on previous studies by Marge
Bayer [11], and with Andrea Höppner [42]. Finally, the construction presented in
Lecture 5 was announced in [81]; the intuition for it was built in previous joint
work with Nina Amenta [4] and Michael Joswig [43].

Nikolaus Witte and Thilo Schröder have forcefully directed the problem sessions
for my Utah lectures, and suggested a number of exercises. Nikolaus Witte has pre-
pared many, and the nicest, figures for these notes. The construction of many of the
examples and the beautiful Schlegel diagram graphics are based on the polymake

system by Ewgenij Gawilow and Michael Joswig [31] [32] [33], which everyone is
invited and recommended to try out, and use. An introduction to polymake, by
Nikolaus Witte and Thilo Schröder, appears as an appendix, pp. 63–67.

I am grateful to all these colleagues for their work, for their explanations and
critical comments, and for support on these lectures as well as in general. I have
benefitted a lot from the lively discussions at the PCMI after my lectures, and
from the many interesting questions and diverse feedback I got. Boris Springborn,
Nikolaus Witte, Günter Rote, and many others provided very helpful comments on
the draft version of these lecture notes. Thank you all!

More than usually, for the trip to Utah I have depended on the support, care,
and love of Torsten Heldmann. Without him, I wouldn’t have been able to go.



LECTURE 1

Constructing 3-Dimensional Polytopes

All the polytopes considered in these lecture notes are convex. A d-polytope is
a d-dimensional polytope; thus the 3-dimensional polytopes to be discussed in this
lecture are plainly 3-polytopes.*

How many 3-dimensional polytopes “do we know”? When pressed for examples,
we will perhaps start with the platonic solids: the regular tetrahedron, cube and
octahedron, icosahedron and dodecahedron.

Figure 1.1. The regular icosahedron and dodecahedron

The classes of stacked and cyclic polytopes are of great importance for high-
dimensional polytope theory because of their extremal f -vectors (according to the
lower bound theorem and the upper bound theorem): Stacked polytopes arise from
a simplex by repeatedly stacking pyramids onto the facets (cf. Lecture 2); cyclic
polytopes are constructed as the convex hull of n > d points on a curve of order d.
However, neither of these constructions produces particularly impressive objects in
dimension 3 (compare Figure 1.2, and Exercise 1.8).

The same must be said about pyramids and bipyramids over n-gons (n ≥ 3)
— see Figure 1.3.

*We assume that the readers are familiar with the basic terminology and discrete geometric
concepts; see e.g. [79, Lect. 0] or [40].
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4 GÜNTER M. ZIEGLER, CONVEX POLYTOPES

Figure 1.2. A cyclic 3-polytope C3(10) and a stacked 3-polytope, with 10
vertices each

Figure 1.3. The pyramid and the bipyramid over a regular 10-gon

How do we get a “random” 3-polytope with lots of vertices? An obvious thing
to look at is the convex hull of n random points on a 2-sphere.

Why is this not satisfactory? First, it produces only simplicial polytopes (with
probability 1), and secondly it does not even produce all possible combinatorial
types of simplicial 3-polytopes — see [39, Sect. 13.5]. It is a quite non-trivial
problem to randomly produce all combinatorial types of polytopes of specified size
(say, with a given number of edges). With the Steinitz theorem discussed below this
reduces to a search for a random planar 3-connected graph with a given number of
edges, say. See Schaeffer [64] for a recent treatment of this problem.
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Figure 1.4. A random 3-polytope, with 1000 vertices on a sphere

1.1. The cone of f-vectors

The f -vector of a 3-polytope P is the triplet of integers

f(P ) = (f0, f1, f2) ∈ Z
3,

where f0 is the number of vertices, f1 is the number of edges, and f2 denotes the
number of facets (2-dimensional faces). In view of Euler’s equation f0−f1 +f2 = 2
(which we take for granted here; but see Federico [27], Eppstein [25], and [2,
Chap. 11]), the set of all f -vectors of 3-polytopes,

F3 := {(f0, f1, f2) ∈ Z
3 : f(P ) = (f0, f1, f2) is the f -vector of a 3-polytope P}

is a 2-dimensional set. Thus F3 is faithfully represented by the (f0, f2)-pairs of
3-polytopes,

F̄3 := {(f0, f2) ∈ Z
3 : f(P ) = (f0, f1, f2) for some 3-polytope P},

as shown in Figure 1.5: The missing f1-component is given by f1 = f0 + f2 − 2.
The set of all f -vectors of 3-polytopes was completely characterized by a young

Privatdozent at the Technische Hochschule Berlin-Charlottenburg (now TU Berlin),
Ernst Steinitz, in 1906: In a simple two-and-a-half-page paper he obtained the
following result, whose proof we leave to you (Exercise 1.3).

Lemma 1.1 (Steinitz’ lemma [73]). The set of all f -vectors of 3-polytopes is given
by

F3 := {(f0, f1, f2) ∈ Z
3 : f0 − f1 + f2 = 2, f2 ≤ 2f0 − 4, f0 ≤ 2f2 − 4}.

This answer to the f -vector problem for 3-polytopes is remarkably simple:
F3 is the set of all integral points in a 2-dimensional convex polyhedral cone.
The three constraints that define the cone have clear interpretations: They are
the Euler equation f0 − f1 + f2 = 2, the upper bound inequality f2 ≤ 2f0 − 4,
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f2 ≤ 2f0 − 4
(equality:

simplicial
polytopes)

f0 ≤ 2f2 − 4

(equality:
simple polytopes)
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Figure 1.5. The set F̄3, according to Steinitz’ Lemma 1.1

which is tight exactly for the f -vectors of simplicial polytopes, and its dual, f0 ≤
2f2 − 4, which in the case of equality characterizes the f -vectors of simple 3-
polytopes.

For the centennial of Steinitz’ lemma, in 2006, let’s strive for a characterization
of the cone spanned by the f -vectors of 4-dimensional polytopes, cone(F4). As we
will see at the beginning of Lecture 4, this is a much more modest goal than a
characterization of F4, which is not the set of all integral points in a convex set: It
has “concavities” and even “holes.”

Steinitz’ lemma, as graphed in Figure 1.5, also shows that all (f -vectors of)
convex 3-polytopes lie between the extremes of simple and of simplicial polytopes.
And indeed, there seems to be the misconception that an analogous statement
should be true in higher dimensions as well — it isn’t. As we will see, there are
additional interesting extreme cases in dimension 4, which are by far not as well
understood as the simple and simplicial cases.

For any 3-polytope that is not a simplex, we may compute the “slope”

φ(P ) :=
f2 − 4

f0 − 4

it generates in the graph of Figure 1.5, with respect to the apex (4, 4) of the cone,
which corresponds to a simplex. This slope satisfies

1
2 ≤ φ(P ) ≤ 2,

where the lower bound characterizes simple polytopes, while the upper bound is
tight for simplicial polytopes. Another interpretation of the parameter φ is that it
is a homogeneous coordinate for the cone, where the denominator f0 − 4 measures
the “size” of the f -vector. (φ is homogeneous, so it yields 0

0 for the f -vector of a
simplex, which is the apex of the cone. Compare Exercise 1.5.)
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1.2. The Steinitz theorem

While Steinitz’ lemma from 1906 is a very simple result, his theorem from 1922,
characterizing the graphs of 3-polytopes, is substantial and deep. He knew that:
He called it the “Fundamentalsatz der konvexen Typen,” the fundamental theorem
of convex types. Here is an informal version of it.

Theorem 1.2 (Steinitz’ theorem [74, 75]). There is a bijection

{3-connected planar graphs} ←→ {combinatorial types of 3-polytopes}.

Figure 1.6. Graphs ←→ polytopes, according to Steinitz’ Theorem 1.2

The direction “←−” of Steinitz’ theorem is not hard to establish.
Indeed, we do get a graph for any 3-polytope, namely the abstract graph whose

nodes are the vertices of the polytope, and whose arcs are given by the edges of the
polytope. This graph is indeed planar: To see this, one may first produce a radial
projection of the polytope boundary (and thus of the vertices and edges) onto a
sphere that contains the polytope, and then apply a stereographic projection [41,
§36] to the plane. Or one may directly generate the “Schlegel diagram” and thus a
straight-edge drawing of the graph in the plane. (In Lecture 3 we will see more of
this tool, which shows its true power in the visualization of 4-polytopes.)

To see that the graph of any 3-polytope is 3-connected is also easy, using
Menger’s characterization of a d-connected graph as a graph that cannot be dis-
connected by removing or blocking less than d of its vertices. A powerful extension
of this result is Balinski’s theorem [6] [79, Thm. 3.14], that the graph of any d-
polytope is d-connected.

Thus the hard and interesting part of Steinitz’ theorem is the direction “−→.” It
poses a non-trivial construction problem: To produce a convex 3-polytope with a
prescribed graph (a geometric object) from an abstract planar graph (that is, from
purely combinatorial data).

The first (easy) step for this is to convince oneself that the graph characterizes
the complete combinatorial structure of the polytope. This follows from the simple
observation (due to Whitney) that the faces of the polytope correspond exactly to
the non-separating induced cycles in the graph.

Thus we have to construct convex 3-polytopes with prescribed combinatorics
(face lattice), as given by a 3-connected planar graph. The importance of this
step may be seen from the fact that three completely different types of proofs (and
construction methods!) have been designed for it: Let’s call them Steinitz type
proofs, Tutte–Maxwell type proofs, and Koebe–Thurston type proofs.
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Steinitz type proofs. Such proofs (of which Steinitz gave details on one in [74], and
three are given in the Steinitz–Rademacher book [75] that appeared after Steinitz’
death), are based on the following principle. Any planar 3-connected graph can be
“reduced” to the complete graph K4 by local operations, which yields a sequence

G = G0 → G1 → G2 → . . . → GN−1 → GN = K4.

of 3-connected planar graphs.
This reduction sequence should then be reversed: Starting with a simplex ∆3

(with graph K4) we build up a sequence of polytopes,

P = P0 ← P1 ← P2 ← . . . ← PN−1 ← PN = ∆3,

where Pi is a 3-polytope with graph Gi, again by simple/local construction steps.
Such a proof is presented in detail in [79, Lect. 4], so there is no need to do this

here. We just mention that a number of interesting extensions and corollaries may
be derived from Steinitz type proofs. Indeed, Barnette & Grünbaum [9] proved that
in the construction of the polytope P , the shape of one face of the polytope may
be prescribed. For example, some hexagon face may be required to be a regular
hexagon, which imposes a non-trivial additional constraint. Similarly, Barnette [7]
proved with a Steinitz type argument that a “shadow boundary” may be prescribed:
P may be constructed in such a way that from some view-point outside the polytope,
the edges that bound the visible part of the surface of the polytope correspond to a
prescribed simple cycle in the graph of the polytope (which need not be induced).
Equivalently, we may construct P ⊂ R3 so that the image π(P ) of P under the
orthogonal projection π : R3 → R2 is a polygon whose edges are given exactly by
the edges of P that realize the prescribed cycle. Indeed, the edges must be “strictly
preserved” by the projection, in the terminology that we will develop and use in
Lecture 5.

Tutte–Maxwell type proofs. The Tutte–Maxwell approach to realizing 3-polytopes
works in two stages: First one gets a “correct” drawing of the graph in the plane,
then this drawing is lifted to 3-space.

For the first stage, one may assume that the graph contains a triangle face (if
not, one dualizes; see Exercise 1.1). Then the vertices of this triangle are fixed in
the plane, the edges are interpreted as ideal rubber bands, and the other vertices
are placed according to the unique and easy-to-compute energy minimum, for which
the sum of all squared edge lengths is minimal. This produces a correct, planar
drawing of the graph without intersections — this is the (non-trivial) claim of
Tutte’s (1963) “rubber band method” [77]; moreover, any such drawing can be
lifted to three-space according to Maxwell–Cremona theory, which may be traced
back to work by Maxwell [49] nearly one hundred years earlier (1864). We refer to
Richter-Gebert [60, Sect. 13.1] for a modern treatment, with all the proofs.

The Tutte–Maxwell proofs also buy us non-trivial corollaries: Indeed, each
combinatorial type of 3-polytope can be realized with rational coordinates, and thus
even with integral vertex coordinates (by clearing denominators). One can derive
from a Tutte–Maxwell proof that singly-exponential vertex coordinates suffice for
this: After a number of improvements on the original estimates by Onn & Sturmfels
[52] we now know that each type of an n vertex 3-polytope with a triangle face can
be represented with vertex coordinates in {0, 1, 2, . . . , ⌊28.45n⌋} (see [72], [61] and
[59]). It is not clear whether polynomial-size vertex coordinates can be achieved.
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Figure 1.7. A Tutte drawing of the icosahedron graph, and the corresponding
Maxwell–Cremona lifting

Koebe–Thurston type proofs. Geometric realizations of 3-polytopes with all edges
tangent to the sphere may be derived from planar circle packings. Moreover, such
a representation is essentially unique.

This seems to be essentially due to Bill Thurston [76] — who traces it back
to Paul Koebe’s [46] work on complex functions, and to work by E. M. Andreev
[5] from the sixties on hyperbolic polyhedra. Thurston’s insight was followed up,
explained, extended and generalized by a number of authors. Pach & Agarwal [53,
Chap. 8] describe the “standard” proof, based on a (non-constructive) fixed point
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argument. However, Mohar [50] described an effective construction algorithm, and
Colin de Verdière [20] was the first to prove that the circle packings in question can
be derived from a variational principle (that is, an energy functional). In this line of
work, Bobenko & Springborn [17] have quite recently discovered an explicit, elegant
and quite general variational principle for the construction of circle patterns with
prescribed intersection angles. In the following, we prove the Steinitz theorem based
on their functional — taking advantage of all the simplifications that occur in their
proof and formulas if one wants to “just” get the orthogonal circle patterns needed
for the Steinitz theorem. (See also Springborn [68] for an additional discussion of
uniqueness.)

1.3. Steinitz’ theorem via circle packings

Theorem 1.3 (The Koebe–Andreev–Thurston theorem). Each 3-connected planar
graph can be realized by a 3-polytope which has all edges tangent to the unit sphere.

Moreover, this realization is unique up to Möbius transformations (projective
transformations that fix the sphere). The edge-tangent realization for which the
barycenter of the tangency points is the center of the sphere is unique up to ortho-
gonal transformations.

Figure 1.8. Edge-tangent representation of a polyhedron, according to the
Koebe–Andreev–Thurston theorem [Graphics by Boris Springborn, Matheon]
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In our presentation of the proof, we first explain how any edge-tangent repre-
sentation of a polytope P induces a circle pattern on the sphere, which in turn yields
a planar circle pattern, and the combinatorics of the planar circle pattern yields a
quad graph (a planar graph whose faces are quadrilaterals), which has G(P ) as a
subdivided subgraph. This yields steps (1) to (4) in the following scheme:

circle
packing

of
rectangle

3-connected

G

planar

graph

edge

polytope
P

spherical

packing
circle

connect
circle

centersprojection
stereographic

circles

construct
facet and

vertex horizon

spanned by
facet planes

BS(ρ)
faces

stereographic
inverse overlay

graph
and dualprojection

subgraph
take

(2) (3) (4)

(5)(6)(7)

(1)

(8)

tangent quad graph

Our plan is to then reverse this four-step process, in order to construct an edge-
tangent polytope from the given graph G. In step (5), the quad graph is derived
directly from the graph G = G(P ), by superposing the graph with its dual. Then,
in step (6), we construct the rectangular circle pattern with the combinatorics of
the quad graph, and then proceed to construct P from it.

The steps (5), (7), and (8) are quite straightforward: The key, non-trivial step
is (6), the construction of the (unique) rectangular circle pattern, which we achieve
via the “euclidean Bobenko–Springborn functional.”

Proof. We start with a detailed description of the four-step process from edge-
tangent polytopes to planar 3-connected graphs, via circle packings and quad
graphs.

(1). Assume that P ⊂ R3 is a 3-polytope whose edges are tangent to the unit
sphere S2 ⊂ R3. Then the facet planes of P intersect the unit sphere S2 in circles
that we call the facet circles : We get one circle for each facet, and the circles are
disjoint, but they touch exactly if the corresponding facets are adjacent. We also
get a second set of circles which we call the vertex horizon circles: Each such circle
is the boundary of the spherical cap consisting of all the points on the sphere that
are “visible” from the respective vertex. We get one vertex horizon circle for each
vertex, and the circles are disjoint, but they touch exactly if the corresponding
vertices are adjacent.

Moreover, at each edge tangency point, the two touching facet circles and
the two touching vertex horizon circles intersect orthogonally; see Figure 1.9 for
an example. (The vertex horizon circles of P are the facet circles of the dual
polytope P ∗, whose edges have the same tangency points as the edges of P ; the
facet circles for P are also the vertex horizon circles for P ∗; corresponding edges
e ⊂ P and e∗ ⊂ P ∗ intersect orthogonally at the respective tangency point.)
(2). We perform a stereographic projection to the plane, using one of the edge
tangency points p0 as the projection center, and mapping all the facet and vertex
horizon circles to the equator plane corresponding to the projection point. In the
resulting planar figure, the two facet circles through p0 yield two parallel lines (and
after a rotation we may assume that these are horizontal); the two vertex horizon
circles through p0 also yield two parallel lines, orthogonal to the first two (and thus
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vertical). So we get a planar pattern that consists of four lines bounding an axis-
parallel rectangle, and circles that touch resp. intersect orthogonally in the plane.
This is the rectangular circle pattern.

If the faces adjacent to the edge f through p0 are an h1-gon and an h2-gon,
then we get h1 − 2 resp. h2 − 2 circles along the horizontal edges of the rectangle.
Similarly, if the end vertices of f have degrees v1 and v2, then we get v1 − 2 resp.
v2−2 circles along the vertical edges of the rectangle. The example that one obtains
from the cube (Figure 1.9) is displayed in Figure 1.10.

p0

Figure 1.9. The facet circles and the vertex horizon circles (dashed) for an
edge-tangent representation of a regular cube.

(3). Any rectangular circle pattern yields a quad graph drawing as follows: The
vertex set consists of the centers of all the circles, with four additional vertices
“far out” representing the four lines that bound the rectangles (as in Figure 1.11).
We obtain drawings of both G and G∗ by connecting the centers of touching facet
circles resp. vertex horizon circles. This includes one horizontal edge f of G “going
through infinity,” while dual graph G∗ has the corresponding edge f∗ going through
infinity vertically.

From the rectangular circle pattern, we obtain a decomposition of a rectangle
into quadrilaterals by connecting the centers of adjacent facet circles, and the cen-
ters of adjacent vertex horizon circles. See the example of Figure 1.11, where the
rectangle is shaded. The graph of this rectangle decomposition is the quad graph:
Its vertices correspond to (the centers of) the facet circles that don’t contain p0,
the vertex horizon circles that don’t contain p0, and intersection points of edges e
and e∗ of G and G∗, other than the edges f, f∗ that contain p0.
(4). In particular, the graph G may be derived from the quad graph, by “deleting
the dashed edges.”
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Figure 1.10. The rectangular circle pattern derived from an edge-tangent
3-cube (with h1 = h2 = 4, v1 = v2 = 3)

f∗

f

Figure 1.11. The quad graph for the cube, generated from Figure 1.10: The
white vertices are given by the facet circle centers, while the black vertices
correspond to the vertex horizon circles; the dashed edges connect the centers
of adjacent facet circles, and the straight edges correspond to adjacent vertex
horizon circles.

This ends the description of the passage from an edge tangent polytope to the
planar graph drawing. Now we start the way back: Another four-step process leads
us from graphs via quad graphs and circle patterns to edge-tangent 3-polytopes.
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(5). The quad graph may be derived from knowledge of the graph G alone, plainly
by overlaying G and G∗. For our cube example, the result may look like the drawing
given in Figure 1.12.

f∗

f

Figure 1.12. The quad graph for the cube, generated from an overlay of the
cube graph (black edges) layed out with the edge f “at infinity” and the dual
graph (dashed edges), with the dual edge f∗ “at infinity.” The shaded part
defines the restricted quad graph.

The input for the next step will be the restricted quad graph: It is obtained
from the full quad graph by deleting everything that is adjacent to the original
edges f and f∗. Its bounded faces are quadrilaterals (quads for short), with two
black and two dashed edges each. Each quad has
• a black vertex and a white vertex

(the black vertex, where the two black edges meet, corresponds to the center of
a face circle; the white one, where the two dashed edges meet, corresponds to
the center of a horizon circle),

• and two more vertices where a black and a dashed edge meet
(they correspond to edge tangency points).

For the following, we use I0 as an indexing set for the black and white vertices in
the restricted quad graph. It is in bijection with the vertices of G and of G∗, except
for the vertices of the edges f and f∗, which yield lines rather than circles. That
is, we have

I0 := V (G− f) ∪ V (G∗ − f∗).

The following step, which takes us from combinatorics (a graph drawing) to geom-
etry (a circle pattern), is the crucial one.

(6). In the “correct” realization of the restricted quad graph, which would yield a
circle packing, each quad is drawn as a kite in which
• the two black edges have the same length

(radius ri of the corresponding vertex horizon circle),
• the two dashed edges have the same length

(radius rj of the corresponding facet circle),
• and there are two right angles between black and dashed edges

(where facet and vertex horizon circles intersect).



LECTURE 1. CONSTRUCTING 3-DIMENSIONAL POLYTOPES 15

ji ϕjiϕij

ri rj

Figure 1.13. A kite, with radii ri = eρi , rj = eρj , and angles ϕij and ϕji

The kites have to look like the one in Figure 1.13.
Hence, we have to solve the following construction problem:

Given a quad graph decomposition of a rectangle, derived from
the overlay of a 3-connected planar graph G and its dual G∗,
construct a geometric drawing, with straight edges, as a kite
decomposition of a rectangle.

The kites are completely determined if we know their edge lengths: If the edge
lengths in a kite are ri, rj > 0, then the angles are given by

ϕij = arctan
(rj

ri

)

and ϕij = arctan
( ri

rj

)

,

with ϕij +ϕji = π
2 (see Figure 1.13). Thus all we have to do is to determine radii ri

corresponding to the black and white vertices of the quad graph, such that the
following system of equations is satisfied:

(1.1)
∑

j : i j

2 arctan
(rj

ri

)

= Φi for all vertices i ∈ I0,

where the right-hand-sides are given by

Φi :=

{

π if i is on the boundary,

2π if i is in the interior.

In the equation whose right hand side is Φi, the sum on the left hand side is taken
over all vertices j ∈ I0 that are opposite to i in one of the kites. (If i is a white
vertex, then j will be black, and vice versa.)

Indeed, if (1.1) is satisfied, then we can easily construct the kites and piece
them together to get a flat rectangle and the circle packing. Badly enough, (1.1) is
a non-linear system of equations, which we have to solve in positive variables ri > 0.
We want to know that this has a solution, which is unique up to multiplying all the
ris with the same factor, and which can be computed efficiently. Luckily, we can do
this, since the system is solved by minimizing an explicit and easy-to-write-down
“energy” functional which will turn out to be convex, with a unique minimum. For
this, we first do a change of variables,

ρi := log ri.

Then we normalize by the condition
∏

i ri = 1, that is,
∑

i

ρi = 0.
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Furthermore, we define

f(x) := arctan(ex).

This auxiliary function is graphed in Figure 1.14. Note that f(−x) = π
2 − f(x).

0.5

1.0

1.5

2 4−2−4

arctan(ex)

x

Figure 1.14. f(x) = arctan ex

We differentiate f ,

f ′(x) =
1

1 + e2x
ex =

1

2 coshx
,

which yields f ′(−x) = f ′(x) > 0 for all x ∈ R. We also integrate f , and define

F (x) :=

∫ x

−∞
f(t)dt.

This function satisfies F (x) ≥ 0 for all x, but also F (x) ≥ π
2 x. Thus we get that

(1.2) F (x) + F (−x) ≥ π
2 |x|.

The system (1.1) we have to solve may be rewritten in terms of f(x) as

(1.3)
∑

i : i j

2f(ρj − ρi) = Φi for all black or white vertices, i ∈ I0.

To solve this, Bobenko & Springborn [17] present the functional

(1.4) BS(ρ) :=
∑

i j

{

F (ρj−ρi) + F (ρi−ρj)−
π
2 (ρi + ρj)

}

+
∑

i ∈ I0

Φiρi,

where the first sum is over all unordered pairs {i, j} of vertices i, j ∈ I0 that are
opposite in one of the kites. The claim is now that
(A) the critical points of BS(ρ) are exactly the solutions to our system (1.3),
(B) the functional is convex: Restricted to

∑

i ρi = 0 it is strictly positive definite,
so the critical point is unique if it exists, and

(C) the functional gets large if any of the differences ρi − ρj gets large: Thus
the functional must have a critical point (a minimum) — the solution we are
looking for.

For (A), a simple computation yields the gradient of BS(ρ):

∂BS(ρ)

∂ρi
= Φi −

∑

i j

2f(ρj − ρi).
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Thus the critical points of BS(ρ) are exactly the solutions to (1.3).
For (B), we compute the Hessian (the matrix of second derivatives) for BS(ρ),

and find that

xT BS(ρ)′′x = 2
∑

i j

f ′(ρj − ρi) (xj − xi)
2.

We know that f ′(ρj − ρi) > 0, so this quadratic form can vanish only if all the
differences xj − xi vanish for “adjacent” i, j ∈ I0 (that is, for black/white vertices
that share a kite). But the graph we consider is connected, so this implies that all
variables xi are equal. Restricted to

∑

i xi = 0 this yields that all xi vanish, so the
Hessian is positive definite on the restriction hyperplane, and the solution we are
striving for is unique if it exists.

To prove the existence claim (C), we have to find that BS(ρ) grows large if any
difference of variables ρk − ρi gets large. With the same argument we just used
this implies that some difference of “adjacent” variables will become large. Then
also F (ρj−ρi) + F (ρi−ρj) ≥

π
2 |ρj − ρi| gets large, but it will grow only linearly in

|ρj−ρi|, and it is not obvious that the growing positive terms in (1.4) will “outrun”
the negative terms. This will require a careful “matching” between positive and
negative terms.

To achieve this, we use the existence of a coherent angle system, that is, an
assignment of angles ϕij , ϕji > 0 to the kites that satisfies the conditions

(1.5) ϕij + ϕji = π
2 and

∑

j : i j

2ϕij = Φi.

Any solution to (1.1) would give us a coherent angle system, but the existence of
such a coherent angle system is much weaker, far from solving the system (1.1): If
we have a coherent angle system, then we could construct kites from this — whose
angles would fit together at the black and white vertices, but whose side lengths
might not. (Compare Figure 1.15.)

For any coherent angle system, ε0 := min
k,ℓ

ϕkℓ is a positive number.

If there is a coherent angle system, then the minimum exists. Let’s assume for now
that a coherent angle system exists (this will be proved below). Then

BS(ρ) =
∑

i j

{

F (ρj−ρi) + F (ρi−ρj)−
π
2 (ρi + ρj)

}

+
∑

i

Φiρi

(i)
>

∑

i j

{

π
2

∣

∣ρi − ρj

∣

∣− π
2 (ρi + ρj)

}

+
∑

i

Φiρi

(ii)
=

∑

i j

{

π
2

∣

∣ρi − ρj

∣

∣− π
2 (ρi + ρj)

}

+
∑

i j

2(ϕijρi + ϕjiρj)

(iii)
=

∑

i j

−π min{ρi, ρj} +
∑

i j

2(ϕijρi + ϕjiρj)

(iv)

≥
∑

i j

−π min{ρi, ρj} +
∑

i j

π min{ρi, ρj}+ 2 min{ϕji, ϕij}|ρi − ρj|

=
∑

i j

2 min{ϕji, ϕij}|ρi − ρj | ≥ 2ε0

∑

i j

|ρi − ρj |.
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Figure 1.15. The assignment in this figure is a coherent angle system – but
not one that corresponds to a correct circle pattern.
(Note that the construction of the coherent angle system proceeds from the
plane graph without use of a straight edge drawing. In the figures further
down we draw the graphs with straight edges for simplicity, but this structure
is not used in the proof. Rather, it is produced by the proof.)

Here
• the estimate for (i) uses F (x) + F (−x) ≥ π

2 |x|, which is (1.2).
• (ii) is obtained by substituting (1.5). We need the second term in the second

sum in (ii) since the sums over “i j” are sums over unordered pairs; there is
no extra summand for “j i.”
• (iii) follows from |x− y| − (x + y) = −2 min{x, y},
• For (iv), in the case ρj ≥ ρi we compute

2(ϕijρi + ϕjiρj) = πρi − 2ϕjiρi + 2ϕjiρj

= π min{ρi, ρj}+ 2ϕji|ρi − ρj|

≥ π min{ρi, ρj}+ 2 min{ϕji, ϕij}|ρi − ρj |,

and analogously for ρi ≥ ρj.
We are dealing with a connected quad graph. Thus if the norm of the vector ρ
gets large, while the sum of the ρi is zero, then also for two i, j ∈ I0 in the same
quadrilateral the difference |ρi − ρj | gets large. Thus by the computation above,
BS(ρ) > 2ε0|ρi − ρj | gets large. This is sufficient to prove that the strictly convex
function BS(ρ) does have a (unique) minimum — the solution to our problem.

A coherent angle system exists. Finally, we have to verify the existence of a coherent
angle system. We will see here that via some simple network flow theory, this follows
from an expansion property in the “diagonal graph” D(G ∪ G∗). After that, we
will prove the expansion property.

Let G be a 3-connected planar graph, G∗ its dual, both of them again drawn
into the plane with dual edges f, f∗ intersecting “at infinity.” Then the diagonal
graph D = D(G ∪G∗) has the same vertex set as G ∪G∗. Its edges correspond to
the diagonals in the quad graph given by G ∪G∗.

Equivalently, the diagonal graph D has black vertices corresponding to the
vertices of G, and white vertices corresponding to the faces of G. The edges of D
correspond to the vertex–face incidences of G. See Figure 1.16 for an example.

The reduced diagonal graph D′ = (V ′, E′) is obtained from the diagonal graph
D = (V, E) by removing the two vertices of f , the two vertices of f∗, and the four
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edges that connect them, but none of the others. So indeed, D′ does have pending
edges (half-edges) which have lost one of their end-vertices.* See Figure 1.17 for an
example.

Figure 1.16. The diagonal graph D = D(G ∪ G∗), given by the fat edges,
where G is the graph of the cube

Figure 1.17. The fat edges in this figure display the reduced diagonal graph
D′ = D′(G ∪ G∗) in the case where G is the graph of the cube, derived from
Figure 1.16. Note that the fat edges leaving the rectangle are included in D′,
their vertices at the other end are not. So in this example D′ has 10 vertices
and 20 edges, including 6 half-edges with only one end-vertex.

*I am sure you won’t be troubled too much by the fact that this is not a graph in the usual
technical sense, since it does have half-edges with only one end-point.
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The diagonal graph D = D(V, E) is a quad graph: All its faces, including the
“unbounded” face (if we draw it in the plane) are quadrilaterals. From this, we get
by double counting that |F | = 2|E| and thus |V | = 2|E| − 4 by Euler’s relation.
The reduced quad graph D′ = (V ′, E′) has |V ′| = |V |−4 vertices and |E′| = |E|−4
edges. Hence we get |E′| = 2|V ′|: The reduced quad graph has exactly double as
many edges as vertices.

The concept of a coherent angle system has a very nice interpretation in terms
of the restricted diagonal graph: Each vertex vi gets a weight of 2π, and this has
to be distributed to the edges e incident to vi such that
• each edge e incident to vi gets a positive part of the weight 2π of v,
• all of the weight 2π of vi is distributed to its incident edges, and
• the weights assigned to each edge sum to π.
Indeed, in such an assignment any half-edge clearly gets a weight of π from its
only end-vertex, which corresponds to a boundary vertex of the restricted quad
graph; thus the boundary vertex vi distributes a weight of exactly Φi = π to its
other incident edges, that is, to the (diagonals of the) kites it is incident to. The
vertices of D′ without an incident half-edge correspond to interior vertices vj of the
restricted quad graph, so they have a weight/angle of Φj = 2π to distribute to the
incident edges/kites.

The “weight distribution problem” for the reduced diagonal graph D′ = (V ′, E′)
may also be interpreted as a flow problem (cf. [1]): We have to find a maximal flow,
of weight 2π|V ′| = π|E′|, in a two-layer network as depicted in Figure 1.18. It con-
sists of a source node s, then a layer of nodes formed by the vertex set V ′ of D′,
then a layer of nodes in bijection to the the edge set E′, and then the sink node t.
There are three groups of arcs: The arcs (s, v′) emanating from the source all have
an upper bound of 2π; the arcs of type (v′, e′), where the edge e′ is incident to v′,
get an upper bound of ∞, while the arcs at the sink, (e′, t), have an upper bound
of π.

We need a positive flow in this network; to get this, we put a small lower bound
of ε > 0 on each edge of type (v′, e′), and 0 on all other edges. There is a feasible
flow in this network with upper and lower bounds on each edge: For this, let the
flow value be ε on each (v′, e′)-arc, and a suitable multiple of ε on the other arcs.

We need a positive flow of value 2π|V ′| = π|E′| in this network. There is a
feasible flow, and no flow with a larger value than 2π|V ′| can exist due to the cuts
that separate s or t from the rest of the network. Thus we can apply the following
generalization of the Max-Flow Min-Cut Theorem on network flows. (You should
prove this yourself: See Exercise 1.9.)

Theorem 1.4 (Generalized Max-Flow Min-Cut Theorem; cf. [1, Sect. 6.7]).
If an (s, t)-network with lower and upper bounds has a feasible flow, then the value
of a maximal (s, t)-flow is the capacity of a minimal (s, t)-cut.

The capacity of an (s, t)-cut in a network with upper and lower bounds is the
sum on the upper bounds of the forward arcs, minus the sum of the lower bounds
on the backward arcs across the cut. So in our example the cuts [{s}, V ′∪E′ ∪{t}]
and [{s} ∪ V ′ ∪ E′, {t}] have capacity 2π|V ′| = π|E′|. Could there be a cut of
smaller capacity? Any (s, t)-cut is of the form

[{s} ∪ V ′
1 ∪ E′

1, V ′
2 ∪ E′

2 ∪ {t}]
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E′V ′

s t

[0, 2π] [ε,∞] [0, π]

Figure 1.18. Construction of a coherent angle system from a network flow
problem with lower and upper bounds, which are indicated by intervals

like [0, π].

s t

V ′
1

E′
1

E′
2

V ′
2

[0, 2π] [ε,∞] [0, π]

Figure 1.19. The dashed line indicates the cut [{s}∪V ′
1 ∪E′

1, V ′
2 ∪E′

2 ∪{t}]
in our network

for partitions V ′ = V ′
1 ⊎ V ′

2 and E′ = E′
1 ⊎ E′

2. Such a cut has finite capacity if
there are no arcs (v′, e′) from V ′

1 to E′
2; compare Figure 1.19. That is, we should

take E′
1 to include all the edges that are incident to a vertex in V ′

1 .
The capacity of the cut [{s} ∪ V ′

1 ∪E′
1, V ′

2 ∪ E′
2 ∪ {t}] is

2π|V ′
2 |+ π|E′

1| − ε|A(V ′
2 , E′

1)| = 2π|V ′| − 2π|V ′
1 |+ π|E′

1| − ε|A(V ′
2 , E′

1)|,

where |A(V ′
2 , E′

1)| denotes the number of arcs from V ′
2 to E′

1. For small enough ε,
say ε = 1/|A(V ′, E′)|, we have ε|A(V ′

2 , E′
1)| < 1. Thus the following “expansion

property” for the diagonal graph implies that all cuts [{s}∪V ′
1 ∪E′

1, V ′
2 ∪E′

2 ∪{t}]
have capacity larger than 2π|V ′|, except in the two trivial cases given as examples
above, where the capacity is exactly 2π|V ′|. Thus the maximal flow, of value 2π|V ′|,
exists; it is positive, and yields the coherent angle system.
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Expansion in the diagonal graph. It remains to verify the following: Let V ′
1 ⊆ V ′ be

a set of vertices in the reduced diagonal graph D′(G ∪G∗) = (V ′, E′), and assume
that E′

1 ⊆ E′ includes all edges of D′ that are incident to a vertex in V ′
1 . Then

(1.6) |E′
1| ≥ 2|V ′

1 |,

with equality only in the trivial cases V ′
1 = ∅ and V ′

1 = V ′.
For this we may assume that the subgraph induced by V ′

1 is connected, because
we can consider its components separately. We may also assume that |V1| ≥ 2, so
V ′

1 contains both a black and a white vertex.
Now let U be an open subset of the plane (or of S2) whose boundary curves

separate V ′
1 from the h + 1 components of the graph D \ V ′

1 , as illustrated in
Figure 1.20. Topologically, U is an open disk with h ≥ 0 holes.

The diagonal graph yields a cell decomposition of U , consisting of f0 = |V ′
1 |

vertices, f int
1 interior edges, fbdy

1 other (half-)edges, q quadrilateral faces, and b1 +
b2 + b3 boundary faces, where bi counts the faces with i vertices in I ′. In particular

the total number of edges is f1 = f int
1 + fbdy

1 = |E′
1|,

Figure 1.20. An example of five vertices in the reduced diagonal graph of
Figure 1.17. The neighborhood U is shaded.

f0 = |V ′
1 | = 5, f1 = |E′

1| = 14, f int
1 = 4, f

bdy
1 = 10, h = 0, q = 0, b1 = 4,

b2 = 4, b3 = 2.

Double counting the edge-face incidences yields

(1.7) 2f int
1 = 4q + b2 + 2b3 and 2fbdy

1 = 2b1 + 2b2 + 2b3.

The Euler characteristic of U is

(1.8) 1− h = f0 − f1 + q + b1 + b2 + b3 = f0 − f int
1 + q.

With this we get

|E′
1| − 2|V ′

1 | = f1 − 2f0
(1.8)
= (f int

1 + fbdy
1 ) − 2(f int

1 − q + 1− h)

= fbdy
1 − f int

1 + 2q + 2h− 2

(1.7)
= (b1 + b2 + b3)− (2q + 1

2b2 + b3) + 2q + 2h− 2

= 1
2 (2b1 + b2 − 4) + 2h.

To conclude that |E′
1| − 2|V ′

1 | ≥ 0, with equality only if V ′
1 = V ′, we use h ≥ 0, and

need to verify that 2b1+b2 ≥ 4 holds, with equality only in the trivial case V ′
1 = V ′.
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For this we count the vertices v of D\V ′
1 which are adjacent to V ′

1 , that is, such
that some quad in the full quad-graph D contains both v and a vertex from V ′

1 .
Walking along the boundary curves of U , and exploring the quads that we traverse
that way, we see that there are not more than 2b1 + b2 such vertices v: We find
at most two new vertices in any quad that contains a boundary cell with 1 vertex
in V ′

1 , and at most one new vertex in the quad of a boundary cell with 2 vertices
in V ′

1 . The vertices found during the walk need not be all distinct, and some may
not even lie outside V ′

1 (compare Figure 1.21). Thus we get only an inequality,

2b1 + b2 ≥ #{vertices of D \ V ′
1 adjacent to V ′

1}.

In the boundary of each “hole” of U we will discover at least one vertex of D′ \V ′
1 .

In the outer face during our walk we even discover a cycle of D (see Figure 1.21).
Since D is bipartite, this cycle has even length. In the trivial case of V ′

1 = V ′ this
is exactly the 4-cycle C′ given by D \D′. If V ′

1 6= V ′, then the vertices we discover
either yield the cycle C′ plus additional vertices, or we find a different cycle. But
any cycle other than C′ must have at least 6 vertices: Indeed, it is an even cycle,
on which black and white vertices alternate. The black vertices on the cycle either
include both the vertices of f , or with respect to the original graph G they separate
a black vertex in V ′

1 from a vertex of f ; from the 3-connectivity of G we thus get
that the cycle contains at least three black vertices, that is, at least 6 vertices in
total. The same holds for the white vertices, the dual graph G∗, which is also
3-connected, and the vertices of f∗. Thus

#{vertices of D in the boundary of U} ≥ 4,

with equality only if V ′
1 = V ′. This completes the proof for the expansion property,

and thus for the existence of a coherent angle system, and of the circle packing.

f

Figure 1.21. The cycle in the outer face to be discovered during the walk
along the boundary curve of U is drawn with fat edges; it is a 6-cycle. With
respect to G, which is drawn in thin black lines, the three vertices of the 6-cycle
separate a vertex of f from the two black vertices in V ′

1 .
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(7), (8). Given a correct rectangular circle pattern, it is easy to reconstruct the
spherical circle pattern (via an inverse stereographic projection). From this, we
obtain the edge-tangent polytope: Its face planes are given by the facet circles (and
its vertices are given by the cone points for which the vertex horizon circles do
indeed appear on the horizon). Thus construction steps (7) and (8) are easy — the
hard part was (6). �

Is this the perfect proof? I think it is really nice, but still one could dream of
a proof that avoids the stereographic projection, and produces the circle packing
directly from some functional on the sphere . . . .

Exercises

1.1. Show that each 3-polytope has a triangle face, or a simple vertex (a vertex
of degree 3), or both. Even stronger, show that the number of triangle faces
plus the number of simple vertices is at least eight, so there are at least four
triangle faces, or at least four simple vertices.
Hint: Use the Euler equation.

1.2. Prove that each 3-polytope has two faces with the same number of vertices.
Hint: Do not use the Euler equation.

1.3. Prove the Steinitz Lemma 1.1:
– Prove the “upper bound theorem” for dimension 3, that is, that f2 ≤ 2f0−4

(you may use Euler’s equation), and derive f0 ≤ 2f2 − 4 by duality.
– Compute the f -vectors of the pyramids over n-gons.
– How does (f0, f2) change if you stack a pyramid onto a triangle 2-face, or if

you truncate a simple vertex?
1.4. If a 3-dimensional polytope has f1 = 23 edges, how many vertices/faces can it

have? Construct an example for each possible pair (f0, f2).
1.5. Alternative homogeneous coordinates for the cone of f -vectors are given by the

“imbalance” σ := f2−f0

f1−6 , where the self-dual term f1− 6 measures the “size.”

Show that − 1
3 ≤ σ ≤ + 1

3 , where σ = ± 1
3 characterizes simple resp. simplicial

polytopes.
1.6. Characterize the possible (f0, f2)-pairs for cubical 3-polytopes, that is, for

all polytopes with quadrilateral 2-faces only. Where are the (f0, f2)-pairs of
cubical 3-polytopes in Figure 1.5?

How about 3-polytopes with pentagon faces only? Hexagon faces only?
1.7. Construct quad graphs and the planar circle patterns for

(a) a square pyramid,
(b) a cube/octahedron,
(c) a cube with vertex cut off,
(d) a dodecahedron.
Which of the circle patterns do you get with rational coordinates?

1.8. Show that every 3-dimensional cyclic polytope C3(n) is a stacked polytope.
(However, Cd(n) is not stacked, for d ≥ 4 and n ≥ d + 2.)

1.9. Describe a computational procedure to construct a coherent angle system: For
this use a scheme to augment flows along undirected paths in the network with
lower and upper bounds (increasing the value along forward arcs, decreasing
the values on backward arcs). Your procedure should also imply a proof for
the Generalized Max-Flow Min-Cut Theorem [1, Thm. 6.10, p. 193].
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Shapes of f -Vectors

Let’s look at the f -vectors of d-dimensional convex polytopes P , where the
dimension d is really large. Any such f -vector

f(P ) = (f0, f1, f2, . . . . . . . . . , fd−3, fd−2, fd−1)

= (#vertices,#edges, #2-faces, . . . , #subridges,#ridges,#facets)

is a long sequence of large numbers, which we may graph just like a continuous
function, and ask for its “shape.” Indeed, we might look at a shape function
ϕ : [0, 1] → R that is defined by ϕ(x) := fx(d−1); this is defined for any x = k

d−1

that is a multiple of 1
d−1 , and these values are rather dense if d is large. We might

interpolate if we want. But what types of f -vector shape functions ϕ do we get
that way?

Figure 2.1 shows two “naive” views, of the shape of an f -vector, and — equiv-
alently — of the shape of a typical face lattice (displayed as a Hasse diagram, so
the sizes of rank levels are the fi-values).

0
−1

d−1
d

d
d−1

−1
0

Figure 2.1. A rough, “naive” picture of the shape of the face lattice, and the
f -vector, for a high-dimensional polytope

A very simple observation is that each vertex of a d-polytope has degree at least
d, so double counting yields f1 ≥

d
2f0 > f0; dually, we have fd−2 ≥

d
2fd−1 > fd−1.

So in the first step, the f -sequence increases, in the last step it decreases. Does
this mean that the f -vector “first goes up, then comes down,” that it is unimodal,
with no “dip” in the middle?

25
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2.1. Unimodality conjectures

Unimodality conjectures and theorems abound in combinatorics [71] [19]: for bino-
mial coefficients, Stirling numbers and their generalizations, matroids and geometric
lattices, etc. . . . The basic unimodality conjecture for convex polytopes was posed at
least twice, by Theodore Motzkin in the late fifties, and by Dominic Welsh in 1972
(see [13]). Apparently it was disproved dramatically by Ludwig Danzer, already
in the early sixties (presented in a lecture in Graz in 1964, according to Jürgen
Eckhoff), but this is “lost mathematics,” no published account exits.

Conjecture 2.1. The f -vectors of convex polytopes are unimodal, that is, for each
d-polytope P there is an ℓ = ℓ(P ) such that

f0 ≤ f1 ≤ · · · ≤ fℓ ≥ · · · ≥ fd−2 ≥ fd−1.

The main point of this lecture will be to see that this is dead wrong, even
for simplicial polytopes. Moreover, we want to see this “asymptotically,” without
substantial amounts of computation, without having to list explicit f -vectors.

This asymptotic view is also motivated by the fact that the conjecture fails
only in high dimensions. For example, for simplicial polytopes, it is true up to
d = 19, and fails beyond this dimension. For general polytopes, we will see a
counterexample for d = 8, but none are known for a smaller dimension. The
conjecture holds in full for d ≤ 4 (Exercise 2.2), and also for d = 5, according to
Werner [78].

Since the conjecture is so badly wrong, it might pay off to explicitly state what
remains from it:

Conjecture 2.2 (Björner [13] [15]). The f -vectors of convex polytopes increase
on the first quarter, and they decrease on the last quarter:

f0 < f1 < · · · < f⌈ d−1
4 ⌉, f⌊ 3(d−1)

4 ⌋ > · · · > fd−2 > fd−1.

This is trivially true for d ≤ 5. It also is true for simplicial d-polytopes (the f -
vectors of simplicial polytopes indeed increase up to the middle, and they decrease
in the last quarter), but the available proof for this depends on the necessity part
of the g-theorem, so it is quite non-trivial; see [15].

To demonstrate our ignorance on such basic f -vector shape matters, here is a
suspiciously innocuous conjecture. Apparently no one has an idea for a proof, up
to now.

Conjecture 2.3 (Bárány). For any d-polytope, fk ≥ min{f0, fd−1}.

Bárány’s conjecture holds for d ≤ 6 [78]. However, not even

fk ≥ 1
10000 min{f0, fd−1}

is proven for large dimensions d ! We know so little . . .

2.2. Basic examples

Let’s compute the f -vector shapes for the most basic high-dimensional polytopes
that we can come up with. For rough estimates, we use a very crude version of
Stirling’s formula,

n! ∼
(n

e

)n

.
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Example 2.4 (The simplex). For the (d− 1)-simplex ∆d−1 we have

fk−1(∆d−1) =

(

d

k

)

.

With logarithms taken with base 2, x := k
d , and ϕ(x) = fxd−1, we get

log ϕ(x) = log

(

d

xd

)

∼ −x log x− (1− x) log(1− x).

A little bit of analysis shows from this that the f -vector is symmetric, with a sharp
peak in the middle (at x = 1

2 ), of width ∼ 1√
d
. Figure 2.2 displays a realistic

example.
Of course, this is a well-known property of binomial coefficients, and the strong

limit theorems of probability theory depend on it. (In this context ϕ(x) is known
as the “entropy function.”)

Example 2.5 (Cross polytopes). For the d-dimensional cross polytope C∗
d =

conv{±e1, . . . ,±ed} we have

fk(C∗
d ) =

(

d

k + 1

)

2k+1.

Again, approximating crudely and taking logarithms base 2, we get

log ϕ(x) ∼ −x log x− (1− x) log(1− x) + x.

The derivative

d

dx
ϕ(x) ∼ − log x−

1

ln 2
+ log(1− x) +

1

ln 2
+ 1

vanishes at x = 2
3 : That’s where log ϕ(x) has its maximum, and where ϕ(x) has a

sharp peak (compare Figure 2.2).
Thus the f -vector of a d-dimensional cross polytope, for large d, has a sharp

peak at k = 2
3d. By duality, this means that the f -vector of the d-cube peaks at

k = 1
3d, for large d.

Example 2.6 (Cyclic polytopes). Let’s look at cyclic polytopes Cd(n) with many
vertices, n≫ d. For simplicity, we assume that the dimension d is even.

A curve in Rd has degree d if no d + 1 points on the curve lie on a hyperplane.
The convex hull of any n > d points on such a curve is a cyclic polytope Cd(n).
Gale’s evenness criterion [30] gives a combinatorial description for the facets, which
is easy to visualize (see Figure 2.3): Any d points on a degree d curve span a
hyperplane H . If the d points are supposed to span a facet of the polytope, then
all the other n−d points must lie on the same side of H . Since the curve crosses H
only in these d points, this means that the d points split into d

2 adjacent pairs. So,
if we number the points 1, 2, . . . , n along the curve, then the facets of their convex
hull (the cyclic polytope) are given by d

2 pairs i, i + 1 mod n. The (k − 1)-faces

are given by the k-subsets of such a d-set: For k ≤ d
2 any such subset will do (the

cyclic polytopes are neighborly), while for k > d
2 the faces consist of k − d

2 pairs,

and d−k singletons. Thus the (k−1)-faces may be obtained by choosing d
2 vertices
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Figure 2.2. The f -vector shapes of the 28-dimensional simplex ∆28, the cross
polytope C∗

28, and a cyclic polytope with 80 vertices C28(80)

ij arbitrarily, and also taking ij + 1 for k− d
2 of these (see Figure 2.4). Thus, with

a bit of an over-count, we get

fk−1(Cd(n))

{

=
(

n
k

)

for k ≤ d
2 ,

∼
(

n
d
2

)( d
2

k− d
2

)

for k > d
2 .
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Figure 2.3. Sketch for Gale’s evenness criterion.

Figure 2.4. An estimate for the number of facets of Cd(n), for n≫ d, with d

even: There are
( n
d/2

)

choices for the black points; with high probability, they

are non-adjacent; the d
2

pairs can be completed by taking the gray points.

Clearly this peaks at x = 3
4 : We get the larger entries in the case k > d

2 ,

and then the maximum is achieved when
( d/2
k−d/2

)

is maximal, that is, for k = 3
4d.

Figure 2.2 gives a realistic impression of the f -vector shape of a cyclic polytope.

An explicit, exact formula for fk−1(Cd(n)) is available (Exercise 2.3), but this
doesn’t answer all the questions. In particular, is it really true that the f -vector
is unimodal? As far as I know, the Unimodality Conjecture 2.1 has not been
established in full for the cyclic polytopes. It does hold for small n > d, and
certainly also if n ≫ d is sufficiently large compared to d (with the f -vector peak

at k = ⌊ 3(d−1)
4 ⌋), but in an intermediate range for n a challenge remains . . .

2.3. Global constructions

We have seen classes of simplicial d-polytopes whose normalized f -vector functions
ϕ(x) = fx(d−1) peak at x = 1

2 , at x = 2
3 , or at x = 3

4 . By dualization we get

simple polytopes with peaks at x = 1
3 , and at x = 1

4 . The “global constructions”
of products and joins now yield examples with peaks in the whole range between
x = 1

4 and x = 3
4 . (The product construction is elementary, well-known, and

well-understood, but a review perhaps can’t harm, also in view of our needs for
Lecture 5. Joins are similarly elementary and well-understood, but perhaps not
that well-known.)
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Example 2.7 (Products). Let P and Q be polytopes of dimensions d and e. Then
the product

P ×Q := {(x, y) : x ∈ P, y ∈ Q}

is a polytope of dimension dim(P ×Q) = dimP + dimQ = d + e.
The nonempty faces of P ×Q are the products of nonempty faces of P and non-

empty faces of Q: In particular, the vertices of P ×Q are of the form “vertex times
vertex,” the edges are of the form “edge times vertex” or “vertex times edge,” and
the facets are “P times facet of Q” or “facet of P times Q.” With the convention
fd(P ) = fe(Q) = 1 this yields the formula

(2.1) fm(P ×Q) =
∑

k+ℓ=m
k,ℓ≥0

fk(P ) fℓ(Q)

for m ≥ 0.

The product construction is dual to the “free sum” construction, P ⊕ Q: For
this let x0 ∈ P ⊂ Rd and y0 ∈ Q ⊂ Re be interior points, and take the convex hull

P ⊕Q := conv
(

P × {y0} ∪ {x0} ×Q
)

.

The proper faces of P ⊕ Q (that is, faces other than the polytope itself) arise as
joins of proper faces of P and of Q.

The product and the free sum construction are illustrated in Figure 2.5.

P

Q P

Q

Figure 2.5. Product and free sum, for P = I2 and Q = I

Since joins come up as faces of free sums, let’s briefly talk about joins.

Example 2.8 (Joins). Let again P and Q be polytopes of dimensions d and e.
Then the join P ∗Q is obtained by positioning P and Q into skew affine subspaces,
and taking the convex hull. Thus the join is a polytope of dimension dim(P ∗Q) =
dimP + dimQ + 1 = d + e + 1.

The faces of P ∗Q are the joins of faces of P and faces of Q: This refers to all
faces, including the empty face and the polytope itself. The corresponding formula,
with f−1(P ) = f−1(Q) = 1, is

(2.2) fm(P ∗Q) =
∑

k+ℓ=m−1
k,ℓ≥−1

fk(P ) fℓ(Q),

valid for all m, that is, for −1 ≤ m ≤ d + e + 1.
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P

Q

P

Q

Figure 2.6. Joins I ∗ I and I2 ∗ I, of an edge with an edge, resp. of a square
with an edge

Joins are illustrated in Figure 2.6. The dual construction to taking joins is the
join construction again.

Product and join are two distinct constructions, and they do yield different
polytopes, of different dimensions (by 1). However, in a birds’ eye view, asymptot-
ically, they do behave quite similarly, and indeed, their effects on f -vector shapes
are almost the same. Namely, the formulas (2.2) and (2.1) describe finite convolu-
tions, and the only difference is whether the entry f−1 = 1 is counted. For large
dimensions, and large f -vectors, this does not make much of a difference, and in
both cases we get a convolution of f -vector shapes. Thus, in particular, if the f -
vectors of P and of Q have sharp peaks, then the product or join will have a peak
as well:

(peak at x) ∗ (peak at y) −→ (peak at d
d+ex + e

d+ey).

In particular, for d = e this yields

(peak at x) ∗ (peak at y) −→ (peak at x+y
2 ).

To see this, just compute that if the peak (or, just the largest f -vector entry) for
P1 is at x = k

d and for P2 at y = ℓ
e , then the peak for P1 ∗ P2 will be at

k+ℓ
d+e = k

d
d

d+e + ℓ
e

e
d+e = x d

d+e + y e
d+e .

This also yields a convolution formula for the f -vector shape of P1 ×P2 or P1 ∗P2,
for large dimensions:

ϕ(x) =

∫ 1

0

ϕ1

(

t d
d+e

)

ϕ2

(

(1− t) e
d+e

)

dt

Thus, by just taking products of sums of suitable cyclic polytopes and their duals,
we do get polytopes with f -vector peaks in the whole range between 1

4 and 3
4 .

2.4. Local constructions

Perhaps the simplest local operation that can be applied to a polytope is to “stack
a pyramid onto a simplicial facet.” To perform such a stacking operation geomet-
rically, the new vertex of course has to be chosen carefully (beyond the simplicial
facet, and beneath all other facets, in Grünbaum’s terminology [39, Sect. 5.2]), but
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the combinatorial description is easy enough. In particular, we get the following
f -vector equation:

fk(stackP ) = fk(P ) + fk(∆d)− fk(∆d−1).

This is valid for k < d−1, the rest is “boundary effects” that we may safely ignore.
Furthermore, the usual binomial recursion yields fk(∆d)−fk(∆d−1) = fk−1(∆d−1),
and we get

fk(stackP ) = fk(P ) + fk−1(∆d−1).

So, the effect of stacking on the f -vector is to add a bump at x = 1
2 . The effect

may be negligible if the f -vector of P is large, and has large slopes. However,
any stacking operation destroys a simplicial facet and creates d new ones, so it
can be repeated. We write stackN P for a polytope that is obtained from P by N
subsequent stacking operations. Thus we get

fk(stackN P ) = fk(P ) + N fk−1(∆d−1),

where we may choose N ≥ 0 freely. Thus we are adding a function with peak at 1
2

to a function whose peak may be, for example, at 2
3 .

Corollary 2.9 (Danzer 1964). For large enough d and suitable N , the Unimodality

Conjecture 2.1 fails for “N -fold stacked crosspolytopes” stackN C∗
d .

Indeed, Danzer apparently also derived that the f -vector of a simplicial d-
polytope may have not only one dip (between two peaks), but arbitrarily many
dips and peaks!

Also, dualization yields that a suitable number of vertex truncations applied to
a high-dimensional cube leads to a simple polytope with a non-unimodal f -vector.

However, cross polytopes are not the most effective starting points for non-
unimodal examples: If we use cyclic polytopes, then the peak (at 3

4 ) is further

away from the peak for a simplex that we can “add” by stacking (at 1
2 ). Moreover,

in cyclic polytopes we can control the number of vertices in fixed dimension as well,
and thus make the peak at 3

4 as sharp as we want.

Theorem 2.10 (Björner [13] [15], Lee [47] [12], Eckhoff [24]). The Unimodality
Conjecture 2.1 holds for simplicial d-polytopes of dimensions d ≤ 19, but it fails for
d ≥ 20.

Specifically: Stacking N = 259 · 1011 times onto the cyclic polytope C20(200),
one obtains a polytope with a dip f11 > f12 < f13 in the f -vector,

f11 = 5049794068451336750
∨

f12 = 5043828885028647000
∧

f13 = 5045792044986529500.

The proof of the first part of Theorem 2.10 utilizes the g-theorem (see Stanley
[69] and Björner [14]), which explicitly describes the f -vectors of the simplicial
polytopes, plus a substantial amount of “binomial coefficient combinatorics.” See
[15] for d ≤ 16; the extension to d ≤ 19, due to Eckhoff, unfortunately is still not
published.

If we leave the realm of simplicial polytopes, then it becomes even easier to
construct polytopes with a non-unimodal f -vector. Then we can try to add the
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f -vectors of two polytopes with peaks at 1
4 and at 3

4 , say a cyclic polytope and its
dual. And indeed, just as we can glue a pyramid onto a simplicial facet, we can
glue any polytope with a simplicial facet onto another one — after a projective
transformation, if needed [79, p. 274]. The f -vector effect of such a glueing is
essentially

f(P#P ′) = f(P ) + f(P ′)− f(∆d−1);

if the f -vector components of P and of P ′ are large, then the simplex may be
neglected, and we are essentially just “adding the f -vectors.”

We can even do this with cyclic polytopes: For example, Cd(n) is simplicial; its
dual, Cd(n)∗ is simple (without simplicial facets), but if we cut off (“truncate”) one
of the simple vertices, then a simplicial facet results. Write Cd(n)′ for the “dual
with a vertex cut off.”

Corollary 2.11 (Eckhoff [24]). The Unimodality Conjecture 2.1 fails for d-polytopes
of dimensions d ≥ 8. In particular,

f(C8(25)#C8(25)′) = (7149, 28800, 46800, 46400, 46400, 46800, 28800, 7149).

This f -vector has a nice “1% dip” in the middle! We don’t know whether the
Unimodality Conjecture 2.1 is true for dimensions d = 6 or 7.

Exercises

2.1. For d = 3, 4, 5, . . . construct a d-polytope with 12 vertices and 13 facets. How
far do you get?

2.2. Show that f -vectors of 4-polytopes are unimodal.
2.3. Derive an exact formula for fd−1(Cd(n)), and for fk(Cd(n)), for even n.
2.4. Compute fi(C8(25)). How bad is the approximation given in Example 2.6?
2.5. Count and describe the 2-faces of a product of a pentagon and a heptagon,

P5 × P7.
2.6. Compute f((C10)

10), for the product of ten 10-gons. Where is the peak?
2.7. Estimate/compute d and N such that the “N -fold truncated d-cube” has a

non-unimodal f -vector.
2.8. If you stack “too often” onto C20(200), then unimodality is restored. How

often?





LECTURE 3

2-Simple 2-Simplicial 4-Polytopes

The boundary complex of a 4-polytope is a 3-dimensional geometric structure.
So, in contrast to the high-dimensional polytopes discussed in the previous lecture,
we can hope to approach 4-polytopes via explicit visualization and geometric con-
structions. Schlegel diagrams are a key tool for this.* Another one, which we will
also depend on in a key moment of this lecture, is dimensional analogy: To describe
a construction of 4-polytopes, we phrase a key step as a statement that it is valid
“for all d ≥ 3,” where the visualization is done for the special case d = 3, while the
most interesting results are obtained for d = 4.

The geometry and combinatorics of polytopes in dimension 4 is much more
interesting, rich, and difficult than in 3 dimensions, because 4-polytopes aren’t
constrained between only two extremes, simple and simplicial. Some of the most
fascinating examples around, such as Schläfli’s 24-cell, are neither simple nor simpli-
cial, but 2-simple 2-simplicial. This property was thought to be rare until recently:
Only a few years ago, exactly 8 such polytopes were known. (Unfortunately, a
claim by Shephard from 1967 did not work out: In [39, p. 82] it had been claimed
that Shephard could produce infinite families, and that each 4-dimensional con-
vex body could be approximated by 2-simple 2-simplicial 4-polytopes, which would
have established a conjecture by David Walkup. Compare [39, p. 96b])

The main goal for this lecture is to describe a simple, explicit, geometric con-
struction that produces rich infinite families of 2-simple 2-simplicial 4-polytopes.
The first infinite families, obtained by Eppstein, Kuperberg & Ziegler in 2001 [26],
relied on rather subtle constructions, via Koebe–Thurston type edge-tangent re-
alizations of 4-polytopes (which exist only in rare cases), and hyperbolic angle
measurements. In contrast to this, the deep vertex truncation construction to be
described here is remarkably simple; it appears in Paffenholz & Ziegler [57], while
special instances (for semi-regular polytopes) can be traced back to Coxeter’s clas-
sic [22, Chap. VIII], who refers to Cesàro (1887) for the construction of the 24-cell
by what we here call a “deep vertex truncation” of the regular 4-cube.

*These were apparently introduced by Dr. Victor Schlegel, a highschool (Gymnasium) teacher from
Waren an der Müritz, in his paper [67] from 1883. The plates for the paper include a Schlegel
diagram (“Zellgewebe”) of a 4-cube, as well as two quite insufficient drawings representing the
24-cell. Classical, beautiful drawing may be found in Hilbert & Cohn-Vossen [41, p. 135].

35
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3.1. Examples

Let’s start with examples of well-known 4-polytopes — and for each of those let’s
look at a Schlegel diagram, and record the f -vector

(f0, f1, f2, f3) = (# vertices, # edges, # 2-faces (= ridges), # facets ).

A Schlegel diagram is a way to visualize a 4-polytope in terms of a 3-dimensional
complex. We can’t develop the theory of Schlegel diagrams here (see [39, Sect. 3.3]
and [79, Lect. 5]), but we can offer two interpretations, both in terms of dimensional
analogy.
• Assume that one face of a 3-polytope is transparent (a “window”), press your

nose to the window, and look inside: Then you will see all the other faces of
the polytope through the window. If you now close one eye (and thus lose the
spatial impression, or depth view), then you will see how the other faces tile the
window; you can see how they fit together, and thus the whole combinatorial
structure of the 3-polytope is projected into a 2-dimensional window. This is
the Schlegel diagram of a 3-polytope.

• Any 3-polytope can be projectively deformed in such a way that looking at it
from a suitable point, you see all faces except for one single face, which is on
the back. What you see is a polytopal complex which has the same shape as
the back face, but this is broken into all the many faces that you see on the
front side. What you see is the 2-dimensional Schlegel diagram of a 3-polytope.

The Schlegel diagram of a 4-polytope, analogously, is a 3-dimensional complex that
represents all the faces of the polytope, except for one facet (the window resp. back
facet). The whole combinatorial structure of the polytope may be read from such
a visualization. Thus, for example, one can tell whether the polytope is simple, or
simplicial, or cubical, etc.

The pictures of Schlegel diagrams as presented in the following are generated au-
tomatically in the polymake system by Gawilow & Joswig [31], with the javaview

back-end by Polthier et al. [58]. They have three limitations: They show only a
2-dimensional projection of an object that you should see rotating, 3-dimensionally,
on a screen; they depict only the edges, so in some examples it is hard to tell/imagine
where the faces and facet-boundaries go; and we don’t have color available here.
Nevertheless, I think they are impressive, and you should be able to “see” in them
what the (boundary complexes of) some 4-polytopes look like.

Example 3.1 (Simplex, cube, and cross polytope). Schlegel diagrams of the 4-
simplex, the 4-cube and the 4-dimensional cross polytope appear in Figure 3.1.
You should read off the f -vectors from this figure: f(∆4) = (5, 10, 10, 5), f(C4) =
(16, 32, 24, 8), and f(C∗

4 ) = (8, 24, 32, 16).
The simplex and cube are simple, so f1 = 2f0, while the simplex and cross

polytope are simplical, so f2 = 2f3.

Example 3.2 (A cubical 4-polytope with the graph of a 5-cube [43]). The con-
struction

P := conv((2Q×Q) ∪ (Q× 2Q)),

for a square such as Q = [−1, 1]2, yields a 4-polytope whose Schlegel diagram is
displayed in Figure 3.2. This polytope is cubical : All its facets are combinatorially
equivalent to the 3-cube [−1, 1]3.
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Figure 3.1. Schlegel diagrams for the 4-dimensional simplex, cube, and cross polytope

The f -vector (32, 80, 72, 24) may be derived from the figure, but indeed it may
also be deduced just from the information that this is a cubical 4-polytope with
the graph of a 5-cube. (The latter yields f0 and f1, the “cubical” property implies
2f2 = 6f3 by double counting, and then there is the Euler–Poincaré equation [79,
Sect. 8.2], which for 4-polytopes reads f0− f1 + f2− f3 = 0. See also Exercise 3.2.)

Example 3.3 (The hypersimplex). The hypersimplexes form a 2-parameter family
∆d−1(k) of remarkable polytopes; as Robert MacPherson said in his PCMI lectures,
they have by far not received the attention, study, and popularity that they deserve.
They do appear, for example, as Kd

k in [39, p.65], as ∆k,ℓ in [29, Sect. 1.6] (where
apparently the name “hypersimplex” appeared first), in [35], in [34, p. 207], and
in [23]; but also elsewhere they appear under disguise, for example, as the cycle
polytopes of uniform matroids (see e.g. [38]).
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Figure 3.2. A cubical 4-polytope with the graph of the 5-cube

The hypersimplex ∆d−1(k) may be defined as the convex hull of all the 0/1-
vectors of length d that consist of k ones and d − k zeroes. This is a (d − 1)-

dimensional polytope with
(

d
k

)

vertices. In the special case k = 1 and k = d− 1 we
obtain simplices.

What we call the hypersimplex is a 4-dimensional polytope ∆4(2) that appears
in this family. It may be defined, lying on a hyperplane in R5, as

{

x ∈ [0, 1]5 :

5
∑

i=1

xi = 2
}

= conv{ei + ej : 1 ≤ i < j ≤ 5},

or equivalently, after projection to R4 by “deleting the last coordinate,” as

{

x ∈ [0, 1]4 : 1 ≤
4

∑

i=1

xi ≤ 2
}

= conv
(

{ei : 1 ≤ i ≤ 4} ∪ {ei + ej : 1 ≤ i < j ≤ 4}
)

.

The first representation is more symmetric: It yields “by inspection” that all
(

5
2

)

= 10 vertices of this polytope are equivalent (under symmetries that permute
the coordinates), but that there are two types of facets, five simplices and five oc-
tahedra, which appear in vertex-disjoint pairs, “opposite to each other,” in parallel
hyperplanes. In particular, all the facets are simplicial, that is, all the 2-faces are
triangles, so the polytope is 2-simplicial.

The second representation has the advantage of being full-dimensional, and it
supplies us with a Schlegel diagram (using an octahedron facet as a “window”), as
displayed in Figure 3.3. In the figure we may see that the (ten, equivalent) vertex
figures are triangular prisms, so they are simple; thus in this 4-polytope, each edge
is in exactly three facets, so the polytope is 2-simple. So we have seen our first
example (other than the 4-simplex) of a 2-simple, 2-simplicial 4-polytope.
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From the data given it is easy to compute the f -vector of the hypersimplex: It
is f = (10, 30, 30, 10).

Figure 3.3. A Schlegel diagram of the hypersimplex

3.2. 2-simple 2-simplicial 4-polytopes

Definition 3.4. A 4-polytope P ⊆ R4 is 2-simple 2-simplicial (“2s2s” for short)
if all 2-faces of P , and of P ∗, are triangles.

The definition given here has the nice feature of being self-dual: Clearly, P is
2s2s if and only if its dual P ∗ is 2s2s. A more explicit version is that a 4-polytope
is 2s2s if and only if
• every 2-face has the minimal number 3 of vertices, and if
• every 1-face (edge) lies in the minimal number 3 of facets.
Still equivalently, this is if and only if
• for every 2-face G the lower interval [∅, G] in the face lattice of P is boolean,

and if
• for every 1-face e the upper interval [e, P ] in the face lattice of P is boolean.
Thus the 2s2s property may be pictured in analogy with the properties of being
simple, or being simplicial. For this we note that, for example, P is simplicial if
• for every 3-face F (facet) the lower interval [∅, F ] in the face lattice of P is

boolean, and if
• for every 2-face R (ridge) the upper interval [R, P ] in the face lattice of P is

boolean.
(The first property just says that the facets should be simplices; the second property
is automatically satisfied: Every ridge lies in two facets.) And similarly for simple
4-polytopes — see Figure 3.4.

Of course all this suggests generalizations, to ask for h-simple k-simplicial d-
polytopes, apparently introduced by Grünbaum [39, Sect. 4.5]. For h + k > d these



40 GÜNTER M. ZIEGLER, CONVEX POLYTOPES

Figure 3.4. Simplicial, simple, and 2s2s 4-polytopes in terms of their face
lattices: The shaded intervals, and all the other intervals between the same
rank levels, must be boolean.

don’t exist (other than the d-simplex), but also for small h and k they are hard
to construct. Indeed, are there any 5-simple 5-simplicial d-polytopes that are not
simplexes? Not a single example is known. Compare [57] for more information.
Here we will restrict ourselves to the 4-dimensional case of 2s2s polytopes. Let’s
note one interesting property that is specific for the 4-dimensional case, and which
also confirms the impression that 2s2s 4-polytopes form a “diagonal” case.

Lemma 3.5. Every 2s2s 4-polytope has a symmetric f -vector: f0 = f3, f1 = f2.

Proof. If P is 2-simplicial, then each 2-face has three edges. Thus the number of
incidences between 2-faces and edges, denoted f12, is f12 = 3f2. If it is 2-simple,
then each edge lies in three 2-faces, that is, the number of indicences is f12 = 3f1.
Combination of the two conditions forces f1 = f2. With this, Euler’s equation
yields f0 = f3. �

This proof may be rephrased in terms of the face lattice: For 4-polytopes the
2s2s conditions force the two middle rank levels of the face lattice to form a bipartite
cubic graph — which as any other regular bipartite graph has to have the same
number of vertices on each shore. You should identify this bipartite cubical graph
in the face lattice of the hypersimplex, as displayed in Figure 3.5, and thus verify
the 2s2s property for this face lattice. The symmetry of the f -vector (10, 30, 30, 10)
is explained by Lemma 3.5; nevertheless, the hypersimplex and its face lattice are
not self-dual: There are two types of facets, but only one symmetry class of vertices.

The fact that the dual of any 2s2s 4-polytope is again 2s2s (by definition), and
the symmetry property for the f -vector, might suggest that 2s2s polytopes live in
some sense “between” simple and simplicial. This is not true, as we will see in
the next lecture, when we locate their f -vectors in the cone of all f -vectors of 4-
polytopes. Indeed, the 2s2s polytopes are so interesting because they form a class
of extremal polytopes in terms of the flag vector: A 4-polytope is 2s2s if and only
if the valid inequality

2f03 ≥ (f1 + f2) + 2(f0 + f3)

holds with equality. (Compare Exercise 3.7.)



LECTURE 3. 2-SIMPLE 2-SIMPLICIAL 4-POLYTOPES 41

 

 

Figure 3.5. The face lattice of the hypersimplex

3.3. Deep vertex truncation

The idea for “deep vertex truncation” is very easy: Cut off all vertices of a polytope
— but don’t just truncate the vertices, but cut them off by “deep cuts,” that is, so
deeply that exactly one point remains from each edge.

All that is said and done about “deep vertex truncation” in the following works
and makes sense for d ≥ 3. Nevertheless, the pictures will primarily represent the
case d = 3, while the most interesting results appear for d = 4.

Definition 3.6 (Deep vertex truncation). Let P be a d-polytope, d ≥ 2.
A deep vertex truncation

DVT(P ) = P ∩
⋂

v∈V (P )

H−
v

of P is obtained by cutting off all the vertices v ∈ V (P ) of P (by closed halfspaces
H−

v , one for each vertex v) in such a way that from each edge e of P , exactly one
(relative interior) point pe remains.

Equivalently, a deep vertex truncation is obtained as the convex hull

DVT(P ) = conv
{

pe : e ∈ E(P )
}

of points pe placed on the edges e ∈ E(P ) of P in such a way that for each vertex
of P , the points pe chosen on the edges adjacent to v lie on a hyperplane Hv.

It is quite obvious that a deep vertex truncation DVT(P ) can be constructed
for each simple polytope P , but we will be particularly interested in the case of
simplicial polytopes: For these it is not so clear that the cutting can be performed
so that all constraints are satisfied simultaneously.

Lemma 3.7. Every 3-polytope has a realization for which deep vertex truncation
can be performed.
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Proof. Take an edge-tangent Koebe–Andreev–Thurston representation (according
to Lecture 1). Then pe can be taken as the tangency points, and the cutting
hyperplanes Hv are spanned by the vertex horizon circles. �

Figure 3.6. Deep vertex truncation of a simplex and of a bipyramid yields
an octahedron, and a polytope that is “glued” from two octahedra. (Pictures

from [57])

For d ≥ 3, every deep vertex truncation polytope DVT(P ) has two types of
facets:
• deep vertex truncations DVT(F ) of the facets F of P , and
• the vertex figures P ∩Hv = conv{pe : e ∋ v} of P .

Proposition 3.8 (Paffenholz & Ziegler [57]). If P is a simplicial 4-polytope, then
any deep vertex truncation DVT(P ) is 2-simple and 2-simplicial.

Proof. The two types of facets of DVT(P ) are the octahedra DVT(F ), for the
tetrahedron facets F of P , and the vertex figures of P , which are simplicial. Thus
DVT(P ) 2-simplicial.

Since all edges of P are reduced to points by deep vertex truncation, all the
edges of DVT(P ) are “new,” they arise by deep vertex truncation from the 2-faces
(that is, the ridges) of P . Each such ridge lies in two facets F1, F2 of P , so the edge
we are looking at lies in two facets DVT(F1) and DVT(F2) of the first type, and
in one facet of the second type. Thus each edge of DVT(P ) lies in exactly three
facets, that is, DVT(P ) is 2-simple. �

So we have that DVT(P ) is 2s2s for any simplicial 4-polytope P . . . if it exists.
And that’s the problem: In general it is not at all guaranteed that deep vertex
truncation can be performed. One would try to realize cyclic 4-polytopes in such
a way that deep vertex truncations can be performed, but it seems that this is not
possible. Similarly, if a sum Pm ⊕ Pn is realized “the obvious way,” with regular
polygons in orthogonal subspaces, then deep vertex truncation is not possible except
for very special cases (such as 1

m + 1
n ≥

1
2 ): It is quite surprising that the sums

of polygons do have a realization such that deep vertex truncation is possible, as
proved by Paffenholz [55]. On the other hand, there does not seem to be a single
example of a simplicial polytope for which it has been proved that deep vertex
truncation is impossible for all realizations.

However, in special cases deep vertex truncation can indeed be performed. In
particular, any regular polytope admits a deep vertex truncation — just take the
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edge midpoints for pe. From this we get the following three examples of 2s2s 4-
polytopes:
• Deep vertex truncation of a simplex, DVT(∆4), yields the hypersimplex.
• Deep vertex truncation of the 4-dimensional cross polytope,

C∗
4 = conv{±ei : 1 ≤ i ≤ 4} = {x ∈ R4 : |x1|+ |x2|+ |x3|+ |x4| ≤ 1},

yields Schläfli’s 24-cell (see Figure 3.7):

DVT(C∗
4 ) = conv{± 1

2ei ±
1
2ej : 1 ≤ i < j ≤ 4}

= {x ∈ R4 : |xi| ≤ 1 for 1 ≤ i ≤ 4, |x1|+ |x2|+ |x3|+ |x4| ≤ 1}.

• Deep vertex truncation of the regular 600-cell (which has 600 regular tetra-
hedra as facets) yields a 2s2s 4-polytope with 720 vertices, whose vertex fig-
ures are prisms over regular pentagons; its facets are 600 octahedra, and 120
regular icosahedra. It seems that this remarkable polytope, with f -vector
(720, 3600, 3600, 720), first occured in the literature in 1994, as the dual of
the “dipyramidal 720-cell” constructed by Gévay [36]. See also Exercise 3.2.

Figure 3.7. The 24-cell

3.4. Constructing DVT(Stack(n, 4))

The stacked polytopes form an infinite family of simplicial polytopes which can quite
easily be realized in such a way that deep vertex truncation can be performed.

For this, we denote by Stack(n, d) := stackn(∆d) any combinatorial type of a
d-polytope, d ≥ 3, which is obtained by n times stacking a pyramid onto a simplex
facet, starting at a d-simplex. This is a simplicial d-polytope with d+1+n vertices
and d + 1 + n(d− 1) facets; see Exercise 3.3. Note that the notation “Stack(n, d)”
does not specify a combinatorial type; many different types may be obtained by
stacking onto different sequences of facets (cf. Exercise 3.6).
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Theorem 3.9 (Paffenholz & Ziegler [57]). Any combinatorial type of a stacked
d-polytope Stack(n, d) can be realized so that it admits a deep vertex truncation.

Proof. We proceed by induction on n, starting at n = 0, with a d-simplex, and a
deep vertex truncation that takes the convex hull of the edge midpoints.

Assume now that Stack(n, d) has been realized as P ⊂ Rd such that DVT(P )
can be obtained by a suitable choice of points pe on the edges e ⊂ P . Assume
that Stack(n + 1, d) arises by stacking onto a facet of Stack(n, d) that is realized
by the facet F ⊂ P with vertex set {v1, . . . , vd}. The “new” vertex w is now
chosen “beyond” the facet DVT(F ) of DVT(P ), and “beneath” all other facets
of DVT(P ). That is, addition of w to DVT(P ) would mean stacking a pyramid
onto the facet DVT(F ) of DVT(P ). In particular, w lies “beyond” the facet F of P ,
and “beneath” all other facets of P , so P ′ := conv({w} ∪ P ) is a stacked polytope
realizing Stack(n + 1, d), as required.

The facet hyperplanes Hvi
of DVT(P ) cut the edges [vi, w] of P ′ in points pi:

This is since w is beneath Hvi
, while vi is cut off by Hvi

. Thus we obtain points pi

on the new edges of P ′, and the hyperplane Hw := aff{p1, . . . , pd} may be taken to
cut off the new vertex w of P ′. This new truncation plane is determined uniquely
by the d intersection points, because the new vertex w of P ′ is simple. �

This theorem is valid for all d ≥ 3; in particular, 3D-pictures work. (Figure 3.8
is a feeble attempt.) However, the construction produces by far the most interesting
results for d = 4.

pj

vj

vi

pi

w

Figure 3.8. The induction step in Theorem 3.9, for d = 3. DVT(F ) is drawn shaded.

Corollary 3.10 ([57]). For each n ≥ 0, and for every type of stacked 4-polytope
Stack(n, 4) with f -vector (5 + n, 10 + 4n, 10 + 6n, 5 + 3n), there is a corresponding
2-simple 2-simplicial 4-polytope DVT(Stack(n, 4)), with f -vector

f(DVT(Stack(n, 4))) = (10 + 4n, 30 + 18n, 30 + 18n, 10 + 4n).

In particular, this yields infinitely many combinatorial types of 2-simple 2-
simplicial 4-polytopes. Moreover, with a bit of care the proof of Theorem 3.9 yields
these polytopes with rational vertex coordinates. See [54] for explicit examples of
such coordinates.

Corollary 3.11 ([57]). The number of combinatorial types of 2-simple 2-simplicial
4-polytopes with 10 + 4n vertices grows exponentially in n.
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See Paffenholz & Werner [56] for further constructions of 2-simple 2-simplicial
4-polytopes with interesting f -vectors. In particular, they describe the “smallest”
example of such a polytope (other than the simplex), which has only 9 vertices.

Exercises

3.1. Show that any simple or simplicial d-polytope with f0 = fd−1 must be a
simplex, or 2-dimensional.

3.2. Compute the full f -vectors, as well as the number f03 of vertex-facet incidences,
for the following 4-polytopes, based only on the information given here:
(a) The 24-cell: a 2s2s polytope whose facets are 24 octahedra;
(b) The 600-cell: a simple polytope whose facets are 120 dodecahedra;
(c) The 720-cell: a 2s2s 4-polytope whose facets are 720 bipyramids over pen-

tagons;
(d) A neighborly cubical polytope NCPn

4 , a cubical polytope with the graph
of the n-cube (n ≥ 4).

3.3. Compute the full f -vectors of the stacked d-polytopes Stack(n, d).
3.4. Show that if a 4-polytope P is not simplicial, then DVT(P ) cannot be 2-

simplicial.
3.5. Find coordinates for DVT(Stack(1, 4)). Check them with polymake.

(This is Braden’s “glued hypersimplex” [18].)
3.6. Show that there are exponentially many distinct combinatorial types of stacked

d-polytopes with d + 1 + n vertices, for any d ≥ 3. Derive that there are
exponentially many types of 2-simple 2-simplicial 4-polytopes with the same
f -vector.

3.7. Show that f13 = f03 + 2f2 − 2f3, and dually f02 = f03 + 2f1 − 2f0, holds for
the flag vector of each 4-polytope.
(Hint: Sum the Euler equations for the facets, which are 3-polytopes.)
Derive from this that the inequality 2f03 ≥ (f1 + f2) + 2(f0 + f3) is valid
for all 4-polytopes, and that it is tight exactly for the 2-simple 2-simplicial
4-polytopes.

3.8. Show that there is no f -vector inequality (not involving f03) that characterizes
the 2s2s 4-polytopes.

3.9. If P is a d-dimensional simplicial polytope, and if DVT(P ) exists, is DVT(P )
then 2-simple? 2-simplicial?





LECTURE 4

f -Vectors of 4-Polytopes

The f -vector of a 4-polytope is a quadruple of integers f(P ) = (f0, f1, f2, f3),
but due to the Euler-Poincaré relation the set of all f -vectors of 4-polytopes is a
3-dimensional set: It lies on the “Euler-Poincaré hyperplane” in R4, given by

f0 − f1 + f2 − f3 = 0.

The task we are facing is to describe the set of all f -vectors,

F4 := {f(P ) = (f0, f1, f2, f3) ∈ Z
4 : P a convex 4-polytope}.

Here “describe” may mean a number of different things: Probably one should not
hope for a complete description (as Steinitz got for the 3-dimensional case), since
the set of f -vectors is way more complicated in the 4-dimensional case.

Indeed, F4 is not the set of all integral points in a polyhedral cone, or even in a
convex set. This may be seen from the characterizations of the projections of F4 to
the coordinate 2-planes in R4, by Grünbaum, Barnette, and Reay [39, Sect. 10.4]
[8] [10], which show non-convexities and holes (see Figure 4.1). Or you just note
that some of the rather basic, tight inequalities, such as the upper bound inequality
f1 ≤

(

f0

2

)

, are concave. For example,

f(C4(5)) = (5, 10, 10, 5),

f(C4(7)) = (7, 21, 28, 14),

f(C4(9)) = (9, 36, 54, 27).

The midpoint of the segment between f(C4(5)) and f(C4(9)) is the integral point
(7, 23, 32, 16): It violates the upper bound inequality, and indeed a 4-polytope with
7 vertices cannot contain more than the 21 =

(

7
2

)

= f1(C4(7)) edges. (See also
Bayer [11], Höppner & Ziegler [42].)

In the following, we will head for a complete description of the f -vector cone
for 4-polytopes, cone(F4). This seems to be a challenging but realistic goal. Once
that is achieved (the “2006 project”), a logical next goal might be a description of
the “large” f -vectors, that is, of

{f(P ) = (f0, f1, f2, f3) ∈ Z
4 : P a convex 4-polytope, f0 + f3 ≥M}

for some large M . But let’s not get too ambitious too fast.

47
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f0

f3

6 7 8 9 105 1112131415

5
6
7
8
9

10
11
12
13
14
15

(equality:
dual-to-neighborly polytopes)

f0 ≤
f3(f3 − 3)

2

f3 ≤
f0(f0 − 3)

2
(equality:
neighborly
polytopes)

Figure 4.1. The (f0, f3)-pairs of convex 4-polytopes, according to Grünbaum
[39, Sect. 10.4])

4.1. The f-vector cone

Definition 4.1 (f -vector cone). The f -vector cone of 4-polytopes, cone(F4), is
the topological closure of the convex cone with apex f(∆4) = (5, 10, 10, 5) that is
spanned by the f -vectors of 4-polytopes,

{

f(∆4) +
N

∑

i=1

λi

(

f(Pi)− f(∆4)
)

: P1, . . . , PN 4-polytopes, λ1, . . . , λN ≥ 0
}

.

Equivalently, cone(F4) ⊂ R4 is the solution set to all the linear inequalities that
are valid for all f -vectors for 4-polytopes, and that are tight at the f -vector of the
simplex.

The equivalence between the two versions of the definition rests on basic facts
about closed convex sets, which you should put together yourself (Exercise 4.1).
You are also asked to verify that the cone generated by the f -vectors is not closed,
so we do have to take the topological closure (Exercise 4.2.)

The closed convex cone we are looking at is 3-dimensional, so we may view it
as the cone over a 2-dimensional convex figure, which might be just a pentagon or
hexagon. Instead of looking at a 2-dimensional section (say intersecting by f1+f2 =
100), we may equivalently introduce homogeneous (“projective”) coordinates, which
are rational linear functions, normalized to yield “ 0

0” at the f -vector of a simplex
(compare Lecture 1). There is no unique best way to do this; we choose

ϕ0 :=
f0 − 5

f1 + f2 − 20
and ϕ3 :=

f3 − 5

f1 + f2 − 20

as our homogeneous coordinates. (Figure 4.2 illustrates the geometry of such a
rational function on a cone.) So we are trying to describe proj(F4) ⊂ R2, the
closure of

conv{(ϕ0(P ), ϕ3(P )) ∈ R2 : P a convex 4-polytope}.



LECTURE 4. F -VECTORS OF 4-POLYTOPES 49

ϕ0 = 0

ϕ0 = 2ϕ0 = 1

ϕ0 = 3

ℓ

Figure 4.2. The function ϕ0 is constant on certain planes that contain the
apex of the cone. It is not defined on the line ℓ where all those planes intersect.
(In terms of (f0, f1, f2)-coordinates, ℓ is defined by f0 = 5 and f1 + f2 = 20.)

Any 4-polytope yields a (rational) point in the (ϕ0, ϕ3)-plane. Any valid linear
inequality, tight at the 4-simplex, translates into a linear inequality in ϕ0 and ϕ3.
So let’s look at some families of polytopes and of linear inequalities that we know,
and let’s see what they buy us.

Some 4-polytopes we know:

Stacked: (5 + n, 10 + 4n, 10 + 6n, 5 + 3n) −→ ( 1
10 , 3

10 )

Truncated: (5 + 3n, 10 + 6n, 10 + 4n, 5 + n) −→ ( 3
10 , 1

10 )

Cyclic: (n, n(n−1)
2 , n(n− 3), n(n−3)

2 )
n→∞
−→ (0, 1

3 )

Dual-to-cyclic: (n(n−3)
2 , n(n− 3), n(n−1)

2 , n)
n→∞
−→ (1

3 , 0).

The truncated polytopes are the duals of the stacked polytopes, so they are simple.
Similarly, the duals of cyclic polytopes are simple. Thus we find the four points
( 1
10 , 3

10 ), ( 3
10 , 1

10 ), (0, 1
3 ), and (1

3 , 0), which span a quadrilateral subset of proj(F4).
This quadrilateral also represents the f -vectors of simple and of simplicial polytopes
and “everything in between.” (Note that duality interchanges the coordinates ϕ0

and ϕ3, and thus proj(F4) is symmetric with respect to the main diagonal.)

Five linear constraints we know:

“Few Vertices”: f0 ≥ 5 ⇐⇒ ϕ0 ≥ 0,
“Few Facets”: f3 ≥ 5 ⇐⇒ ϕ3 ≥ 0,
“Simple”: f1 ≥ 2f0 ⇐⇒ 3ϕ0 + ϕ3 ≤ 1,
“Simplicial”: f2 ≥ 2f3 ⇐⇒ ϕ0 + 3ϕ3 ≤ 1,
“Lower bound”: 2f1 + 2f2 ≥ 5f0 + 5f3 − 10 ⇐⇒ ϕ0 + ϕ3 ≤

2
5 .



50 GÜNTER M. ZIEGLER, CONVEX POLYTOPES

The first four inequalities are quite trivial, and we have named them by the poly-
topes that satisfy them with equality, at least asymptotically. The translation
into (ϕ0, ϕ3)-inequalities, using the Euler-Poincaré relation, poses no problem.
There is no polytope with ϕ0 = 0, but the condition is satisfied asymptotically
by any family of 4-polytopes with far more vertices than facets. For example, the
products of n-gons, with f(Pn × Pn) = (n2, 2n2, n2 + 2n, 2n), yield (ϕ0, ϕ3) =

( n2−5
3n2+2n−20 , 2n−5

3n2+2n−20 ) ∈ proj(F4), which in the limit n→∞ yields (1
3 , 0).

The one non-trivial inequality in our table above is the last one, a “Lower
Bound Theorem.” It may be derived quite easily [11] from the inequality f03 ≥
3f0 + 3f3− 10, which was first established by Stanley [70] in terms of the so-called
toric g-vector (it is the inequality “gtor

2 (P ) ≥ 0”); a proof via rigidity theory was
later given by Kalai [44].

Figure 4.3 summarizes our discussion up to this point: We are interested
in proj(F4), the closure of the set

conv{(ϕ0(P ), ϕ3(P )) : P is a 4-polytope, not a simplex } ⊂ R2.

This set is contained in the pentagon cut out by the five linear inequalities discussed
above, and it contains the shaded trapezoid, which represents “everything between
simple and simplicial polytopes.” Indeed, simple and simplicial polytopes satisfy
the additional linear inequality ϕ0 + ϕ3 ≥

1
3 .

Thus we are left with the following “upper bound problem”:

“Upper Bound Problem”. Are there 4-polytopes with ϕ0 + ϕ3 → 0 ?

The inequality ϕ0 + ϕ3 ≥
1
3 is certainly not valid for all (possibly non-simple

non-simplicial) 4-polytopes: Already for the hypersimplex we get (ϕ0, ϕ3) = (1
8 , 1

8 ).

1
3

ϕ3

1
10

1
5

2
5

3
10

3
10

1
3

2
5

stacked polytopes

truncation polytopes

dual-to-cyclic polytopes

1
10

1
5

simplicial polytopes

ϕ0

cyclic polytopes

simple polytopes

ϕ0 + 3ϕ3 ≤ 1

3ϕ0 + ϕ3 ≤ 1

ϕ0 + ϕ3 ≤
2
5

Figure 4.3. Projective representation of the f -vectors of 4-polytopes, in the
(ϕ0, ϕ3)-plane. The convex set proj(F4) is contained in the bold pentagon; it
contains the shaded trapezoid.
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However, currently it is not clear how small ϕ0 + ϕ3 can be for convex polytopes.
Thus the Upper Bound Problem is the key remaining problem in the description of
the f -cone for 4-polytopes.
(!) If the answer is YES to the problem as posed above, then the five inequalities

above constitute a complete linear description of cone(F4).
(!) If the answer is NO, then this is also exciting, since it means that the answers

for cellular spheres and for convex polytopes are distinct! Indeed, cellular
3-spheres with arbitrarily small ϕ0 + ϕ3 have been constructed by Eppstein,
Kuperberg & Ziegler [26]; see our discussion in Section 4.3.

4.2. Fatness and the Upper Bound Problem

We prefer to rephrase the Upper Bound Problem in terms of a somewhat more
graphic quantity, which we call “fatness.”

few facets
many ridges
many edges

few vertices

f0
f2

f3
f1

Figure 4.4. Fatness for a 4-polytope face lattice, and for an f -vector

Definition 4.2 (Fatness). The fatness of a 4-polytope is the quotient

F (P ) :=
1

ϕ0 + ϕ3
=

f1 + f2 − 20

f0 + f3 − 10
.

The fatness of a 4-polytope is large if both ϕ0 and ϕ3 are small. This happens
if the polytope has relatively few vertices and facets, but many edges and 2-faces.
Thus, graphically, the face lattice and the f -vector are “fat in the middle,” whence
the name (see Figure 4.4).

“Upper Bound Problem”. Can the fatness of a 4-polytope be arbitrarily large?

Here are a few explicit values to start with: For stacked and truncated 4-
polytopes we have F (P ) = 5

2 exactly. For cyclic polytopes we get F (C4(n)) → 3
for n → ∞, and the same for the duals — fatness is a self-dual quantity, that
is, any 4-polytope and its dual have the same fatness. Moreover, it is easy to
compute (or to derive from Figure 4.3) that all simple and simplicial polytopes
satisfy 5

2 ≤ F (P ) < 3.
But how large can fatness be? The attempts to answer this question have led

to a multitude of interesting examples and constructions, and to a fast succession
of record holders for “the fattest examples found so far.” Many of them can be
obtained by deep vertex truncation of simplicial polytopes, so they are 2-simple
and 2-simplicial by Proposition 3.8:
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– The hypersimplex, which is the dual of DVT(∆4), has fatness 4.
– Schäfli’s 24-cell [66], DVT(cross polytope), has fatness 4.526.
– Gévay’s 720-cell [36], the dual of DVT(120-cell), has 720 facets that are bipyra-

mids over regular pentagons. It has fatness 5.020.
– Eppstein, Kuperberg & Ziegler [26] used hyperbolic geometry arguments to

achieve a fatness of 5.048 by the “E-construction,” which is dual to deep ver-
tex truncation.

– Paffenholz [55] has very recently shown that there are realizations for any sum
of an n-gon and m-gon such that the deep vertex truncation DVT(Pm×Pn) can
be obtained. For m = n→∞ this yields fatness approaching 6.

However, we’ll go a different route. In the next and final lecture we will present a
construction that generalizes and extends the construction of “neighborly cubical”
4-polytopes of Joswig & Ziegler [43], to achieve fatness arbitrarily close to 9, the
latest record (as far as I know at the time of writing). I would have been happy to
have a “note added in proof” about this . . .

F = 9

F = 5

F=3

1
3

ϕ3

1
10

1
5

2
5

3
10

projected

neighborly

3
10

1
3

2
5

stacked polytopes

F = 2.5

truncation polytopes

dual-to-cyclic polytopes

1
10

1
5

simplicial polytopes

cubical
polytopes [43]

products
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ϕ0

cyclic polytopes

simple polytopes

Figure 4.5. 4-polytopes in the (ϕ0, ϕ3)-plane. The shaded hexagon is
spanned by the (ϕ0, ϕ3)-pairs of known 4-polytopes.

What do polytopes “of very high fatness” look like? You can verify (via Exer-
cise 4.6) that they have two properties:
(1) The facets have many vertices (on average).
(2) The vertices are in many facets (on average).
Either of these properties are easy to satisfy — just look at the products Pn × Pn

for the first property, and at their duals, the free sums Pn⊕Pn, for the second one.
The key question is whether they can simultaneously be satisfied.

Finally, here is a problem on 3-dimensional polytopal tilings that is “essentially”
equivalent to the fatness problem: Consider face-to-face tilings of R3 (cf. [65]) that
satisfy some regularity properties, e.g. one of the following (each implies the next):
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– the tiling is triply periodic (that is, there are three linearly independent trans-
lational symmetries),

– there are only finitely many distinct congruence classes of tiles,
– in- and circumradius of the tiles are uniformly bounded.
For such tilings, we may define notions of “average” vertex degrees, face numbers,
etc. The question is whether there is such a tiling where the tiles have lots of
vertices on average, and the vertices are in many tiles on average. Again, either
property is easy to achieve (look at tilings by Schlegel diagrams), but can they be
simultaneously satisfied?

4.3. The Lower Bound Problem

The upper bound problem discussed here has a natural “lower bound” counterpart.
It arises if we don’t restrict ourselves to the geometric model of convex polytopes,
but consider the larger class of cellular spheres that are “regular” in the sense that
their cells have no identifications on the boundary, and that satisfy the “intersection
property” that any two faces should intersect in a single cell (which may be empty).
These are the regular CW spheres [21] whose face poset is a lattice (where the meet
operation corresponds to intersection of faces).

“Lower Bound Problem”. Does ϕ0 + ϕ3 ≤
2
5 hold for the cellular spheres that

satisfy the intersection property?

This problem seems crucial in terms of the separation of the “geometric” model
of convex polytopes from the “topological” model of cellular spheres/balls.
(!) If the answer to the problem is NO, then this would establish such a separation,

which would be quite remarkable.
(!) If the answer is YES, then this would imply a complete characterization of the

f -vector cone for cellular 3-spheres, by the five linear inequalities given above;
indeed, Eppstein, Kuperberg & Ziegler [26] have constructed cellular spheres
for which fatness is arbitrarily large, that is, ϕ0 + ϕ3 is arbitrarily small.

We will not discuss this here further, but refer to [26] and [80].

Exercises

4.1. Show that the two definitions of the f -vector cone given in Definition 4.1 are
indeed equivalent.
Hint: You need a separation lemma; see for example Matoušek [48, p. 6].

4.2. Show that the union of the line segments [f(∆4), f(C4(n))] ⊂ R4 has the whole
ray {(5, 10+ t, 10 + 2t, 5 + t) : t ≥ 0} in its closure. Note that f0 ≥ 5 is a valid
linear inequality, which is tight at f(∆4), but for no other f -vector.
Conclude that the cone with apex f(∆4) spanned by the f -vectors of 4-
polytopes is not closed.

4.3. Compute the fatness and the (ϕ0, ϕ3)-pair for the hypersimplex, the 24-cell,
and for DVT(600-cell).

4.4. Compute the fatness of the 2s2s polytopes DVT(Stack(n, 4)), and show that
it lies in the interval [4, 4.5).
Show that for any simplicial 4-polytope P , the fatness of DVT(P ) is smaller
than 6.
Where would the f -vectors of the polytopes DVT(P ) lie in proj(F4), as graphed
in Figure 4.5?
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4.5. If Cn
4 is a cubical 4-polytope with the graph of an n-cube (see Exercise 3.2),

compute the fatness and the pair (ϕ0, ϕ3).
4.6. Define the complexity of a 4-polytope to be the quotient

C(P ) :=
f03 − 20

f0 + f3 − 10
.

(a) Show that F (P ) ≤ 2C(P ) − 2, with equality if and only if P is 2-simple
and 2-simplicial.

(b) Show that C(P ) ≤ 2F (P )−2, with equality if and only if if all facets of P
are simple, or equivalently, if all vertex figures are simple.

(c) Derive from this that fatness is high if and only if both the average number
of vertices per facet, f03/f3, and the average number of facets per vertex,
f03/f0, are large.



LECTURE 5

Projected Products of Polygons

In this lecture we present a construction of very recent vintage, “projected
products of polytopes.” We will not have the ambition to work through all the
technical details for this; these appear in [81], see also [63]; rather, our main objec-
tive is here to identify the structural features of the construction which lead to fat
polytopes, and to outline (possibly “for further use”) some interesting components
that go into the construction. In the following version of the main result, some
concepts that will be explained below are highlighted by quotation marks.

Theorem 5.1 (Ziegler [81]). For each r ≥ 2, and even n ≥ 4, there is a realization
P r

n ⊂ R2r of a product of polygons (Pn)r (a “deformed product of polygons”) such
that the vertices and edges and all the “n-gon 2-faces” of P r

n “survive” the projection
π : R2r → R4 to the last 4 coordinates.

A number of nice tricks go into the construction that proves the theorem — see
below. Before we look into these we want to derive the enumerative consequences:
The f -vector of π(P r

n) can be derived purely from the information given in the
theorem, not using details about the combinatorics of the resulting polytopes (which
were worked out only recently [62] [63]).

5.1. Products and deformed products

We have discussed the construction and main properties of products of polytopes
already in Example 2.7. A key observation is that the non-empty faces of a product
are the products of non-empty faces of the “factors.” Now we specialize to the case
of products of (several) polygons: We consider products of r n-gons — and later
we will be looking at polytopes that just have the combinatorics of such polytopes.

If Pn is an n-gon, then (Pn)r is a simple polytope of dimension 2r. It has
• f0 = nr vertices (of the form “vertex × vertex × . . . . . . . . .× vertex”), and
• f1 = rnr edges (of the form “vertex × . . .× edge × . . .× vertex).
The products of polygons have two different types of 2-faces, “quadrilaterals” and
“polygons,” that we need to distinguish:
•

(

r
2

)

nr quadrilateral 2-faces (which arise as products of two edges, and vertices
from the other factors), and

• rnr−1 polygon 2-faces (arising as a product of one n-gon factor with vertices
from the other factors).
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Thus we get f2 =
(

r
2

)

nr + rnr−1.
Finally, let’s note that (Pn)r has nr facets, which arise as a product of one edge

(from one of the factors) with n-gons as the other factors.
The “deformed products” of polygons P r

n considered below are combinatorially
equivalent to the “orthogonal products” (Pn)r. Thus, the f -vector count given here
is valid for deformed products as well.

5.2. Computing the f-vector

It is remarkable that for the proof of the following corollary to Theorem 5.1 we
don’t need detailed combinatorial information about π(P r

n); it is sufficient to know
that it is a generic projection of a deformed product P r

n , and that all the polygon
2-faces survive the projection. The facets of π(P r

n) are 3-faces of P r
n that “have

survived the projection,” that is, they are combinatorial cubes and prisms over
n-gons.

Corollary 5.2. π(P r
n) ⊂ R4 is a 4-polytope with f -vector

(

nr, rnr, 5
4rnr − 3

4nr + rnr−1, 1
4rnr − 1

2nr + rnr−1
)

=
(

0 + 4
r , 4, 5− 3

r + 4
n , 1− 2

r + 4
n

)

· 1
4rnr .

In particular, for n, r →∞ the fatness of the projected products of polygons π(P r
n)

gets arbitrarily close to 9.

Proof. From the combinatorial information above we see that each vertex, and
each edge, of a product of polygons (Pn)r is contained in a polygon 2-face: So if all
the polygon 2-faces survive the projection, then in particular all vertices and edges
do. Thus, for (f0, f1, f2, f3) := f(π(P r

n)) we get f0 = nr, and f1 = rnr.
Furthermore, we know that π(P r

n) has p := rnr−1 polygon 2-faces (and a yet
unknown number of quadrilaterals). Moreover, the facets of π(P r

n) are prisms over
polygons, and cubes. Each prism has two polygon faces (and n quadrilateral faces),
while each cube has 6 quadrilateral 2-faces, but no polygon faces. So, each polygon
(ridge!) lies in two prism facets, and each prism facet contains two polygons: Double
counting yields that there are exactly p = rnr−1 prism facets.

Denote by c the number of cube facets. Then we have
• f3 = c + p (all facets are cubes or prisms),
• 2f2 = 6c + (n + 2)p (double counting the facet-ridge incidences), and
• f2 − f3 = (r − 1)nr (Euler’s equation).
These three linear equations can now be solved for the three unknowns, f2, f3,
and c. �

5.3. Deformed products

A number of different polytope constructions have been studied in attempts to
produce interesting polytopes. For example, any polytope may be obtained by
projection of a simplex; on the other hand, any projection of an orthogonal cube
is a zonotope, which is a polytope of very special structure (see [79, Lect. 7]).
The projections of orthogonal products of centrally symmetric polygons are still
zonotopes, and the projections of orthogonal products of arbitrary polygons are
only a bit more general. However, it has been noted since the seventies (in the
context of linear programming, trying to construct “bad examples” for the simplex
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algorithm; cf. [45] [3]) that some projections of “deformed products” have very
interesting extremal properties. For a very simple example, look at a 3-cube (which
is a product of three 1-polytopes). Any orthogonal cube projected to the plane will
produce a hexagon (at best), while a deformed cube can be projected to the plane
to yield an octagon: All the vertices “survive the projection” (see Figure 5.1).

Figure 5.1. A combinatorial 3-cube, in a deformed realization such that all
eight vertices “survive” the projection to the plane

And indeed, it is not so hard to show that one can realize an n-cube in such a
way that all its vertices “survive the projection” to the plane — this was first proved
by Murty [51] and Goldfarb [37]; in the context of linear programming it yields
exponential examples for the “shadow vertex” pivot rule for linear programming.

Similarly, if you project an orthogonal product of polygons to R4, you cannot
expect that all the edges survive the projection, but with deformed products, this
is possible (although hard to visualize — proofs are mostly based on linear algebra
criteria rather than on geometric intuition).

Here are linear algebra descriptions of the polytopes we’ll be looking at:

Polygons: If V is any (n × 2)-matrix whose rows are non-zero, (w.l.o.g.) ordered
in cyclic order, and positively span R2, then for a suitable positive right-hand side
vector b ∈ Rn the system V x ≤ b describes a convex n-gon Pn ⊂ R2.

Product of polygons: Given such a V , we immediately get the system
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with a block-diagonal matrix of size rn×2r, which describes the orthogonal product
of polygons (Pn)r ⊂ Rn.

The combinatorics of the product of polygons is reflected in the facet-vertex
incidences, as follows: Each inequality defines a facet; each of the nr vertices is the
unique solution of a linear system of equations that is obtained by requiring that
from each block, two cyclically adjacent inequalities are tight.

Deformed product of polygons: Our Ansatz is as follows:

(5.1)
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.

If the diagonal V ε-blocks V ε ∈ Rn×2 satisfy the conditions above, then the blocks
U, W ∈ Rn×2 below the diagonal blocks can be arbitrary — the right-hand sides can
be adjusted in such a way that we get a deformed product, which is combinatorially
equivalent to a product (Pn)r.

For this, we only have to verify that we get the correct combinatorics: If for each
of the r blocks we choose two cyclically adjacent inequalities and require them to
be tight, then this should yield a linear system of equations with a unique solution,
for which all other inequalities are satisfied, but not tight. It is now easy to prove
(by induction on r) that our system satisfies this — if we just choose the right-
hand sides suitably; in particular, bi := M i−1b ∈ Rn works, for large enough M , if
V εx ≤ b (as above) defines an n-gon.
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Example 5.3. To illustrate this in a simple case, let’s consider deformed products
in the low-dimensional case of I × I, a square, where I denotes an interval (a
1-dimensional polytope) such as I = [0, 1].

In this case I can be written as

I =
{

x ∈ R :

(

−1
1

)

x ≤

(

0
1

)

}

.

Consequently, the product I × I may be represented by

I × I =
{

x ∈ R2 :









−1 0
1 0
0 −1
0 1









x ≤









0
1
0
1









}

.

Now changing the matrix into








−1 0
1 0
a −1
b 1









x ≤









0
1
0
1









leaves the first two inequalities (and thus the first I factor) intact, but it changes
the slopes of the other two inequalities — and if you are unlucky (that is, for
a + b > 1) the resulting polytope will not be equivalent to I × I any more. This
situation is depicted in the middle part of Figure 5.2. However, it can be remedied
by increasing right-hand sides: For any given a and b, a suitably large M , namely
M > a + b, in









−1 0
1 0
a −1
b 1









x ≤









0
1
0
M









will result in a product again (as in the right part of Figure 5.2).

deformation

adjusting
right hand

sides
1

1 1 1

M

I × I

x2 = M − bx1

x2 = 1− bx1

x2 = ax1

x2 = 1

x2 = 0

Figure 5.2. Construction of a deformation of I × I
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5.4. Surviving a generic projection

We are looking at generic projections of simple polytopes — that is, the direction
of projection is in general position with respect to all the edges of the polytope to
be projected, and thus a small perturbation of the inequalities of the polytope, and
of the direction of projection, will not change the combinatorics of the projected
polytope.

It should thus seem plausible that in this setting the following holds (compare
Figure 5.3) for a polytope projection π : P → π(P ):
• The normal vectors to a face G ⊂ P are the positive linear combinations of the

(defining) normal vectors nF to all the facets F ⊃ G that contain G.
• The proper faces of π(P ) are isomorphic copies of the faces of P that survive

the projection.
• A face G ⊂ P survives the projection exactly if it has a normal vector that is

orthogonal to the direction of projection.

GF2 F1

n2

nG
n2

Figure 5.3. A vertex G surviving a projection, a normal vector nG orthogonal
to the projection, and the normal vectors n1 and n2 of facets F1 and F2 it can
be combined from

For Theorem 5.1 we have to specify a deformed product realization for (Pn)r of the
type given in Ansatz (5.1), such that all n-gon 2-faces are strictly preserved by the
projection. That is,
• if we choose two cyclically adjacent rows from each block except for one, and
• truncate these rows to the first 2r − 4 coordinates,
then the resulting 2r − 2 vectors must be positively dependent and span.

5.5. Construction

Now we want to specify the lower-triangular block matrix in our Ansatz (5.1) so
that it satisfies the following two main properties:
(1) the diagonal blocks have “rows in cyclic order,” and
(2) any “choice of two cyclically adjacent rows” from all but one of the blocks,

truncated to the first 2r − 4 components, yields a positively-spanning set of
vectors.

Five observations (you may call them “tricks”) help us to achieve this:
(i) Condition (2) is stable under perturbation. So, we first construct a matrix

that satisfies (2), then perturb it in order to achieve (1).
(The diagonal blocks of the matrix that we construct to satisfy (2) are de-
noted V ; after perturbation, they will be V ε.)
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(ii) The submatrices V , W , and U of size n×2 are constructed to have alternating
rows: So if you choose two cyclically adjacent rows from a block, you know
what you get!

Specifically, we will let matrix V have rows that alternate between (1, 0)
and (0, 0), matrix W gets rows (0, 1) and (a, b), and matrix U gets rows (c, d)
and (e, f), with the six parameters a, b, c, d, e, f to be determined.

(iii) To make sure that you get the positive linear dependence for (2), we specify a
positive coefficient sequence and compute the matrix entries to satisfy them.

(iv) Rather than admitting that from one of the blocks no row is chosen, we will
prescribe coefficient sequences that could have zeroes on any one of the blocks,
which yields linear dependencies for which the vectors from one block are “not
used.”

Specifically, we take coefficient sequences of the form αk := (2k−t − 1)2

and βk := (2k−t − 1)(2k−t − 3
2 ) for the odd resp. even-index rows. These

coefficients are clearly positive for integral k, except they vanish at k = t.
Moreover, they are linear combinations of the three exponential functions

2k−t, 4k−t, and 1. If we write out the condition that “the rows chosen should
be dependent, with coefficients αk (for the even-index row chosen from the
k-th block) and βk (for the odd-index row chosen from the k-th block), then
this leads to a system of six linear equations, in six unknowns a, b, c, d, e, f —
solve it!

(v) The properties “alternating rows” and “rows in cyclic order” are, of course,
incompatible — but a matrix with rows in cyclic order can be obtained as a
perturbation V ε of the matrix V that has rows (1, 0) and (0, 0) in alternation.
Figure 5.4 suggests a way to do this.

This completes our sketch of “how to do it” — it should be sufficient to let you
construct the polytopes P r

n and thus prove Theorem 5.1 (but [81] provides these
details, too.)

Figure 5.4. A configuration of 10 vectors, which positively span the plane,
and which (in cyclic order) alternate between vectors close to (1, 0), and close

to (0, 0)

If you think about this construction, can you perhaps manage to simplify some
of the details, or even to improve the construction? After all, on the way to the
characterization of the f -vector cone for 4-polytopes, this construction of polytopes
of fatness up to 9 should be taken just as an intermediate step. Can you get further?
There is a long way to go from 9 to infinity . . .
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Exercises

5.1. Show that every polytope arises as a projection of a simplex.
5.2. Show that if π : Rn → Rd, P → π(P ) is a polytope projection, for an n-

polytope P , and n > d, then the strictly preserved faces have dimension at
most d− 1. In particular, no facet of P is strictly preserved by the projection.

5.3. Give examples of polytope projections where no faces are strictly preserved.
5.4. Realize the prism over an n-gon (n ≥ 3) in such a way that the projectionR3 → R2 strictly preserves all 2n vertices.
5.5. Show that the product ∆2 ×∆2 of two triangles cannot be realized in such a

way that all 9 vertices are strictly preserved in a projection to R2.
5.6. How large do we have to choose r and n in order to obtain 4-polytopes of

fatness F (π(P r
n)) > 8?

5.7. Any projection of a (non-deformed) product of centrally symmetric polygons
is a zonotope. For these, one knows that f1 < 3f0 (for such inequalities, for
the dual polytope, see [16, pp. 198/199]). Deduce from this information that
the fatness is smaller than 5.



APPENDIX:

A SHORT INTRODUCTION TO POLYMAKE

by Thilo Schröder and Nikolaus Witte

The software project polymake [31] has been developed since 1997 in the Discrete
Geometry group at TU Berlin by Ewgenij Gawrilow and Michael Joswig, with
contributions by several others. It was initially designed to work with convex poly-
topes. Due to its open design the polymake framework can also be used on other
types of objects; the current release includes a second application, topaz, which
treats simplicial complexes.

polymake is designed to run on any Linux or Unix system, including Mac OS X.
It runs in a shell using command line input. This introduction is for polymake

versions 2.0 and 2.1. polymake is free software and you can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the
Free Software Foundation.

This introduction aims at getting you to work on the computer rather than
explaining the details about the machinery of polymake. Therefore, there will be
only a short description of the software design, in Section A.2. For further reading
we refer to Gawrilow & Joswig [32] [33]. On the polymake website

http://www.math.tu-berlin.de/polymake

you will find extensive online documentation as well as an introductory tutorial.

A.1. Getting Started

For polymake, every polytope is treated as an object (the file storing the data)
with certain properties such as its f -vector, its Hasse diagram, etc. The V- and
H-representation are also regarded as properties, and any one of them may be
used to define the polytope in the first place. If you are only interested in the
combinatorial structure you may also input the vertex-facet incidences. For more
details concerning the polymake file format see Section A.1.3. Once a polytope
is defined in terms of some property, you may ask polymake to compute further
properties.

polymake also provides standard constructions for polytopes. You can either
construct polytopes from scratch (e.g. the d-cube) or by applying constructions to
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an existing polytope (e.g. the pyramid). In both cases polymake will produce a
new file defining the new polytope.

This section explains the command line syntax of polymake for constructing,
analyzing and visualizing polytopes. The polymake file format is briefly described
at the end of this section.

A.1.1. Constructions of Polytopes

If you want to use one of polymake’s constructions, you have to call a client program
to create the polytope. The clients have appropriate names, e.g. the client producing
the d-cube is called cube. All clients are documented at [31]. If in doubt about the
exact syntax of a client program just type the client’s name, press return and you
will get a usage message.

Clients producing polytopes from scratch
The basic syntax to create a polytope from scratch is the command line

<client> <file> [ <options> ]

For example, to produce a 4-cube type

cube c4.poly 4

Some other clients which produce polytopes you might have heard of are
simplex, cyclic, cross, rand_sphere, associahedron, and permutahedron.

Clients producing polytopes from others
To construct a polytope from existing one(s), use

<client> <out_file> <in_file> [ <options> ]

For example, to produce the pyramid over our 4-cube c4.poly type

pyramid c4.pyr.poly c4.poly

Some other constructions to get interesting polytopes are obtained via the clients
bipyramid, prism, minkowski_sum, vertex_figure, center, truncation, and
polarize.

A.1.2. Computing Properties and Visualizing

To compute a property of a polytope, just ask polymake using the following syntax

polymake <file> <PROPERTY_1> <PROPERTY_2> ...

The properties are written in capital letters. To compute the numbers of facets and
vertices of the pyramid over the 4-cube constructed above, type

polymake c4.pyr.poly N_FACETS N_VERTICES

Some other useful properties are

GRAPH, DUAL_GRAPH, HASSE_DIAGRAM, CENTERED, VERTICES_IN_FACETS, F_VECTOR,
H_VECTOR, SIMPLE, SIMPLICIAL, CUBICAL, SIMPLICIALITY, and SIMPLICITY.

The visualizations use the same syntax. For example, to take a look at the graph
of a polytope, just use

polymake my.poly VISUAL_GRAPH

Here are some more visualizations

VISUAL, SCHLEGEL, VISUAL_FACE_LATTICE, and VISUAL_DUAL_GRAPH.
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A.1.3. File Format

Let’s have a brief look at the polymake file format. If you have a look at the
file c4.pyr.poly, you will find a paragraph for each property. The paragraphs
are headed by the property’s name in capital letters, followed by the data. The
VERTICES and POINTS are represented in homogeneous coordinates, where the first
coordinate is used for homogenization. The inequality a0 + a1x1 + . . . + adxd ≥ 0
is encoded as the vector (a0 a1 . . . ad).

To define a polytope with your own V- or H-description you should create a
file that contains a POINTS or INEQUALITIES section.

∆

x0 ≥ 0

x1 ≥ 0

1− x0 − x1 ≥ 0

1

1

Figure A.1. The triangle ∆ and its V- and H-description.

Example. If you want to construct the triangle ∆ (cf. Figure A.1) that is given as

∆ := conv{(0, 0), (0, 1), (1, 0)}

your input file should look as follows (homogeneous coordinates):

POINTS

1 0 0

1 0 1

1 1 0

If you prefer to enter the same example by the inequality description

∆ := {x ∈ R
2 : 1− x0 − x1 ≥ 0, x0 ≥ 0, x1 ≥ 0},

this should be your polymake file:

INEQUALITIES

1 -1 -1

0 1 0

0 0 1

The difference between POINTS and VERTICES is that the former may contain
redundancies. So you should enter POINTS, but ask for VERTICES. Similarly, one
should enter INEQUALITIES and ask for FACETS.
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A.2. The polymake System

The world seen through the eyes of the polymake system consists of objects with
properties. For a given object you may ask for one of its properties and polymake

will compute it. Yet polymake acts only as a framework for the computation,
knowing little about the math involved. The actual computations are delegated to
client programs. The open design, keeping the system and the math independent,
allows for the use of external software as clients. It also makes polymake extremely
flexible with respect to the kind of objects you want to examine. For example the
applications polytope and topaz examine different classes of geometric objects.

polymake clients object

object

object(s)

request for a

property of

an object rule
base

polymake

server property

others

scratch

producing

from

external

software

Figure A.2. Main components of the polymake system.

The polymake system consists of the following three components as illustrated
in Figure A.2:

• The polymake server together with the rule base.

• polymake client programs computing properties and new objects.

• External software, such as the cdd [28] convex hull algorithm or the JavaView

[58] visualization package.

The rule base is a collection of rules, each rule containing a set of input and output
properties and an algorithm (that is a client or external software) which computes
the output properties directly from the input properties. If you request a property of
an object, the server has to determine how to compute the requested property from
the ones which are already known. There might not be an algorithm computing the
requested property directly, so other properties might have to be computed first.
Therefore, the server has to compose a sequence of rules (from the rule base) to be
executed in order to compute the requested property.
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Examples and Exercises

A.1. Construct the d-simplex and the d-cube for d = 3, 4, 5. Visualize the face
lattice of the polytope and its Schlegel diagram (see Section 3.1).

A.2. Construct the cyclic polytopes C3(7) and C4(8). Visualize and check Gale’s
evenness criterion (see Example 2.6). Alternatively, try constructing C4(8)
using the client cyclic_caratheodory. What is the difference?

A.3. Produce the dual polytopes of the polytopes above. Watch out, they have to
be CENTERED. (Check the documentation [31] for the property CENTERED)

A.4. Construct an octahedron using as many different ways as possible.
A.5. Build the bipyramid over a square, truncate both apexes and polarize. What

does the resulting polytope look like?
A.6. Construct the product of a 5-gon and a 7-gon and visualize it.
A.7. Construct a 4-polytope with the pcmi logo as its Schlegel diagram.

A.8. Use the client rand_sphere to create a random polytope by uniformly dis-
tributing 1000 points on the unit 2-sphere, visualize it and compare it to Fig-
ure 1.4. Take a look at its VERTEX_DEGREES and cut off a vertex of maximal
degree.

A.9. Take a 3-polytope and truncate all its vertices. Is the resulting polytope
always simple?

A.10. Truncate the vertices of the 4-dimensional cross polytope, and let polymake
compute the f -vector, and whether the resulting polytope is simple.
Can you justify the results theoretically?

A.11. For a given planar 3-connected graph G containing a triangular face, produce
a 3-polytope with G as its graph (see Section 1.2). Use the client tutte_

lifting.
A.12. Visualize the Schlegel diagrams of the dwarfed_cube that you get by using

different projection facets.
A.13. Visualize the effect of standard constructions (such as truncation, stellar

subdivision) on the Schlegel diagrams of 4-polytopes.
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Algebra und Geometrie/Contributions to Algebra and Geometry, 35 (1994),
pp. 125–129

53. J. Pach and P. K. Agarwal, Combinatorial Geometry, J. Wiley and Sons,
New York, 1995

54. A. Paffenholz, The E-construction applied to products, Webpage with
polymake data files, TU Berlin 2004, http://www.math.tu-berlin.de/

~paffenho/2s2spages.shtml

55. , New polytopes from products, Preprint, TU Berlin, 22 pages, November
2004, arXiv:math.MG/0411092

56. A. Paffenholz and A. Werner, Constructions for 4-polytopes and the
cone of flag vectors, Preprint, TU Berlin, November 2005, 20 pages, http:
//arXiv.org/math/0511751

57. A. Paffenholz and G. M. Ziegler, The Et-construction for lat-
tices, spheres and polytopes, Discrete & Computational Geometry (Billera
Festschrift: M. Bayer, C. Lee, B. Sturmfels, eds.), 32 (2004), pp. 601–624,
http://www.arXiv.org/math.MG/0304492

58. K. Polthier, S. Khadem-Al-Charieh, E. Preuß, and U. Reitebuch,
JavaView visualization software, 1999-2004, http://www.javaview.de
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