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Abstract. We consider a class of random walks introduced by Gessel and
Zeilberger for which the reflection principle can be used to count the number
of k-step walks between two points on a lattice (typically Zn) which stay
within a chamber of a Weyl group. We prove three independent results about
such “reflectable walks”: first, a classification of all such walks; second, many
determinant formulas for walk-numbers and their generating functions; third,
an equality between the walk-numbers and the multiplicities of irreducibles
in the kth tensor power of certain Lie-group representations associated to the
walk-types. Our results apply to the defining representations of the classical
groups, as well as some spin representations of the orthogonal groups.

1 Introduction

The ballot problem, a classical problem in random walks, asks how many
ways there are to walk from the origin to a point (λ1, . . . , λn) ∈ Zn, taking
k unit-length steps in the positive coordinate directions while staying in the
region x1 ≥ x2 ≥ · · · ≥ xn. The solution is known in terms of the hook
length formula for Young tableaux; a combinatorial proof, using a reflection
argument, is given in [16, 18].

In [5], Gessel and Zeilberger consider a more general question, for which
some of the same techniques apply. For certain “reflectable” walk-types, we
want to count the number of k-step walks between two points of a lattice,
staying within a chamber of a Weyl group. The steps must have certain
allowable lengths and directions.

In this paper, we show that this is equivalent to decomposing into ir-
reducibles the kth tensor power of certain representations of reductive Lie
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groups. We classify the reflectable walk-types and their corresponding repre-
sentations. For many cases, we derive determinant formulas for the number
of walks, or equivalently, for the multiplicities of irreducibles in tensor powers.
In particular, our formulas apply to the defining representations of the clas-
sical groups, as well as some spin representations of the orthogonal groups.
Our results are closely related to those obtained by Proctor [11].

2 Reflectable random walks

2.1 Definitions

A walk-type is defined by a lattice L, a set S of allowable steps between lattice
points, and a polygonal cone C to which the walks are confined. Without
affecting the walk problems, we may restrict L and C to the linear span of
S, so that L, S, and C have the same linear span. (We may weight the steps
with the relative probabilities of choosing each, but we will not consider that
case in what follows.)

We will assume C is a Weyl chamber. That is, L, S, C ⊂ Rn; C is defined
by a system of simple roots ∆ ⊂ Rn as

C = {~x ∈ Rn | (α, ~x) ≥ 0 for all α ∈ ∆}; (1)

the orthogonal reflections rα: ~x 7→ ~x − 2(α,~x)
(α,α)

α preserve L and S for all
α ∈ ∆; and the rα generate a finite group W of linear transformations, the
Weyl group.

Example. In the ballot problem, L = Zn, S = {e1 = (1, 0, . . . , 0), . . . , en =
(0, . . . , 0, 1)}, C is defined by the simple roots ∆ = {ei−ei+1 , 1 ≤ i ≤ n−1},
and W is the symmetric group Sn permuting the n coordinates.

Definition. A walk-type (L, S, C) is reflectable if the following equivalent
conditions hold:

1. Any step s ∈ S from any lattice point in the interior of C will not exit
C.

2. For each simple root αi , there is a real number ki such that: (αi, s) =
±ki or 0 for all steps s ∈ S and (αi, λ) is an integer multiple of ki for
all λ ∈ L.
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The reflectability condition guarantees that a walk cannot exit C without
landing on a wall of C at some step.

Example. The walk-type L = Z2, S = {±e1 ± e2}, C = {(x1, x2) | x2 >
x1 > 0} is not reflectable. However, it becomes reflectable if we let C be a
coordinate quadrant, or if we restrict L to be the lattice points (x1, x2) with
x1 + x2 even.

2.2 The theorem of Gessel and Zeilberger

In a reflectable random walk problem, we want to compute bηλ,k, the number
of walks from η to λ of length k which stay in the interior of a Weyl chamber.
(The ballot problem can be converted to this form by starting at the point
(n − 1, n − 2, . . . , 0) instead of the origin, and requiring the coordinates to
remain strictly ordered.)

Let χ(~u) =
∑

s∈S ~us, the generating function for the steps in the formal
monomials u(x1,...,xn) = ux1

1 · · ·uxn
n . (We call this χ because it will later cor-

respond to a character, with weights equal to the permitted steps.) Let cγ,k

denote the number of random walks of length k, with steps in S, from the
origin to γ, but unconstrained by a chamber. Then we have

cγ,k = χ(~u)k
∣∣∣
~uγ

,

where
∣∣∣
~uγ

denotes the coefficient of ~uγ in the polynomial.

The fundamental result of Gessel and Zeilberger [5] is:

Theorem 1 If the walk from η to λ is reflectable, then

bηλ,k =
∑
w∈W

sgn(w)cλ−w(η),k, . (2)

Proof. Every walk from any w(η) to λ which does touch at least one wall
has some last step j at which it touches a wall; let the wall be the hyperplane
perpendicular to αi, choosing the largest i if there are several choices [11].
Reflect all steps of the walk up to step j across that hyperplane; the resulting
walk is a walk from wαi

w(η) to λ which also touches wall i at step j. This
clearly gives a pairing of walks, and since wαi

has sign −1, these two walks
cancel out in (2). The only walks which do not cancel in these pairs are the
walks which stay within the Weyl chamber, and since w(η) is inside the Weyl
chamber only if w is the identity, this is the desired number of walks.
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2.3 Generating functions

It is often natural to study these walks by studying their exponential gener-
ating functions. If the generating function for unconstrained random walks
is hγ(x) =

∑∞
k=0 cγkx

k/k!, then we have

hγ(x) = exp(x χ(~u))
∣∣∣
~uγ

.

Let gηλ(x) =
∑∞

k=0 bηλ,kx
k/k! be the corresponding generating function for

random walks in the Weyl chamber. Then we have:

Corollary 2 With hypotheses as in Theorem 1,

gηλ(x) =
∑
w∈W

sgn(w)hλ−w(η)(x). (3)

As an illustration of the usefulness of exponential generating functions,
suppose the set S of steps can be partitioned into two subsets S1 and S2

orthogonal to each other, and W = W1 × W2 with Wi acting only on Si

and fixing the steps of the other subset, i = 1, 2. Then we can use the
corollary and the properties of the exponential to factor the exponential
generating function: gηλ(x) = g1,η2λ2(x)g2,η2λ2(x), where gi,ηiλi

(x) is the gen-
erating function for the walk with steps Si and η = η1 + η2, λ = λ1 + λ2,
with ηi, λi ∈ SpanR Si.

In particular, if S1 = {0} with W1 trivial, we have gηλ(x) = exg2,ηλ(x).
That is, adding the step 0 to the allowable steps for any random walk corre-
sponds to multiplying the exponential generating function by ex.

3 Decomposition of tensor powers

3.1 Characters

An important combinatorial problem in Lie theory is to determine the num-
ber of times each irreducible representation of a group or algebra occurs in
the k-fold tensor power of a given finite-dimensional representation V . That
is, we wish to determine the positive integers aU,k for which V ⊗k ∼=

⊕
U aU,kU ,

where U runs over irreducible representations. We may let V be a virtual
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representation (a formal difference of representations). We study the case of
a complex reductive group such as GLn(C), a compact real Lie group such
as U(n) or O(n), or the Lie algebra of such a group. (See [1, 3, 6].)

For convenience, we will discuss g, a reductive Lie algebra over C, and a
finite dimensional virtual representation V . We recall some standard facts [6].
We know g possesses a maximal abelian subalgebra, its Cartan subalgebra h;
a root system, which is a certain finite set in h∗ (the linear functions on h);
and a weight lattice Λ in h∗. A Weyl group W defined by the root system acts
on h and h∗. We choose a fundamental Weyl chamber of dominant weights
in the weight lattice.

We define an integrable character of h to be an element of C[h∗], the
formal C-linear combinations of symbols ~uλ for λ in the weight lattice.

Example. For g = gln(C), h is the set of all diagonal matrices; the
root system is {ei − ej, 1 ≤ i, j ≤ n}, where ek gives the kth coordinate
of a diagonal matrix; and the weight lattice is Ze1 + · · · + Zen. W is the
symmetric group Sn permuting the n diagonal entries.

A representation V of such a g is defined up to isomorphism by its char-
acter χV =

∑
λ mV,λ ∈ C[Λ], where

mV,λ = dimC{v ∈ V | hv = λ(h)v for all h ∈ h}.

Characters of g are invariant under the Weyl group, and span the space of
invariants C[Λ]W . In fact the irreducible representations of g are indexed by
dominant weights (or orbits of W on the weight lattice), and their characters
form a basis of C[Λ]W . A direct sum (or tensor product) of representations
corresponds to an ordinary sum (resp. ordinary product) of their characters.

Thus, our problem of decomposing V ⊗k reduces to finding integers aµ,k

such that

χk
V =

∑
µ

aµ,kχµ, (4)

where χµ is the character of the irreducible representation of g with highest
weight µ.

The case µ = 0 corresponds to the trivial representation, so a0,k will be
the dimension of invariants in the kth tensor power of V .

5



3.2 Weyl’s character formula

The character χµ is given by the Weyl Character Formula:

χµ =

∑
w∈W sgn(w)~uw(ρ+µ)

δ
, (5)

where ρ ∈ Λ is the half-sum of the positive roots, and the Weyl denominator
δ is ∑

w∈W

sgn(w)~uw(ρ),

Example. For g = gln(C), we have ρ = (n−1
2

, n−3
2

, . . . , −n+1
2

), and

δ(~u) =
∑

σ

sgn(σ)
n∏

i=1

u
n+1

2
−σ(i)

i = det
n×n

∣∣∣un+1
2
−i

i

∣∣∣ , (6)

a Vandermonde determinant. (We denote uλ1
1 · · ·uλn

n by ~u(λ1,...,λn).)

Now, δχµ is essentially a monomial: i.e., there is only one dominant
weight λ for which ~uλ appears in this expression; and in fact λ = µ + ρ.
Thus, multiplying 4 by δ, we get

aµ,k = δχV (~u)k
∣∣∣
~uµ

(7)

where χ|~uλ denotes the coefficient of ~uλ in the element χ ∈ C[h∗]. Multiplying
out by the terms of δ, we obtain

aµ,k =
∑
w∈W

sgn(w)χV (~u)k
∣∣∣
~uρ+µ−w(ρ)

. (8)

Forming an exponential generating function, we have

fµ(x)
def
=

∞∑
k=0

aµ,k

k!
xk

=
∑
w∈W

sgn(w) exp(xχV (~u))
∣∣∣
~uρ+µ−w(ρ)

. (9)
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3.3 Equivalence of tensor powers and random walks

The right-hand sides of these equations are the same sums of unconstrained
walks as in (2) and (3), with η = ρ, λ = ρ+µ. This gives us a correspondence
between random walks in a Weyl chamber and the decomposition of tensor
powers. In particular, equating the right sides of (8) and (2), and likewise
of (9) and (3), we have the following result.

Theorem 3 Let V be a finite-dimensional representation of a reductive com-
plex Lie algebra g. Let C be a Weyl chamber, S the set of weights of V , and
L some lattice containing S and ρ, the half-sum of the positive roots.

If (L, S, C) defines a reflectable walk-type, then the number bρ,ρ+µ,k of
random walks with k steps from ρ to ρ + µ which stay strictly within the
principal Weyl chamber is equal to the multiplicity aµ,k of the irreducible
with highest weight µ in the kth tensor power of V ; and the corresponding
exponential generating functions gρ,ρ+µ and fµ are equal.

The statement remains valid if we replace g by a connected Lie group
which is reductive or compact.

Specific cases of the theorem are implicitly known. With allowed steps
e1, . . . , en and Weyl group An−1 = Sn (V being the defining representation of
SLn or GLn), the walks correspond to Young tableaux with at most n rows.
Likewise, the steps ±e1, . . . ,±en and the Weyl group Bn (V a representation
of the symplectic group), correspond to up-down tableaux [14]. For relations
with orthogonal tableaux, see [10, 11, 12].

4 Classification

We outline a procedure to list all reflectable walks in a Weyl chamber, sum-
marizing our results in subsection 4.5. For a list of examples, see section
6.

4.1 Maximal lattices

Given a reflectable walk-type (L, S, C) in Rn, with C defined by a system of
simple roots ∆, we can embed L in a “maximal” lattice LS,C as follows. Let
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π0 be the orthogonal projection of Rn onto ∆⊥, and let (αi, s) = ±ki or 0 for
αi ∈ ∆, s ∈ S. Then

LS,C = {~x ∈ Rn | (αi, ~x) ∈ kiZ for all αi ∈ ∆, and π0(~x) ∈ π0(L)}. (10)

(This is maximal among all lattices L′ for which (L′, S, C) is a reflectable
walk-type and for which π0(L

′) = π0(L).) Counting the walks for (L, S, C) is
clearly a special case of the problem for LS,C , so we shall assume L = LS,C ,
choosing an arbitrary lattice for π0(L).

4.2 Classification of chambers

The simple roots ∆ defining C and W may be partitioned into minimal
subsets each orthogonal to the others: ∆ = ∆1q · · · q∆r, with ∆j ⊥ ∆k for
j 6= k. We may then write

C = Rn0 × C1 × · · · × Cr ⊂ Rn0 ⊕ Rn1 ⊕ · · · ⊕ Rnr , (11)

where Rnj = SpanR ∆j, and Rn0 = ∆⊥. Now, according to the classification
of Weyl groups [2, 6], the irreducible factors ∆j ⊂ Rnj and the reflection
groups Wj which they generate must be one of the classical types An, Bn =
Cn, Dn or the exceptional types E6, E7, E8, F4, G2 (the subscript indicating
the rank nj).

4.3 Compatible steps

Given a Weyl group W and chamber C in Rn, we will say that two steps
s1, s2 ∈ Rn are compatible if: for each simple root αi, (αi, s1) and (αi, s2)
have the same absolute value ki, or one of them is 0; and the projections
π0(s1), π0(s2) ∈ ∆⊥ generate a discrete lattice. All the steps in S are compat-
ible with each other if and only if there exists a lattice L such that (L, S, C)
is a reflectable walk.

Let πj be the orthogonal projection from Rn to the irreducible compo-
nent Rnj . Then (L, S, C) is reflectable if and only if all the projections
(πj(L), πj(S), πj(C)), j = 0, . . . , r, are reflectable. This is clear from the
compatibility characterization of reflectability and the discussion of maximal
lattices. Thus it suffices to classify pairs (S, C), where C is a chamber of
one of the irreducible Weyl groups listed above, and S is a W -invariant set
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of mutually compatible steps. (Note that in the component Rn0 with trivial
Weyl group, any walk is reflectable.)

Example. The Weyl group An−1 = Sn acts on Zn by permutations of
the coordinates. The roots of An−1 span hyperplane H of points whose
coordinates sum to 0, the orthogonal complement of which is R(e1+ · · ·+en).
Thus a walk will be reflectable if the projections of the steps onto H give
a reflectable walk and the sums of the coordinates of the steps generate a
discrete subgroup of R.

Now, all s ∈ S must be compatible with their images ws for w ∈ W . (If
this holds, we say s is self-compatible.) This is the main constraint on the
possible S. To see this, we examine the W -images of an arbitrary step.

The most general form of the W -action is as follows. We fix the lengths
of αi in one of the standard ways, and let {ω̌i} ⊂ Rn be the dual basis to
{αi} = ∆ ⊂ Rn, so that s =

∑n
i=1(αi, s)ω̌i. Note that the reflection ri fixes

ω̌j: ri(ω̌j) = ω̌j for i 6= j; and the coefficients of rj(ω̌j) are

(αi, rj(ω̌j)) = δij −
2(αi, αj)

(αi, αi)
. (12)

Thus, the coefficients of rj(ω̌j) are the jth column of the identity matrix
minus the Cartan matrix. That is, ω̌j is transformed under rj by the rule

rj(ω̌j) = −ω̌j +
∑
i6=j

ci,jω̌i, (13)

where ci,j is the number of links connecting the nodes i and j in the Dynkin
diagram of W , provided the arrow is pointed from i to j; and ci,j = 1
otherwise.

4.4 Classification of steps

We now find the self-compatible W -orbits of steps for each irreducible Weyl
group. The reflection law above gives some general restrictions. For instance:
for each W -orbit, consider the representative sdom which lies in the principal
Weyl chamber (i.e., all the ω̌i-coefficients (αi, sdom) ≥ 0). Only one of the
coefficients can be nonzero, since otherwise we can easily find a chain of
reflections generating incompatible steps from sdom.
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If s is any self-compatible step, then the coefficients of ω̌i for i in any
parabolic subgroup of W must define a self-compatible step for that sub-
group. This allows some use of induction on the rank of W . Finally, if s is
any self-consistent step in the case of a Dynkin diagram with a node of order
3, the only i’s such that (αi, s) is nonzero must lie in a parabolic subgroup
whose diagram is linear.

For the classical Weyl groups we supplement the general description of
the W -action by the usual description in terms of permutations and sign
changes in the ei basis.

Example. The symmetric group An−1 acts on Rn−1 ∼= {(x1, . . . , xn) |∑
i xi = 0} ⊂ Rn by permuting the n coordinate vectors ei ; ∆ = {αi = ei−

ei+1 | 1 ≤ i ≤ n−1}; and the ω̌i-coefficients of the W -orbit of s = (x1, . . . , xn)
are (αi, s) = xσ(i) − xσ(i+1), σ ∈ W . Since, for each i, these coefficients are
to stay within {ki, 0,−ki} as σ varies, we conclude that at most two values
may appear among the xi. Assuming s = sdom, x1 ≥ · · · ≥ xn, we find that
s must be a scalar multiple of one of the fundamental weights (or coweights)

ω̌i =
i∑

j=1

ej −
i

n

n∑
j=1

ej, 1 ≤ i ≤ n− 1. (14)

We may check that these self-compatible W -orbits are compatible with each
other (provided they are scaled the same), so we have concluded the classifi-
cation in this case: Up to a uniform dilation, S is any union of the W -orbits
of the fundamental weights.

For the exceptional Weyl groups, we use the ω̌i basis and the general re-
flection law to determine the self-compatible weights. The restrictions above
make the computations easy for G2 and F4; we used the program SimpLie to
exhaust the remaining possibilities for the E series.

4.5 Results of classification

A walk-type (L, S, C) in Rn is reflectable if and only if its orthogonal projec-
tions (πj(L), πj(S), πj(C)) to the irreducible factors of C are reflectable.

The walk-types with irreducible Weyl chamber C and maximal lattice
L = LS,C are as follows. S must be the W -orbit of a dominant self-compatible
step, or a union of such W -orbits which are mutually compatible. We list
the dominant self-compatible steps in the ω̌i-basis (the dual of the simple
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root basis), with step lengths normalized for the most mutual compatibility.
We use the Bourbaki numbering of the simple roots [2, 6], and for the Weyl
group Bn = Cn we compute in the Bn root system.

The zero-step is always self-compatible dominant, and is compatible with
all other steps.

An : ω̌1, . . . , ω̌n. All compatible.

Bn = Cn : ω̌1, ω̌n. Not compatible.

Dn : ω̌1, ω̌n−1, ω̌n. All compatible.

E6 : ω̌1, ω̌6. Compatible.

E7 : ω̌7.

E8, F4, G2 : None.

For the representation-theoretic problems corresponding to these reflect-
able walks, Theorem 3 requires the additional condition that ρ lie in the
lattice. (We use the Killing form for which the square length of the long
roots is 2, so that the coweights equal the weights for simply-laced root sys-
tems.) Except for two cases, the above list gives the unique normalization of
steps for which this occurs.

One exceptional case is the weight ω̌1 of the root system Bn. With an
additional step of 0 added, this corresponds to the defining representation
of SO2n+1. The steps are 0 and ±e1, . . . ,±en, and the maximal lattice is
Zn; but ρ = (2n−1

2
, 2n−3

2
, . . . , 1

2
) is not in this lattice. Thus we cannot solve

this representation-theoretic problem directly as a reflectable random walk:
instead, we must use the indirect technique given in subsection 5.5.

The other case is the weight ω̌n of the root system Cn. The steps are the
2n vectors ±e1 ± e2 · · · ± en, and the maximal lattice is 2D∗

n, the sublattice
of Zn containing points whose coordinates are congruent modulo 2. But
ρ = (n, n − 1, . . . , 1) is not in this lattice if n ≥ 2. Our techniques do not
work for the resulting walks. In any case, for n ≥ 3, the representation-
theoretic problem is not interesting; the nth fundamental representation of
Sp2n has intermediate weights which violate the reflectability condition, and
the virtual representation with weights ±e1±e2 · · ·±en is a complicated sum
of fundamental representations,

For n = 2, the second fundamental representation has the four weights
±e1±e2 and the weight 0, which gives an interesting problem and a walk that
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could be handled by the technique of subsection 5.5. However, this problem
is equivalent to the problem for the defining representation of SO5, using the
isomorphism of the Lie algebras sp4 and so5.

5 Computational techniques

The cases in which we can compute the number of random walks, or its expo-
nential generating function, are those cases in which the generating function
χ(~u) for the steps is either a sum or a product of terms in only one variable,
and some closely related cases, such as SLn from the results for GLn.

In this section, we cover the techniques used to find the formulas. All
of the actual formulas, both for random walks and for decompositions, are
given in Section 6. Also see that section for notations.

The formulas give generating functions which are determinants of Bessel
functions, or individual terms which are determinants of binomial coefficients.
Thus the generating functions are D-finite (that is, each function satisfies
a linear homogenous differential equation with polynomial coefficients); or,
equivalently, the coefficients are P-recursive [13], satisfying a relation

r∑
i=0

pi(k)ak+i = 0

for some polynomials pi.
The Bessel function determinants of this section must clearly be related

to the formulas of Gessel [4].

5.1 The determinant technique

All cases use the same basic technique for converting the formulas in (2)
and (3) into a determinant, with the determinant coming from the sum over
the symmetric group Sn,which is either the whole Weyl group or a subgroup
of it.

The basic example is the case of the Weyl group An−1 = Sn, with steps
allowed in both the positive and negative coordinate directions. In terms of
representation theory, this is the direct sum V ⊕V ∗ of the defining represen-
tation of GLn and its dual. The lattice is Zn.
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Thus, using (3), with the generating function for the steps equal to
∑

(ui+
u−1

i ), the exponential generating function for the number of walks from η to
λ which stay within the Weyl chamber is

gηλ(x) =
∑
σ∈Sn

sgn(σ)
n∏

i=1

(
exp(x(ui + u−1

i ))
∣∣∣
ui

λi−ησ(i)

)
. (15)

This sum over σ can be written as a determinant, which gives

gηλ(x) = det
n×n

∣∣∣exp(x(u + u−1))|uλi−ηj

∣∣∣ (16)

And, finally, we can simplify the terms in this determinant. We have

exp(x(u + u−1)) =
∞∑

k=0

xk

k!

k∑
j=−k

(
k

j

)
uk−2j

=
∞∑

m=−∞

um

∞∑
k=0

xk

k!

(
k

(k + m)/2

)

=
∞∑

m=−∞

um

∞∑
k=0

x2k+m

k!(k + m)!

=
∞∑

m=−∞

umIm(2x),

where Im is the hyperbolic Bessel function of the first kind of order m [17].
Thus the determinant above becomes

gηλ(x) = det
n×n

∣∣Iλi−ηj
(2x)

∣∣ . (17)

For the representation-theoretic problem of Theorem 3, we have η = ρ,
where ρi = (n + 1)/2− i. (If n is even, this is not in our lattice Zn, but we
can translate everything by subtracting 1

2
from all the coordinates and get

an equivalent random walk.) For the representation with highest weight µ,
we have λ = ρ + µ, which gives the decomposition formula

fµ(x) = det
n×n

|Iµi−i+j(2x)| . (18)
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This can also be used to give decomposition formulas for the adjoint
representation of GLn. We know that V ⊗V ∗ is the direct sum of the adjoint
representation with one copy of the trivial. Also, we have

(V ⊕ V ∗)⊗k =
⊕

j

(
k

j

)
V ⊗j ⊗ V ∗⊗(k−j) (19)

The weights of V ⊗j ⊗V ∗⊗(k−j) all have total weight 2j− k, so only represen-
tations with

∑
µi = 2j − k can appear in these factors. Thus, in particular,

the tensor powers of V ⊗ V ∗ appear only in the factor with k = 2j, and the
jth tensor power appears

(
2j
j

)
in the 2jth tensor power of V ⊕ V ∗.

Thus, if we let bk be the multiplicity of the representation U , whose
highest weight has total weight 0, in the kth tensor power of V ⊗ V ∗, we get

dµ(x2)
def
=

∞∑
k=0

bkx
2k

(k!)2
= det

n×n
|Iµi−i+j(2x)| . (20)

We could rewrite this generating function as dµ(x). However, it is not a
standard exponential generating function, because the denominator is (k!)2

instead of k!. This prevents us from directly obtaining the decomposition
function for the adjoint representation from this generating function; if we
had the exponential generating function, we would just multiply by e−x. We
can still calculate the function term by term, using (20) to calculate the first
k coefficients of dµ.

We can also apply the determinant technique to (2). Consider the case
in which the steps are all the diagonals in the lattice; that is, the 2n vectors
±1

2
e1 · · · ± 1

2
en. The lattice is thus D∗

n, the weight lattice of Dn, containing
points whose coordinates are all integers or all half-integers. The generating
function for the steps is∑

εi=±1

n∏
i=1

u
εi/2
i =

n∏
i=1

(
u

1/2
i + u

−1/2
i

)
. (21)

In the previous case, with steps in the coordinate directions, the generating
function for the steps was a sum of terms in the separate ui, and thus its
exponential was a product of such terms. Here, the function itself is a product
of terms in the separate ui, so there is no need to apply the exponential;
instead, we can compute the bηλ,k explicitly.
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We can get the formula for bηλ,k from (2).

bηλ,k =
∑
σ∈Sn

sgn(σ)
n∏

i=1

(
(u

1/2
i + u

−1/2
i )k

∣∣∣
u

λi−ησ(i)
i

)
. (22)

Again, we write the sum over σ as a determinant. Since the coefficient of
ut in (u

1/2
i + u

−1/2
i )k is

(
k

(k/2)+t

)
, this gives us

bηλ,k = det
n×n

∣∣∣∣( k
k
2

+ λi − ηj

)∣∣∣∣ (23)

The representation-theoretic problem is not as interesting here, because
the representation of GLn with weights

∏
u±1

i is a complicated virtual rep-
resentation, not a natural one.

5.2 Projection from Zn onto An−1

The hook-length formulas (32) and (33) given in Section 6 for walks on
Zn, can also be used for the corresponding walks on the lattice An−1 =
{(λ1, . . . , λn) |

∑
i λi = 0, λi ≡ λj (mod 1)}. The steps project to steps

with one coordinate n−1
n

and the others − 1
n
, the weights of the defining

representation of SLn.
Let |µ| = µ1 + · · · + µn denote the total weight of the partition µ =

(µ1, . . . , µn). If k = tn + |λ| − |η| for some integer t, then a walk of length

k with steps in the coordinate directions, starting at η, can end at λ̂
def
=

λ + (t, t, . . . , t). Thus bηλ,k will be equal to the value given for bηλ̂,k by (32).
Likewise, if k = tn + |µ|, the multiplicity of the representation with highest
weight µ in the kth tensor power for SLn will be the multiplicity of the
representation with highest weight µ + (t, t, . . . , t) in the kth tensor power
for GLn, as given by (33).

5.3 The multilinearity technique

In other cases, we get a determinant of a sum or difference of terms, because
the Weyl group is not just Sn but a semidirect product of Sn and some
coordinate changes.
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The most natural example is the problem of random walks on Zn with
the Weyl group Bn = Cn and steps in the positive or negative coordinate
directions; this corresponds to the decomposition of tensor powers of the
defining representation of Sp2n.

Applying (3) for random walks, we get

gηλ(x) =
∑
w∈W

sgn(w)
n∏

i=1

exp(x(ui + u−1
i ))

∣∣∣
~uλ−w(η)

. (24)

We now write the element w as a product of a σ in the symmetric group and
an ε which negates some of the coordinates ti, thus converting ui to u−1

i . We
get

gηλ(x) =
∑
σ∈Sn

∑
εi=±1

sgn(σ)
n∏

i=1

(
εi exp(x(ui + u−1

i ))
∣∣∣
u

λi−εiησ(i)
i

)
. (25)

Using the multilinearity of the products in the determinant, we can again
write the sum over σ as a determinant, with separate terms for εi = 1 and
εi = −1 in each entry, and these terms are again the hyperbolic Bessel
functions, so we have

gηλ(x) = det
n×n

∣∣Iλi−ηj
(2x)− Iλi+ηj

(2x)
∣∣ . (26)

In the decomposition for Sp2n, we substitute ηi = n + 1 − i, and λ = µ + ρ
as usual.

The same technique also applies, using (2) instead, for the diagonal walk
with Weyl group Bn = Cn; this corresponds to the spin representation of
SO2n+1.

5.4 The splitting technique

The Weyl group Dn does not lend itself directly to the multilinearity tech-
nique which we used for Bn. We need to use a trick, essentially turning the
problem into a sum over Bn.

The random walk on the lattice D∗
n = Zn ∪ (Z + 1

2
)n with steps in the co-

ordinate directions has two orbits, the points with all integer coordinates and
the points with all half-integer coordinates. The computations are valid if η
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and λ are in the same orbit; otherwise, the number of walks will obviously be
0. The representation-theory problem is the decomposition of tensor powers
of the defining representation of SO2n.

The formula for random walks is again (24), but when we write w = σε,
only those ε with an even number of sign changes occur. We thus take the
sum over all ε, but with an additional factor of (1 +

∏
εi)/2; this factor is 1

when there are an even number of sign changes and 0 when there are an odd
number. We treat the 1/2 and the (

∏
εi)/2 terms separately, which gives

gηλ(x) =
1

2

[∑
σ∈Sn

∑
εi=±1

sgn(σ)
n∏

i=1

(
εi exp(x(ui + u−1

i ))
∣∣∣
u

λi−εiησ(i)
i

)

+
∑
σ∈Sn

∑
εi=±1

sgn(σ)
n∏

i=1

(
exp(x(ui + u−1

i ))
∣∣∣
u

λi−εiησ(i)
i

)]
. (27)

The first term in this sum carries through just as in (25), using the determi-
nant technique. The second term, with no factor of εi, can be computed by
the same method; instead of the minus sign between the two terms in each
entry of the determinant (26), we get a plus sign.

A similar argument works for the diagonal walk on D∗
n, corresponding to

the direct sum of the two spin representations of SO2n.

5.5 The subgroup technique

Although D∗
n is the weight lattice of SO2n+1, the techniques we used for the

defining representations of Sp2n and SO2n cannot be applied directly to find
an equivalent random walk, because the ρ is not in the maximal lattice Zn

for the reflectable walk. However, Dn has index 2 in Bn, Bn is generated by
Dn and the reflection in the last coordinate, and ρ is now in the maximal
lattice D∗

n.
Thus the sum (9) over Bn is equal to

fµ(x) =
∑

w∈Dn

sgn(w)
[
exp(xχV (~u))

∣∣∣
~uρ+µ−w(ρ)

− exp(xχV (~u))
∣∣∣
~uρ+µ−w(ρ′)

]
.

(28)
where ρ′ is obtained from ρ by negating the last coordinate and then applying
w. This is a difference of two reflectable random walks; note that χV here
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is 1 +
∑

(ui + u−1
i ), so the exponential generating functions fµ(x) will be

ex times the corresponding functions for SO2n with the same lattice. With
λ = µ + ρ as usual, we have fµ(x) = gηλ(x)− gρ′λ(x).

We can thus compute the generating function for SO2n+1 as a sum of
these two functions. However, this is a somewhat indirect argument; we
wind up computing a difference of two walks and then adding them together.
To actually compute the formulas, it is easier to work directly from (9), not
bothering to convert to reflectable random walks in Weyl chambers and then
back. We can just use the determinant and multilinearity techniques to get
the single determinant,

fµ(x) = ex det
n×n

∣∣∣Iµi+(n+ 1
2
−i)−(n+ 1

2
−j)(2x)− Iµi+(n+ 1

2
−i)+(n+ 1

2
−j)(2x)

∣∣∣ . (29)

The subgroup technique may also be useful for other non-reflectable ran-
dom walks which become reflectable when we use a smaller Weyl group. For
example, the seven-dimensional representation of G2 does not give a reflect-
able random walk with Weyl group G2, but it gives a difference of two such
walks with Weyl group A2. Our methods do not work to analyze the resulting
walks.

We could use the subgroup technique by considering An−1 as a subgroup of
Bn; this would give us 2n simple determinants of the form (16), corresponding
to the 2n choices of plus or minus signs in the n columns of (26). We could
get similar results for the diagonal walk, or the group Dn.

5.6 The parity technique for the odd-dimensional or-
thogonal group

The decomposition formulas for SO2n+1 can be used to give decompositions
for O2n+1. Every irreducible representation Uµ of SO2n+1 corresponds to two
representations U±

µ of O2n+1, with U+
µ taking the transformation −1 to the

identity and U−
µ taking it to −1. Since the defining representation of O2n+1

preserves the determinant, the representation U+
µ can occur only in even

tensor powers, and U−
µ can occur only in odd tensor powers. Thus we have

f±µ (x) =
1

2
(fµ(x)± fµ(−x)) .

18



The formula for fµ(−x) contains the determinant

det
n×n

∣∣∣Iµi+(n+ 1
2
−i)−(n+ 1

2
−j)(−2x)− Iµi+(n+ 1

2
−i)+(n+ 1

2
−j)(−2x)

∣∣∣ . (30)

Since Im(2x) is even if m is even and odd if m is odd, we can easily convert
this back to a determinant of Im(2x). If we replace −2x by 2x, this changes
the sign of the second term if µi+i+j is even, and of the first term if µi+i+j
is odd. In the resulting matrix, we can then negate column j if j is even,
and row i if µi + i is even, getting

(−1)
P

µi det
n×n

∣∣∣Iµi+(n+ 1
2
−i)−(n+ 1

2
−j)(2x) + Iµi+(n+ 1

2
−i)+(n+ 1

2
−j)(2x)

∣∣∣ . (31)

From this, we can get the decomposition formula for O2n+1 by adding this
to or subtracting it from (29).

The parity argument also works for the spin representations of O2n+1.
For the spin representation which preserves the determinant, we again have
that odd tensor powers presevre the determinant, while even tensor powers
do not. O2n+1 also has another spin representation which takes −1 to the
identity; all tensor powers of this representation take −1 to the identity.

6 Formulas

We now present the formulas obtained by using the techniques of the previous
section, broken down by Weyl group. For each random walk, we list the
following information:

The Weyl group W , and corresponding Lie groups G.
The inequalities defining the Weyl chamber C in Rn.
The set S of steps, in the usual basis e1, . . . , en of Rn.
The maximal lattice LS,C . The lattices occurring are Zn, An−1 =

{(λ1, . . . , λn) ∈ Zn |
∑

i λi = 0}, and D∗
n = Zn ∪ (Z + 1

2
)n.

The representation V of G whose tensor powers correspond to the random
walk.

Formulas for bηλ,k, the number of k-step walks in C from η to λ, and the

exponential generating function gηλ(x) =
∑∞

k=0
bηλ,k

k!
xk.

Formulas for aµ,k = bρ,ρ+µ,k, the multiplicity of the irreducible µ in the kth
tensor power of the representation V of G corresponding whose weights are
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the steps in S, and the exponential generating function fµ(x) =
∑∞

k=0
aµ,k

k!
xk.

The functions are usually given in terms of the hyperbolic Bessel func-
tions [17]

Im(2x) =
∞∑

k=0

x2k+m

k!(k + m)!
.

The techniques from Section 5 used to produce the formulas.
In some cases, there is another representation of a Lie group which does

not lead directly to a reflectable random walk problem but can be reduced to
one; such problems are listed as “Related representation”. In each case,
we refer to the specific techniques, which are listed in the previous section
with examples.

6.1 Weyl group An−1

Lie groups GLn, Un, SLn, SUn

Weyl chamber: x1 > x2 > · · · > xn.

Steps: e1, . . . , en

Lattice: Zn.
Representation: Defining representation of GLn or Un.
Techniques used: Determinant, then use matrix techniques to get the

hook-length formulas [3, 9].
Random-walk formula: bηλ,k =number of standard skew tableaux of shape

λ′\η′, where k = |λ| − |η|,

λ− λ′ = η − η′ =
1

2
(n− 1, n− 3, · · · , 1− n).

The formula is

bηλ,k = Sλ′\η′
∣∣∣
x1x2···xk

= k!
∏

i,j∈λ′\η′

1

hij

, (32)

Decomposition formula: aµ,k =number of standard Young tableaux of
shape µ, where k = |µ|.

aµ,k = Sµ

∣∣∣
x1x2···xk

= k!
∏
i,j∈µ

1

hij

, (33)

where hij is the hook of the square (i, j) in the Young diagram for µ.
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Steps: e1 − v, . . . , en − v, where v = 1
n

∑n
j=1 ej

Lattice: An−1.
Representation: Defining representation of SLn or SUn.
Techniques used: Project the lattice Zn onto An−1.
Random-walk formula: bρ+(t,t,...,t),λ,k as given by (32), where k = tn +

|λ| − |η|.
Decomposition formula: aµ+(t,t,...,t),k as given by (33), where k = tn + |µ|.

Steps: ±e1, . . . ,±en

Lattice: Zn.
Representation: Direct sum of defining and dual representations for GLn

or Un.
Techniques used: Determinant.
Random-walk exponential generating function:

gηλ(x) = det
n×n

∣∣Iλi−ηj
(2x)

∣∣ . (34)

Decomposition exponential generating function:

fµ(x) = det
n×n

|Iµi−i+j(2x)| . (35)

Related representation: Adjoint representation of GLn or Un.
Decomposition doubly-exponential generating function for direct sum of

the adjoint and trivial representations (see subsection 5.1):

dµ(x)
def
=

∞∑
k=0

bkx
k

(k!)2
= det

n×n

∣∣Iµi−i+j(2
√

x)
∣∣ . (36)

Steps: ±1
2
e1 ± 1

2
e2 · · · ± 1

2
en (2n vectors)

Lattice: D∗
n.

Techniques used: Determinant.
Random-walk formula:

bηλ,k = det
n×n

∣∣∣∣( k
k
2

+ λi − ηj

)∣∣∣∣ (37)

The representation-theoretic problem is not interesting here.
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6.2 Weyl group Bn = Cn

Lie groups Sp2n, SO2n+1, and O2n+1

Weyl chamber: x1 > x2 > · · · > xn > 0.

Steps: ±e1, . . . ,±en

Lattice: Zn.
Representation: Defining representation for Sp2n (see [14] for related re-

sults).
Techniques used: Determinant, multilinearity.
Random-walk exponential generating function:

gηλ(x) = det
n×n

∣∣Iλi−ηj
(2x)− Iλi+ηj

(2x)
∣∣ . (38)

Decomposition exponential generating function:

fµ(x) = det
n×n

∣∣Iµi+(n+1−i)−(n+1−j)(2x)− Iµi+(n+1−i)+(n+1−j)(2x)
∣∣ . (39)

Steps: ±e1, . . . ,±en

Lattice: D∗
n.

Representations: Defining representations of SO2n+1 and O2n+1.
Although the weights and Weyl group are the same in the case above,

we do not have ρ in the lattice as required by Theorem 3. We can use the
Weyl group Dn to get a reflectable walk, and thus the formula is given in
subsection 6.3.

Steps: ±1
2
e1 ± 1

2
e2 · · · ± 1

2
en

Lattice: D∗
n.

Techniques used: Determinant, multilinearity.
Representation: Spin representation of SO2n+1.
Random-walk formula:

bηλ,k = det
n×n

∣∣∣∣( k
k
2

+ λi − ηj

)
−

(
k

k
2

+ λi + ηj

)∣∣∣∣ . (40)
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Decomposition formula:

aµ,k = det
n×n

∣∣∣∣( k
k
2

+ µi + (n + 1
2
− i)− (n + 1

2
− j)

)
−(

k
k
2

+ µi + (n + 1
2
− i) + (n + 1

2
− j)

)∣∣∣∣. (41)

Related representation: Spin representations of O2n+1.
Additional technique used: Parity.
Decomposition formula: For the spin representation which takes −1 to

the identity, the formula above is valid if the representation µ takes −1 to
the identity. For the spin representation which takes −1 to itself, the above
formula is valid if the representation µ takes −1 to itself for k odd, and to
the identity for k even. In the other cases, aµ,k = 0.

6.3 Weyl group Dn

Lie group SO2n

Defining representations of SO2n+1 and O2n+1

Weyl chamber: x1 > x2 > · · · > xn, xn−1 > −xn.

Steps: ±e1, . . . ,±en

Lattice: D∗
n.

Techniques used: Determinant, multilinearity, splitting.
Representation: Defining representation of SO2n (see [7] for related re-

sults).
Random-walk exponential generating function (for λi ≡ µi (mod 1);

clearly 0 otherwise):

gηλ(x) =
1

2

[
det
n×n

|Iλi−ηi
(2x)− Iλi+ηi

(2x)|

+ det
n×n

|Iλi−ηi
(2x) + Iλi+ηi

(2x)|
]
. (42)

Decomposition exponential generating function (for µi ∈ Z):

fµ(x) =
1

2
det
n×n

∣∣Iµi+(n−i)−(n−j)(2x) + Iµi+(n−i)+(n−j)(2x)
∣∣ . (43)
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(The first column of the other determinant is 0.)

Related representation: Defining representation of SO2n+1 (see [7, 10,
15] for related results). This requires that 0 be added to the list of steps,
since it is a weight of the representation.

Additional technique used: Subgroup (or work directly from (9), don’t
use reflectable random walks, and use determinant and multilinearity tech-
niques).

Decomposition exponential generating function:

fµ(x) = ex det
n×n

∣∣∣Iµi+(n+ 1
2
−i)−(n+ 1

2
−j)(2x)− Iµi+(n+ 1

2
−1)+(n+ 1

2
−j)(2x)

∣∣∣ . (44)

Related representation: Defining representation of O2n+1.
Additional technique used: Parity. (See subsection 5.6 for the f±µ nota-

tion.)
Decomposition exponential generating function:

f±µ (x) =

1

2
(fµ(x)± fµ(−x))

=
1

2

[
ex det

n×n

∣∣∣Iµi+(n+ 1
2
−i)−(n+ 1

2
−j)(2x)− Iµi+(n+ 1

2
−i)+(n+ 1

2
−j)(2x)

∣∣∣ (45)

± (−1)
P

µie−x det
n×n

∣∣∣Iµi+(n+ 1
2
−i)−(n+ 1

2
−j)(2x) + Iµi+(n+ 1

2
−i)+(n+ 1

2
−j)(2x)

∣∣∣].
Steps: ±1

2
e1 ± 1

2
e2 · · · ± 1

2
en

Lattice: D∗
n.

Techniques used: Determinant, multilinearity, splitting.
Representation: Sum of the two spin representations of SO2n.
Random-walk formula:

bηλ,k =
1

2

[
det
n×n

∣∣∣∣( k
k
2

+ λi − ηj

)
−

(
k

k
2

+ λi + ηj

)∣∣∣∣
+ det

n×n

∣∣∣∣( k
k
2

+ λi − ηj

)
+

(
k

k
2

+ λi + ηj

)∣∣∣∣]. (46)
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Decomposition formula:

aµ,k =
1

2
det
n×n

∣∣∣∣( k
k
2

+ µi + (n− i)− (n− j)

)
+

(
k

k
2

+ µi + (n− i) + (n− j)

)∣∣∣∣ .

(47)
(The first column of the other determinant is 0.)
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