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Chapter 1

Set, Relations and Functions

1.1 Logic

In this section we will provide an informal discussion of logic. A statement is a sentence which is
either true or false, for example

(1) 1+1=2
(2) /2 is a rational number.
(3) 7 is a real number.

(4) Exactly 1323 bald eagles were born in 2000 BC,

all are statements. Statement and are true. Statement is false. Statement is probably
false, but verification might be impossible. It nevertheless is a statement.

Let P and ) be statements.

“Pand Q)7 is the statement that P is true and @ is true. We illustrate the statement P and @)
in the following truth table

P|Q|PandQ
T|T T
T|F F
F|T F
F|F F

“Por Q" is the statement that at least one of P and @ is true:
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6 CHAPTER 1. SET, RELATIONS AND FUNCTIONS

P|Q|PorQ@
T|T T
T|F T
F|T T
F|F F

So “P or )7 is false exactly when both P and Q are false.

“not-P” (pronounced ‘not P’ or ‘negation of P’) is the statement that P is false:

P | not-P
T F
F T

So not-P is true if P is false. And not-P is false if P is true.

“P = @” (pronounced “P implies )”) is the statement “ If P is true, then @ is true”:

P=Q

IR B BB
N 5 5|0

F

SHCRUIERE|

Note here that if P is true, then “P = @ ” is true if and only if @Q is true. But if P is false, then

“P = (" is true, regardless whether @ is true

or false. Consider the statement “ @ or not-P” :

P | Q@ |not-P | Q ornot-P
T|T F T
T|F F F
F|T T T
F|F T T

(%) ”(@Q or not-P” is true if and only "P = Q" is true.
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[43 2

=" in terms of the operators ”

This shows that one can express the logical operator not-"
and “or”.
“P <= @Q” (pronounced “P is equivalent to Q") is the statement that P is true if and only if @

is true.:

PlQ|P=Q
T|T T
T|F F
F|T F
F|F T

So P < (@ is true if either both P and @) are true, or both P and () are false. Hence

(%%) "P <= Q" is true if and only (P and Q) or (not-P and not-Q)” is true.

To show that P and @ are equivalent one often proves that P implies @) and that @ implies P.
Indeed the truth table

PlQIP=Q|Q=P|(P=Q)and(Q=P)
T\|T T T T
T|F F T F
F|T T F F
F | F F T T
shows that
( % *) "P <= ()7 is true if and only "(P= Q) and (Q = P)” is true.

Often, rather than showing that a statement is true, one shows that the negation of the statement
is false (This is called a proof by contradiction). To do this it is important to be able to determine
the negation of statement. The negation of not-P is P:

P | not-P | not-(not-P)

T F T
F T F

The negation of ” P and Q” is ” not-P or not-Q”:
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P | Q| Pand Q@ | not-(Pand Q) | not-P | not-Q | not-P or not-Q
T\|T T F F F F
T|F F T F T T
F|T F T T F T
F|F F T T F T

The negation of 7P or Q” is ” not-P and not-Q”:

P|Q|PorQ |not-(Por@Q) | not-P | not-Q | not-P and not-Q
T|T T F F F F
T|F T F F T F
F|T T F T F F
F|F F T T F T

The statement “not-QQ = not-P” is called the contrapositive of the statement “P =— Q7. It
is equivalent to the statement “P — Q”:

Pl Q|P=—Q | not-Q | not-P | not-Q = not-P
T|T T F F T
T|F F T F F
F|T T F T T
F|F T T T T

The statement “ not-P <= not-@Q” is called the contrapositive of the statement “P < Q7. It
is equivalent to the statement “P «<— Q”:

Pl Q| P Q| not-P | not-Q | not-P <= not-Q
T|T T F F T
T|F F F T F
F|T F T F F
F|F T T T T
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The statement “QQ == P” is called the converse of the statement “ P = )”. In general the
converse is not equivalent to the original statement. For example the statement if x = 0 then x is an
even integer is true. But the converse (if = is an even integer, then x = 0) is not true.

Theorem 1.1.1 (Principal of Substitution). Let ®(x) be formula involving a variable x. For an
object d let ®(d) be the formula obtained from ®(x) by replacing all occurrences of x by d. If a and
b are objects with a = b, then ®(a) = ®(b).

Proof. This should be self evident. For an actual proof and the definition of a formula consult your
favorite logic book. O

Example 1.1.2. Let ®(z) =22 +3 -z +4.
If a =2, then

a*+3-a+4=2+3-2+4
Notation 1.1.3. Let P(z) be a statement involving the variable x.
(a) “for all z : P(z)” is the statement that for all objects a the statements P(a) is true. Instead
of “for all z : P(x)” we will also use Na : P(x)”, "P(x) is true for all x”, “P(x) holds for

all 7 or similar phrases.

(b) ‘there exists z: P(x)” is the statement there exists an object a such that the statements P(a)

is true. Instead of “there exists x: P(x)” we will also use ‘Iz : P(x)”, "P(x) is true for some

x”, “There exists x with P(x)” or similar phrases.

Example 1.1.4. “for all z: z + x = 22" is a true statement.
“for all x : 22 =27 is a false statement.
“there exists = : 22 = 27 is a true statement.
“IJg: 2% =2 and z is an integer” is false statement

Notation 1.1.5. Let P(z) be a statement involving the variable x.

(a) “There exists at most one x: P(x)” is the statement

for all z : for all y: P(z)and P(y) =— uz=y

(b) “There exists a unique x : P(x)” is the statement

there exists x : for all y: P(y) <— wy==x
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Example 1.1.6. “There exists at most one z : (22 = 1 and z is a real number)” is false since 1% = 1
and (-1)2=1, but 1+ -1.

“There exists a unique z : (2% = =1 and « is a real number)” is true since 2 = -1 is the only
element in R with 23 = 1.
“There exists at most one z : (22 = —1 and z is a real number)” is true, since there does not

exist any element x in R with 22 = —1.
“There exists a unique z : (22 = —1 and z is a real number)” is false, since there does not exist
any element z in R with 22 = —1.

Theorem 1.1.7. Let P(x) be a statement involving the variable x. Then

(there exists z : P(z)) and (there exists at most onez : P(x))

if and only if
there exists a uniquez : P(z)

Proof. Consult in the appendix for the proof. O

Exercises 1.1:
#1. Convince yourself that each of the statement in [A.T.T] are true.

#2. Use a truth table to verify the statements LR 17, LR 26, LR 27 and LR 28 in[A.T ]

1.2 Sets

First of all any set is a collection of objects.

For example
Z:={...,-4,-3,-2,-1,-0,1,2,3,4,...}

is the set of integers. If S is a set and x an object we write x € .S if x is a member of S and = ¢ S if
x is not a member of S. In particular,

(*) For all z exactly one of x€S and x¢S holds.

In other words:

for all x : ¢S < not-(xebl)

Not all collections of objects are sets. Suppose for example that the collection B of all sets is a
set. Then B € B. This is rather strange, but by itself not a contradiction. So lets make this example
a little bit more complicated. We call a set S nice if S ¢ S. Let D be the collection of all nice sets
and suppose D is a set.

Is D a nice set?
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Suppose that D is a nice set . Since D is the collection of all nice sets, D is a member of D. Thus
D e D, but then by the definition of nice set, D is not nice set.

Suppose that D is not nice set. Then by definition of a nice set we have that D € D. Since D is
the collection of nice sets, this means that D is nice.

We proved that D is nice set if and only if D is not nice set. This of course is absurd. So D
cannot be a set.

Theorem 1.2.1. Let A and B be sets. Then

(AzB) — (forallx: (weA):»(xeB))

Proof. Naively this just says that two sets are equal if and only if they have the same members. In
actuality this turns out to be one of the axioms of set theory. O

Definition 1.2.2. Let A and B be sets. We say that A is subset of B and write A< B if
for all x : (reA) = (z€B)
In other words, A is a subset of B if all the members of A are also members of B.

Theorem 1.2.3. Let A and B sets. Then A= B if and only if AC B and B c A.
Proof.

AcBand B A
forallz: (reA=—=zeB)and(ze B=—= 1€ A) —definition of subset

—
«— forallz: re A< xeB

JALYLRIY) : (P = Q) and (Q = P)) = (P +=Q)

— A=8B -z
O
Theorem 1.2.4. Let t be an object. Then there exists a set, denote by {t} such that
for all z: re{t} <— xz=t
Proof. This is an axiom of Set Theory. O

Theorem 1.2.5. Let S be a set and let P(x) be a statement involving the variable x. Then there
exists a set, denoted by {s € S| P(s)} such that

for all z : re{seS|P(s)} <= z€eS and P(x)

Proof. This follows from the so called replacement axiom in set theory. O
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Note that an object ¢ is a member of {s € S | P(s)} if and only if ¢ is a member of S and the
statement P(t) is true.
Example 1.2.6.
{zeZ|z®=1}={1,-1}.
{reZ|xz>0} is the set of positive integers.
Notation 1.2.7. Let S be a set and P(x) a statement involving the variable x.

(a) “for all z€S:P(x)” is the statement

forallz: zeS=— P(x)

(b) “there exists x € S: P(z)” is the statement

there exists x: x €S and P(x)

Example 1.2.8. (1) “forallzeR: 22> 0" is a true statement.
(2) “there exists z € Q: 22 = 2”7 is a false statement.

Theorem 1.2.9. Let S be a set and let ®(x) be a formula involving the variable x such that ®(s)
is defined for all s in S. Then there exists a set, denoted by {®(s)|s e S} such that

for all x : ze{P(s)|seS} — there exists s€ .S: x = ®(s)
Proof. This also follows from the replacement axiom in set theory. O

Note that the members of {®(s) | s € S} are all the objects of the form ®(s), where s is a member
of S.

Example 1.2.10.
{2z |z €Z} is the set of even integers

{2 |z e{-1,2,5}} = {-1,8,125}

We now combine the two previous theorems into one:

Theorem 1.2.11. Let S be a set, let P(x) be a statement involving the variable x and let ®(x)
a formula such that ®(s) is defined for all s in S for which P(s) is true. Then there exists a set,

denoted by {fb(s) ’ se S and P(S)} such that

for all = : x € {<I>(s) | se S and P(s)} <= there exists s€S': (P(s) and z = (I)(S))
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Proof. Define

(+) {®(s) | se 5 and P(s)} = {@(s)) | s e {re S| P()}}

See for a formal proof that this set has the required properties.
O

Note that the members of {®(s) | s € S and P(s)} are all the objects of the form ®(s), where s
is a member of S for which P(s) is true.

Example 1.2.12.

{2n|neZandn®=1}={2n|ne{seZ|s*=1}} ={2n | ne{l,-1}}={2,-2}

{-z|xeRand z >0} is the set of negative real numbers
Theorem 1.2.13. Let A and B be sets.

(a) There exists a set, denoted by Au B and called ‘A union B’, such that

for all = : zr€eAUB <= gxecAorxeB

(b) There exists a set, denoted by An B and called ‘A intersect B’, such that

for all z: reANB << gxcAandzxzeB

(¢) There exists a set, denoted by AN B and called ‘A removed B’, such that

for all x: zeANB << zecAandz¢B
(d) There ezists a set, denoted by @ and called ‘empty set’, such that

for all = : T ¢

(e) Let a and b be objects, then there exists a set, denoted by {a,b}, that

for all x : re{a,b} <= x=aorx=>
Proof. @ This is another axiom of set theory.
() Applying with P(z) being the statement “z € B” we can define

AnB:={aecA|ac B}
Then for all z:
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reAnB
xe{aecA|laeB} - definition of AnB
reA and xe€ B - Theorem [[.2.5

S
<

Applying with P(x) being the statement “z ¢ B” we can define

ANB:={acAl|at¢ B}
Then for all z:

reANB
— xe{acAla¢ B} — definition of AN B
— xeA and z¢B - Theorem [1.2.5

@ One of the axioms of set theory implies the existence of a set D. Then we can define

g:=D~D
Then for all z:
reyd

rzeDND — definition of @
xeD and x¢D —(d

<
<

The latter statement is false and so = ¢ @ for all x.

Define {a,b} := {a} U {b}. Then

x € {a,b}
< we{aju{b} - definition of {a,b}
<~ zefa}orze{d} —(q)
~— z=aorxz=b 124

Exercises 1.2:
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#1. Let A be a set. Prove that @ ¢ A.
#2. Let A and B be sets. Prove that An B =Bn A.
#3. Let a,b and ¢ be objects. Show that there exists a set A such that

for all = : reA <= (r=aorx=b)orx=c
#4. Let A and B be sets. Prove that
(a) AcAuB.
(b) AnBcA.
(¢) ANBcA.

#5. Let A, B and C be sets. Show that there exists a set D such that

for all = : xeD <= (reAorxeB)andux¢C.
#6. List all elements of the following sets:
(a) {xeQ|z?-32+2=0}.
(b) {zeZ]|2?<5}).
(c) {23 |z €Z and 22 < 5}.

1.3 Relations and Functions

Definition 1.3.1. Let a, b and c be objects.

(a) (a,b):={{a},{a,b}}. (a,b) is called the (ordered) pair formed by a and b.

(b) (a,b, c) = ((a, b),c). (a,b,c) is called the (ordered) triple formed by a,b and c.
Theorem 1.3.2. Let a,b,c,d,e and f be objects.

(a) ((a,b) = (e, d)) <~ (a =cand b= d).

(b) ((a,b,c):(d,e,f)) — ((azdandb:e) andc=f)

Proof. @): See Exercise 1.3
®

(a,b,¢) = (d,e, f)
<~ ((a,b),c)=((d,e),f) - definition of triple
< (a,b)=(d,e) and(c,f) - Part () of this theorem
< (a=dandb=e)and e=f - Part (a]) of this theorem

15
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Theorem 1.3.3. Let A and B be sets. Then there exists a set, denoted by A x B, such that

reAxB <= there exist a € A and b € B with x = (a,b)
Proof. This can be deduced from the axioms of set theory. O

Example 1.3.4. Let A={1,2} and B ={2,3,5}. Then

A X B = {(172)7 (173)7 (175)7 (272)7 (273)7 (275)}
Definition 1.3.5. Let A and B be sets.

(a) A relation R from A to B is a triple (A, B,T), such that T is a subset of AxB. Let a and b be
objects. We say that a is in R-relation to b and write aRb if (a,b) € T. So aRb is a statement
and

aRb — (a,b) eT.
(b) A relation on A is a relation from A to A.

Example 1.3.6. (1) Using our formal definition of a relation, the familiar relation < on the real
numbers, would be the triple

(R,R,{(a,0) e RxR | a <b})

(2) Let A={1,2,3}, B={a,b,c}, T={(1,a),(1,¢),(2,b),(3,b)}. Then the relation ~:= (A, B,T)

can be visualized by the following diagram:

Also 1 ~ 1 is a true statement, 1 ~ b is a false statement, 2 ~ a is false statement, and 2 ~ b is a
true statement.

Definition 1.3.7. (a) A function from A to B is a relation F from A to B such that for all a € A
there exists a unique b in B with aF'b. We denote this unique b by F(a). So

forallae Aand be B: b=F(a) < aFb

F(a) is called the image of a under F. If b= F(a) we will say that F maps a to b.
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(b) We write “F': A - B is function” for “A and B are sets and F is a function from A to B”".
Example 1.3.8. (a) F = (R,R,{(z,2%) |z €R}) is a function with F(z) = 2? for all z € R.

(b) F = (R,R,{(z? 2%) | x € R}) is the relation with 2°Fz? for all z ¢ R. For = 1 we see that
1F1 and for z = -1 we see that 1F' - 1. So F' is not a function.

(c) Let A={1,2,3}, B={4,5,6,}, T ={(1,4),(2,5),(2,6)} and R = (A, B,T):

Then R is not a function from A to B. Indeed, there does not exist an element b in R with
1Rb. Also there exist two elements b in B with 2Rb namely b=15 and b = 6.

(d) Let A=1{1,2,3}, B={4,5,6,}, 5 ={(1,4),(2,5),(3,5)} and F = (A, B, T):

Then F is the function from A to B with F\(1) =4, F(2) =5 and F(3) = 5.

Notation 1.3.9. A and B be sets and suppose that ®(x) is a formula involving a variable x such
that for all a in A

®(a) is defined and P(a) e B.
Put
T := {(a,@(a)) | ae A} and F:=(A,B,T).
Then F' is a function from A to B. We denote this function by

F: A-B, a~ ®a).
So F' is a function from A to B and F(a) = ®(a) for all a e A.

Example 1.3.10. (1) F: R - R, r+~ 72 denotes the function from R to R with F(r) = r2 for all
reR.
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(2) F: R>R, z+~ % is not a function, since % is not defined.
(3) F: Rn{0} >R, z~ 1 is a function.
Definition 1.3.11. Let F': A - B be a function.
(a) A is called the domain of F. B is called the codomain of F.
(b) F is called injective (or 1-1) if for all b e B there exists at most one a in A with b= F(a).
(¢) F is called surjective (or onto) if for all b e B there exists (at least one) a € A with b= F(a),
)

(d) F is called bijective (or a 1-1 correspondence) if for all b€ B there exists a unique a € A with
b=F(a)

Example 1.3.12. (1) The function

[ =),

[~

is bijection.

(2) The function

[

is injective but is neither surjective nor bijective.
Theorem 1.3.13. Let f: A — B be a function.
(a) Then f is bijective if and only if f is a injective and surjective.

(b) f is injective if and only

For all a,ce A: fla)=f(¢c) = a=c
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Proof. @
f is bijective
<= for all b e B there exists a unique a € A with b = f(a) - Definition of bijective
for all b € B there exists at most one a € A with b= f(a)
<= and for all be B there exists a € A with b= f(a) -L17
<= f is injective and surjective - Definition of injective

and surjective

f is injective
<= for all be B: there exists at most one a € A with b= f(a) - Definition of injective

- Definition of
‘exists at most one’

I

forallbe Bya,ce A: (b= f(a)and b= f(c)) = a=c

!

for all a,ce A: f(a)=f(c)=a=c
O

Theorem 1.3.14. Let f: A > B and g : C - D be functions. Then f = g if and only if A = C,
B=D and f(a)=g(a) for allac A.

Proof. See in the appendix. O
Definition 1.3.15. (a) Let A be a set. The identity function id4 on A is the function

idg: A->A, ar~a
So idy(a) =a for all a e A.
(b) Let f: A— B and g: B — C be functions. Then go f is the function
gof: A-C, awg(f(a))
So (go f)(a) = g(f(a)) for allae A.
Exercises 1.3:
#1. Let a,b,c,d be objects. Prove that

((a,b) = (e, d)) — ((a =c¢)and (b= d))
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#2. Let A and B be sets. Let A7 and Ay be subsets of A and By and By subsets of B such that
A=A1UAy,AinAy =0, B=BiuBs and BinBy =@. Let m; : Ay - By and m : Ay - By be
bijections. Define

mi(a) ifaeA;

ma(a) if ae Ag

m:A-> B,aw~ {
Show that 7 is a bijection.
#3. Prove that the given function is injective
(a) f:Z - Z,x— 2.
() f:R— R xw 2>
(c) f+Z-Qow Z.
(d) f:R->R,z~-3z+5.
#4. Prove that the given function is surjective.
(a) f:R—> R,z 23
(b) f:Z—>Z,xx-4.
(c) f:R->R,z~»-3z+5.

when b £ 0

LxD .y
(d) f : Z Z Q7 (a’7b) {0 When bZO

#5. (a) Let f: B - C and g: C - D be functions such that g o f is injective. Prove that f is
injective.

(b) Give an example of the situation in part (a) in which g is not injective.

1.4 The Natural Numbers and Induction

A natural number is a non-negative integer. N denotes the collection of all natural numbers. So
N={0,1,2,3...}

It can be deduced from the Axioms of Set Theory that N is a set. We do assume that familiarity
with the basic properties of the natural numbers, like addition, multiplication and the order relation
<

A quick remark how to construct the natural numbers:
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0=0

1:={0} =0u {0}
2:={0,1} =1u{l}
3:={0,1,2} =2u{2}

4:={0,1,2,3} =3u{3}

n+1:=4{0,1,2,3,...,n} =nu{n}

The relation < on N can be defined by ¢ < j if 7 € 3.

Definition 1.4.1. Let S be a subset of N. Then s is called a minimal element of S if s€ .S and s <t
forallteS.

The following property of the natural numbers is part of our assumed properties of the integers
and natural numbers (see Appendix .

Well-Ordering Axiom: Let S be a non-empty subset of N. Then S has a minimal element

Using the Well-Ordering Axiom we now provide an important tool to prove statements which
hold for all natural numbers:

Theorem 1.4.2 (Principal Of Mathematical Induction). Suppose that for each n € N a statement
P(n) is given and that

(i) P(0) is true.
(ii) If P(k) is true for some k € N, then also P(k+1) is true.
Then P(n) is true for all n € N.

Proof. Suppose for a contradiction that P(ng) is false for some ng € N. Put

(%) S:={seN]| P(s) is false}

Then ng € S and so S is not empty. The Well-Ordering Axiom now implies that S has a
minimal element m. Hence, by definition of a minimal element

(%) meS and m<sforallseS

By (i) P(0) is true and so 0 ¢ S. As m € S this gives m # 0. Thus k := m -1 is natural number.
Note that £ <m. If k€ S, then gives m < k, a contradiction. Thus k ¢ S. By definition of S
this means that P(k) is true. So by (i), P(k+1) is true. But k+1=(m—-1)+1=m and so P(m) is
true. But m € S and so P(m) is false. This contradiction show that P(n) is true for allmeN. [
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Theorem 1.4.3 (Principal Of Complete Induction). Suppose that for each n € N a statement P(n)
s given and that

(i) If ke N and P(1) is true for all i € N with i < k, then P(k) is true.

Then P(n) is true for all n € N.

Proof. Let Q(n) be the statement:

for all 1 e N : i<n = P(1).

We will show that the two conditions in the Principal of Mathematical Induction hold for Q(n)
in place of P(n). Q(0) is statement

for allieN: i<0 = P(i).
i <0 is false for all 7 € N. Hence the implication i < 0 == P(7) is true for all ¢ € N. Thus
(*)  Q(0) is true.

Suppose now that Q(k) is true for some k € N. Then P(i) is a true for all ¢ € N with ¢ < k. Then
by (i), also P(k) is true. If i € N with ¢ < k + 1, then either i < k or i = k. In either case P(i) is true.
Thus Q(k + 1) is true. We proved

(#%)  If Q(k) is true for some k € N, then also Q(k +1) is true.

By and the Hypothesis of the Principal of Mathematical Induction is fulfilled. Hence
Q(n) is true for all n € N. Let n € N. Then Q(n+1) is true and since n <n + 1, P(n) is true. O

Two more versions of the induction principal:

Theorem 1.4.4. Suppose that r € Z and that, for all n € Z with n > r, a statement P(n) is given.
Also suppose that

(i) P(r) is true, and
(ii) if k € Z such that k >r and P(k) is true, then P(k+1) is true.
Then P(n) holds for all n € Z with n >r.
Proof. See Exercise 1.4[#5] O

Theorem 1.4.5. Suppose that r € Z and that, for all n € Z with n > r, a statement P(n) is given.
Also suppose that:

(i) If k € Z with k >r and P(i) holds for all i € Z with r <i < k, then P(k) holds.
Then P(n) holds for all n € Z with n > r.
Proof. See Exercise 1.4[#6] O
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Exercises 1.4:

#1. Prove that the sum of the first n positive integers is @

Hint: Let P(k) be the statement:

_k(k+1)
==

1+2+...+k

#2. Let r be a real number, r # 1. Prove that for every integer n > 1,

n
_ r"—1
T+r+ri+.. 7" = .
r—1

#3. Prove that for every positive integer n there exists an integer k with 227! + 1 = 2k
#4. Let B be a set of n elements.

(a) If n > 2, prove that the number of two-elements subsets of B is n(n—1)/2.

(b) If n >3, prove that the number of three-element subsets of B is n(n—1)(n -2)/3!.

#5. Suppose that r € Z and that, for all n € Z with n > r, a statement P(n) is given. Also suppose
that

(i) P(r) is true, and
(i) if k € Z such that k >r and P(k) is true, then P(k + 1) is true.
Show that P(n) holds for all n € Z with n >r.

#6. Suppose that r € Z and that, for all n € Z with n > r, a statement P(n) is given. Also suppose
that:

(i) If k € Z with k > r and P(7) holds for all i € Z with r <i < k, then P(k) holds.
Show that P(n) holds for all n € Z with n > r.

#7. What is wrong with the following proof that all roses have the same color:

Proof. For a positive integer n let P(n) be the statement:
Whenever A is set containing exactly n roses, then all roses in A have the same color.

If A is a set containing exactly one rose, then certainly all roses in A have the same color. Thus
P(1) is true.

Suppose now k is a positive integer such that P(k) is true. So whenever D is a set containing
exactly k roses then all roses in D have the same color. We need to show that P(k + 1) is true. So
let A be any set containing exactly k + 1-roses. Since k£ > 1 we have k+1 > 2. Hence A contains at
least two roses and we can choose roses x and y in A with x # y. Consider the sets
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B:=A~{z} and C:=AN{y}

Then B consist of all the elements of A other than x. Since A contains exactly k + 1 roses, B
contains exactly k roses. By the induction assumption P(k) is true and so all roses in B have the
same color. Similarly all roses in C' have the same color.

Now let z be any rose in A distinct from = and y. Then z # z and so z € B. Also z # y and so
zeC.

We will show that all roses in A have the same color as z. For this let a be any rose in A. We
will distinguish the cases a # x and a = .

Suppose first that ¢ # z. Then a € B. Recall that z € B and all roses in B have the same color.
Thus a has the same color as z.

Suppose next that a = x. Since x # y this gives a # y and so a € C'. Recall that z € C' and all roses
in C have the same color. Thus a has the same color as z.

Hence in either case a has the same color as z and so all roses in A have the same color as z.
Thus P(k+1) is true.

We proved that P(1) is true and that P(k) implies P(k +1). Hence by the Principal of Mathe-
matical Induction, P(n) is true for all positive integers n. Thus in any set of roses all the roses have
the same color. So all roses have the same color. O

#8. Let = be a real number greater than —1. Prove that for every positive integer n, (1+x)" > 1+nz.

1.5 Equivalence Relations
Definition 1.5.1. Let ~ be a relation on a set A (that is a relation from A and A). Then
(a) ~ is called reflexive if a ~ a for all a € A.

(b) ~ is called symmetric if b ~ a for all a,be A with a ~ b, that is if

a~b — b~a.

(c) ~ is called transitive if a ~ ¢ for all a,b,c € A with a ~b and b ~ ¢, that is if

(a~b and b~c) = a~c
(d) ~ is called an equivalence relation if ~ is reflexive,symmetric and transitive.

Example 1.5.2. (1) Consider the relation ” <” on the real numbers:
a < a for all real numbers a and so ” <7 is reflexive.
1<2but 241 and so” <” is not symmetric.
Ifa<band b<c, then a<candso” <7 is transitive.

Since ” <” is not symmetric, 7 <” is not an equivalence relation.
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(2) Consider the relation ” =” on any set A.

b

a=a and so 7 =" is reflexive.

If a=b, then b=a and so 7 =" is symmetric.

2

Ifa=band b=c, then a =c and so” =7 is transitive.

” 7

=7 is reflexive, symmetric and transitive and so an equivalence relation.

(3) Consider the relation ” #” on any set A.
a+aandsoif A#@,” +” is not reflexive.

Suppose A has at least two distinct elements a,b. Then

a*b and b#a but not-(a #a)

So ” #7 is not transitive.

(4) Consider the relation S defined on R by

aSbh ~— a-beZ.

Let a,b,ceR.
a—a=0¢Z and so aSa. Thus S is reflexive
If aSb, then a —b e Z. Hence also —(a—b) € Z. So b—a € Z. Thus bSa and so S is symmetric.

If aSb and bSe, then a—beZ and b—c € Z. Hence also (a—b0) + (b—c) € Z. Thus a-ce€Z and
S is transitive.

Since S is reflexive, symmetric and transitive, S is an equivalence relation.
Definition 1.5.3. Let ~ be an equivalence relation on the set A and let n € Z.

(a) For ae A we define [a]. :={be A]a~Db}. We often just write [a] for [a].. [a]. is called the
equivalence class of a with respect to ~.

(b) A/~={[a]~|aecA}. So A/~ is the set of equivalence classes with respect to ~.

Example 1.5.4. (1) Consider the relation

=
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on the set A ={1,2,3}. Then ~ is an equivalence relation. Also

[1].={acA|l~a)={1,2}
[2].={acA|2~a)={1,2}
[3]. = {acA|3~a} = {3}

and so

Af~={{1,2},{3}}
(2) Consider the relation S on R defined by

aSb — a-beZ.

By Example S is an equivalence relation. We have

[0]g={beR|0Sb} ={beR|b-0eZ}={beR|beZ} =7

and

[7]s ={beR | 7Sb}
={beR|b-mweZ}
={beR|b-m =k for some k € Z}
={beR|b=7+k for some k € Z}
={r+k|keZ}

={...,m-4n-3n-2,n-1l,m,mr+1,m+2,w+3,w+4,...}

Theorem 1.5.5. Let ~ be an equivalence relation on the set A and a,b € A. Then the following
statements are equivalent:

(a) a~b. (c) [a]n[b] + @. (e) acelb]
(b) be[a]. (d) [a] =[0b]. (f) b~a.

Proof. () = (b):  Suppose that a ~b. Since [a] = {be A|a ~b} we conclude that b€ [a].

— : Suppose that b € [a]. Since ~ is reflexive, we get b ~ b and so b € [b]. Thus
be[a]n[b] and so [a]n[b] #+ @.

== (d): Suppose [a] n[b] # @. Then there exists c € [a] N [b].
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We will first show that [a] € [b]. We need to show that d € [b] for all d € [a]. So let d € [a]. Then
a~d. Since ce [a] and [a] ={e€ A|a~ e} we have a ~ ¢ and since ~ is symmetric we conclude that
¢~a. As a ~d and ~ is transitive, this gives ¢ ~ d. From c € [b] we get b ~ ¢. Since ¢ ~ d and ~ is
transitive, we infer that b ~ d and so d € [b]. Thus [a] € [b].

A similar argument shows that [b] € [a]. We proved that [a] ¢ [b] and [b] € [a] and so [a] = [b]
by

(M) = (): Since a is reflexive, a ~ a and so a € [a]. As [a] = [b] we get a € [b].

() = (): By definition [b] = {e € A|b~e}. Since a € [b] we conclude that b ~ a.

@ & @: Since ~ is symmetric, b ~ a implies a ~ b. O
Theorem 1.5.6. Let ~ be an equivalence relation on the set A and a € A. Then there exists a unique
equivalence class X of ~ with a € X, namely X = [a]..

Proof. Let X be an equivalence class of ~. We need to show that a € X if and only if X = [a].. By
definition of ’equivalence class’ we know that X = [b]. for some b€ A. We have

aeX
— a € [b]. — Since X = [b].
— [a]. = [b]~ - 53
— [a].=X — Since X = [b].

Exercises 1.5:

#1. Let f: A— B be a function and define a relation ~ on A by

u~v <= f(u)=f(v).
Prove that ~ is an equivalence relation.

#2. Let A ={1,2,3}. Use the definition of a relation (see[L.3.5|[a))) to exhibit a relation on A with
the stated properties.

a Reﬂexive, not symmetric, not transitive.
(

b

Symmetric, not reflexive, not transitive.

(
(d

)
)

c¢) Transitive, not reflexive, not symmetric.
) Reflexive and symmetric, not transitive.
)

(e) Reflexive and transitive, not symmetric.
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(f) Symmetric and transitive, not reflexive.

#3. Let ~ be the relation on the set R* of non-zero real numbers defined by

a
a~b — Z € Q
Prove that ~ is an equivalence relation.

#4. Let ~ be a symmetric and transitive relation on a set A. What is wrong with the following
‘proof’ that ~ is reflexive.:
a~ b implies b~ a by symmetry; then a ~b and b~ a imply that a ~ a by transitivity.

#5. Let A be a set and B a set of subsets of A. (So each element of B is a subset of A.) Suppose
that for each a € A there exists a unique B € B with a € B. Define a relation ~ on A by

a~b — there exists B € B with a € B and b € B.

Show that ~ is an equivalence relation and that B = A/~.
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Rings

2.1 Definitions and Examples
Definition 2.1.1. A ring is a triple (R, +,-) such that
(i) R is a set;

(ii) + is a function (called ring addition) and Rx R is a subset of the domain of +. For (a,b) € RxR,
a+b denotes the image of (a,b) under +;

(iii) - is a function (called ring multiplication) and R x R is a subset of the domain of -. For
(a,b) e Rx R, a-b (and also ab) denotes the image of (a,b) under -;

and such that the following eight statement hold:

(Ax 1) a+beR foralla,be R; [closure of addition]
(Ax2) a+(b+c)=(a+b)+c foralla,b,ceR; [associative addition]
(Ax 3) a+b=b+a foralla,beR. [commutative addition]
(Ax 4) there exists an element in R, denoted by Or and called ‘zero R’, [additive identity]

such that a=a+0r anda=0gr+a for allae R;

(Ax 5) for each a € R there exists an element in R, denoted by —a [additive inverses]

and called ‘negative a’, such that a + (-a) = Og;

(Ax 6) abe R for all a,be R; [closure for multiplication]
(Ax 7) a(bc) = (ab)e  for all a,b,c e R; [associative multiplication]
(Ax 8) a(b+c)=ab+ac and (a+b)c=ac+bc  for all a,b,c e R. [distributive laws]

In the following we will usually say “Let R be a ring” for “ Let (R, +,-) be a ring.”

29



30 CHAPTER 2. RINGS

Definition 2.1.2. Let R be a ring. Then R is called commutative if
(Ax 9) ab=ba for all a,be R. [commutative multiplication]

Definition 2.1.3. Let R be a ring. We say that R is a ring with identity if there exists an element,
denoted by 1r and called ‘one R’, such that

(Ax 10) a=1g-a anda=a-1gp forallacR. [multiplicative identity]
Example 2.1.4. (a) (Z +,-) is a commutative ring with identity.
(b) (Q,+,-) is a commutative ring with identity.
(¢) (R,+,-) is a commutative ring with identity.
(d) (C,+,-) is a commutative ring with identity.

(e) Let Zg ={0,1} and define an addition @ and a multiplication ® on Zs by

@0 1 ©0 1
00 1 and 0]0 O
1{1 0 10 1

Then (Zy,®,®) is a commutative ring with identity.

(f) Let 2Z be the set of even integers. Then (2Z, +, -) is a commutative ring without a multiplicative
identity.

(g) Let n be integer with n > 1. The set M, (R) of n x n matrices with coefficients in R together
with the usual addition and multiplication of matrices is a non-commutative ring with identity.

Example 2.1.5. Let R={0,1} and a,b € R. Define an addition and multiplication on R by

+10 1 10 1
0/0 1 and 0/0 0
111 a 110 b

For which values of a and b is (R, +,-) a ring?

Note first that 0 is additive identity, so Og = 0.

Case 1. Suppose that a = 1:
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+]10 1 10 1
0[0 1 and 010 0
1111 110 b

Then 1+x=1+0=0g for all z € R and so 1 does not have an additive inverse. Hence R is not a
ring.

Case 2. Suppose that a =0 and b=1:

+10 1 101
010 1 and 0/0 O
111 1 110 O

Then (R, +,-) is (Z2,®,0) and so R is commutative ring with identity 1.
Case 3. Suppose that a =0 and b=0:

+]0 1 10 1
00 1 and 010 0
/10 1{0 0

Then xy =0 for all z,y € R. Note also that 0+ 0 =0. It follows that Axioms 6-8 hold, indeed all
expressions evaluate to 0. Axiom 1-5 hold since the addition is the same as in Zy. So R is a ring. R
is commutative, but does not have an identity.

Example 2.1.6. Let R = {0,1}. Define an addition and multiplication on R by

B0 1 =0 1
01 0 and 00 1
110 1 111 1

Is (R,®,3) a ring?

Note that 1 is an additive identity, so Og = 1. Also 0 is a multiplicative identity. So 1r = 0. Using
the symbols Or and 1 we can write the addition and multiplication table as follows:

and
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Indeed, most entries in the tables are determined by the fact that O and 1r are the additive
and multiplicative identity, respectively. Also 1B 1p=080=1=0g and Ogr@0gr=1=1=1=0g.
Observe now that the new tables are the same as for Zs. So (R,®,3) is a ring.

Theorem 2.1.7. Let R and S be rings. Recall from[1.3.3 that Rx S = {(r,s) | r € R,s € S}. Define
an addition and multiplication on R x S by

(r,s)+(r',s")

(r,s)(r',s")

for all v,r" € R and s,s' € S. Then

(a) Rx S is a ring;
(b) Orxs = (0r,0s);

(¢) =(rys) =(-r,=s) forallr e R,seS;

(r+7r',s+5s")

(rr',ss")

(d) if R and S are both commutative, then so is R x S;

(e) if both R and S have an identity, then R x S has an identity and 1gxs = (1, 1g).

Proof. See Exercise 2.1[#3]

Example 2.1.8. Determine the addition and multiplication table of the ring Zo x Zs.

Recall from [2.1.4|(b]) that Zs = {0,1}. So

and

Lo x Lg = {(070)7 (07 1)7 (170)a (17 1)}

(0,0)

(0,1)

(1,0)

(1,1)

(0,0)
(0,1)
(1,0)
(1,1)

(0,0)
(0,1)
(1,0)
(1,1)

(0,0)

(0,1)
(0,0)
(1,1)
(1,0)

(0,1)

(1,0)
(1,1)
(0,0)
(0,1)

(1,0)

(1,1)
(1,0)
(0,1)
(0,0)

(1,1)

(0,0)
(0,1)
(1,0)
(1,1)

(0,0)
(0,0)
(0,0)
(0,0)

(0,0)
(0,1)
(0,0)
(0,1)

(0,0)
(0,0)
(1,0)
(1,0)

(0,0)
(0,1)
(1,0)
(1,1)
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Exercises 2.1:
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#1. Let E = {0,e,b,c} with addition and multiplication defined by the following tables. Assume

associativity and distributivity and show that R is a ring with identity. Is R commutative?

+

0
e
b

Cc

b

Cc

c

b

0

e

e

0

0 e b ¢

0/0 0 0 O
e|l0 e b c
b0 b b 0
c|0 ¢ 0 ¢

#2. Below are parts of the addition table and parts of the multiplication table of a ring. Complete

both tables.

+ | w Yy oz
w | w

x z

Y wox
z Y

#3. Prove Theorem [2.1.7]

w T Yy 2
w

z Y

Y

z

2.2 Elementary Properties of Rings

Theorem 2.2.1. Let R be ring and a,be R. Then (a+b)+ (-b) = a.

Proof.

(a+b)+(-b)

a+(b+(-b)) HAx2
a+0gr —HAx 5|
a —HAx 4|

Theorem 2.2.2 (Additive Cancellation Law). Let R be ring and a,b,c € R. Then

a=b
c+a=c+b

a+c=b+c
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Proof. “First Statement = Second Statement”: Suppose that a =b. Then ¢+ a = ¢+ b by the
Principal of Substitution [1.1.1

“Second Statement == Third Statement”: Suppose that ¢+a =c+b. Applying [AX 3l to both
sides yields a +c=b+c.

“Third Statement == First Statement”: Suppose that a + ¢ = b+ c. Then the Principal of
Substitution gives (a +¢) + (—¢) = (b+¢) + (-¢). Applying to both sides gives a = b. O

Definition 2.2.3. Let R be a ring and c € R. Then c is called an additive identity of R if
a+c=a and c+a=a

for all a e R.

Theorem 2.2.4 (Additive Identity Law). Let R be a ring and a,c € R. Then

a = OR
<~ c+a = ¢
— a+c = C

In particular, Ogr is the unique additive identity of R.

Proof. Put b=0g. Then by [Ax 4lc+b=c and b+ c=c. Thus by the Principal of Substitution:

a = 0g — a = b
c+a = ¢ — c+a = c+b
a+c = ¢ — a+c = b+c
So the Theorem follows from the Cancellation Law 2.2.2] O

Definition 2.2.5. Let R be a ring and ¢ € R. An additive inverse of ¢ is an element a in R with
c+a=0g.

Theorem 2.2.6 (Additive Inverse Law). Let R be a ring and a,c € R. Then

a = -c
— cta = Op
— a+c = Op

In particular, —c is the unique additive inverse of c.
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Proof. Put b = —c. By[Ax 5l ¢+b = 0pg and so by [Ax 3l b+c = 0g. Thus by the Principal of
Substitution:

a = -¢ <= a = b
c+ta = Ogr — c+a = c+b
a+c = Ogr — a+c = b+c
So the Theorem follows from the Cancellation Law O

Definition 2.2.7. Let R be a ring and a,be€ R. Then a—0b:=a+ (-b). Note here -b € R by[Ax 5l
and so a-b=a+ (-b) € R by[Ax 1l

Theorem 2.2.8. Let R be ring and a,b,ce R. Then

c = b-a
— c+a = b
— a+c = b
Proof.
a+c = b

— c+a = b -[Ax 3
— (c+a)+(-a) = b+(-a) - Additive Cancellation Law [2.2.2]
— ¢ = b-a -[R27and Definition of b—a

Theorem 2.2.9. Let R be a ring and a,b,c€ R. Then

(8) ~0r = Og (8) ~(a+b) = (-a) + (-) = (~a) - b,

(b) a-0g = a. (h) —(a-b)=(-a) +b=b-a.

(c) a-0g=0g=0g"a. (i) (~a)- (~b) = ab.

(d) a-(=b) = —(ab) = (~a) - b. (i) a-(b-c) =ab-ac and (a-b)-c=ac - be.
(e) ~(-a) =a. If R has an identity 15,

(f) b—a=0g if and only if a = b. k) (-1g)-a=-a=a-(-1z).
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Proof. @) By[Ax 410 + 0 = 0g and so by the Additive Inverse Law O = -0g.

(EI) a-0g Def: - a+(-0g) @ a+OR@a.
We compute

a'OR@CL'(OR-FOR)

a-0p+a-0g,
and so by the Additive Identity Law a-0p =0pg. Similarly Og-a =0g.
(d) We have
ab+a-(-b) a-(b+ (=) "L 405 9 0p
So by the Additive Inverse Law —(ab) = a- (-b).
By[AX 5] a+ (-a) = 0 and so by the Additive Inverse Law a=-(-a).

({{) By Theorem applied with ¢ = Og:

Osz—a <~ OR+a:b.

By[Ax 41 0r + a = a and so the Principal of Substitution gives

Or=b-a — a=b.
(=)
(a+b)+((-a)+ (-0)) BZT (bra)+((-a)+(-b)) BEZ ((b+a)+(-a))+(-b)
22l b+ (-b) Og.

and so by the Additive Inverse Law —(a+0b) =(-a)+ (-b). By definition of 7 =", (-a) + (-b) =
(-a) - b.

(h)

~(a=b) P27 ~(a+(-b) CORCCHIN R CHIE

Bx3 b+ (-a) Def - b-a

(ca)-(-0) @) @ ann,

@) a-(b-c) D= . (b+(-¢)) a-b+a-(-c) @ ab+ (-(ac)) P b - ac.
Similarly (a—-0b)-c=ab-ac.
Suppose now that R has an additive identity. Then

at+((“17)-a) P 150+ (“1) - a BEB (1 4 (“18))-a B¥B 050 € 05

Hence by the Additive Inverse Law —a=(-1g)-a. Similarly, —a=a-(-1g). O
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Exercises 2.2:
#1. Let R be a ring and a,b,c,d € R. Prove that
(a=b)(c-d) = ((ac-ad) +bd) - be

In each step of your proof, quote exactly one Axiom, Definition or Theorem.
#2. Prove or give a counterexample:

If R is a ring with identity, then 1g # OR.
#3. Let R be a ring such that a-a =0p for all a € R. Show that ab=—(ba) for all a,be€ R.
#4. Let R be a ring such that a-a =a for all a € R. Show that

(a) ata=0gforallae R

(b) R is commutative.

2.3 The General Associative, Commutative and Distributive Laws
in Rings
Z* denotes the set of positive integers:

Z"={neN|n>0}={1,2,3,4,5,...)
Definition 2.3.1. Let R be a ring, n € Z* and ai,as,...an € R.
(a) For keZ with 1 <k<n define ¥, a; inductively by

(1) Zil:l a; ‘=ay, and

(i) Zf:ll a; = (Zf:l ai) + Aky1-

80 Z?lai:((...((al +a2)+a3)+...+an_2)+an_1)+an.
We will also write a1 +ag + ...+ ayn for Y1 ap

(b) Inductively, we say that z is a sum of (ai,...,ay) in R provided that one of the following
holds:

(1) n=1and z=ay.
(2) n>1 and there exist an integer k with 1 <k <n and x,y € R such that
(i) x is sum of (a1,...,ar) in R,

(ii) y is a sum of (ags1,Gk+2,---,0yn) in R, and

(iii)) z=x+y.
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Example 2.3.2. Let R be aring and a, b, ¢,d € R. Find all sums of (a), (a,b), (a,b,c) and (a,b, ¢, d).

Sums of (a): We have n =1 and a is the only sum of (a).
Sums of (a,b): Then n=2and k=1. a+b is the only sum of (a,b).

Sums of (a,b,c): We have n =3 and k =1 or 2. a+ (b+c) is the only sum with k£ =1 and
(a+0b) + cis the only sum with k = 2.

Sums of (a,b,c,d): Wehaven=4and k=1,2o0r 3. a+(b+(c+d)) and a+ ((b+c) +d) are the
sums with k=1, (a+b) + (c+d) is the sum for k=2 and (a+(b+c¢))+d and ((a+b) +c) +d are the
only sums for k = 3.

We remark that the numbers of formal sums of an n + 1-tuple is the n-th Catalan number

1 (Zn) 2n!
C’/’L = = —
n+1\n/ nl(n+1)!
65

For example the number of formal sums of a 4-tuple is C5 = 3?—4!“ =22 =5

Definition 2.3.3. Let R be a ring, n € Z* and a1, as,...a, € R.

(a) I‘Ile an s defined similarly as in (@, just replace <Y by TI  and +’ by “”. We will also

write ajas . .. ay for [T a;.
(b) A product of (a1,...,ay) in R is defined similarly as in (@, just replace ‘sum’ by ‘product’
and + by .
(c) LetaeR. Thenna:=Ya=a+a+...+a and a™ =[] ya=aa...a.
—_— —_——
n—times n—times

(d) If R has an identity and a € R, then a® = 1g.

Theorem 2.3.4 (General Associative Law, GAL). Let R be a ring, n € Z* and ay,aq, ... ,a, elements
of R. Then any sum of (a1, as,...,a,) in R is equal to Y11 a; and any product of (a1,as,...,a,) is
equal to [T a;

Proof. See O

Theorem 2.3.5 (General Commutative Law,GCL). Let R be a ring, ai,as,...,a, € R and

f{1L2,...,n} - {1,2,...,n}
a bijection.
a) Any sum of (a1,...,a,) is equal to any sum of (ar(1y,---,Qrm))- In particular,
f( f(n)
n

D= ) agG)-

=1 =1
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(b) Suppose that R is commutative. Then any product of (a1,...,an) is equal to any product of
(af(D7-~7anQ)-AhlpaTﬂcuhmy

[Tai= 1_{ a(iy-

i=1
Proof. See[D.2.2] O

Theorem 2.3.6 (General Distributive Law,GDL). Let R be a ring, n,m € Z* and ay,...,ay,

bi,...,b;y € R. Then
(Lo (£0) - £(E0)
i=1 j=1 i=1 \j=1

Proof. See[D.3.2] O
Example 2.3.7. Let R be a ring and a,b,¢,d,e in R. By the General Associative Law:
a+b+c+d=(a+(b+c))+d=(a+b)+(c+d)=a+((b+c)+d)=a+(b+(c+d)).
By the General Commutative Law:
a+b+c+d+e=d+c+a+b+e=b+a+c+d+e.
By the General Distributive Law:

(a+b+c)(d+e) = (ad+ae)+ (bd+be)+ (cd+ ce).

Exercises 2.3:

#1. Prove or give a counterexample:

Let R be a ring and a,be R. Then
(a+b)?=a®+2ab+ 1>
(Note here that according to Definition 2d =d+d for any d in R.)

#2. Let R be a commutative ring with identity. Suppose that 1z + 1z = 0g. Prove that

(a+b)%* =a® +b%

for all a,b € R.
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#3. Let S :={a,b,c,d} and let + be the addition on S defined by

C

d

b

a

d

C

b

C

c

Compute all possible sums of (a,b,c,d), where ‘sum’ is defined as in [2.3.1|(b]).

2.4 Divisibility and Congruence in Rings

Definition 2.4.1. Let R be ring and a,b € R. Then we say that a divides b in R and write a|b if

there exists c € R with b= ac

Example 2.4.2. (1) Does 7|133 in Z?
Yes, since 133 =7-19.

(2) Does 2|3 in Z?

No since 2 -k is even, 3 # 2k for all k € Z.

(3) Does 2|3 in Q7

Yes, since 3 =2- %

(4) For which a,b,c,d € R does

0 0 c
Let a, l~), c, de R, then
1
0
Hence
1 0 a b
0 0 c d

For example

in My(R)?
a b a
¢ d| |o
Re———g

O]

) S

c=0and d=0
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but

Note that

So ca = b does not imply that al|b.
Theorem 2.4.3. Let R be a ring and a € R.
(a) a|Og.
(b) Ogrla if and only of a =0g.
(¢) If R has an identity, then 1g|a.

Proof. (a) By 2.2.9(c), Or = a-0g and so a|0Og.

(]E[) By applied with a = 0r we have Og|0g.
Suppose now that a € R with Og |a. Then there exists b € R with a = Ogb and so by [2.2.9/(d),
a = OR.

By definition of an identity, a = 1ga, and so 1g|a. O
Theorem 2.4.4. Let R be a ring and a,b,c,u,v € R.
(a) | is transitive, that is if a|b and b|c, then alc.
(b) alb == a[(-b) <= (-a)[(-b) <= (-a)|b.
(c) Suppose that a|b and a|c. Then
a|(b+c), a|(b-c), a|(butc), a|(bu-c), al|(bu+cv), al|(b+cv), al(b-cv), al(bu-c).
Proof. @ Let a,b,c € R such that a|b and b|c. Then by definition of divide there exist r and s in R
with
(*) b=ar and c=bs.
Hence
¢ = bs = (ar)s a(rs).

Since R is closed under multiplication, s € R and so a|c by definition of divide.
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We will first show

(%) alb = a|(-b) and (-a)|b.
Suppose that a divides b. Then by definition of ‘divide’ there exists r € R with b = ar. Thus
-b=—(ar) a(-r) and b=ar (—a)(-r)
By [AX 5l -r € R and so a|(-b) and (—a)|b by definition of ‘divide’. So holds.

Suppose a|b. Then by al|(-b).

Suppose that a|(-b), then by applied with —b in place of b, (-a)|(-b).

Suppose that (-a)|(=b). Then by applied with —a and -b in place of a and b, (-a)|-(-b).
By [2.2.9(), —(~b) = b and so —a|b.

Suppose that (—a)|b. Then by applied with —a in place of a, —(-a)|b. By[2.2.9(¢), -(-a) = a
and so a|b.

Suppose that a|b and a|c. Then by definition of ‘divide’ there exist r and s in R with

(% % %) b=ar and c=as
Thus
(x = ) ( * %) 2.2.9((i)
b+c = ar+as = a(r+s) and b—c = ar—as—=" a(r-s).

By lAx 1l and [Ax 5l R is closed under addition and subtraction. Thus r+se Rand r—se R
and so

(+) alb+c and alb-c.

By definition of ‘divide’, b|bu. Since a|b we conclude from () that a|bu. Also a|c and
implies that

al(bu+c) and al(bu-c).
Similarly, as a|c and ¢|cv we have a|cv. Also a|b and implies

a|(b+cv) and al(b-cv).
Moreover, since a|bu and a|cv we get from that

al|(bu + cv) and a|(bu - cv).
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Definition 2.4.5. Let R be a ring and n € R. Then the relation = (modn)’ on R is defined by
a=b (modn) <= mn|a->b

If a=b (modn) we say that a is congruent to b modulo n.

Example 2.4.6. (1) Consider the ring Z:
6=4 (mod?2) is true since 2 divides 6 — 4.
But 3=8 (mod?2) is false since 2 does not divide 3 - 8. Thus 3 # 8 (mod2).

If a and b are integers, then a = b (mod 2) if and only if b—a is even and so if and only if either
both a and b are even, or both a and b are odd.

Hence a #b (mod?2) if and only if one of a and b is even and the other is odd.

(2) Let R be a ring and a,b e R. Then

a=b (mod0g)

Orla—b — Definition of ‘a=b (mod0g)’
a-b=0p —@

0= 29

e

So congruence modulo Oy is the equality relation.

(3) Let R be a ring with identity and a,b € R. By we have 1p|a —b and so

a=b (modlpg) for all a,be R

(4) When is

o IS
ST
1
o} ISH
Q, S
=
o
(oW
(an} =
(@) (@)
N—

in M2 (R)?
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c-¢c=0 and

c=¢ and d-=

ab_&l;
¢ d|l |é d
10 a b
00 c d
1 a-a
0 0 c-¢
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10
mod
0 0
a b
- — definition of ‘ =~
¢ d
b-b
d-d
-d - see Example [2.4.2(}4))

Theorem 2.4.7. Let R be a ring and n € R. Then the relation = (modn)’is an equivalence relation

on R.

Proof. We have to show that ‘= (modn)’ is reflexive, symmetric and transitive. Let a,b,c € R.

Reflexive: Since a —a =0g =n-0g we see that n|a—a and so a =a (modn). Thus ‘= (modn)’

is reflexive.

Symmetric: Suppose that a =b (modn). Then n|(a-b). By [2.4.4|() this gives n|-(a-b). By
we have —(a-b) = b—a. Hence n|b—a and so b =a (modn). Thus ‘= (modn)’ is symmetric.

Transitive: Suppose that a =b (modn) and b = ¢ (modn). Then n|a—-b and n|b-c. Thus

shows that

We compute

(a-b)+(b-c)= a+(—b))+(b+(—c))

n|(a->b)+(b-c).

)

— definition of ‘-

(
= ((a+(—b))+b)+(—6) -[Ax 2]
=((a+ )+ (= () + (o) -R29@
=a+(-c) -227]
—a-c — definition of ¢ =’
Hence n|a-c and a = ¢ (modn). Thus ‘= (modn)’ is transitive. O

Definition 2.4.8. Let R be a ring and n € R. Recall from that the relation = (modn)’ is an

equivalence relation.
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(a) For a € R we denote the equivalence class of = (modn)’ containing a by [a],. So
[a]l,={beR|a=b (modn)}.

[a]y is called the congruence class of a modulo n.

(b) R,, denotes the set of equivalence classes of = (modn)’. So

Ry ={[a]s|acR}.

Theorem 2.4.9. Let R be a ring and a,b,n € R. Then the following statements are equivalent

(a) a=b+nk for some keR (g) [aln = [b]n.
(b) a—-b=nk for some k¢ R. (h) ae[b]n.

(c) nla-b. (i) b=a (modn)

(d) a=b (modn). ) n|b-a.

(e) bealn. (k) b—a=nl for some | € R.
(f) [a]n N [b]n % 2. (1) b=a+nl for some l € R.

Proof. (@) <= (b): Seel2.2.§

() <= (): Follows from the definition of ‘divide’.
<= (d): Follows from the definition of ‘= (modn)’.
By ‘= (modn)’ is an equivalence relation. So Theorem implies that (d)-() are

equivalent.

Applying the fact that statements @ to @ are equivalent with a and b interchanged, shows that
to are equivalent.

We proved that @—@ are equivalent, that @ to are equivalent and that to are
equivalent. Hence @- are equivalent. O

Theorem 2.4.10. Let R be a ring and a,n € R. Then

[a]n, ={a+nl|leR}.
Proof. Let be R. Then

belaln
<~ b=a+nkforsomeleR -[2.49
<~ bel{a+nl|leR} — Definition of {a + nk | k € R}

Hence [a], ={a+nl|le R} by[L.2.]] O
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Example 2.4.11. (1) Consider the ring Z.

[3]5={3+5k|keZ}={...,-12,-7-2,3,8,13,18,...}.

(2) Consider the ring Q:

[3]5={3+5k|keQ}={3+1|1cQ}=Q.

(3) Consider the ring Ma(R).

+ <A

Ace MQ(R)}

1 0 0 1 a b
0 0 0 0| |c d

a,b,c,deR}

a,b,c,deR}

Exercises 2.4:

#1. Consider the ring Ma(R).

(a) Does divide in Ma(R)?

(b) Does divide in Ma(R)?
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(d) Let a,b,c,d,a,b,édeR. Show that

IS

>
1l

<Y

S
2

—_

—

o
IS8
™
So
—_
—_

if and only of

2.5 Congruence in the ring of integers

For a general ring it is difficult to explicitly determine all the equivalence classes of relation = (modn).
But thanks to the division algorithm it is fairly easy for the ring of integers.

Theorem 2.5.1 (The Division Algorithm). Let a and b be integers with b > 0. Then there exist
unique integers q and r such that

a=bg+r and 0<r<b.

Proof. We will first show that ¢ and r exist. Put

S:={a-bx|xeZand a-bx>0}.

Note that S ¢ N. We would like to apply the Well-Ordering Axiom to S, so we need to
verify that S is not empty. That is we need to find x € Z such that a — bx > 0.

If a >0, then a-5b0=a >0 and we can choose z = 0.

So suppose a < 0. Let’s try x = a. Then a —bx = la—ba = (1 —b)a. Since b >0 and b is an integer,
b>1andso1-b<0. Since a < 0, this implies (1 -b)a >0 and so a—bx > 0. So we can indeed choose
x = a.

We proved that S is non-empty subset of N. Hence by the Well-ordering Axiom S has a
minimal element r. Thus

(%) resS and r<s forall selS.

Since r € S, the definition of S implies that there exists q € Z with r = a — bq. Then a = bg+r
and it remains to show 0 < r <b. Since r € S, r > 0. Suppose for a contradiction that r > b. Then
r—b>0. Hence

a-blg+1)=(a-bg)-b=r-b>0

and g+ 1€ Z. Thus r—b e S. Since r is a minimal element of S this implies r < r — b, see . It
follows that b < 0, a contradiction since b > 0 by the hypothesis of the Theorem.
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This contradiction shows that r < b, so the existence assertion in the Theorem is proved. To show
the uniqueness let ¢,7,¢ and 7 be integers with

(%) (a:bq+rand0£r<b) and (a:b(j+fand()£77<b).

We need to show that ¢ = ¢ and r = 7.
From a = bg +r and a = bg + 7 we have

bg+r=bGg+r

and so

(% % %) b(q-q)=7-r.
By we have 0 < r <b. Multiplying with —1 gives 0 > —r > —b and so

-b<-r<Qo.

By (x*)

0<7r<b

and adding the last two equations yields

-b<r—-7r<b

By we have b(q — G) =7 —r. Thus

-b<-b(q—q)<b.
Since b > 0 we can divide by b and get

l<q-g<l.
The only integer strictly between —1 and 1 is 0. Hence ¢ — ¢ = 0 and so ¢ = ¢. Hence (*) gives
7—r=b(q—¢)=00=0 and so also 7 =r. O

Theorem 2.5.2 (Division Algorithm). Let a and ¢ be integers with ¢ # 0. Then there exist unique
integers q and v such that
a=cqg+r and 0 <r<|c|.

Proof. See Exercise 2.5[#]] O

Definition 2.5.3. Let a and b be integers with b+ 0. According to the Division Algorithm there exist
unique integers q and r with a = bg+1r and 0 < r < |bl. Then r is called the remainder of a when
divided by b in Z. q is called the integral quotient of a when divided by b in Z.
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Example 2.5.4. (1) 42=8-5+2 and 0<2<8. So the remainder of 42 when divided by 8 is 2.
(2) -42=8--6+6 and 0 <6 < 8. So the remainder of —42 when divided by 8 is 6.
Theorem 2.5.5. Let a,b,n be integers with n+0. Then
a=b (modn)
if and only if
a and b have the same remainder when divided by n.

Proof. By the division algorithm there exist integers q1,71, g2, 72 with

() a=nq +r and 0<7r <|n
and
(%) b=ngo+ro and 0<ry<|nl

So r1 and ro are the remainders of a and b, respectively when divided by n in Z.

—=: Suppose a =b (modn). Then by we have a = b+ nk for some integer k. Then

a=b+nk = (nge+ry) +nk=n(q+k)+rs.

Since g2 +k € Z and 0 < rg < |n|, we conclude that 73 is the remainder of a when divided by n. So
r1 =719 and a and b have the same remainder when divided by n.

<=: Suppose a and b have the same remainder then divided by n. Then r{ = 7o and so

() (x+)
a-b (ng1+71) = (ng2 +r2) =n(q1 — g2) + (r1 —72) =n(q1 - ¢2)-
Thus n|a-b and so a=b (modn). O

Theorem 2.5.6. Let n be positive integer.

(a) Let a € Z. Then there exists a unique r € Z with 0 < r <n and [a], = [r]n, namely r is the
remainder of a when divided by n.

(b) There are exactly n distinct congruence classes modulo n, namely

[0],[1],[2],...,[n—1].

(¢) |Zy| = n, that is Z,, has exactly n elements.
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Proof. @ Let a € Z, let s be the remainder of @ when divided by n and let r € Z with 0 <r <n. We
need to show that [a], = [r], if and only if r = s.

Since r =n0+r and 0 < r < n, we see that r is the remainder of r when divided by n. By
[a]n = [r]n if and only a and r have the same remainder when divided by n, and so if and only if
r=s.

(b) By definition each congruence class modulo n is of the form [a],, with a € Z. By (@), [a], is
equal to exactly one of

So (]ED holds.
Since Z,, is the set of congruence classes modulo n, follows from (]E[) O

Example 2.5.7. Determine Zs.

Zs = {[0s, [1]s, [2]5. [315. [4]5 } = {[05, [1]5, [2]5, [-2]s, [-1]5 }

Exercises 2.5:

#1. Let a and c be integers with ¢ # 0. Prove that there exist unique integers ¢ and r such that
a=cqg+rand 0<r<|c|

#2. Prove that the square of an integer is either of the form 3k or the form 3k + 1 for some integer
k.

#3. Use the Division Algorithm to prove that every odd integer is of the form 4k + 1 or 4k + 3 for
some integer k.

#4. (a) Divide 52, 72, 112, 152 and 272 by 8 and note the remainder in each case.
(b) Make a conjecture about the remainder when the square of an odd number is divided by 8.
(¢) Prove your conjecture.

#5. Prove that the cube of any integer has be exactly one of these forms: 9k, 9k + 1 or 9k + 8 for
some integer k.

#6. (a) Let k be an integer with & =1 (mod4). Compute the remainder of 6k + 5 when divided
by 4.

(b) Let r and s be integer with =3 (mod10) and s = -7 (mod 10). Compute the remainder of
2r + 3s when divided by 10.
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2.6 Modular Arithmetic in Commutative Rings
Theorem 2.6.1. Let R be a commutative ring and a,a, b,l~) and n elements of R. Suppose that

[a]n =[a]n and [b]n = [b]n-
or that

Then

and
a+b=a+b (modn) and ab=ab (modn)

Proof. Since
[a]n = [a]n and [b]n = [b]n-

or
a=a (modn) and b=b (modn)

we conclude from that )
a=a+nk and b=b+nl

for some k,l € R. Hence
a+b=(a+nk)+(+nl)=(a+b)+n(k+1).
Since k+1 € R, gives

[a+b],=[a+b], and a+b=a+b (modn)

Also

a-b = (a+nk)(b+nl) = ab + anl + nkb + nknl
(AX9 b+ nal + nkb+ nknl = ab+ n(al + kb + knl),
and, since al + kb + knl € R, implies

[ab],, = [ab],, and ab=ab (modn).
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In view of the following definition is well-defined.

Definition 2.6.2. Let R be commutative ring and a,b and n elements of R. Define

[a], ® [b]n:=[a+b], and [a],® [b],:=][ab]n-

The function

R,xR,—>R,, (A,B)~ A®B

is called the addition on R,, and the function

RoxR,—> R,  (AB)>A0B

1s called the multiplication on R,,.

Example 2.6.3. (1) Compute [3]s® [7]s.

[3]8 © [7]8 = [3 : 7]8 = [21]8 = [8 -2+ 5]8 = [5]8
Note that [3]s = [11]s and [7]s = [-1]s. So we could also have used the following computation:

[11]s @ [-1]s = [11--1]s = [-11]g = [-11 +8-2]s = [5]s.

Theorem [2.6.1]ensures that we will always get the same answer, not matter what representative
we pick for the congruence class.

Compute [123]212 ® [157]212-

[123]212 @ [157]212 = [123 + 157]212 = [280]212 = [280 - 212]212 = [68]212.
Note that [123]212 = [123 - 212]212 = [—89]212 and [157]212 = [157 - 212]212 = [—55]212. Also

[—89]212 [$) [—55]212 = [—89 - 55]212 = [—144]212 = [—144 + 212]212 = [68]212.

Warning: Congruence classes can not be used as exponents:

‘We have

[2']3=[16]3=[1]3 and [2']3=[2]3

So

[24]3 * [21]3 even though [4]3 = [1]3

Theorem 2.6.4. Let R be a commutative ring and n € R.
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Proof. We need to verify the eight Axioms of a ring. If d € R we will just write [d] for [d],.

Let A, B,C € R,,. By definition of R,, there exist a,b and ¢ in R with

(%) A=[a], B=[b], and C=[c].

[Ax 1t We have

AeB-[de] -F)
a+b] — Definition of @

—

Since a + b € R we conclude that A® B e R,,.

[Ax 2t
Ae(BeC)=[de([b]e[c]) -

=[a]® [b+] — Definition of &
=[a+(b+c)] — Definition of @
=[(a+b)+c] -[Ax 2l
=[a+b]®|[c] — Definition of @
=([a]®[b]) ®[c] - Definition of &
=(AeB)eC. -

[Ax 3t

AeB=[al®[b] -

= [a+b] — Definition of &
=[b+a] -[Ax 2]
=[b]®[a] - Definition of ®

=Bo A. )

93
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[AXx 4t Define
(*x—) Og, = [OR]
Then
A@®Op, =[a]®[0r] - () and (xx)
=[a+0g] — Definition of @
=[a] -[Ax 4
- A -
and
Or, ® A=[0g]®[a] - () and
=[0g +a] — Definition of @
= [a] -[Ax 4]
- A -
and so [Ax 4] holds.
[Ax 5l Put
(% % %) - A:=[-a]
Then -A € R,, and
Ao-A=[a]®[-a] -(*) and (** )
=[a+ (-a)] - Definition of &
= [0g] -[Ax 4l
=0g, = (%)

and so [Ax 4] holds.

[AX 6t Similarly to[Ax 1] we have A® B =[a] © [b] = [ab] and so A® B € R,,.

is associative to compute

Similarly to [Ax 2] we can use the definition of ® and the fact that multiplication in R
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Ao(BoC) = [do([t]efc]) =  [aJofbc] = [a(bc)] = [(ab)c]
= [ab] ® [c] = ([a]ob])olc] = (AoB)oC.
[Ax 8t
Ao (BeC)=[a]o([b]e]c]) = (=
=[a]®[b+] — Definition of @
=[a(b+c)] — Definition of ®
= [ab + bc] -[Ax§
= [ab] @ [ac] — Definition of @
=[a]o[b])® ([a]®[c]) - Definition of ®
=(AeB)®(AcC) - ()
and similarly
(AeB)oC = ([a]@[b])olc] = [a+b]lo[c] = [(a+b)c]
= feevbd = ladeld = (aold)e(blofd)
= (AeC)a (Bol).

Ax 9 Similarly to [AX 3] we can use the definition of ® and the fact that multiplication in R is
commutative to compute

AoB = [a]o[b] = [ab] = [ba]=[b]®[a]=BoA.

Ax 10 Suppose R is a ring with identity. Put

(+) 1g, = [1r]n
Similarly to[Ax 4l we can use the definition of ® and the fact that 1z is a multiplicative identity in
R to compute

Ao 1R" =A0® [13] = [(I] O] [13] = [alR] = [a] = A,

and
1p, © A=[1g]® A=[1g]©[a] = [1ra] = [alg] = A.
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Theorem 2.6.5. Let R be a commutative ring, a,n € R and k € Z*. Then [a]* = [a*],

Proof. The proof is by induction on k. We have [a]! = [a] = [a'] and so statement holds for k = 1.
Suppose the statement holds for k, that is

(*) [a*] = [a*]

Then
[a]*" =[a]*®[a] - Definition of [a]**, 233
=[a*]®[a] -Induction assumption (¥)
= [d*a — Definition of ®,
= [a**1] — Definition of a***
and so holds for k£ + 1. So by the Principal of Induction, the holds for all k € N. O]

Notation 2.6.6. Let R be a ring and a,b,n € R. . We will often just write a for [a],, a +b for
[a]n,®[b]n and ab (or a-b) for [a], ®[bl,. This notation is only to be used if it clear from the context
that the symbols represent congruence classes modulo n. Ezponents are always integers and never
congruences class.

Remark 2.6.7. Consider the expression
22437 in Z,

It is not clear which element of Z,, this represents, indeed it could be any of the following for elements:

[2°+3-7],
[2°]n @[3 ]
[2°]n e ([3]n @
(2], @[3
27 @ ([3]n @ [ In)
But thanks to Theorem and Theorem all these elements are actually equal. So our

simplified notation is not ambiguous. In other words, our use of the simplified notation is only

justified by Theorem and Theorem |2.6.5,

Example 2.6.8. (1) Compute [1334567]}5 in Zis.

[1334567] [13]34567 [1]213421567 [134567] 12 = [1]12
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In simplified notation this becomes: In Zqs:

1334567 _ 134567 _ q

Why is the calculation shorter? In simplified notation the expression

are both written as
1334567

So the step
[1334567]12 — [13]?421567

is invisibly performed by the simplified notation. Similarly, the step

[1]?421567 _ [134567]12

disappears through our use of the simplified notation.

Compute [7]33% in Zso.
In Z50 :
Determine the remainder of 53- 7190 +47. 771 + 4. 7% when divided by 50.

In Z50 :

537100 4 47. 7 v 4.7 = 3.(7?)0-3.(7?)3®.7+4.72.7
3-(-1)°0-3.(-1)*-7+4--1-7
3+21-28=3-7=-4=46

Thus [53- 7109 +47.77 + 4. 73]50 = [46]50. Since 0 < 46 < 50, @ shows that the remainder
in question is 46.

Let Fun(R) be the set of functions from R to R. Define an addition and multiplication on
Fun(R) by

(f+9)(a) = f(a) +g(a) and  (fg)(a) = f(a)g(a).

for all f,g € Fun(R) and a € R. Given that (Fun(R),+) is a ring (see Exercise 2.6J#1]) .
Compute
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2

[Sin x]COS xT*

In Fun(R)cosz:

sinz=1-cos’z=1-0%=1

So [sinx]gosz = [1]cosz-

Exercises 2.6:

#1. Let R be a ring and I a set. Let Fun(I, R) be the set of functions from I to R. For f,g €
Fun(I,R) let f+g and f-g be the functions from I to R defined by

(f+9)(@) = f(i) +g(i) and  (f-9)(@) = f(i) 9(i).
for all ¢ € I. Show that
(a) (Fun(l,R),+,-) is a ring.
(b) If R has an identity, then Fun(/, R) has an identity.

(¢) If R is commutative, then Fun(/, R) is commutative.

2.7 Subrings

Definition 2.7.1. Let (R,+,-) be a ring and S a subset of R. Then (S,+,-) is called a subring of
(R,+,-) provided that (S,+,-) is a ring.

Theorem 2.7.2 (Subring Theorem). Suppose that R is a ring and S a subset of R. Then S is a
subring of R if and only if the following four conditions hold:

(I) Or e S.
(IT) S is closed under addition (that is : if a,be S, then a+beS);
(II1) S is closed under multiplication (that is: if a,be S, then abe S);
)

(IV) S is closed under negatives (that is: if a € S, then —a € S)

Proof. ==: Suppose first that S is a subring of R.
By [Ax 4l for S there exists 0g € S with 0g+a = a for all a € S. In particular, 0g +0g = 0g. So the
Additive Identity Law implies that

(*) 0g = 0g.
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Since Og € S, this gives Or € S and holds.
By[Axdlfor S, a+be S for all a,be S. So holds.
By[Ax 6l for S, abe S for all a,be S. So holds.

Let s € S. Then by [Ax 5lfor S, there exists t € S with s+t =0g. By 0g =0p and so s+t =0p.
The Additive Inverse Law shows that ¢ = —s. Since t € S this gives —s € S and holds.

<—: Suppose now that — hold.
Since S is a subset of R, S is a set. Hence Condition (i) in the definition of a ring holds for S.

Since S is a subset of R, S x S is a subset R x R. By Conditions (ii) and (iii) in the definition of
aring, R x R is a subset of the domains of + and -. Hence also S x .S is a subset of the domains of +
and -. Thus Conditions (ii) and (iii) in the definition of a ring hold for S.

By () a+beS for all a,be S and so[AX 1 holds for S.

By[Ax 2l (a+b)+c=a+(b+c) for all a,b,c € R. Since S € R we conclude that (a+b)+c=a+(b+c)
for all a,b,c € S. Thus [Ax 2 holds for S.

Similarly, since [Ax 3l holds for all elements in R it also holds for all elements of S.

Put Og := 0g. Then ()) implies 0g € S. By[Ax 4l for R, a =0g+a and a = a+0g for all a € R.
Thus @ =0g +a and a = a + 0g for all a € S and so[Ax 4] holds for S.

Let s€S. Then s+ (-s) =0r and since Og = Og, s+ (-s) =0g. By -s €S and so[Ax 5| holds
for S.

By abe S for all a,be S and so[Ax 6] holds for S.

Since and [Ax 8 hold for all elements of R they also holds for all elements of S. Thus[Ax 7|
and [Ax 8 holds for S.

We proved that [Ax THAX 8 hold for S and thus S is a ring. Hence, by definition, S is a subring
of R. 0

Example 2.7.3. (1) Show that Z is a subring of Q, Q is a subring of R and R is a subring of C.

By example Z, Q and R are rings. So by definition of a subring, Z is a subring of Q, Q
is a subring of R and R is a subring of C.

(2) Let R be a ring and n € R. Put nR:= {nk |k € R}. Show that nR is subring of R.
We will verify the four conditions of the Subring Theorem for S = nR.
Observe first that since nR = {nk | k € R},

(%) aenk — there exists k € R with a = nk.

Let a,benR. Then by
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(*%) a=nk and b=nl,
for some k,l € R.
(I): 0=n0 andsoOeany

(I): a+b nk+nl =n(k+1). Since k+1 € R, 1) shows a +b € R. So nR is closed under
addition.

(III): ab (nk)(nl) = n(knl). Since nkl € R, shows ab € R. So nR is closed under

multiplication.

. _ : . ,
(IV): —a =" —=(nk) =n(-k). Since -k € R, (|*)) shows —a € R. So nR is closed under negatives.
Thus all four conditions of the Subring Theorem Hold and so nR is a subring of R.

Show that {[0]4,[2]4} is a subring of Zy.
We compute in Z4: 0z, = 0 € {0,2} and so Condition (I) of the Subring Theorem holds.

Moreover,
+10 2 -0 2
z |0 2
00 2, 00 O and
-z |0 2
212 0 210 0

So {0,2} is closed under addition, multiplication and negatives. Thus {0, 2} is a subring of Z,4
by Subring Theorem.

Exercises 2.7:

#1. Which of the following nine sets are subrings of My(R)? Which ones have an identity? (You
don’t need to justify your answers)

—0 r- a b 0 a
{ re(@}. (4){ aeQ,beZ}. (7){ aeR}.

_0 0 0 0 a 0
{a b } {a a } {a 0 }
a,b,cely. (5) a,beR ;. (8) aeR}.

0 c b b 0 a
{—a b- } {—a 0 } {a 0 }
ae€Z,beQy. (6) aeR;. 9) aeRp.

00 a 0 0 0
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#2. Let Z[i] denote the set {a +bi|a,beZ}. Show that Z[i] is a subring of C.

#3. Let R be a ring and S and 7" subrings of R. Show that SuT is a subring of R if and only if
ScTorTcS.

2.8 Units in Rings
Definition 2.8.1. Let R be a ring with identity.
(a) Let w € R. Then u is called a unit in R if there exists an element in R, denoted by u™' and

called ‘u-inverse’, with

wult=1p and uwlu=1p

(b) Let u,v e R. Then v is called an (multiplicative) inverse of u if uv = 1g and vu = 1g.
(¢) Let ee R. Then e is called an (multiplicative) identity of R, if ea = a and ae = a for all a € R.
Example 2.8.2. (1) Units in Z: Let u be a unit in Z. Then uv = 1 for some v € Z. Thus u = £1.

(2) Units in Q: Let u be a non-zero rational number. Then u = = for some n,m € Z with n # 0

and m # 0. Thus % = " is rational. So all non-zero elements in Q are units.

(3) Units in Zsg: By Zg ={0,1,2,3,4,5,6,7} and so Zg = {0,+1,+2,+3,4}. We compute

0 1 +2 3 4
0(0 0 0 0 0
+1]0 +2 3 4
210 2 4 2 0
300 3 %2 4
410 4 0 4 0

So +1,£3 (that is 1,3,5,7 ) are the units in Zs.
Theorem 2.8.3. (a) Let R be a ring and e and €' € R. Suppose that
(*) ea=a and (%) ae' =a

for all a € R. Then e =¢€' and e is a multiplicative identity in R. In particular, a ring has at
most one multiplicative identity.



62 CHAPTER 2. RINGS

(b) Let R be a ring with identity and x,y,u € R with

(+) zu=1g and (++) wuy=1g.

Then x =y, u is a unit in R and x is an inverse of u. In particular, w has at most one inverse
mn R.

Proof. @

()

(Ax 10) (Ax 10)
Yy = 1 R = xT.

ry @ (zu)y BET 2 (uy) "
O

Theorem 2.8.4 (Multiplicative Inverse Law). Let R be a ring with identity and u,v € R. Suppose
u 15 a unit. Then

vo= u
<~ vu = 1R
<~ w = 1pg
Proof. Recall first that by definition of a unit:
(*) wul=1p and (++) wlu=1g
‘First Statement = Second Statement’: Suppose v = u~!. Then vu = u'u () 1g.

‘Second Statement == Third Statement’: Suppose that vu = 1. By (*) uu™! = 1g.

vu=1g and uu =1pg

and 2.8.3(@) applied with  =v and y = u™! gives v = v~!. Thus uv = uu™" ) 1g.

“Third Statement = First Statement’: Suppose that uv = 1z. By (**) u 'u = 1. Hence

wlu=1p and uv =1pg

and @ applied with z = ™ and y = v gives u™ = v. O
Theorem 2.8.5. Let R be a ring with identity and a and b units in R.
(a) a”t is a unit and (a*)7 = a.

(b) ab is a unit and (ab)™ =bta7t.
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Proof. @ By definition of ™!, aa™' = 1 and a™'a = 1z. Hence also a™'a = 1z and aa™! = 1z. Thus
a~! is a unit and by the Multiplicative Inverse Law a=(a"H)™t

(b) See Exercise 2.8|#5 O
®

Definition 2.8.6. A ring R is called an integral domain provided that R is commutative, R has an
identity, 1g +# Og and

(Ax 11) whenever a,b € R with ab=0g, then a =0g or b=0g.

Theorem 2.8.7 (Multiplicative Cancellation Law for Integral Domains). Let R be an integral domain
and a,b,ce R with a #+ 0r. Then

ab = ac
— b = ¢
— ba = ca
Proof. ‘First Statement == Second Statement:” Suppose ab = ac. Then

a(b-c)=ab-ac [2.2.9((j)
=ab—ab Principal of Substitution, ab = ac
=0g 2.2.9/f)

Since R is an integral domain, (Ax 11) holds. As a(b-c) = Og this implies a = 0 or b—c¢ =0pg.
By assumption a # O and so b— ¢ = 0g. Thus by 2.2.9({), b = c.

79

‘Second Statement == Third Statement:”” If b = ¢, then ba = ca by the Principal of Substitution.

‘Third Statement == First Statement:” Since integral domains are commutative, we have
ab = ba and ac = ca. Thus ba = ca implies ab = ac. O

Definition 2.8.8. A ring R is called a field provided that R is commutative, R has an identity,
1gr #0r and

(Ax 12) each a € R with a + Og is a unit in R.
Example 2.8.9. Which of the following rings are fields? Which are integral domains?

1) Z. (3) R. (5) Zs.
2) Q. (4) Zs. (6) Ma(R).
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All of the rings have a non-zero identity. All but My(R) are commutative. If a,b are non zero
real numbers then ab # 0. So (Ax 11) holds for R and so also for Z and Q. Thus Z,Q and R are
integral domains.

2 does not have an inverse in Z. So Z is an integral domain, but not a field.
The inverse of a non-zero rational numbers is rational. So Q is an integral domain and a field.
(3) The inverse of a non-zero real numbers is real. So R is an integral domain and a field.

+1 are the only non-zero elements in Zg. 1-1=1and —-1--1=1. So +1 are units and Zs is a
field. Also £1-+1 =1+ 0 and so Zs is an integral domain.

By Example the units in Zg are £1 and +3. Thus 2 is not a unit and so Zg is not a field.
Note that 2-4 =8 =0 in Zg and so Zg is not an integral domain

0 1[]0 O 10 0 0[]0 1 00
Note that . = and . = . So M2 (R) is not commutative.
0 0111 0 0 0 1 0110 O 10
Since
0 1]|]la b c d 10
= * = Iy (r)
0 Oflc d 00 0
01 0 1{]0 1 0 0
is not a unit so (Ax 12) fails. Also = = Opy(r) and so (Ax 11) fails.
0 0 0 0f[0 O 0 0

Thus My (R) fails all conditions of a field and integral domain, except for 1z # Og.

Theorem 2.8.10. Every field is an integral domain.

Proof. Let F be a field. Then by definition, F' is an commutative ring with identity and 1z # Op.
So it remains to verify in For this let a,b € F with

(*) ab:OF.

Suppose that a # Op. Then by the definition of a field, a is a unit. Thus a has multiplicative
inverse a~'. So we compute

0p a—l 0p (i) (1_1 . ((L . b) AxT (a—l . a) b Def:=a’1 1p-b (Ax=10) b.

Sob= OF.
We have proven that a # 0F implies b=0p. So a =0p or b =0p. Hence holds and F' is an
integral domain. O

Theorem 2.8.11. Every finite integral domains is a field.
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Proof. Let R be a finite integral domain. Then R is a commutative ring with identity and 1 # Og.
So it remains to show that every a € R with a # Og is a unit in R. Put
S:={ar|reR}.

and define
f: R=>S rear

We will show that f is a bijection. Let b,c € R with f(b) = f(¢). Then ab = ac. As a # Og the
Multiplicative Cancellation Law for Integral Domains gives b = c. Thus f is injective. Let s € S.
The definition of S implies that s = ar for some r € R. Then f(r) = ar = s and f is surjective. Hence
f is a bijection and so |R| = |S|. Since S € R and R is finite we conclude R = S. In particular, 1p € S
and so there exists b € R with 1z = ab. Since R is commutative we also have ba = 1r and so a is a
unit. O

Definition 2.8.12. Let R be a ring with identity, a € R and n € Z*. Then

a "= (a_1 )"

Exercises 2.8:

#1. Let R be a ring and a € R. Let n,m € Z such that a™ and a™ are defined. (So n,m e Z", or R
has an identity and n,m € N, or R has identity, a is a unit and n,m € Z. ) Show that

(a) a™a™ =a™"m.

(b) a™ = (a™)™.
#2. Find all units in Fun(R,R).
#3. An element e of a ring is said to be an idempotent if e? = e.

(a) Find four idempotents in Ma(R).

(b) Find all idempotents in Z;s.

(c) Prove that the only idempotents in an integral domain R are Og and 1g.
#4. Prove or give a counter example:

(a) If R and S are integral domains, then R x S is an integral domain.

(b) If R and S are fields, then R x S is a field.

1

#5. (a) If a and b are units in a ring with identity, prove that ab is a unit with inverse bla™t.

(b) Give an example to show that if ¢ and b are units, then a6~ does not need to be the
multiplicative inverse of ab.
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#6. Let R be a ring with identity. If ab and a are units in R, prove that b is a unit.

#7. Let R be a commutative ring with identity 1r # Og. Prove that R is an integral domain if and
only if cancellation holds in R, (that is whenever a,b,c € R with a # O and ab = ac then b = ¢.)

#8. Let R be a ring with identity and a,b,c € R. Suppose that a is a unit in R. Show that

ab = ac
— b = ¢
— ba = ca

2.9 The Euclidean Algorithm for Integers

Theorem 2.9.1. Let a and b be integers and suppose that b|la and a +0. Then
1<b] < |al.

Proof. Since a|b we have a = bk for some k in Z. Since a # 0 we get b # 0 and k # 0. Hence |b| and
|k| are positive integers and so 1 < |b| and 1 < |k| Hence also |b|-1 < |b] - |k| and so

L<|bf = o - 1< o] - [K| = |bk[ = |al.
O

Definition 2.9.2. (a) Let R be a ring and a,b,c € R. We say that c is a common divisor of a and
b in R provided that

cla and c|b.

(b) Let a,b and d be integers. We say that d is a greatest common divisor of a and b in Z , and
we write

d = ged(a,b),
provided that

(i) d is a common divisor of a and b in Z; and

(i) if ¢ is a common divisor of a and b in Z, then ¢ < d.

Example 2.9.3. (1) The largest integer dividing both 24 and 42 is 6. So 6 is the greatest common
divisor of 24 and 42.

(2) All integers divide 0 and 0. So there does not exist a greatest common divisor of 0 and 0.
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Theorem 2.9.4. Let a,b,q, r and d be integers with
a=bqg+r and d = ged(b, ).
Then
d = ged(a,b).
Proof. We need to verify the two conditions (i) and (ii) of the ged.

(i): Since d = ged(b, ) we know that d is a common divisor of b and r. As a = bg +r we conclude
that d divides a, see[2.4.4|(d). Thus d is a common divisor of a and b.

(ii) Let ¢ be a common divisor of a and b. Since a = bq +r we have r = a — bg. Hence c|r, see
2.4.4(c]). Thus c is a common divisor of b and r. Since d = ged(b, r) this gives ¢ < d. O

Theorem 2.9.5 (Euclidean Algorithm). Let a and b be integers not both 0 and let E_y and Ey be
the equations

EFE4 : a = a1 + b-0
Eo : b = a0 + b1

Let i € N and suppose inductively we already defined equation Ey,—1 <k <i of the form
By  rp = a-xp + boyp -
Suppose r; £ 0 and let t;11,qi+1 € Z with

Ticl = Tiiv1 +tiv1 and  [tien] <|ril.

(Note here that such t;.1,q+1 exist by the division algom'thm
Let Fy; 1 be the equation of the form riv1 = ax;v1+byi+1 obtained by subtracting q;+1-times equation
E; from E;_1, that is

Ti+1 = Ti-1 = Tiqi+1, T+l = Ti-1 — TiGi+1, Yi+l = Yi-1 — TiGi+1-
Then there exists m € N with r,—1 #0 and r, =0. Put d = |rp,—1|. Then
(a) ri,xp, Yk € Z for all k € Z with -1 <k <m.
(b) d=ged(a,b).
(¢) There exist z,y € Z with d = ax + by.

Proof. For k € Z with k > -1, let P(k) be the statement that ry,z; and y; are integers and if k> 1,
then |rg| < |rg-1|.

By the definition of Ey and Fy we have r_1 = a,2-1 = 1,y-1 = 0,79 = b,29 = 0 and yo = 1. Thus
P(-1) and P(0) hold. Suppose now that i € N, that P(k) holds for all k¥ € Z with -1 < k <4 and that
r; £0. We have
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Ei 1 @ rio1 = axir + byt
E, - r = axr; + by

and subtracting ¢;.1 times F; from F;_; we obtain

Eiw ¢+ rici-7rigian = a(l'ifl_fEiQiJrl) + b(yi—l_xi(h'ﬂ)-

Hence

Ti+1 == Ti-1 — Tiqi+1, Tit+1 = Tij-1 — TiGi+1, Yi+1 = Yi-1 — TiGi+1-

By choice, ¢;41 is an integer. By the induction assumption, x;,x;-1,y;-1 and y; are integers. Hence
also 741,41 and y;4+1 are integers. By choice of ¢;+1 and ;41

Ticl = TiQis1 + tiv1 and [tiv1| < |r4
So
ticl = TiQis1 — Tim1 = Tis1 and |riv1] < |7l

Hence P(i+ 1) holds. So by the principal of complete induction, P(n) holds for all n € Z with
n > -1 (for which E,, is defined).
In particular, @ holds and
[ro| > [r1] > |re| > |rs| > ... > il > ...
Since the r;’s are integers, we conclude that there exists m € N with r,,,-1 # 0 and r,,, = 0.
From Ti—1 =Tiqi+1 + tiv1 = Tiqiv1 + 71 and we have gcd(ri_l,ri) = ng(TZ', ’r‘i+1) and so
ged(a,b) = ged(r-1,70) = ged(ro,m1) = ... = ged(rm-1,7m) = ged(rm-1,0) = |rpm-1| = d.

So @ holds.
By equation E,,_; we have

Tm-1= QTm-1 t bym—l-

If 7,1 > 0, then
d="m1=aTm-1+byYm-1,

and if 7,,,_1 <0, then
d=-rm-1=a(-Tm-1) + b(~Ym-1).

In either case holds. O
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Example 2.9.6. Let a = 1492 and b = 1066. Then

Eq: 1492 = 1492 - 1 + 1066 - 0

Ey: 1066 = 1492 - 0 + 1066 - 1

Ep: 426 = 1492 1 + 1066 - -1 |E., - Eo
Es: 214 = 1492 - -2 + 1066 - 3 |Ey, - 2B
Es: 212 = 1492 - 3 + 1066 - -4 B, - E,
Ey: 2 = 1492 - -5 + 1066 - 7 By - Es
Es: 0 |Es - 106E,

So 2 =ged(1492,1066) and 2 = 1492 - -5 + 1066 - 7.

Theorem 2.9.7. Let a and b be integers not both zero and d := ged(a,b). Then d is the smallest
positive integer of the form au + bv with u,v € Z.

Proof. By the Euclidean Algorithm d is of the form au + bv with u,v € Z. Now let e be any
positive integer of the form e = au + bv for some u,v € Z. Since d = ged(a,b), d divides a and b. Thus
by [2.4.4)d), d divides e. Hence shows that d < |d| < |e| = e. Thus d is the smallest possitive
integer of the form au + bv with u,v € Z. O

Theorem 2.9.8. Let a and b be integers not both 0 and d a positive integer. Then d is the greatest
common divisor of a and b if and only if

(I) d is a common divisor of a and b; and

(IT) if ¢ is a common divisor of a and b, then c|d.

Proof. =>: Suppose first that d = ged(a,b). Then holds by the definition of ged. By
d = az + by for some z,y € Z. So if ¢ is a common divisor of a and b, then shows that c|d.
Thus holds.

<=: Suppose next that and holds. Then d is a common divisor of a and b by . Let
¢ be a common divisor of a and b. Then by (II), ¢|d. Thus by ¢ <|c| < |d| = d. Hence by
definition, d is a greatest common divisor of a and b. O

Theorem 2.9.9. Let a,b integers not both 0 with 1 = ged(a,b). Let ¢ be an integer with a|bc. Then
ale.

Proof. Since 1 = ged(a,b), shows that 1 = ax + by for some x,y € Z. Hence

c=1c=(azx+by)c=a(xc)+ (bc)y.

Note that a divides a and be, and that xc and y are integers. So by , a also divides
a(xzc) + (¢b)y. Thus alec. O
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Exercises 2.9:
#1. If a|b and b|c, prove that a|ec.
#2. If a|c and b|c, must ab divide ¢? What if ged(a,b) =17

#3. Let a and b be integers, not both zero. Show that ged(a,b) = 1 if and only if there exist integers
u and v with ua + vb = 1.

#4. Let a and b be integers, not both zero. Let d = gcd(a,b) and let e be a positive common divisor
of a and b.

(a) Show that gcd(%,%7 = g.
a by _
(b) Show that ged(g, 7) = 1.
#5. Prove or disprove each of the following statements.
(a) If 2+a, then 4|(a® - 1).
(b) If 24a, then 8| (a® - 1).

#6. Let n be a positive integers and a and b integers with ged(a,b) = 1. Use induction to show that
ged(a,b™) = 1.

#7. Let a,b,c be integers with a,b not both zero. Prove that the equation ax + by = ¢ has integer
solutions if and only if ged(a, b)|c.

#8. Prove that ged(n,n + 1) =1 for any integer n.
#9. Prove or disprove each of the following statements.
(a) If 2+a, then 24| (a®-1).
(b) If 2+a and 3 +a, then 24|(a® - 1).
#10. Let n be an integer. Then ged(n+1,n2 —n+1) =1 or 3.

#11. Let a,b,c be integers with a|bc. Show that there exist integers b, ¢ with l;|b, ¢lcand a = be.

2.10 Integral Primes

Definition 2.10.1. An integer p is called a prime if p ¢ {0,1,-1} and the only divisors of p in Z
are 1, =1, p and —p.

Theorem 2.10.2. (a) Let p be an integer. Then p is a prime if and only if —p is prime.

(b) Let p be a prime and a an integer. Then either (p|a and |p| = ged(a,p)) or (p + a and
1=ged(a,p)).
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(¢) Let p and q be primes with p|q. Then p=q or p=—q.

Proof. @ Note that

(*) p¢{0,+1} ifand only if -p¢{0,+1},
By
(%) p and —p have the same divisor.
Moreover,
(% % %) +p=+(-p)

Thus the following statements are equivalent:

p is a prime

— p ¢ {0,+1} and the only divisors of p are +1 and +p - Definition of a prime.

<= -p¢{0,£1} and the only divisors of —p are +1 and +(-p) - , and (* * *

— —p is a prime. - Definition of a prime.
So @ holds.

@: Put d := ged(a,p). Then d|p and since d is prime, d € {£1,+p}. Since d is positive we
conclude that

(+) d=1 or d = |p|.

Case 1: Suppose p|a.

Since p|p, we conclude that p is a common divisor of a and p. Thus by 2.4.4[b) also |p| is a
common divisor of a and p. As d = ged(a,p) this gives |p| < d. By definition of a prime we have
p ¢{0,£1}, so we |p| > 1. Hence also d > 1 and thus d # 1. Together with we get d = |p|. So pla
and |p| = ged(a,p). Thus holds in this case.

Case 2: Suppose p+a.

Then also |p|+a. As d = ged(a,p), we have d|a and so d # |p|. Hence by d=1. Thus pta
and 1 = ged(a,p). So (]ED also holds in this case.

: Suppose p and ¢ are primes with p|q. Since ¢ is a prime we get p € {+1,+q}. Since p is
prime, we know that p ¢ {+1} and so p € {q}. O

Theorem 2.10.3. Let p be an integer with p ¢ {0,+1}. Then the following two statements are
equivalent:

(a) p is a prime.
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(b) If a and b are integers with p|ab, then pla or p|b.

Proof. = ": Suppose p is prime and p|ab for some integers a and b. Suppose that p+a. Then
2.10.2| gives 1 = ged(a, p). Since plab, now implies that p|b. So p|a or p|b.
‘«<=": For the converse, see Exercise 2.10#3] O

Exercises 2.10:

#1. Let n be an integer with n ¢ {0,1,-1}. Prove that there exists a positive prime integer p with
pln.

#2. Let p be an integer other than 0,+1. Prove that p is a prime if and only if it has this property:
Whenever r and s are integers such that p =rs, then 7 = +1 or s = +1.

#3. Let p be an integer other than 0,+1 with this property
(*)  Whenever b and c are integers with p | be, then p | b or p | c. Prove that p is a prime.

#4. Prove that 1 = ged(a,b) if and only if there does not exist a prime integer p with p|a and p|b.
#5. Prove or disprove each of the following statements:

(a) If p is a prime and p|a? + b? and p|c? + d?, then p|(a? - ¢?)

(b) If p is a prime and p|a® + b% and p|c?® + d?, then p|(a® + c?)

(c) If p is a prime and p|a and p|a® + b?, then p|b
#6. Let a and b be integers. Then a|b if and only if a3|b3.

#7. Prove or disprove: Let n be a positive integer, then there exists p,a € Z such that n = p + a®

and either p=1 or p is a prime.

2.11 Isomorphism and Homomorphism

Definition 2.11.1. Let (R,+,-) and (S,®,®) be rings and let f : R — S be a function.

(a) f is called a homomorphism from (R,+,-) to (S,®,®) if

fla+b)=f(a)® f(b) [ f respects addition]

and
fla-b) = f(a)® f(b) [f respects multiplication]

for all a,be R.

(b) f s called an isomorphism from (R,+,-) to (S,®,®), if f is a homomorphism from (R,+,-) to
(S,®,0) and f is bijective. surjective
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(¢) (R,+,-) is called isomorphic to (S,®,®), if there exists an isomorphism from (R,+,-) to
(S,@,0).

Example 2.11.2. (1) Consider
g: R->R, aw~-a.

Let a,b €R. Then

gla+b)=—=(a+b)=-a+(-b) =g(a)+g(b).

and so g respects addition.

g(ab)=—~(ab)  and  g(a)g(b) = (~a)(~b) = ab

For a =b =1 we conclude that

g(1-1)=-(1-1)=-1 and g(g(1)=1-1=1.

So g(1-1) # g(1)-g(1). Thus g does not respect multiplication, and ¢ is not a homomorphism.
But note that g is a bijection.

(2) Let R and S be rings and consider

h: R-S, r~0g.
Let a,be R. Then

h(a + b) =05 =0g5+0g = h(a) + h(b) and h(ab) =05 =050g = h(a)h(b).

So h is a homomorphism. h is injective if and only if R = {0z} and h is surjective if and only
if $'={0g}. Hence h is an isomorphism if and only if R = {Og} and S = {0g}.

(3) Let S be a ring and R a subring of S. Consider
idps: R—->S, rer.
Let a,b € R. Then

idrs(a+b)=a+b=idgrgs(a)+idg s(b) and idg s(ab) = ab =idg g(a)idg s(b)

and so idp g is a homomorphism. Note that idg s is injective. Moreover, idg g is surjective if
and only if R =S. Hence idg :=1idg g is an isomorphism.
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(4) Let R be a ring and n € R. Consider the function

k: R—-R,, aw~ [a],.

Let a,b € R. By definition of the addition and multiplication in R,

k(a+b) = [a+b]y, = [a]n®[b]n = k(a)®k(D) and k(ab) = [ab], = [a]n®[b]n = k(a)®k(D).

So k is homomorphism. Note that
k(n) = [n]n = [0r]n = k(OR).

If n # Or we conclude that & is not injective.

Suppose n = 0g. Then by Example a =b (modn) if and only of a = b. Thus k is

injective.

Let A € R,,. The definition of R,, shows that A =[a], for some a € R. Hence k(a) = A and so
k is surjective.

Example 2.11.3. Consider the function

oS
f: C->My(R), r+sir

=S T

Let a,beC. Then a=r+si and b=7 + § for some r,s,7,5 € R. So

f(a+b) = f((r+si) + (f+§i))
F((r+7)+ (s +5)i)

r+r S+

—(s+38) r+r

1l
+

f(r+si)+ f(7+3i)
f(a) + f(b)

and
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f(ab) F((r+si)(F +50))
f((rf —s8) + (ré + sf)z')

rT — 8§ S+ ST

—(r§+sr) rr—s§

= f(r+si)f(F+38i)
= f(a) f(D).
Thus f is a homomorphism.
If f(a) = f(b), then
r o8 r s
-5 T i -5 T

and so r=7 and s=5. Hence a=r+si =7+ 5i=b and so f is injective.

+5
1 0 r oS
Since 1 # 0 we have that # for all ;s € R. Thus f is not surjective.
0 0 -5 T

r s
S = r,seR .
-s T

Using the Subring theorem it is straight forward to check that S is a subring of My(R). Alter-
natively, Theorem [2.11.11| below also shows that S is a subring of My(R). It follows that

Put

f: C-S, r+ise

is an isomorphism of rings. Thus

are isomorphic rings.
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Notation 2.11.4. (a) ‘f: R— S is a ring homomorphism’ stands for the more precise statement
(R,+,-) and (S,®,®) are rings and f is a ring homomorphism from (R,+,-) to (S,®,0).’

(b) Usually we will use the symbols + and - also for the addition and multiplication on S and so
the two conditions for a homomorphism become

fla+b)=f(a)+ f(b) and f(ab)=f(a)f(b).

Remark 2.11.5. Let R = {ry,72,...,r} be a ring with n elements. Suppose that the addition and
multiplication table is given by

+ 1 T Tn 1 . ] Tn

r1 | an ay; ain ri | b ... by bin
A: and M :

T | ai ajj Qin ri | bin ... b bin

Tn | Gnl Anj Ann Tn bnl ce bnj bnn

So ri+1j=a;; and r;rj =b;; for all 1 <i,j <n.
Let S be a ring and f : R — S a function. For r € R put v’ = f(r). Consider the tables A" and
M'" obtain from the tables A and M by replacing all entries by its image under f:

1 r;- rl oo r} r
4 A 4 4 4 4 ! A
1| A11 ayy A1n 1| %1 - blj in
/. I,
A and M
A l4 A A A ! ! 4
Ty | G ;5 A, Ty Y1 - bij bin,
4 A 4 4 4 14 14 !
Tn | Qn1 anj App n nl - bnj bnn

(a) f is a homomorphism if and only if A" and M’ are the tables for the addition and multiplication

of the elements 1',...,ry, in S, that is r{ + 7" = aj; and rir; = bj; for all 1 <i,j<n.
b is injective if and only if vy, ... v are pairwise distinct.
] Y 1 n
(c) f is surjective if and only if S = {r{,rh, ..., }.

(d) f is an isomorphism if and only if A’ is an addition table for S and M’ is a multiplication

table for S.
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Proof. @ f is a homomorphism if and only if

fla+b)=a+b and f(ab)= f(a)f(d)
for all a,be R. Since R ={r1,...,7m,}, this holds if and only if
f(ri+ry) = f(ra) + f(ry) and  f(rirj) = f(r:) f(r))
for all 1 <4,j <n. Since 7; +1; = a;; and 7;1; = b;; this holds if and only if
flaij) = f(ri) + f(ry) and  f(bi) = f(ri) f(r;)

for all 1 <4,5 <n. Since f(r) =7, this is equivalent to
agj =ri+ r;- and b;j = 7“2'-7“;-
forall 1<i,5<n

() f is injective if and only if (for or all a,b € R) f(a) = f(b) implies a = b and so if and only

if a # b implies f(a) # f(b). Since for each a € R there exists a unique 1 <7 <n with a = r;, f is
injective if and only (for all 1 <d,j <n)i# j implies f(r;) # f(r;), that is i # j implies r] # .

f is surjective if and only if Im f = S. Since R = {ry,...,rn}, Im f = {f(r1),..., f(rn)} =
{ri,...,r}. So f is surjective if and only if S = {r],...,r }.

Follows from (ja])-(c]). O
@ ()

Example 2.11.6. Let R be the ring with additions and multiplication table

01 =0 1
01 0 and 010 1
1/0 1 111 1

Note here that R is indeed a ring, see Example Then the function

f: R—-Zy, 01, 1-0
is an isomorphism.

Replacing 0 by 1 and 1 by 0 in the above tables we obtain

10 10
110 1 and 111 0.
01 0 00 O

Note that these are addition and multiplication tables for Zs and so by [2.11.5] f is an isomorphism.
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Theorem 2.11.7. Let f: R — S be a homomorphism of rings. Then
(a) f(Og) =0s.
(b) f(-a)=-f(a) for all acR.
(¢) fla=b)=f(a)- f(b) for all a,be R.

Proof. (&) We have

f(Or)+ f(Og) = f(0Ogr +0gr) - f respects addition
= f(Or) -[Ax 4l for R.

So the Additive Identity Law for S implies that f(0r) =0g.
@ We compute

fla)+ f(-a) = f(a+(-a))) - f respects addition

f(0R) -[Ax 5l for R.
=0s - by (&)
So the Additive Inverse Law for S implies that f(-a) =-f(a).

(E)

Fa-b) "L flar (-b) T pa)+ £(-0) © fla)+ (1) L f(a) - £(0).
]

Theorem 2.11.8. Let f: R — S be a homomorphism of rings. Suppose that R has an identity and
that f is surjective. Then

(a) S is a ring with identity and f(1g) = 1g.
(b) If u is a unit in R, then f(u) is a unit in S and f(u™') = f(u)™t.

Proof. @ We will first show that f(1g) is an identity in S. For this let s € S. Since f is surjective,
s = f(r) for some r € R. Thus

(Ax 10)

f hom
s-f(1r) = f(r)f(1r) =" f(rlg) f(r)=s,
and similarly f(1g)-s=s. So f(1g) is an identity in S. By [2.8.3|(a) a ring has at most one identity
and so f(1g) =1g.

(]EI) Let u be a unit in R. We will first show that f(u™!) is an inverse of f(u):

P f) 1 ) T p(1e) @t

Similarly f(u™)f(u) = 1g. Thus f(u') is an inverse of f(u) and so f(u) is a unit. By f(u)™t
is the unique inverse of f(u) and so f(u™t) = f(u)~t. O
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Example 2.11.9. Find all surjective homomorphisms from Zg to Zs x Zs.

We start with setting up some convenient notation. For a,b € Z and h a function from Zg to
ZQ X Zg define

[a]=[als.  Ala]=h(lals), and [a,b] = ([ala,[b]s).
Let a,b,c,d € Z. Then

[a,b] + [c,d] = ([a]g, [b]g) + ([6]2, [d]g) = ([G]Q +[c]2, [b]3 + [d]g) = ([a+ cla, [b+d]3) =[a+e,b+d].

Thus

(*) [a,b] + [c,d] = [a+c,b+d] and similarly [a,b] - [c,d] =[a-c,b-d]

‘Uniqueness of the surjective homomorphism’:

Let f :Z¢ — Z2 x Z3 be a surjective homomorphism. We will compute f[r] for 0 < r < 5 and
thereby prove that f is unique determined. Since f is an surjective homomorphism, we get from
R.11.8|f]) that f(1z;) = 1z,xz,. Since [1] is the identity in Ze and [1,1] is the identity in Zg x Z3 this
gives f[1] =[1,1]. Similarly, by 2.11.7(a]), f(0z,) = 0z,xz, and thus f[0] = [0,0]. We compute

f10]=10,0]

=111
1=+ 1] = 0+ fIU] = [1,1] + [1,1] = [2,2] = [0, 2]
FBI=r2+1] = F2]+ fI1] = [2,2] + [1,1] = [3,3] = [1, 0]
f14]=FB+1] = FB] + fI1] = [3,3] + [1,1] = [4,4] = [0, 1]
fI5] = fl4+1] = f[A] + f1] = [4,4] + [1,1] = [5,5] = [1, 2]

By Ze = {[0],[1],[2],[3],[4],[5]}. Hence f is uniquely determined.

‘Existence of the surjective homomorphism?’:

Define a function g : Zg - Zs x Z3 by

(%) glr]=1[r,r] for all 0<r<5.

We will show that g is a isomorphism, and so also surjective homomorphism. For this we first
show that g[m] = [m,m] for all m € Z. Indeed, by the Division Algorithm, m = 6¢ + r for some
q,r € Z with 0 <r < 6. Then by [m]e = [r]¢ and since m = 2(3q) +r =3(2q) +r, [m]2 = [r]2 and
[m]s =[r]s. So [m]=[r], [m,m]=[r,r] and
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(% % %) glm] = glr] =[r,r]=[m,m].
Thus
gln+m] b2 [n+m,n+m] a2 [n,n]+[m,m] ) g[n] +g[m],
and
glnm] =2 [nm,nm] © [, n)lm,m] ©= glnlgm].

So ¢ is a homomorphism of rings. Since Zy = {[0]2, [1]2} and Zs = {[0]3,[1]3,[2]3} we have

ZQ X Z3 = {(x,y) | T € Zg,y € Zg} = {[0 0], [0,1],
:{[0 0] [4,4], )
={9[0], g[4], g[2], ¢[3], gl1], g[5]}

and so ¢ is a surjective. Note that ¢ is also injective. Thus ¢ is an isomorphism and so

Ze is isomorphic to  Zsy x Zs.
Example 2.11.10. Show that Z4 and Zoy x Zo are not isomorphic.
Put R :=7Zy x Zsy. Since x + x = [0] for all z € Zy we also have

(z,y) + (z,y) = (z+z,y +y) = ([0]2,[0]2) = Or.

for all z,y € Zs. Thus

(%) r+r=0p

for all 7 € R. Let S be any ring isomorphic to R. We claim that s+ s =0g for all s €.S. Indeed, let
f: R — S be an isomorphism and let s € S. Since f is surjective, there exists r € R with f(r) = s.
Thus

f h * 2.11.7)(a))
sts= £+ f) " per) @ pon) B 0
Since [1]4+ [1]4 = [2]4 # [0]4 we conclude that Z4 is not isomorphic to Zg x Zs.

Theorem 2.11.11. Let f: R — S be a homomorphism of rings. Then Im f is a subring of S. (Recall
here that Im f = {f(r) | r € R}).
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Proof. 1t suffices to verify the four conditions in the Subring Theorem Observe first that for
s€S,

(%) selm f — s = f(r) for some r € R

Let x,y € Im f. Then by :

(*%) x=f(a) and y=f(b) forsome a,beR.
(I) By[R.I1.7() f(0r)=0s. By[Ax 40 € R and so Og € Im f by
(1) z+y = fla)+ f(b) "™ f(a+b). ByAx Ta+beR. Sox+yelmf by .
(ITI) =y f(a)f(b) f hiom f(ab). By[Ax 6labe R. So zy € Im f by (*).
(IvV) -z —f(a) f(-a). By[Ax Bl -a € R. So —z € Im f by (*). O
Definition 2.11.12. Let R be a ring. For n € Z and a € R define na € R as follows:
(i) Oa =0g.
(ii) If n >0 and na already has been defined, define (n + 1)a = na + a.

(iii) If n <0 define na = —((—n)a).

Exercises 2.11:
#1. Let R be ring, n,m € Z and a,b € R. Show that

(a) la=a. (¢) (n+m)a=na+ma. (e) n(a+b) =na+nb.

(b) (-1)a = -a. (d) (nm)a=n(ma). (f) n(ab) = (na)b = a(nb)
#2. Let f: R — S be a ring homomorphism. Show that f(na) =nf(a) for all n€Z and a € R.
#3. Let R be a ring. Show that:

(a) If f:Z — R is a homomorphism, then f(1)% = f(1).

(b) Let a € R with a® = a. Then there exists a unique homomorphism g:Z — R with g(1) = a.

a
#4. Let S =
b a+b

to the ring R from Exercise 1

a,be ZQ}. Given that S is a subring of My (Zsg). Show that S is isomorphic
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#5. (a) Give an example of a ring R and a function f: R - R such that f(a+0b) = f(a)+ f(b) for
all a,be R, but f(ab) # f(a)(f(b) for some a,b € R.

(b) Give an example of a ring R and a function f : R - R such that f(ab) = f(a)f(b) for all
a,be R, but f(a+b)# f(a)+ (f(b) for some a,b € R.

a 0
#6. Let L be the ring of all matrices in My(Z) of the form with a,b,c € Z. Show that the
b ¢

a

function f : L - Z given by f (
b ¢

) = a is a surjective homomorphism but is not an isomorphism.

#7. Let n and m be positive integers with n =1 (modm). Define f : Zy, = Zpm, [2]m ~ [20]nm-
Show that
(a) f is well-defined. (That is if z,y are integers with [2],, = [y]m, then [xn]nm = [yn]nm)
(b) f is a homomorphism.
(c) f is injective.
(d) If n>1, then f is not surjective.
#8. Let f: R — S be a ring homomorphism. Let B be a subring of S and define
A={reR| f(r)eB}.
Show that A is a subring of R.
#9. Show that the two rings are not isomorphic.
(a) 2Z and Z. (¢) Zg xZy4 and Zqg. (e) Z xZy and Z.
(b) RxRxR xR and M3(R). (d) Q and R. (f) Z4x7Z4 and Zqg.
#10. Let f: R— S and g: S - T be homomorphism of rings.
(a) Show that go f: R — T is a homomorphism of rings.
(b) If f and g are isomorphisms, show that go f is an isomorphism.

(¢) Suppose f is an isomorphism. For s € S let s’ be the unique element of R with f(s’) = s. Show
that the function h: S — R, s+ s’ is an isomorphism of rings.

#11. Let f : R - S be an isomorphism of rings. If R is an integral domain, show that S is an
integral domain.
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2.12 Associates in commutative rings

Definition 2.12.1. Let R be ring with identity and let a,be R. We say that a is associated to b, or
that b is an associate of a and write a ~g b if there exists a unit w in R with au=0b. We will usually
just write a ~ b for the more precise a ~g b.

Remark 2.12.2. Until now we have used ‘~’ to denote an arbitrary relation. From mnow on the
symbol ‘~” will be reserved for the ‘associated’ on a ring R.

Theorem 2.12.3. Let a,b be integers. Then 1 = ged(a,b) if and only if there exist integers u and v
with 1 = au + bv.

Proof. If 1 = ged(a,b), then 1 = au + bv for some u,v € Z by the Euclidean Algorithm m

Conversely, suppose that 1 = au + bv for some u, v € Z. Since 1 is the smallest positive integer this
shows that 1 is the smallest positive integer of the form au + bv,u,v € Z. From [2.9.7 we conclude
that 1 = ged(a,b). O

Theorem 2.12.4. Let n be a non-zero integer and a € Z. Then 1 = ged(a,n) if and only if [a], is
a unit i Ly,

Proof.
1=gcd(a,b)
— l=au+nv for some u,veZ -[ZI23
— [1]n =[au], for some u € Z -229
— [1]n =[a]n]uln for some u € Z — Definition of multiplication in Z,
— [1]p=[a] U for some U € Z,, - Definition of Z,
— 1z, =[a]U for some U €Z,, -1y, =[1], by
~— 1y, =[a],U and 1z, = Ula], for some U € Z,, -7, is commutative
<~ [a]y, is a unit in Z, — Definition of a unit

Example 2.12.5. (1) Let n € Z. Find all associates of n in Z.
By the units in Z are +1. So the associates of n are n-+1, that is +n.
(2) Find all associates of 0,1,2 and 5 in Zo.

By Z10=10,1,2,3,4,5,6,7,8,9} and so Zyp = {0, +1,+2, +3,+4,5}.
We compute
n ‘ 0 +1 +2 +3 +4 5

gcd(n,lO)‘lO 2 2 5
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and so by the units in Z1g are +1 and +3.

So the associates of a € Z1g are a-+1 and a-+3, that is +a and +3a. We compute

a | associates of a | associates of a, simplified
0 +0,4+3-0 0

+1 +1,+43-1 +1,+3

+2 +2,+£3-2 +2,+4

+3 +3,+3-4 +1,+3

+4 +4,4+3-4 +2, 44

5 +5,+3-5 )

Theorem 2.12.6. Let R be a ring with identity. Then the relation ~ (’is associated to’) is an
equivalence relation on R.

Proof. Reflexive: Let a € R. By (Ax 10), 1z = 1rlg. Hence 1g is a unit in R. By (Ax 10)
alr =a and so a ~ a by definition of ‘~’. Thus ~ is reflexive.

Symmetric: Let a,b € R with a ~ b. By by definition of ‘~’ this means that exists a unit u € R
with au = b. Since u is a unit, u has an inverse u~!. Hence (multiplying au = b with u™!)

AX _ -1 A
bu_l _ (au)u—l a(uu 1) def:u CLlR ( x:10) a

By v~ ! is a unit in R and so b~ a. Thus ~ is symmetric.

Transitive: Let a,b,ce€ R with a ~b and b~ ¢. Then au =b and bv = ¢ for some units v and v
in R. Substituting the first equation in the second gives (au)v = ¢ and so by [Ax 2| a(uv) = ¢. By
285 uv is a unit in R and so a ~ ¢. Thus ~ is transitive.

Since ~ is reflexive, symmetric and transitive, ~ is an equivalence relation. O

Example 2.12.7. Determine the equivalence classes of Z1¢ with respect to ~.

Note that for a € Zjg, [a]. = {beZ1o | a ~ b} is the set of associates of a. So by Example [2.12.5

[0]. = {0}
[1]. = {£1,+3}
[2]. = {£2,+4}
[5]. = {5}

By Z10=40,1,...,9} ={0,+1,+2,+3,+4,5}. So for each x € Zj( there exists y € {0,1,2,5}
with z € [y].. Thus by [2]. = [y]~. So [0].,[1].,[2]~,[5]~ are all the equivalence classes of ~.
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Theorem 2.12.8. Let R be a ring with identity and a,b € R with a ~b. Then a|b and b|la in R.

Proof. Since a ~ b, au = b for some unit u € R. So alb.
By [2.12.6] the relation ~ is symmetric and so a ~ b implies b ~ a. Hence we can apply the result
of the previous paragraph applied with a and b interchanged and conclude that b|a. ]

Theorem 2.12.9. Let R be a commutative ring with identity and r € R. Then the following four
statements are equivalent:

(a) 1~

(b) r|1g

(c)

(d) 7 is a unit.

Proof. @ — (]ED: If 1z ~ r then [2.12.8 gives r|1g.
(]E[) — : Follows from the definition of ‘divide’.

There exists s in R with rs = 1g.

- @: Suppose that rs = 1 for some s € R. Since R is commutative we get sr = 1. So
r is a unit.

@ = @: Suppose r is a unit. By (Ax 10), 1zr = r. Since r is a unit this gives 1z ~ r by
definition of ‘~’. O
Theorem 2.12.10. Let R be a ring with identity and a,b,c,d € R.

(a) Suppose a ~b. Then al|c if and only if bc.
(b) Suppose ¢ ~d. Then b|c if and only if b|d.
(c) Suppose a~b and c~d. Then a|c if and only if b|d.

Proof. @ Suppose that a ~ b.
<—=: Suppose that b|c. Since a ~ b we know that a|b, see [2.12.8] From a|b and b|c we get alc,

since { is transitive by [2.4.4)(a))).

—: Since a ~ b and ‘~’ is symmetric (see [2.12.6) we have b ~ a. So we can apply the result of
previous paragraph applied with a and b interchanged. Thus a|c implies b|c.

(]E[) Suppose that ¢ ~ d.

=—=: Suppose that b|c. Since ¢ ~ d know that c|d and so b|d as { is transitive.

)

<—=: Since ¢ ~ d and ‘~’ is symmetric we have d ~ ¢. So we can apply the result of previous
paragraph applied with ¢ and d interchanged. Thus b|d implies b|c.

Suppose that a ~ b and ¢ ~ d. By (@) a|c if and only if b|c. By (b)) the latter holds if and only
if b|d. O
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Definition 2.12.11. Let R be a ring and a,be R. We say that a and b divide each other in R and
write a » b if
alb and bla.
Exercises 2.12:
#1. Let R =Zss.
(a) Find all units in R.
(b) Determine the equivalence classes of the relation ~ on R.
#2. Let R be a ring with identity. Prove that:
(a) ~ is an equivalence relation on R.
(b) Let a,b,c,d € R with a ~b and ¢~ d. Then alc if and only if b|d.
#3. Let n be a positive integer and a,b € Z. Put d = ged(a,n) and e = ged(b,n). Prove that:
(a) [a]n‘[d]n in Zy,.
(b) [aln ~ [d]n.
(c) Let r,s € Z with r|n in Z. Then [r],|[s], in Z, if and only if r|s in Z.
(d) [d]n|le]n in Z, if and only if d|e in Z.
(e) [aln|[b]n in Z,, if and only if d|e in Z.
(f) [d]n ~ [e]n if and only if d = e.
(g) [a]n ~ [b], if and only if d = e.
#4. Let R be an integral domain and a,b,c € R such that a # 0p and ba|ca. Then b|c.

#5. Is A associated to B in Ma(R)?

2 4 10 6
(a) A= and B = .

3 6 15 9

2 4 12 20
(b) A= and B = .

3 6 15 25
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Polynomial Rings

3.1 Addition and Multiplication

Definition 3.1.1. Let R and P be rings and x € P. Then P is called a polynomial ring in = with
coefficients in R provided that the following four conditions hold:

(i) R has identity 1g, P has an identity 1p and R is subring of P.
(ii) az =za for all a € R.

(iii) For each f € P, there exists n € N and fo, f1,..., fn € R such that

f:ifﬂi (=fo+ fiz+...+ faz").
i=0

(iv) Whenever n,m e N with n <m and fo, f1,---, fny90,-- -, 9m € R with
n . m .
Y fix' =) gid,
i=0 i=0

then f; = g; for all 0<i<n and g; =0g for alln <i<m.
Remark 3.1.2. Let P be a polynomial ring in x with coefficients in the ring R.

(a) The elements of P are called polynomials in x with coefficients in R. Polynomials are not
functions. See section[3.4) for the connections between polynomials and polynomial functions.

(b) x is a fized element of P. = is not a variable.
Theorem 3.1.3. Let R be ring with identity and a,b e R.
(a) a™™ =a"a™ for all n,m € N.

(b) If ab = ab, then ab™ =b"a for alln e N

87



88 CHAPTER 3. POLYNOMIAL RINGS

Proof. @ If n =0, then ™™™ = a™ = 1gra™ = a’a™. So we may assume that n > 0. Similarly we may
assume that m > 0. Then

a"a™ = (aa...a)(aa...a) Gl a..a =a™m™
— Y ~——
n—times m-—times n+m-—times
(]ED Suppose that
(*) ab = ba.

For n =0 we have ab® = alp = a = 1ga = b%a. Thus @ holds. Suppose @ holds for n = k. Then

(%%) ab® = bra.

We compute

ab®! = a(b¥b) - definition of b**!
= (ab™)b  -[AXT
= (t*a)p ()
=b"(ab) -[A
=0 (ba) -
= (b*b)a -[AXT

=b**1q. - definition of bF*!

g

Thus (]ED also holds for n = k + 1. So by the Principal Of Induction, (]ED holds for all n € N. O

Theorem 3.1.4. Let R be a ring with identity and P a polynomial ring with coefficients in R with
respect to x. Then 1g =1p. In particular, T = 1px.

Proof. Let f e P. Then by Condition on polynomial ring there exist n € N and fo, f1,... fn €
R with

(+) f=3

1=0

Let 1 <7 <n. By Condition on polynomial ring 1zz = 21 and so by [3.1.3|(b)

(**) 1RZUZ :l‘ilR.
Thus

(%) (fie)1r 2D fiai1p) & £(1aa) BER (fi1g)a’ L0 g

1
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and
flr © (Z fix )1R L Y (fiayin B Y gt @
=0 i=0

Similarly 1gf = f and so 1g is a multiplicative identity of P and so 1z = 1p. Since x € P this gives
lgzr =1px =x. ]

Theorem 3.1.5. Let P be a ring with identity, R a subring of P, x € P and f,g € P. Suppose
that

(i) ax =za for all a € R;
(ii) there exist n €N and fo,..., fn€ R with f = ¥, f;x®; and
(iii) there exist m €N and go, ..., gm € R with g = ¥, gix’

Put f;:=0g for i>n and g; :=0g fori>m. Then

max(n,m)

(a) f+g= ; (fi +gi)2".
(b) —f =XLo(-fi)z".

n+m ( min(n,k) n+m

k=0 \i=max(0,k—m) k=0

Proof. (]E[) @ Put p:= max(n,m). Then f; = 0g for all n <i < p and g; = 0g for all m <i < p. Hence

p . P )
(*) f: Zf,ac’ and g = Zgixz.
1=0 i=0
Thus
f+g = (Zfzo fzxz) + (Zzpz() gi'ri) "
= > o (fir' + gix?) ~GCL and GAL
= Yoo (fi+ gt -[Ax §

So (@) holds.
@ Since R is a subring of P we have O = 0p. Using @ we compute

+§(:)(_fi)xi_z(:)(fz+( fz ).T —ZOP«T —ZOP Op.

and so —f = ¥ (- f;)z' by the Additive Inverse Law.
Let a € R and b e N. By Hypothesis ax = xa and so by |3.1.3{[b)

(**) axr” =x"a.
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We now can compute fg.

Ig

M:

S,
Il
o

f) (zg]xf - @ and

: Z[I) Zo<fix"><gjxj> _ DL
: Zg Zg(ﬁ(a:igj))xj _GAL

(**X—)

'MS

i
=}

Z(fz-(gjw"))wj - 2'g; = gja* by
=0

NgE

Z(figj)(fvixj ) - GAL

(Z(fzgj)ﬂ”) - aiad =27, by BI3E)

.

M:é

Il
[en]

7

Let 4,5,k € Z with k =4+ j. We will show that
(+) 0<i<mand 0<j<m <= 0<k<n+m and max(0,k-m) <i<min(k,n)

Suppose first that 0 < i <nand 0 < j<m. Then 0 <k =i+ j <n+m. Since j < m we have
m-—j>0andsok-m=i+j-m=i—(m-j)<i. As0<i this gives max(0,k—m) <. Since j >0
we have i <i+j=k. Asi<n we get i <min(k,n).

Suppose next that 0 < k <n+m and max(0,k —m) <7 <min(k,n). Then 0 < <n. Since i <k
weget 0<k-i=j. Ask<n+mand i<n we have j=k—i< (n+m)—n<m. Thus holds.

Put
A:={0,1,...,n} x{0,...,m}, B:={(k,i)eZxZ|0<k<n+m, max(0,k-m) <i<min(k,n)}.
It follows that the function
A— B, (i,j)~ (i+3,19)

is a bijection with inverse

B—- A, (ki) (i,k-1).
Hence the substitution k =4+ j (and so j =k — i) and the GCL and GAL imply that

n [ m o n+m min(k,n)
> (Z figﬂw) = > ( > figk—z‘fﬂk)
=0

k=0 \i=max(0,k—m)
(++) n+m( min(k,n)

> > figk—i) 2 -GDL

k=0 \i=max(0,k-m)
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Suppose 0 < i < max(0,k —m). Then then k-4 >m and so gx_; = Og. Hence figx—; = fiOr =0r (

by ZZ00).

Suppose min(k,n) < i < k. Then min(n,k) # k and so min(n, k) = n. Hence n < i, so f; = Og.

Thus f;gr_; = 0rgr_; = Or. It follows that

min(k,n)

k
> figh—i = fiGh—i
i=max(0,k-m) 1=0

and so

n+m min(k,n) n+m [ k
(+++) > ( >, fz-gk-i):vk = (Z figk—i)$k~

k=0 \i=max(0,k-m) k=0 \i=0

Combining (+ * %), (++) and (+++)) gives (d).

Example 3.1.6. Let P be a polynomial ring in x with coefficients in Zg. Let

f=1+2z+32° and g=1+4z + 5z + 223

Compute f+g and f-g in P.

f+g=1+2x + 32°
+ 1+4x + 5 +22°
= 2462 + Sx2+22°

=2 +22%+223

fg=(1+2z+32%) (1 +4z + 52 + 2z°)
=(1-D)+(1-4+2-Dz+(1-5+2-4+3-1)a?
+(1-2+2-5+3-4)23+(2-2+3-5)2 + (3-2)2°
=1+ 6z +162% + 2423 + 192 + 62°

=1 + 42 + 324

Definition 3.1.7. Let R be a ring with identity.

(a) R[z] denotes the polynomial ring in x with coefficients in R constructed in|F.3.1).

So the elements of R[x] are the infinite sequence

(ai)::[) = (ao,al,ag, ey gy )

such that a; € R for all i € N and there exists n € N with a; =0gr for all i >n. Also
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x:(OR,lR,OR,OR,...,OR,...)
(ao,al,ag...,ai,...)+(b0,b1,b2...,bi,...)= (a0+b0,a1+bl,a2+b2,...,ai+bi,...)

and

(a()aal;aQ---aair")'(b07b17b2-~-7bi7"')
= (aobo, a0b1 + alb(), aobg,albl, agbo, ey aobi + albi_l + ai_lbl + aibo, .. )

(b) Let f € R[z] and let n € N and ag,a1,...a, € R with f = ¥ qa;x’. Leti e N. If i <n define
fi=a;. If i >n define f; = 0r. Then f; is called the coefficient of 2* in f.(Observe that this is
well defined by

(c) N*:=Nu{-o0}. Forn e N* we define n+(—oc0) = —0co and —co+n = —co. We extend the relation
"<" on N to N* by declaring that —co < n for all n € N*.

(d) Let f e R[x]. If f = Or define deg f := Or and lead(f) = Or. If f = ¥, fix® with f; € R and
fn #0, define deg f :=n and lead(f) = f,.

Theorem 3.1.8. Let R be a ring with identity and f € R[z].
(a) f=0g if and only if deg f = —oco and if and only if lead(f) = Op.
(b) deg f =0 if and only if f € R and f + Og.
(¢) feRif and only if deg f <0 and if and only if f =1lead(f).
(d) f= Z?:e(%ffixi. Here, for f = Og, the empty sum Y;55 f;x® is defined to by Og.

Proof. This follows straightforward from the definition of deg f and leadf and we leave the details
to the reader. ]

Theorem 3.1.9. Let R be a ring with identity and f,g € R[x]. Then
(a) deg(f +g) < max(deg f,degg).
(b) deg(-f) =deg f.
(¢) Exactly one of the following holds:

(1) deg(fg) =deg f +degg and lead(fg) = lead(f)lead(g).
(2) deg(fg) <deg f +degyg, lead(f)lead(g) =0g, f #0r and g # Og.

In particular, deg fg < deg f + degg.
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Proof. Put n:=deg f and m := degg. By @ we have
n m )
f=> fiz" and g=> gz’
i=0 i=0

(Eb By @), f+g= Zfi%x(n’m)(fi +g;)x' and so (f +¢)x = O for k > max(deg f,degg). Thus
@ holds.

() If f = Og, then also - f = 0g and so deg f = —co = deg(-f). Suppose f # Og. Then f, # Og and
soalso —f, # Og. Also —f = —(X, fix') = X (= fi)x'. Since —f,, # Og this gives deg(~f) = n = deg f.

Suppose first that f =0g. Then fg=0gg = 0r. Hence deg f = —oco, deg(fg) = —oo,leadf = 0p
and lead(fg) = 0. Hence

deg(fg) = —o00 = —00 +degg = deg f + deg g and lead(fg) = 0g = 0r -lead(g) = lead(f)lead(g).

So (lc:1) holds in this case. Similarly, (c:1) holds if g = Og.
So suppose f #0r # g By B3,

n+m ( min(k,n)

fog=3 >, figk—i)l‘k-

k=0 \i=max(0,k—-m)

Thus (fg)r = Og for kK > n+m and so deg fg < n+m. Moreover, for k = n + m we have
max(0,k —m) = max(0,n) =n and min(n,k) = min(n,n +m) =n. So

FDnim =S fignomes = fugm = lead(f)lead(g).

=n

Suppose that lead(f)lead(g) # Og. Then deg(f+g) =n+m and lead(fg) = lead(f)lead(g). Thus

(c:1)) holds.
Suppose that lead(f)lead(g) = 0g. Then deg(f +g) <n+m and (c:2)) holds. O

Theorem 3.1.10. Let R be a commutative ring with identity. Then R[x] is commutative ring with
identity.

Proof. By definition of a polynomial ring R[x] is a ring with identity. So we just need to show that
R[z] is commutative. Let f,g € R[x] and put n —deg f and m = degg. Then
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fg = (Z fzxz) (Z g]xj)
=0 7=0
= Z Z fz’gijj — Theorem B.1.5]
i=0j=0
= Z Z gjfﬂj” — R commutative
i=0j=0
= > Mgfir” - GCL,GAL
7=014=0
= (Zg]xj) (Z fiz ) — Theorem [B.1.5]
7=0
= qf
We proved that fg =gf for all f,g e R[z] and so R[z] is commutative. 0

Theorem 3.1.11. Let R be field or an integral domain. Then
(a) deg(fg) =deg f +degg and lead(fg) =lead(f)lead(g) for all f,g € R[x].
(b) deg(rf) =deg f and lead(rf) =rlead(f) for allr € R and f € R[z] with r #+ Og.
(¢) R[x] is an integral domain.

Proof. By Theorem [2.8.10 any field is an integral domain. So in any case R is an integral domain.
Let f,g € R[x]. We will first show that

(*) If lead(f)lead(g) =0g then f=0g or g =0g.

Indeed since R is an integral domain, lead(f)lead(g) = Og implies lead(f) = 0 or lead(g) =
3.1.8 now shows f =0g or g =0pg.

() By
(1) deg(fg) =deg f + degg and lead(fg) =1lead(f)lead(g), or

(2) deg(fg) <deg f +degg, lead(f)lead(g) =0g, f +0r and g # Og.

In the first case, @ holds. The second case contradicts (*) and so does not occur.

() Let r € R with r # 0g. By degr =0 and leadr = r. Using (] we conclude that
deg(rf)=degr+degf=0+degf=degf and lead(rf)=1ead(r)lead(f) =rlead(f).
By [3.1.10, R[x] is a commutative ring with identity. Since R is an integral domain 1p # O

and thus 1g,) = 1r # Or = Og[y]- Let fg € R[x] with fg = Og. Then by (a) lead(f)lead(g) =
lead(fg) =lead(0gr) = 0g and by (*), f =0g or g = 0. Hence R[x] is an integral domain. O
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Theorem 3.1.12 (Division Algorithm). Let R be ring with identity and f,g € R[xz] such that g # Og
and lead(g) is unit in R. Then there exist uniquely determined q,r € R[x] with

f=gq+r and degr<degyg.

Proof. Fix g € R[x] such that g # O and lead(g) is unit in R. For n € N let P(n) be the statement:
P(n): If fe R[z] with deg f <n, then there exists ¢, € R[z] with f = g¢+r and degr < degg.

We will use complete induction to show that P(n) holds for all n € N. So let k£ € N such that
P(n) holds for all n € N with n < k. We will show that P(k) holds. So let f € R[x] with deg f < k.
Note that f=¢g-0g+ f. If deg f < degg then then P(k) holds for f with ¢:=0g and r:= f.

So we may assume that deg f > degg. Put m := degg, then m > deg f > k. Since g # Or we have
m =degg €N, g, # Og and g,, = lead(f). By hypothesis lead(g) is a unit in R and so g,, as an
inverse g,!. Define

(*) f=F-g g5 fra"™.
We compute

1

g: gmx™  + Gmo1™ N+ L+
E fra® + froizF b o+ L+
9 G fra" " I Frx® Gm-1Gm frz™™t o+ L+
I (fio1 = Gmargm fe)z™t + L0+

The above calculation shows that deg f < k—1. By the induction assumption, P(k-1)-holds and
so there exist ¢ and 7 € R[x] with

(%) f=9q+7 and degT <degg.

We compute

F+g-gnl feat™m - (4
(9G+7) +g- gy frax™™™  —()
(93+9- gy frx"™ ™) +7 - [BAx2AX3
9-(G+g, fra"™) +7 -[Ax8

~
I

(***)

Put ¢ := q”+g;11fk:vk_m and r:=7. Then by f=qg+r and by , degr = degr < degg. Thus
P(k) is proved.

By the Principal of Complete Induction we conclude that P(n) holds for all n € N. This
shows the existence of ¢ and r.
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To show uniqueness suppose that for i = 1,2 we have ¢;,r; € R[x] with

(+) f=g9q+r and degr; <degy.
Then
gq1 +Tr1=9q2+ 72
and so
(++) g- (@1 —q)=r2-71.

Suppose ¢q1 — g2 # 0g Then deg(q1 — ¢2) > 0 and lead(q1 — ¢2) # Og. Since lead(g) is a unit in R this
implies lead(g)lead(q1 — ¢2) # Og, see Exercise Thus

degg <degg+deg(qi —q2) —deg(q1—¢q2)>0
=deg(g- (a1 - @2)) — lead(g)lead(q1 - ¢2) # Og,|3.1.9(c:1)

= deg(r1 - 2) - ()
<max(degry,degry) -B.19
<degy - ()
This contradiction shows q; — g2 = Og. Hence, by (++)) also ro =71 =¢g-(q1 —¢2) = g-0r = Og.
Thus ¢1 = ¢2 and r1 = 9, see @) O

Definition 3.1.13. Let R be a ring and f,g € R[x] such that lead(f) is a unit in R. Let q,r € R[z]
be the unique polynomials with

f=g9g+r and degr<degg

Then r is called the remainder of f when divided by g in R.

Example 3.1.14. Consider the polynomials f = 2%+ 23—z +1 and g = —22 +2 -1 in Z3[x]. Compute

the remainder of f when divided by g.

-2+ oz - 1
—2?+x-1| 2 + 23 - x + 1
2 - 23+ 2P
-2 - 22 -z + 1
- 2+ 22 -z
x2 + 1
2 -z o+ 1
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Thus
vt —r+l=(-2t+z-1) (-2 +x-1)+2.

3

Since degz = 1 < 2 = deg(-22 + x — 1), the remainder of z* + 23 -z + 1 when divided by —22 +z + 1

in Zs[z] is x.
Exercises 3.1:

#1. Let P be a polynomial ring in x with coefficients in R. Perform the indicated operation in P
and simplify your answer:

(a) (Bz*+22% -4 + 2 +4) + (4a® + 22 + 42 + 3) if R=Zs.
(b) (z+1)3if R=12Z3

(c) (x-1)%if R=1Zs.
)

(d) (2 -3z +2)(22® 42 +1) if R=Zr.

0 1 0 1
(e) |+ x - if R =Ma(R).
-1 0 -1 0
#2. Find polynomials ¢ and r such that f = gg+r and degr < degg.
(a) f=32"-223+622 -2 +2and g=22+2+1 in Q[z].
(b) f=2*-Tz+1and g=22%+1in Q[xz].
(c) f=22*+2?-2z+landg=2z-11in Zs[x].
(d) f =4zt +22% + 622 + 42 + 5 and g = 32% + 2 in Z;[x].

#3. Let R be a commutative ring. If a,, # Og and ag+a1x +...+a,x" is a zero-divisor in R[x], then
an is a zero divisor in R.

#4. Give an example in Z[x] to show that the Division algorithm maybe false if the leading coefficent
of g is not a unit.

3.2 Divisibility in F[z]

In a general ring it may or may not be easy to decide whether a given element divides another. But
for polynomial over a field it is easy, thanks to the division algorithm:

Theorem 3.2.1. Let F' be a field and f,g € F|z] with g # 0p. Then g divides f in F[z] if and only
if the remainder of f when divided by g is Op.
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Proof. =: Suppose that g|f. Then by Definition f =gq for some g € F[z]. Thus f = gq+0p.
Since degOf = —oo < deg g, Definition [3.1.13| shows that O is the remainder of f when divided by g.

<=: Suppose that the remainder of f when divided by g is Op. Then by Definition
f =9q+0p for some g € F[z]. Thus f = gq and so Definition shows that g| f. O

Theorem 3.2.2. Let R be a field or an integral domain and f,g € R[xz]. If g # Op and f|g, then
deg f <degg.

Proof. Since f|g, g = fh for some h € R[z]. If h = 0g, then by [2.2.9(d), g = fh = fOg = Or, contrary

to the assumption. Thus h # O and so degh > 0. Since R is a field or an integral domain we can

apply 3.1.11@ and conclude

deg g =deg fh =deg f + degh > deg f.

Theorem 3.2.3. Let F be a field and f € F|x]. Then the following statements are equivalent:

(a) deg f=0. (¢) fllp. (e) f is a unit in F[z].
(b) feF and f +0p. (d) f~1p.

Proof. (@) = (b):  See[3.1.8|(0).
(@ - : Suppose that f € F and f # Op. Since F'is a field, f has an inverse f~! € F. Then
fleF[z]and ff'=1p. Thus f|1F by definition of ‘divide’ and holds.

() = (d): and (d) = (d): See[2.12.9

() = (a): Since f is a unit, 15 = fg for some g € F[z]. Since F is a field we conclude from

BIIUR) that

deg f +degg = deg(fg) = deg(1r) =0,

and so also deg f = degg = 0. O
Theorem 3.2.4. Let F be a field and f,g € F[z]. Then the following statements are equiva-
lent:

(a) f~g. (c) deg f=degg and flg.

(b) flg and g f. (d) g~ f.

Proof. () = (b):  See[2.12.10]

@ = : Suppose that f|g and g|f. We need to show that deg f = deg g. Assume first that
g = 0p, then since g| f, we get from[2.4.3|that f = 0p. Hence f = 0p = g and so also deg g = —oo = deg f
and thus holds. Similarly, holds if f =0p.
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Assume that f # Op and g # Op. Since f|g and g| f we conclude from that deg f < degyg
and deg g < deg f. Thus degg = deg f and holds.

& @: Suppose that deg f = degg and f|g. If f =0p, then degg = deg f = —o0 and so
g=0p. Hence f =g and so f ~ g since ~ is an equivalence relation and so reflexive, see [2.12.6

Thus we may assume f # Op. Since f|g we have g = fh for some h € F[z]. Thus by [.1.11|(al),
degg = deg f + degh. Since f # 0p we have degg = deg f # —oco and so degh = 0. Thus by [3.2.3] h is
a unit. So g ~ f by definition of ~.

(d) = (d): This holds since ~ is symmetric by [2.12.6 O
Definition 3.2.5. Let F be a field and f € F[z].
(a) f is called monic if lead(f) = 1p.

(b) If f # Op then f = f-lead(f)'; f is called the monic polynomial associated to f. If f = Op
put f=0p.

Example 3.2.6. Let f = 32* + 203 + 422 +  + 2 € Zs[z]. Then lead(f)' =37! =2 and

f=@Ba*+2e3+42® +2+2)-2=62" + 423 + 822 + 2w + 4 = 2t + 42® + 322 + 22 + 4.
Theorem 3.2.7. Let F be a field and f,g € F[z].
(a
(

b) If f and g are monic and f ~ g, then f=g.

(
(d) deg f =deg f.
(e) f~g if and only if f =g.
Proof. Recall from that ~ is an equivalence relation and so reflexive, symmetric and transitive.

@) Suppose that f =0p. Then f =0p and so f ~ f as ~ is reflexive.
Suppose that f # 0p. Then also lead( f ) # O and so by - lead(f) is a unit in F[z]. Hence
also lead(f)" is a unit. As f = f-lead(f)~!, this shows that f ~ f.

(]E[) By definition of f ~ g we have fu = g for some unit v in F[z]. By H we have Op # u € F.
Hence

) [
)
c) If f #+0p, then f is the unique monic polynomial associated to f.
)
)

1p g monic 1, d(g) =7 lead(fu) u e FELINE) lead(f)u f monic 1ru (Ax 10) u

and sou=1p and g = fu= flp = f.
Suppose f # 0p. Then

lead(f) = lead(/ - lead(f) 1) BLEO jead(flead(f) ! =
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So f is monic. By @ we have f ~ f and so f is a monic polynomial associated to f.
Suppose g is a monic polynomial with f ~g. By @) f~f. As ~ is symmetric and transitive this
gives f ~ f and f ~ g. Since both f and g are monic we conclude from (]EI) that f =g.

@By@f~fandsobydegf=degf.
@By@f~fandg~g. Thusby

(*) [fl-=[f].  and [g]-=1[g

Using this we get

f ~g
= [/ =[g)- -
— [fl. =0 -
— f ~g - 53

O

Definition 3.2.8. Let F' be a field and f,g,d € F[x]. We say that d is a greatest common divisor
of f and g and write

d=ged(f,9)
provided that

(i) d is a common divisor of f and g;

(ii) if ¢ is a common divisor of f and g, then degc < degd; and

(iii) d is monic.
Theorem 3.2.9. Let F be a field and f,g,q,r,d,u € F[z]. Suppose that

(I) w is a unit in Fx],

(I1) f=gq+ru, and
(III) d = ged(g,r)
Then d = ged(f,g)

Proof. We will verify the three conditions on d = ged(f, g).
(i): By definition of a greatest common divisor, d|g and d|r. Since f = gg+ru we conclude from
that d|f. Thus d is a common divisor of f and g.
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(ii): Let ¢ be any common divisor of f and g in F[z]. Since f = gg+ru and u is a unit we have
r=f-ut-g-qu'. Since ¢ divides f and g we conclude from that d|r. So ¢ is a common
divisor of g and r. As d is a greatest common divisor of g and r this gives degc < degd.

(iii): Since d = ged(g,7) we know that d is monic.

Thus d is a greatest common divisor of f and g. O

Theorem 3.2.10 (Euclidean Algorithm). Let F' be a field and f,g € F[z] with g #+ Op and let E_4
and Eqy be the equations

Eqy : f = f-1p + g-0f
Ey : g f-0p + g-lead(g)’l,

Let i € N and suppose inductively we defined equations Eyi,—1 <k <1 of the form

Ey «rp = fop + gy -
where T, Tx, yx € F[x] and r; is monic. According to the division algorithm, let t;.1,qi+1 € F[x] with
Ti-1 = Tiiv1 + tiv1 and degt;y < degr;
Suppose that ti.1 # Op. Then E;.1 is equation of the form 1.1 = f-Tiv1 + g - yi41 obtained by
first subtracting g;+1-times equation E; from FE;_1 and then multiplying the resulting equation by

lead(t;11)~t. Continue the algorithm with i + 1 in place of i.
Suppose that tir1 = 0p and define d :=r;,u:=x; and v:=y;. Then

du,veFlz],  d=ged(f,g),  d=fu+gv,
and the algorithm stops.
Proof. For i e N let P(i) be the following statement:

(a) For -1 < k <i an equation Ej of the form ry = f -z + g -y with rg, 2, and yi € F[x] has been
defined;

(b) for —1 < k < the equation E}, is true;
(c) 7 is monic;
(d) for all 1 <k <4, degry <ri_1; and

(e) If de F[x] with d = ged(r-1,7;) then d = ged(f, g).
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We will first show that P(0) holds. Define
r-1:= f7 T_1 = 1F7y—1 = 0F7 ro = ga To = 0F7 andyo = lea'd(g)il'

Then for £k =-1 and k =0, E} is the equation r; = f -z + g -y and so @ holds for i = 0. Also £
and Ej are true, so (]E[) holds for ¢ = 0. Note that rg = § is monic and so holds for 7 = 0. There is
no integer k with 1 <k <0 and thus (d) holds for i = 0. Assume d € F[z] with d = ged(r_1,79). Then
d=gecd(f,g). Note that g = f-0r + g-lead(g). Aslead(g) is a unit in F'[2] we conclude from
that d = ged(f,g). Thus (g holds for i = 0. Hence P(0) holds.

Suppose now that i € N and that P(i) holds. Then the equations

Ei1 + rig frxisn + g-yi-1 and

E; T

[ + 9 Y

are defined and true. Also rg,zx and yy are in F[x] for k=4 -1 and 1,
Since r; is monic, r; # 0p and so by the Division algorithm there exist unique ¢;4+1 and ¢;41 in
F[x] with

(%) ri—1 = 7iq; + t;i+1 and degt;y1 < degr;
Consider the case that ¢;,1 # 0p. Subtracting ¢;+1 times F; from E;_; we obtain the true equation
ri-1—Ti¢is1 = f- (951‘71 - xiQHl) + g- (%71 - yiQiJrl)-
Put u;jsq = (leadtl-+1)_1. Multiplying the preceding equation with wu;41 gives the true equation
B o (ric—rigie)uiven = f (@ic1 - @igien)Uivr + g0 (Yie1 — Yidie1 ) Uisa -
Define
Tie1 i= (Tim1 = TiGie1 ) Uit 1, Tiv1 = (Ti1 = TiGis1 )Uis1, a0AYi11 = (Yio1 — YiGie1 ) Uis1-
Then E;,q is the equation ri41 = f - zj41 + g yiv1 and r;41, 2441 and y;41 are in F[z]. So @ and (]E[)

hold for 7 + 1 in place of 1.
By we have ti+1 =Ti-1 —Tiqi+1 and so

-1 ¥
Tir1 = (Tic1 = TiQir1 )Uis1 = tis1Uis1 = tip1lead (L) = Ly

Hence
Tirl = Lir1-

Thus 7;,1 is monic and holds. Moreover, t;+1 = ri11lead(;41) and (*) gives

i1 = 73q; + riv1lead(tii1).
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Hence, if d € F[z] with d = ged(r;,7i11), we conclude from [3.2.9|that d = ged(ri-1,7;). As P(i)(€)
holds, this gives d = ged(f,g) and so (¢ in P(i + 1) holds. We proved that P (i) implies P(i + 1)
and so by the principal of induction, P(7) holds for all ¢ € N, which are reached before the algorithm
stops. Note here that Condition @ ensures that the algorithm stops in finitely many steps.

Suppose next that ¢;11 = 0p. We will show that r; = ged(r;,0p). Clearly r; is a common divisor
of r; and Op. If ¢ is a common divisor of r; and Op in F[x], then ¢ |r; and shows that
degc < degr;. By P(i) we know that r; is monic. So indeed r; = ged(r;,0p). As tiv1 = 0, (%)
implies that r;_1 = r;¢; + O and so shows that r; = ged(r_;,r;). As P(z) holds, this shows
that r; = ged(f, g).

By P(i) the equation

Ei: ri=f-xi+g-y

is true and r;,x;,v; € F[z]. So putting d := r;,u := x; and v := y; we have
d,u,ve Flz], d=gcd(f,g) and fu+gv.
O

Example 3.2.11. Let f = 3z + 423 + 222 + 2 + 1 and g = 22 + 22 + 22 + 3 in Zs[z]. Find u,v € Zy[x]
such that fu+ gv =ged(f,9).

In the following if a is an integer, we just write a for [a]s. We have
lead(g) '=2"1=2"1.1=2"1.6=3

and so 79 = §=3¢g =623 +322+6x+9 =23 +32%+x +4.

E_q : 3z*+23+22%+2+1 = f-1 + ¢-0
Ey 2 +3z2+x+4 = f-0 + g¢-3 ’
3x

2 +322+x+4 |32 + 423 + 222 + r + 1

3z + 922 + 322 + 22

~x? -z + 1
Subtracting 3z times Ey from E_; we get
—2?-z+1 = f-1 + g¢--9z | E_1-FEy-3z

and multiplying with (-1)7! = -1 gives

Ei : 2?2+z-1 = f--1 + g-4z
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2rr-1]2° + 322 + 1z + 4

Subtracting = + 2 times E; from FEy gives

L= f(0-(-D@+2)) + g-(3-(a)(z+2))
and so
By : 1 = f-(x+2) + g-(22+22+3)
Since 2 is monic, this equation is Es. The remainder of any polynomial when divided by 1 is
zero, so the algorithm stops here. Hence
ged(f,g)=1=f-(x+2)+g- (2% +2x+3)
Remark 3.2.12. Let F be a field and f,g,d € F[z] with d = ged(f,g). Then f +0p and g # Op.

Proof. Suppose for a contradiction that f =0r and g = 0p. Choose n € N with n > degd. Then z" is
a common divisor of f and g and degz™ =n > degg, a contradiction to the definition of ‘ged’. O

Theorem 3.2.13. Let F be a field and f,qg € F|x] not both Op.
(a) There exists a unique d € F[x] with d = ged(f,g).
(b) There exists u,v € F[x] with d = fu+ gv.
(¢) If ¢ is a common divisor of f and g, then c|d.

Proof. By the Euclidean algorithm [3.2.10| there exists w,v,d € F[z] such that d = ged(f,g) and
d = fu+ gv. This proves the existence of d and also proves (]ED

To prove (c)) let ¢ be any common divisor of a and b. Since d = fu + gv we conclude from
that c|d.

It remains to prove the uniqueness of a greatest common divisor. So let e be any greatest common
divisor of f and g. Then e divides f and g and shows that e|d. Since both d and e are greatest
common divisors of f and g we have dege < degd and dege < degd. Thus degd = dege. Since e|d

we conclude from that d ~ e. As d and e are monic this implies that d = e, see [3.2.7|(b). Thus d
is the unique greatest common divisor of f and g. O
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Theorem 3.2.14. Let F be a field and f,g € F|x]. Then 1p = ged(f,g) if and only if there exist
u,v € Flz] with fu+gv=1p.

Proof. =: Suppose that 1p = ged(f,g). By[3.2.12| f and g are not both 0 and so 3.2.13 shows

there exist w,v € F[z] with fu+gv =1p.

<—: Suppose that there exist u,v € F[x] with fu+ gv = 1p. Since 1p # Op this implies that f
and g are not both Or. Note that 1 is a monic common divisor of f and g. Let ¢ be any common
divisor of f and g. Since 1 = fu + gv we conclude that ¢|1p (see[2.4.4{(d)). Hence degec < deg1p by

Thus 1p = ged(f, g). O

Theorem 3.2.15. Let F be a field and f,g,h € F[x]. Suppose that 1p = ged(f,g) and f|gh. Then
flh.

Proof. Since 1p = ged(f,g) we conclude from [3.2.14] that there exist u,v € F[z] with fu+ gv = 1p.
Multiplication with A gives (fu)h + (gv)h = h and so (using the General Commutative Law)

f(uh)+ (gh)-v=nh.

Since f divides f and f divides gh, now implies that f|h. O

Exercises 3.2:
#1. Let F be a field and a,b € F' with a # b. Show that 1 = ged(z + a,z +b).

#2. Use the Euclidean Algorithm to find the ged of the given polynomials in the given polynomial

zt—2% — 22+ 1 and 23 - 1 in Q[z].

25+ 2t + 223 - 22 — 2 -2 and 2 + 203 + 522 + 42 + 4 in Q[x].

)
)
(c) x*+32% + 22 +4 and 2% - 1 in Zs[z].
) 42t + 223 + 622 + 4z + 5 and 323 + 522 + 62 in Z7[z].
) 2% —ix? + 4z - 4i and 22 + 1 in C[z].
)

rtrz+1and 22+ 2+ 1 in Zo[x].

#3. Let F be a field and f € F[x] such that f|g for every non-constant polynomial g € F[x]. Show
that f is a constant polynomial.

#4. Let F be a field and f,g,h € F[x] with 1p = ged(f,g). If f|h and g|h, prove that fg|h.

#5. Let F be a field and f,g,h € F[x]. Suppose that g # Op and 1p = ged(f,g). Show that
ged(fh, g) = ged(h, g).

#6. Let F be a field and f,g,d € F[x] such that h # 0p and d = ged(f, g).
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(a) Show that there exist f,§ € F[z] with f = fd and g = §d.

(b) Show that ged(f,9) = 1p.
#7. Let F be a field and f,g,h € F[z] with f|gh. Show that there exist G, h € Flz] with §|g,h|h
and f = gh.

3.3 Irreducible Polynomials

Definition 3.3.1. Let F be a field and f € F[z].
(a) f is called constant if f € F', that is if deg f < 0.
(b) Then f is called irreducible provided that

(i) f is not constant, and
(i) iof g € Flx] with g|f, then
g~1lp or g~ f.

(c) f is called reducible provided that
(i) f+0p, and

(i) there exists g € F[x] with
glf; g+1lp, and g+ f.

Remark 3.3.2. Let F be a field and f € F[x]. Then the following statements are equivalent:

(a) f is not constant.
(b) deg f>1.
(C) f#0p and f+ 1p.

Proof. We will show that the negation of the three statements are equivalent.

f is constant if and only if f € F' and if and only if deg f <0, see .

Since deg f € N*, we have deg f < 0 if and only if deg f < 1 and if and only of deg f = —co0 or
deg f = 0.

Also deg f = —oo or deg f =0 if and only if f =0p or f ~1p, see and O

Theorem 3.3.3. Let F be a field and f € F[x]. Then the following statements are equivalent:

(a) f is reducible.

(b) f is divisible by a non-constant polynomial of lower degree.
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(¢c) f is the product of two polynomials of lower degree.

(d) f is the product of two non-constant polynomials of lower degree.
(e) f is the product of two non-constant polynomials.

(f) f is not constant and f is not irreducible.

Proof. @ = : Suppose f is reducible. By definition of ‘reducible’ we conclude that f + Op
and there exists g € F[z] with g|f, g+ 1p and g + f. As g|f and f # Op we have g # Of (see [2.4.3)).
As g # Op and g + 1p, Remark shows that ¢ is not constant. Since g|f we have degg < deg f,
see Suppose that deg g = deg f. Since g|f we get from that g ~ f, a contradiction. Thus
deg g # deg f and and so deg g < deg f. Hence g is a non-constant polynomials of lower degree than
f which divides f. So (]ED holds.

@ = (c): Let g be a non-constant polynomial of lower degree than f with g | f. Then
degg > 0, degg < deg f and f = gh for some h € F[z]. From degg < deg f we get deg f # —oco and
f#0p. As f = gh we conclude that h + Op. By @ deg f = degg + deg h and since degg > 0
this gives degh < deg f. We proved that f = gh, degg < deg f and degh < deg f. Thus holds.

== (d): Suppose f = gh with deg g < deg f and deg h < deg f. By[3.1.11]deg f = deg g+deg h.
Since degg < deg f we conclude that degh > 0. So h is not constant. Similarly ¢ is not constant.

Thus @ holds.

@ —_— (ED: Obvious.

== ({): Suppose f = gh where g and h are non-constant polynomials in F[z]. Then g|f.
As g and h are non-constant we have g + 1p, degg > 1 and degh > 1, see Remark [3.3.4| By |3.1.11|@
we know that deg f = deg g + degh and so deg f > degg > 1. Thus f # Op and deg f # degg. By [3.2.4]
the latter statement gives g + f.

We proved that f #0p, g|f, g # 1p and g + f. Thus the definition of ‘irreducible’ shows that f
is not irreducible. So @ holds.

@ — @: Suppose f is not constant and f is not irreducible. Since f is not irreducible, the
statement

If feF[x] with g|f, then g~1p or g~ f

must be false. Hence there exists g € F[x] with g|f, g » 1p and g + f. The definition of ‘reducible’
now shows that f is reducible. Thus @ holds. O

Remark 3.3.4. Let F' be a field.
(a) A non-constant polynomial in F[x] is reducible if and only if its is not irreducible.

(b) A constant polynomial in F[x] is neither reducible nor irreducible.
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Proof. Let f € F[z]. Then [3.3.3|(a), () shows that

(%) f is reducible if and only if f non-constant and f is not irreducible.

@: Let f be non-constant polynomial in F[z]. Then shows that f is reducible if and only
if f is not irreducible.

@: By definition irreducible polynomials are not constant and by reducible polynomials are
not constant. Thus constant polynomials are neither irreducible nor constant. O

Theorem 3.3.5. Let F be a field and p a non-constant polynomial in F[xz]. Then the following
statement are equivalent:

(a) p is irreducible.
(b) Whenever g,h € F[xz] with p|gh, then p|g or p|h.
(c) Whenever g,h € F[z] with p = gh, then g or h is constant.

Proof. @ — (]ED: Suppose p is irreducible and let g, h € F[xz] with p|gh. Put d := ged(p, g). By
definition of ‘ged’, d|p and since p is irreducible we get that

d~1p or d~p.

We treat these two cases separately:
Suppose that d ~ 1p. Since both d and 1p are monic we conclude from that d = 1p. As

p|gh this implies p|h, see|3.2.15
Suppose that d ~ p. As d|g this gives p|g, see 2.12.10.

@ = : Suppose (]ED holds and let g, h € F[z] with p = gh. Note that plp =p = gh and so
p|gh. From (]ED we conclude p|g or p|h. Since the situation is symmetric in g and h we may assume
plg. As p is not constant we have p # 0. Since p = gh this gives g # O and h # 0p. As p|g we have

degp < degg by On the other hand by B.1.11|(a)), degp = deg gh = deg g + degh > degg. Thus
degg =degp and degh = 0. So h is constant.

@ — : Since p is not constant, p is irreducible if and only if p is not reducible, see @
By [B:3.3] p is reducible if and only if p is the product of two non-constant polynomials. Thus p is
irreducible if and only if p is not the product of two non-constant polynomials. The latter statement
is equivalent to . ]

Theorem 3.3.6. Let F' be a field and let p be an irreducible polynomial in F|zx]. If a1,...,a, € F[x]
and plajas...ay, then pla; for some 1 <i<n.

Proof. By induction on n. For n = 1 the statement is obviously true. So suppose the statment is
true for n = k and that pla; ...agags1- By plai...ax or plagsi. In the first case the induction
assumption implies that p|a; for some 1 <i < k. So in any case p|a; for some 1 <i <k + 1. Thus the

theorem holds for k + 1 and so by the Principal of Mathematical Induction ([1.4.2]) the theorem holds
for all positive integers n. O
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Theorem 3.3.7. Let F be a field and p,q irreducible polynomials in F[x]. Then p|q if and only if
p~q.

Proof. 1If p ~ ¢, then p|q, by [2.12.8) So suppose that p|q. Since ¢ is irreducible we have p ~ 1y or
p ~q. As p is irreducible, p is not constant and shows that p + 1p. Thus p ~ q. O

Theorem 3.3.8. Let F be a field and f,g € Flx] with f ~g. Then f is irreducible if and only if g
1s irreducible.

Proof. Since f ~ g we know that deg f = deg ¢ and that f and g have the same divisor, see(3.2.4] and

EIZI0).

f is irreducible if and only if f is non-constant and not reducible. This holds if and only if
deg f >1 and f is not divisible by a non-constant polynomial of lower degree, see [3.3.3] The latter
statement holds if and only if degg > 1 and g is not divisible by a polynomial of lower degree, and
so if and only if g is irreducible. O

Theorem 3.3.9 (Factorization Theorem). Let F' be a field and f a non-constant polynomial in F[x].
Then f is the product of irreducible polynomials in F[z].

The proof is by complete induction on deg f. So suppose that every non-constant polynomial of
lower degree than f is a product of irreducible polynomials.

Suppose that f is irreducible. Then f is the product of one irreducible polynomial (namely itself).

Suppose f is not irreducible. Since f is also non-constant we conclude from that f = gh
where ¢ and h are non-constant polynomials of lower degree than f. By the induction assumption
both ¢ and h are products of irreducible polynomials. Since f = gh this shows that f is the product
of irreducible polynomials.

Theorem 3.3.10 (Unique Factorization Theorem). Let F' be a field and f a non-constant polynomial
in Flx]. Suppose that n,m are positive integers and pi,pa,...,pn and qi,...Gm are irreducible
polynomials in F[x] with

f=pp2...pn and [=qq2...qm-

Then n =m and, possibly after reordering the q;’s,
pPi1~q, P2~q2, ..-5 Pn~dn-

In more precise terms: there exists a bijection w:{1,...n} —» {1,...m} such that

P1~4qr1), P2~4x2); -5 Pn~qr(n)-

Proof. The proof is by complete induction on n. So let k be a positive integer and suppose that the
theorem holds whenever n < k. We will show that the theorem holds for n = k. So suppose that

(%) f=pip2.. P and f=qq2...q9m,

where m is a positive integer and p1,...,Dk,q1, - - - gm are irreducible polynomials in F[z].
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Suppose first that f is irreducible. Then by f is not the product of two non-constant
polynomials in F[z]. Hence (*) implies k = m = 1. Thus p; = f = ¢;. Since ~ is reflexive this gives
p1 ~q1 and so (b) holds for n = k in this case.

Suppose next that f is not irreducible. Then p; # f # ¢; and so k> 2 and m > 2.

Since f = (p1...pk-1)pr we see that py divides f. By (*) f=q1...¢n and so py divides q; ... G-
Hence by Pk |g; for some 1 < j <m. As p; and g¢; are irreducible we get from that py ~ g;.

Reordering the g;’s we may assume that

Pk ~ dm-

Then py = ¢nu for some unit u € F[z]. Thus

((prw)ps - .- r=1)@m = (P1 -+ PE-1)(gmt) = p1 .. Pe—1Pk = £ = (q1 - - - @1 ) G-

By [3.1.11)(c) F[z] is an integral domain. Since g, is irreducible, g, is not constant and so
gm * 0p. Hence the Multiplicative Cancellation Law for Integral Domains gives

(p1u)p2- - Pr-1=q1---Gm-1-

Since w is a unit, pju ~ p;. As p; is irreducible we conclude that also pju is irreducible, see by
The induction assumption now implies that k — 1 =m — 1 and that, after reordering the ¢;’s,

piu~qi, Pp2~q2, ... Pk-1~qE-1-

From k—1=m-1 we get k=m. As p; ~ p1u and piu ~ ¢ we have p; ~ q1, by transitivity of ~.
Thus

pr~q, p2~q2 ... DPk-1~4k-1,

Moreover, as pr ~ ¢, and m = k we have pi ~ qx. Thus the theorem holds for n = k. By the
principal of complete induction, the theorem holds for all positive integers n. O

Exercises 3.3:
#1. Find all irreducible polynomials of
(a) degree two in Zs[z].
(b) degree three in Zso[z].
(c) degree two in Zs[x].
#2. (a) Show that 22 + 2 is irreducible in Zs[x].

(b) Factor z* — 4 as a product of irreducibles in Zs[z].
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#3. Let F be a field. Prove that every non-constant polynomial f in F[x] can be written in the form
f=cpipa...py with ¢ € F and each p; monic irreducible in F[z]. Show further that if f=dq...qm
with d € F' and each ¢; monic and irreducible in F[z], then m = n, ¢ = d and after reordering and
relabeling, if necessary, p; = g; for each 1.

#4. Let F be a field and p € F[z] with p ¢ F. Show that the following two statements are
equivalent:

(a) p is irreducible
(b) If g € F[x] then p|g or ged(p, g) = 1F.

#5. Let I be a field and let p1, po,...p, be irreducible monic polynomials in F'[x] such that p; # p;
k

forall 1 <i<j<n. Let f,g € F[z] and suppose that f :pllp;€2 ...pFnand g :plfpé2 ...pln for some
kl,kQ,...,kn,ll,lz...,lnEN.
(a) Show that f|g in F[z] if and only if k; <; for all 1 <i < n.

(b) For 1<i<n define m; = min(k;,l;). Show that ged(f,g) =p"py™2...ppm.

3.4 Polynomial function

Theorem 3.4.1. Let R and S be commutative rings with identities, let a: R — S a homomorphism
of rings with «(1g) =1g and let s€ S.

(a) There exists a unique ring homomorphism oy : R[x] — S such that as(z) = s and as(r) = a(r)

for all r € R.
deg f ) deg f .
(b) Forall f= ) fiz' in R[z], as(f) = D, a(fi)s'.
1=0 i=0

Proof. Suppose first that §: R[z] - S is a ring homomorphism with

(*) Bx)=s and B(r)=alr)
for all 7 € R. Let f € R[z].
Then
deg f )
o - o§0) smsa
i=0
deg f )
= > B(fiz')  -p respects addition
i=0
deg f
= Zg: B(f)B(x)" —PB respects multiplication
i=0
deg f

- Yalf)s - ()

1=0
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This proves (]ED and the uniqueness of as.

It remains to prove the existence. We use (]ED to define a;. That is we define
deg f

as: R[z]=S, f= ) a(fi)s"

i=0
By hypothesis a(1g) = 1g. It follows that
as(z) =as(1gz) =a(lg)s=1gs=s
and if r € R, then

as(r) = ozs(rxo) = oz(r)so =a(r)lg = a(r).

Let f,g € R[x]. Put n = max(deg f,degg) and m = deg f + degg.

as(f+g) = Qs (Z(fl +gi)xi) - [B.1.5|(a) with R[z] in place of P
= Z alfi+ gl)s — definition of ay
1=0
= > (oa(fi) + oz(gi))si — Since « respects addition
i=0
deg f ) degg )
= | > a(f)s' |+ > alg)s'| —B-Lif]) with (S,S,z) in place of (R, P,z)
i=0 i=0
= as(f) +as(g) — definition of ay, twice
m k
as(fg) = (Z (Z ik Z) ) - B.LE(@) with R[] in place of P
k=0 \i=0
= Z (Z fz-gk_i) S — definition of ay
k=0 =
m k
= > (Z a fi)a(gg- z)) s — « respects addition and multiplication
k=0 \i=0
deg f degg )
= Z a(fi)s' > algj)s’ | -B1.5|fa) with (S,S,2) in place of (R, P,z)
i=0 §=0
= as(f)-as(g) — definition of ay, twice
So a; is a homomorphism and the theorem is proved. O

Example 3.4.2. Let R and S be commutative rings with identities, a : R - S a ring homomorphism
with a(1g) = 15 and s € S. Compute ay in each the following cases:
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(1) S=Rand a(r) =r.

deg f ~ degf )
as(f) = Z(:) a(fi)s' = Z(:) fis".
(2) S=R[z], a(r)=r and s = x.
deg f ] deg f )
0u(D)= 3 alf)s'= ) fa'= S

So aj is identity function on R[z].
(3) ne R, S=Ry[x], a(r) =[r], and s = x.

Note first that by Example [2.11.2d) the function a: R > R, [z],r + [r],, really is a homomor-

phism. Also
deg f . degf )
as(f) = ZE) a(fi)s' = ZE) [filna!

So as(f) is obtain from f by viewing each coefficient as congruence class modulo n.

For example if R =7 and n = 3, then

0z (623 + 522 + 102 +9) = [6]32% + [5]3 22 + [10]3 2 + [9]3 = [0]323 + [2]322 + [1]32 + [0]2
= (in Zs[z]) 22°+=.
Definition 3.4.3. Let I be a set and R a ring.
(a) Fun(I, R) is the set of all functions from I to R.
(b) For a, 3 € Fun(I, R) define a + (3 in Fun(I, R) by
(a+B) (1) = (i) + B(2)
foralliel.
(c) For a, B € Fun(I,R) define af in Fun(I, R) by
(aB) (i) = (i) B(i)

foralliel.
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(d) Forre R define r* € Fun(I, R) by
r*(i)=r
foralliel.
(e) Fun(R) = Fun(R, R).
Theorem 3.4.4. Let I be a set and R a ring.
(a) Fun(I, R) together with the above addition and multiplication is a ring.
(b) 0% is the additive identity in Fun(I, R).
(c) If R has a multiplicative identity 1, then 1% is a multiplicative identity in Fun(l, R).
(d) (~a)(i) =-a(i) for all « e Fun(I,R), i€ 1.
(e) The function 7: R - Fun(I,R),r — r* is a homomorphism. If I + @, then T is injective.

Proof. (a)-(d): See Exercise 1 on Homework 5 or in the Appendix.
@ Let a,be R and 7 € I. Then

(a+b) (i) = a+b — definition of (a +b)*
= a*(i)+b*(i) - definition of a* and b*

= (a*+b*)(i) - definition of addition of functions

Thus (a+0b)* =a” +b* by|[l.3.14] and so 7(a +b) = 7(a) + 7(b) by definition of 7.
Similarly,

(ab)*(7) ab — definition of (ab)*

a*(i)b*(i) - definition of a* and b*

(a*b*)(i) - definition of multiplication of function

Hence (ab)* = a*b* by|1.3.14] and so 7(ab) = 7(a)7(b) by definition of 7.
Thus 7 is a homomorphism .

Suppose in addition that I # @. To show that 7 is injective let a,b € R with 7(a) = 7(b). Then
a* =b*. Since I # & we can pick i € I. Then

a=a"(i)=b"(i)=b

and so 7 is injective. O
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Notation 3.4.5. Let R be a commutative ring with identity and f € R[x]. For f = Z?fgf fixt € Flx]

let f* be the function
deg f )
f*t+ R->R, rw Y fir
i=0

f7 is called the polynomial function on R induced by f.

Remark 3.4.6. Let R be a commutative ring with identity.

(a) Letid : R - R,r = r be the identity function on R and for r € R let id, : R[z] - R be the
homomorphism from[3.4.1. Then

fr(r) =1d.(f)
for all f € R[z] and r € R.

(b) Let f € R be constant polynomial. Then the definitions of f* € Fun(R) in and in

coincide.
Proof. @: By Example id,(f) = Z?fgf fir® and so id,(f) = f*(r).
(]E[) Since f € F we have f = fa% and f*(r) = fr' = flg = f for all r € R. O

The following example shows that it is very important to distinguish between a polynomial f
and its induced polynomial function f*.

Example 3.4.7. Determine the functions induced by the polynomials of degree at most two in
ZQ [;L']

f olo|1l]a|z+l|2? | 22+1 |22 +2|2?+2+1
foyloftlo] 1 ol 1 0 1
Faylolilt] o | 1] o 0 1

We conclude that z* = (22)*. So two distinct polynomials can lead to the same polynomial
function. Also (22 +z)* is the zero function but 22 + z is not the zero polynomial.

Theorem 3.4.8. Let R be commutative ring with identity.
(a) f*eFun(R) for all f € R[x].
(b) (f+9)"(r) = f"(r)+g"(r) and (fg)*(r) = f*(r)g*(r) for all f,g € R[x] andr € R.
(c) (f+9)" =f"+g" and f*g" = f*g" for all f, g€ R[x].

(d) The function R[z] - Fun(R), f~ f* is a ring homomorphism.
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Proof. @ By definition f* is a function from R to R. Hence f* € Fun(R).

()
(f+9)(r) = id(f+g) —3.4.6@)
= id,(f) +id,(g) - id, is a homomorphism
= f*(r)+g*°(r) —3.4.6(@), twice
and similarly
(fg)*(r) = id.(fg) —3.4.6@)

id,(f)id,(g) - id, is a homomorphism
fr(r)g*(r) —3.4.6(E|),twice

Let r € R. Then

(f+9)(r) = f(r)+g*(r) - ([
= (f*+g¢*)(r) - Definition of addition in Fun(R)

So (f+9)* =f*+g*. Similarly

(fg)"(r)

g ) - @

(f*g*)(r) - Definition of multiplication in Fun(R)

and so (fg)* = f*g*.
@ Follows from . O

Theorem 3.4.9. Let F be a field, f € Fx] and a € F. Then the remainder of f when divided by
x—ais f*(a).

Proof. Let r be the remainder of f when divided by x —a. So r € F[z], degr < deg(x — a) and there
exists q € F[x] with

(*) f=q-(x—a)+r

Since deg(x —a) = 1 we have degr <0 and so r € F.. Thus

(+%) r() =
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for all t € R.
@ Y emaer@ B oy @
LI @) @) @)+ @) PTEYT () a-a) + 1 (a)
@ ¢ (a)(a—a)+r q*(a)-Op +7
OF +7r @ r

O]

Definition 3.4.10. Let R be a commutative ring with identity, f € R[x] and a € R. Then a is called
a root of f if f*(a) =0g.

Theorem 3.4.11 (Factor Theorem). Let F a field, f € F[z] and a € F. Then a is a root of f if and
only if x —alf.

Proof. Let r be the remainder of f when divided by = —a. Then

z-alf
— r=0p -B321
<~ fY(a)=0p -f"(a)=rbyB.49

<= aisaroot of f — Definition of root

Theorem 3.4.12. Let R be commutative ring with identity and f € R[x].
(a) Let g € R[x] with g|f. Then any root of g in R is also a root of f in R.

(b) Let a € R and g,h € R[x] with f = gh. Suppose that R is field or an integral domain. Then a
is a root of f if and only if a is a root of g or a is a root of h.

Proof. @: Let a be a root of g. Then g*(a) = Or. Since g| f, there exists h € R[x] with f = gh.
Then
N o BA30@ . N *
£ (@) = (gh)" (@) B g () () = 0 - 1" (a) = 0.
Thus a is a root of f. So @ holds.

(]E[) : Suppose that R is field or an integral domain. By [2.8.10] all fields are integral domains.
Thus R is an integral domain and so (Ax 11) holds. Hence
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a is a root of f

— f*(a)=0g — definition of root

— (gh)*(a) = 0 ~f=gh

— g*(a)h*(a) =0g —3.4.8(@)

— g*(a)=0r or h*(a)=0g -(Ax 11)

<= aisarootof g or aisarootofh -definition of root, twice

O]

Example 3.4.13. (1) Let R be a commutative ring with identity and a € R. Find the roots of

r—ain R.

Let be R. Then (x—a)*(b) =b—-a. So bis a root of z —a if and only if b—a = 0 and if and
only if b = a. Hence a is the unique root of z — a.

Find the roots of 22 - 1 in Z. Note that
?-1=(z-1)(z+1)=(z-1)(z-(-1)).

Since Z is an integral domain, [3.4.12|show that the roots of 22 — 1 are the roots of 2 -1 together
with the roots of 2 — (=1). So by (1)) the roots of 2> -~ 1 are 1 and 1.

Find the roots of z? — 1 in Zg.

Since Zg is not an integral domain, the argument in does not work. We compute in Zg
02 -1=-1,(x1)2-1=1-1=[0],(22)*-1=4-1=3,(+3)?=9-1=8=[0],4>-1=15=-1.

So the roots of 2 — 1 are +1 and +3. Note here that (3-1)(3+1)=2-4=8=0. So the extra
root 3 comes from the fact that 2-4 =0 in Zg but neither 2 nor 4 is zero.

Theorem 3.4.14 (Root Theorem). Let F' be a field and f € F[x] a non-zero polynomial.
Then there exist m € N, elements ay,...,am, € F and q € F[x] such that

(a)
(b)
()
(d)

q #0p and deg f = degq +m, in particular, m < deg f,
f=q-(x-a1) (x-ag) ...-(zr—ap),
q has no roots in F, and

{ay,a9,...,an} is the set of roots of f in F.

In particular, the number of roots of f is at most deg f.
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Proof. The proof is by complete induction on deg f. So let k € N and suppose that theorem holds
for polynomials of degree less than k. Let f be a polynomial of degree k.

Suppose that f has no roots. Then the theorem holds with ¢ = f and m = 0.
Suppose next that f has a root a. Then by the Factor Theorem [3.4.11, x — a|f and so

(*) f=(x-a)-g=g-(z-a)

for some g € F[x]. By

(%) deg f =degg +deg(x —a) =degg+1

and so deg g = k—1 < k. Hence by the induction assumption there exist n € N, elements a1,...,a, € F/

and g € F[z] such that

A) ¢+ 0p and degg = degq +n,

)
B) g=q¢-(z-a1) - (z-az) ...- (z-an),
) ¢ has no roots in F,

)

(
(
(C
(

D) {ai,as,...,a,} is the set of roots of g.

Put
(% % %) m:i=n+1 and am = a.
Then

%ok A * ok ok
deg f degg+1 degg+n+1 degq +m,

SO @ holds.

We have

(%) (@)
I g-(x—am) g (x-a1) - (x—az) ...-(x—ap) - (x —am).
and since n = m — 1 we see that (]ED holds.

By q has no roots and so holds.

Let be F. Since f =g (x —ap), [3.4.12] shows that b is a root of f if and only if b is a root of ¢

or g is a root of x — a,,. By @ the roots of g are ay,as,...a, and by 3.4.13 the root of x — a,, is
am. Thus the set of roots of f is {a1,az...,an,am} ={a1,...,an}. Hence also @ is proved. O

Remark 3.4.15. 22 -1 has four roots in Zg, namely +1 and +£3, see Example @ So in rings
without (Ax 11) a polynomial can have more roots than its degree.

Theorem 3.4.16. Let F be a field and f € F|x],

(a) Ifdegf =1, then f has a root in F.
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(b) Ifdeg f >2 and f is irreducible, then f has no root in F'.
(c) Ifdegf =2 or3, then f is irreducible if and only if f has no roots in F.

Proof. See Exercise

Exercises 3.4:
#1. Let F be a field and f € F[x]. Show that

(a) If deg f =1, then f has a root in F.

(b) If deg f > 2 and f is irreducible, then f has no root in F.

(c) If deg f =2 or 3, then f is irreducible if and only if f has no roots in F'.

(d) Find an example for a field F' and f € F[x] such that f is reducible and f has no root in F.
#2. Let F be an infinite field.

(a) Let f,g € F[z] with f* =g*. Show that f = g. Hint: What are the roots of f - g?

(b) Show that the function F[z] - Fun(F), f — f* is an injective homomorphism.
#3. Show that z — 1 divides apz™ +...a12 + ap in F[z] if and only if ag+a; +...+a, =0.
#4. (a) Show that 7 — x induces the zero function on Z7.

(b) Use @) and Theorem [3.4.14 to write 7 — z is a product of irreducible monic polynomials in
L.

#5. Let R be an integral domain and n € N Let f,g € R[z]. Put n=deg f. If f = 0p define f* =0p
and my =0. If f # Or define
f. = an—le
i=0
and let my € N be minimal with fmf # 0p. Prove that
(a) deg f=mys+degf°.
(b) £ =2 ()"
(c) (f9)*=rg"
)

(d) Let k,l € N and suppose that fy # 0g. Then f is the product of polynomials of degree k and I
in R[x] if and only if f* is the product of polynomials of degree k and [ in R[z].
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(e) Suppose in addition that R is a field and let a € R. Show that a is a root of f* if and only if
a #0g and a is a root of f.

#6. Let p be a prime. Let f,g € Zy[x] and let f*,¢" : Z, - Z, be the corresponding polynomial
functions. Show that:

(a) If deg f <p and f* is the zero function, then f =0p.

(b) If deg f < p,degg <p and f # g, then f* + g*.

(c) There are exactly p” polynomials of degree less than p in Z,[z].
(d) There exist at least p” polynomial functions from Z, to Z,.

(e) There are exactly p? functions from Z, to Z,.

(f) All functions from Z, to Z, are polynomial functions.

3.5 The Congruence Relation

Notation 3.5.1. Let F be a field and f,g,p € F[x]. Recall from Definition that the relation
= (modp) is defined by
f=g (modp) if  plf-g

By this relation is an equivalence relation. By [f]p is denotes the equivalence class of
= (modp)’ containing f, and [ f], is called the congruence class of f modulo p. So

[flp={g€Flz]|f=g (modp)}

F[z], denotes the set of congruence classes modulo p in F|x]. We will also use the notation
FL2)/(p) for Flzly. S0

Fla]/(p) = Flalp={ [fp | f € Fla] }
Example 3.5.2. Let f=2?+2?+1,g=2?+rand p=22+x+1in Zs[z]. Is f =g (modp)?

f and g are congruent modulo p if and only if p divides f — g and so by if and only if the
remainder of f — ¢ when divided by p is 0. So we can use the division algorithm to check whether
f and g are congruent modulo p.

We have f—g=a3+x+1 and
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2rx+1| 2 + z + 1

So the remainder of f — g when divided by p is not zero and therefore

2 +2?+1#2% +2 (moda® +x+1)

in Zo[x].

Theorem 3.5.3. Let F be a field and f,g,p € F[x] with p + 0. Then the following statements are
equivalent:

(a) f=g+pk for some ke Flx]. (h) felglp

(b) f-g=pk for some k € F[z]. (i) g=f (modp).

(c) plf-g. () plg-f.

(d) =g (modp). (k) g—f =pl for some L e Flz].

(¢) gelflp (1) g=f+pl for some | € F[z].

O pnlgl =2 (m) f and g have the same remainder when di-
(8) [f1p=1[9lp- vided by p.

Proof. By the statements -() are equivalent.

Let r1 and r9 be the remainders of f and g, respectively, when divided by p. Then there exist
q1,q2 € F[x] with

f=pgi+r1 and degry <degp
g=pqg2+r2 and degre <degp

(m) = (I): Suppose holds. Then r{ =r9 and

g—f:(pQQH“Q)—(p(h +T1):p'(QQ—Q1)+(7“2—7"1)=p'(Q2-Q1)-
So (|l) holds with I = g2 — q1.
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@ = : Suppose f =g+ pk for some k € F[x]. Then f = (pga+712) +pk=p-(q2+ k) +ra.
Note that g2 + k € F[x], ro € F[x] and degry < degp. So 7o is the remainder of f when divided by p.
Hence r1 = ro and holds. O

Theorem 3.5.4. Let F be a field and p € F[x] with p + 0p.

(a) Let f e Flx]. Then there exists a unique r € F[x] with degr < degp and [f], = [r]p, namely r
is the remainder of f when divided by p.

(b) The function
p: {r € Flz] ‘ degr < degp} - Flz]/(p), re~Irlp

is a bijection.
(c) Flz]/(p) = {[rlp|r € Flz],degr <degp}

Proof. @: Let s be the remainder of f when divided by p and let r € F[z] with degr < degp. Since
r=p0p +r and degr < degp, r is the remainder of  when divided by p. By [flp =[r]p if and
only f and s have the same remainder when divided by n, and so if and only if s = 7.

The uniqueness assertion in (&) shows that p is injective. Let A € F[2]/(p). By definition
of F[z]/p the exists f e F[z] with A = [f],. By (&) there exists r € F[z] with [f], = [r], and
degr < degp. Then p(r) =[r], =[f], = A and so p is surjective.

This holds since p is surjective. O
Example 3.5.5. Determine
(a) Zs[z]/(2*+1), and

(b) Q[z]/(2® —z +1).

@) Put p = 2% + 1 in Z3[z]. Then degp = 2. Since Z3 = {0,1,2}, the polynomials of degree less
than 2 in Zg[z] are

0,1, 2, xz, x+1, z+2, 22, 2z + 1, 20+ 2.

Thus shows that

Zs[z]/(2® + 1) ={ [f]p | f € Zo[x],deg f <2}
= {[0]177 (1p, [2]ps [2]ps [m+1]p, [2+2]p, [27]p, [22+1],, [20+ 2]10}‘

(]EI) Any polynomial of degree less than 3 in Q[z] can be uniquely written as a + bx + ca? with
a,b,ce Q. Thus

Q[x]/(xS —z+1)={[a+bx+ C:L‘2]I3_x+1 | a,b,ceQ}.

Exercises 3.5:
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#1. Let f,g,p € Q[x]. Determine whether f =g (modp).
(a) f=2"-22"+42% -3z +1, g =3z +22°% - 527 + 2, p=a?+1;
b =zt +223-322+2-5 =zt + 23 - 52 + 120 - 25 =2?+1;
( ; g ; p ;
c = 32° + 4zt + 523 — 622 + 5z - 7, =22° + 6zt + 2 + 222+ 22 -5, p=ad -2’ +ax-1.
() f 9
#2. Show that, under congruence modulo 2 +2x+1 in Zz[x] there are exactly 27 congruence classes.

#3. Prove or disprove: Let F be a field and f, g, k,p € F[z]. If p is nonzero, p is relatively prime to
k and fk = gk (modp), then f=g (modp).

#4. Prove or disprove: Let F be a field and f,g,p € F[x]. If p is irreducible and fg = 0r (modp),
then f=0p (modp) or g=0p (modp).
3.6 Congruence Class Arithmetic

Remark 3.6.1. Let F be a field and p € F[x]. Recall from that we defined an addition and
multiplication on F[z]/(p) by
(flp+lglp=[f+9lp and [flp-[9lp=[f 9lp
for all f,g e F[x].
Example 3.6.2. Compute the addition and multiplication table for Zs[z]/(2? + x).

We write [f] for [f],2,,. Since Zg = {0,1}, the polynomial of degree less than 2 in Zy[x] are

Te+IT"

0,1,z,z + 1. Thus gives
Zo[x)/(2® + ) = {[0], (1], [«], [= + 1]}.

We compute

+ [0] (1] [z] [z+1] [0] (1] | [=] [z+1]
[0] [0] (1] [z]  [z+1] [0] | [0] (01} [0o]  [0]
[1] [1] [0] | [z +1]  [«] [1] | [0] (1] ] [=] [z+1]
[z] [z]  [z+1]  [0] [1] [«] [[0] [«] [z] [0]

[x+1] | [z+1] [z] (1] (0] [x+1] | [0] [z+1] [0] [z+1]

Note here that
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and

[x+1][:v+1]:[(33+1)(:U+1)]=[$2+1]:[($+1)+(x2+x)]:[x+1]

Observe from the above tables that Zs[x]/(2? + 2) contains the subring {[0],[1]} isomorphic to
Zs. The next theorem shows that a similar statement holds in general.

Theorem 3.6.3. Let F be a field and p € F[z].
(a) F[z]/(p) is a commutative ring with identity [15],.

(b) The function
o: Flz] > Flz]/(p), [~ [flp

s an surjective homomorphism of rings.
(c) Put F ={[a],|ac F}. Then F is a subring of F[x]/(p).
(d) Suppose p is not constant. Then the function
7 F-F, a~[a],.
is an isomorphism of rings. In particular, F' is a subring of F[x]/(p) isomorphic to F.

Proof. (@) This is a special case of

This is a special case of Example 2.11.2.

F={[a]y|acF}={o(a)|acF}. Since Fis a subring of F[z] and o is a homomorphism
we conclude from Exercise 9 on the Review for Exam 2 that F' is a subring of F[z]/(p).

@ We need to show that 7 is a injective and surjective homomorphism. By @, o is a homo-

morphism. Observe that 7(a) = o(a) for all a € F. Hence also 7 is a homomorphism.
Let d € F'. Then d = [a], for some a € F and so d = 7(a). Thus 7 is surjective.

By the function
p: {reF[z]|degr<degp} - F[z]/(p), r+~[r]

is a bijection and so injective. Let a € F'. Since p is not constant, degp > 1 and so dega < 0 < degp.
Thus F' is contained in the domain on p. Since 7(a) = [a], = p(a) this shows that also 7 is injective.
Thus @ holds. O

The preceding theorem shows that F[z]/(p) contains a subring isomorphic to F. This suggest
that there exists a ring isomorphic to F[z]/(p) containg F' has a subring. The next theorem shows
that this is indeed true.

Theorem 3.6.4. Let F be a field and p be a non-constant polynomial in F[xz]. Then there exist a
ring R and a € R such that

(a) F is a subring of R,
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(b) there exists an isomorphism ®: R - F[z]/(p) with ®(«) = [z], and ®(a) = [a], for all a e F,
(¢) R is a commutative ring with identity and 1 = 1.
Proof. As in put £ := {[a], | a € F}. Define

S:=F[z]/(p) N F and R:=FuS.

(So for a € F' we removed [a], from F[z]/(p) and replaced it by a.) Define

S

Note that R = Fu S, SnF = @, F[z]/(p) = FuS and FnS = 3. By the function
F - 13', a — [a], is bijection. Also idg:S — S,s — s is a bijection. It follows that ® is a bijection see
Exercise |1.3H

Next we define an addition @ and a multiplication ® on R by

(1) r@s=0®(r)+®(s)) and ros:=d(O(r)d(s))
Observe that ®(®71(u)) = u for all uw e F[x]/(p). So applying ® to both sides of (1) gives
O(ros)=0(r)+P(s) and P(ros)=>o(r)d(s)

for all r,s € R. Hence implies that R is ring and ® is an isomorphism. Put « = [z],. Then
a €S and so o € R. Moreover ®(a) = ®([x]p) = [x]p. Let a€ F'. Then a € R and ®(a) = [a],. Thus

(]ED holds.

For a,b e I’ we have

a®b=31(®(a)+®(b)) =0 ([a], +[b]y) =@ ([a+b],) =a+beF

and

a0b=o"1(B(a)B(h)) = & ([al,[b],) = @7 ([ab],) =abe F

So F'is a subring of R. Thus also is proved.
By Flz]/(p) is a commutative ring with identity [1r],. Since ® is an isomorphism we
conclude that R is a commutative ring with identity 1. O

Notation 3.6.5. Let R and S be commutative rings with identities. Suppose that S is a subring of
R and 15 =1g. Let f € S[z] and r € R. We identify the polynomial

f= zn:flﬂ in S[x]
=0
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with the polynomial
g= Zfl-xi in R[x]
i=0

Note that with this identification, S[xz] becomes a subring of R[x].
Define

f(r)y=> fis"
i=0
Note that f(r) =g*(r) = 1s(f) where ¢ is the ring homomorphism ¢: S - R, s — s.

Notation 3.6.6. Let F be a field and p a non-constant polynomial in F[x]. Let R and « be as in
13.6.4. We denote the ring R by Fp[a]. (If F = Zq for some prime integer q, we will use the notation

Zgplal)

Theorem 3.6.7. Let F be a field and p a non-constant polynomial in F[z]. Let o and ® be as in
[9-0.4)

(a) Let f e F[z]. Then ®(f(a))=[flp

(b) Let f,g € Fx]. Then f(a)=g() if and only if [f] = [g]p-

(c) For each € Fy[a] there exists a unique f € Fxz] with deg f < degp and f(a) = j.
(d) Let n=degp. Then for each f € Fyla] there exist unique bg,br,. .. by 1 € F with

B=by+bra+...+by1a™ L.

(e) Let f e Flz], then f(a) =0p if and only if p|f in F[z].

(f) « is a root of p in Fylal].

Proof. @
deg f )
@(f(a)) = <I>( > fio/) — Definition of f(«)
=0
deg f )
= > o(fi)®(a) — & is a homomorphism
1=0
deg f )
= Z(:J [filp[2] -[3.64

deg f ]
= [ > fixz] =[flp.- - f—[f]pis a homomorphism by
i=0 »
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(b)
fla) =g(a)
— O(f()) =P(g()) - @ is injective
— (1= o)y -
Let B € Fpla] and f € F[z]. Then
fle)=p5
— O(f()) =2(pB) - ® is injective
— (1= 2(8) - (d)

Since ®(5) € Fx]/(p), shows that there exists a unique f € F[x] with deg f < degp and
[f]p = ®(B). It follows that f is also the unique f € F[z] with deg f < degp and f(a) = 5. Thus
holds.

@) Let by, ...by_1 € F and put f = bg+bi+...+bp_12" . Then f is a polynomial with deg f < degp
and bg,...,b,_1 are uniquely determined by f. Also

f(a) = bo + b1a +...+ bn_l()/kl

and so @ follows from .

(e
f(a)=0F
— fla)=0p(a) — definition of 0 («)
- [£1p = [0r] =0
— plf-0F -B.5.3
= plf -
(f) Note that p|p and so p(a) = 0p by (¢). Thus « is a root of p in Fp[a]. O

Example 3.6.8. Let p = 22 + x + 1 € Zy[z]. Determine the addition and multiplication table of
Z27p|:a]'

By [3.6.7(d) any element of F[a] can be uniquely written as by + by with by, by € Zy. By
Zs ={0,1} and so

Zypla] ={0+0c, 0+1a, 1+0c, 1+1a}={0, 1, a,1+a}.

Note that a + a =2a = 0a =0 and so we get
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+ 0 1 o 1+«
0 0 1 a l+a
1 1 0 l+a «
« « 1+« 0 1
l+a|l+a « 1 0

Since a+ =0 we have —a = a. By @) p(a) = 0. Hence 1+ a +a? =0 and thus

2

a’=-l-a=1+a.

0 1 a l+a
0 0 0 0 0
1 0 1 o 1+«
a |0 a l+a 1
a+l1|0 1+« 1 @

129

Note here that by the Distributive Law, Column ‘1 + «’ is the sum of Column ‘1’ and Column
‘a’. Also Row ‘1 + a’ is the sum of Row ‘1" and Row ‘o’

Exercises 3.6:

#1. Let p = 23 + 22 + 1 € Zo[x].
Lo plar] a field?

Determine the addition and multiplication table of Zsgp[c]. Is

#2. Let p =22 -3¢ Q[z]. Each element of Q,[a] can be uniquely written in the form b + ca, with
b,c € Q (Why?). Determine the rules of addition and multiplication in Q,[a]. In other words, for

b,c,d,eeQ find r,s,u,v e Q with

(b+ca)+ (d+ea) =1+ sa and

(b+ca)(d+ea) =u+va.

3.7 F,[a] when p is irreducible

In this section we determine when Fj,[«] is a field.

Theorem 3.7.1. Let F be a field, p and non-constant polynomial in F[x] and f any polynomial in

(a) f(a) is a unit in Fpla] if and only if ged(f,p) = 1p.

(b) If 1p = fg+ ph for some g,h € F[x], then g(«) is an inverse of f(a).
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Proof. @) We have

f(@) is a unit in Fp[a]

— f(a)B =1 for some (€ Fp[a] —Fpla] is commutative, 2.12.9]

= F(a)g(a) = 15 for some g € Flz] By 8 = g(a) for some g ¢ F[s]
— (f9)(@) = 1(a) for some g € Flz] AR

— (9 = [1#, for some g < Fla] - B0

— 1p = fg + ph for some g, h € F[z] -B.5.3[a)(i)

- ged(f,p) =1p -B.214

@ From the above list of equivalent statement, 1 = fg+ph implies f(«)g(a) = 1p. Since Fj,[a]
is commutative we also have g(«)f(«) = 1r and so g(«) is an inverse of f(«). O

Theorem 3.7.2. Let F be a field and p a non-constant polynomial in F[xz]. Then the following
statements are equivalent:

(a) p is irreducible in F[z].
(b) Fpla] is a field.
(c) Fpla] is an integral domain.

Proof. @ - (]ED: Suppose p is irreducible. By F,[a] is a commutative ring with additive
identity O and multiplicative identity 1p. Since F' is a field, 1 # Op. Thus it remains to show that
every non-zero element in Fp[a] is a unit. So let 5 € Fpla] with 8 # 0p. By B.6.7(d), 8 = f(a) for
some f € F[z]. Then f(a) # 0p and[3.6.7|(e), gives p+ f. Since p is irreducible, Exercise [3.3}#4] shows
that ged(f,p) = 1p. Hence by Theorem B = f(e) is a unit in F,[a].

() = (): 1If F,[a] is a field, then by Theorem [2.8.10] F,[] is an integral domain.

= @: Suppose Fj,[a] is an integral domain and let g, h € F'[z] with p|gh. We will show

that p|g or p|h. By 3.6.7(€) « is a root of p and so p(a) = 0p. Since p|gh we conlude from [3.4.12|(al)
that « is a root of gh. Hence

B43
0 = (gh) (@) =" g(a)h(a).
Since (Ax 11) holds in integral domains this gives g(a) = 0 or h(a) =0p. By [3.6.7(f) this implies
that p|g or p|h.
We proved that p|gh implies p|g or p|h. Thus shows that p is irreducible. O

Theorem 3.7.3. Let F be a field and p an irreducible polynomial in F[x]. Then F is a subring of
Fyla], Fpla] is a field and « is a root of p in Fplal].
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Proof. By F' is a subring of Fj,[«]. Since p is irreducible, implies that Fj[a] is field. By
3.6.7 « is a root of p in Fj,[a]. O

Example 3.7.4. Put K :=R,2,;[«a]. Determine the addition and multiplication in K and show that
K is a field.

By @) we know that « is a root of 2+ 1 in K. Hence a? + 1 =0 and so
o =-1.
By every element of K can be uniquely written as a + ba with a,b € R. We have
(a+ba)+ (c+da)=(a+c)+(b+d)x
and
(a+ba)(c+da) = ac+ (be + ad)a + bda? = ac + (be + ad)o + bd(-1) = (ac - bd) + (ad + be)o.

Note that 22 + 1 has no roots in R and so by [3.4.16/ 22 + 1 is irreducible. Hence shows that
K is a field.

We remark that is now straight forward to verify that
¢:Rpeq[a] > C, a+bara+bi

is an isomorphism from R, 2,;[«] to the complex numbers C.
Theorem 3.7.5. Let F be a field and f € F[z].

(a) Suppose f is not constant. Then there exists a field K such that F is a subring of K and f
has a root in K.

(b) There exist a field L n € N, and elements c,aq,a2 . ..,a, in L such that F is a subring of L and
f=c(x-a1) - (x—az) ... (x—ap)

Proof. @) By f is a product of irreducible polynomials. In particular, there exists an irreducible
polynomial p in F[z] dividing f. By K = Fp[a] is a field containing F' and « is a root of p in
K. Since p|f,[3.4.12 shows that « is a root of f in K.

We will prove (]ED by induction on deg f. If deg f <0, then f e F. So holds withn=0,c= f
and L = F'. Suppose that k € N and that (]E[) holds for any field F' and any polynomial of degree
k in F[x]. Let f be a polynomial of degree k + 1 in F[z]. Then degf > 1. So f is not constant
and by @ there exists a field K with F' as a subring and a root a of f in K. By the Factor
Theorem x—a divides f in K[z] and so f = (x-a)-g=g¢g-(z—a) for some g € K[x]. Then
k+1=degf =degg+deg(r—-a)=degg+1. So degg = k and by the induction assumption there
exists a field L and elements c,aq,...a; in L such that K is a subring of L and

g=c-(r—ay)-...-(x—ag).
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Put ag,1 = a. Then
f=g-(x-a)=c-(x—-a1) ...-(x—ag) (r—ags)-

Since F' is a subring of K and K is subring of L, F' is subring of L. So (]E[) holds for polynomials
of degree k + 1. Hence, by the Principal of Mathematical Induction, (]ED holds for polynomials of
arbitrary degree. O

Exercises 3.7:

#1. In each part explain why ¢ € Fj[«] is a unit and find its inverse.
(@) t = -3+20, F=Q, p=2?-2
(b) t = l+a+a? F=73 p=2%+1
(¢c) t = 1+a+a?, F=2Zy p=x3+z+1

#2. Determine whether Fy[a] is a field.
(a) F=Z3, p=a3+222+x+1.
(b) F =175, p=22%—42% + 2z + 1.
(c) F=Zq, p=at+2?+1.

#3. (a) Verify that Q(v/3) = {r + s/3|r,s € Q} is a subfield of R.
(b) Show that Q(v/3) is isomorphic to Q,2_3[c].

#4. Let p=a3+ 2%+ 1 e Zy[x].
(a) Determine the addition and multiplication table of Zs p[«].
(b) Is Zy ] a field?

(c) Show that 2 + 2 + 1 has three distinct roots in Zs ]
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Ideals and Quotients

4.1 Ideals
Definition 4.1.1. Let I be a subset of the ring R.
(a) We say that I absorbs R if

racl and arel forallael,reR

(b) We say that I is an ideal of R if I is a subring of R and I absorbs R.

Theorem 4.1.2 (Ideal Theorem). Let I be a subset of the ring R. Then I is an ideal in R if and
only if the following four conditions holds:

(i) Opel.

(ii) a+bel foralla,bel.

(iii) rael and ar el for allael andre R.
)

(iv) —ael forallacl.

Proof. =: Suppose first that I is an ideal in R. By Definition S absorbs R and S is a
subring. Thus holds and by the Subring Theorem also (), and hold.

<—=: Suppose that — hold. From we get that abe I for all a,b € I. Together with ,
and this shows that the four conditions of the Subring Theorem hold for I. Thus I is
a subring of R. By , I absorbs R and so [ is an ideal in R. O

Example 4.1.3. (1) Let R be a ring, then both {Or} and R are ideals in R.
(2) {3n|neZ"} is an ideal in Z.
(3) Z is not an ideal in Q.

133
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(4) Let F be a field and a € F. Then {f € F[z]| f*(a) =0p} is an ideal in F[z].
(5) Let R be aring, I an ideal in R. Then {f € R[z]| f; € I for all i € N} is an ideal in R.

(6) Let R and S be rings. Let I be an ideal in R and J an ideal in S. Then I x J is an ideal in R.
In particular, both R x {0g} and {Og} x S are ideals in R x S.

Proof. See Exercise O
Definition 4.1.4. Let R be a ring.
(a) Let ae R. Then aR ={ar|ac R}.

(b) Suppose R is commutative and I € R. Then I is called a principal ideal in R if I = aR for
some a € R.

Theorem 4.1.5. Let R be a commutative ring and a € R. Then aR is an ideal in R. Moreover, if
R has an identity, then aR is the smallest ideal in R containing a, that is

(a) acaR,
(b) aR is an ideal in R, and
(¢) aRc I, whenever I is an ideal in R with a € I.

Proof. To show that aR is an ideal in R let b,c € aR and r € R. Then

b=as and c=at.

for some s,t € R. Thus

Op =algr € aR,
b+c=as+at=a(s+t)€akr,
rb="0br = (as)r =a(sr) eaR
-b=—(as) =a(-s) eaR.
So by aR is an ideal in R.
Suppose now that R has an identity. Then a =a-1g and so a € aR.

Let I be any ideal of R containing a. Since a € I and I absorbs R, ar € I for all r € R and so
aRclI. O

Definition 4.1.6. Let I be an ideal in the ring R. The relation = (modI)’ on R is defined by

a=b (modl) if  a-bel
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Remark 4.1.7. Let R be a commutative ring and let a,b,n € R. Then

a=b (modn) <= a=b (modnR)

Proof.
a=b (modn)
— a-b=nk for some ke R - 249
— a-benR — Definition of nR
< a=b (modnR) — Definition of = (modI) HEIIO

O]
Theorem 4.1.8. Let I be an ideal in the ring R. Then = (modI)’is an equivalence relation on R.

Proof. We need to show that ‘= (mod )’ is reflexive, symmetric and transitive. Let a,b,c € R.

Reflexive: By a—a = Or and by the Ideal Theorem O € I. Thus a —a € I and so
a=a (modI) by definition of '= (mod[)’.

Symmetric: Suppose a=b (modI). Then a—be I and so by Ideal Theorem —(a —b) € I. By
b-a=-(a-b). Hence b—a eI and so b=a (modI) by definition of '= (modT)’.

Transitive: Suppose a=b (modl)and b=c¢ (modI), then a—bel and b—ce I. Hence by the
Ideal Theorem (a—b)+(b—c) e I. Asa—c=(a-b)+(b—c) this givesa—ceI. Thusa=c (modl). O

Definition 4.1.9. Let R be a ring and I an ideal in R.
(a) Letael. Then a+ 1 denotes the equivalence class of = (modI)’ containing a. So
a+I={beR|a=b (modl)}={beR|a-bel}
a+ I is called the coset of I in R containing a.
(b) R/I is the set of cosets of I in R/I. So
R/I={a+1I|a€R}
and R|I is the set of equivalence classes of = (modI)’

Theorem 4.1.10. Let R be ring and I an ideal in R. Let a,b € R. Then the following statements
are equivalent

(a) a=b+1i for someiel. (c) a-bel.

(b) a=b=1i for someiel (d) a=b (modI).
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(e) bea+1. (i) b=a (modI).
(f) (a+I)n(b+1) + 2. (j) b-ael.

(8) a+I=0b+1. (k) b—a=j for some jel.
(h) aeb+1. (1) b=a+j for some jel.

Proof. () <= (]ED and (k) <= ([): This holds by [2.2.

(@) <= () and () <= (K): Principal of Substitution.
() = @ and () < (j): This holds by definition of ‘= (modI)’.

By we know that '= (mod ) is an equivalence relation. Also a + I is the equivalence class
of a and so Theorem implies that (d)-(i)) are equivalent. O

Theorem 4.1.11. Let I be an ideal in the ring R.
(a) LetaeR. Thena+I={a+iliel}.
(b) Or + 1 =1. In particular, I is a coset of I in R.
(¢) Any two cosets of I are either disjoint or equal.

Proof. Let a,be€ R.

@ By 4.1.10@, we have b € a + I if and only if b = a + ¢ for some i € I and so if and only if
bel{la+iliel}.

@) By (o) Or+ I ={0p+i|iel}={i|iel}=1.

Suppose a + I and b+ I are not disjoint. Then (a+I)n (b+ 1) # @ and [l.1.10)(f),(g) shows
that a+ I =b+ 1. So two cosets of I in R are either disjoint or equal. O

Exercises 4.1:
#1. Show that:
(a) Let R be a ring, then both {Or} and R are ideals in R.

(b) {3n|neZ*} is an ideal in Z.

(¢) Z is not an ideal in Q.

(d) Let F be a field and a € F. Then {f € F[z]| f*(a) =0p} is an ideal in F[x].

(e) Let R be aring, I an ideal in R. Then {f € R[x]| f; € I for all i e N} is an ideal in R.
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(f) Let R and S be rings. Let I be an ideal in R and J an ideal in S. Then I x J is an ideal in R.
In particular, both R x {0g} and {Og} x S are ideals in R x S.

#2. Let Iy, 15,...I, be ideals in the ring R. Show that I; + Is + ... + I, is the smallest ideal in R
containing Iy, Io,..., I, and I,.

0
#3. Is the set J = { re ]R} an ideal in the ring My(R) of 2 x 2 matrices over R?

0 r

#4. Let F be a field and I an ideal in F[x]. Show that I is a principal ideal. Hint: If I + {Of}
choose d € I with d # 0 and deg(d) minimal. Show that I = F[z]d.

#5. Let @ : R - S be a homomorphism of rings and let J be anidealin S. Put I = {a € R | ®(a) € J}.
Show that I is an ideal in R.

4.2 Quotient Rings
Theorem 4.2.1. Let I be an ideal in R and a,b,a, be R with
a+I=a+1 and  b+I=b+1I.
Then
(a+b)+T=(a+b)+1 and ab+I=ab+1.

Proof. Since a+1I = a+ I [4.1.10|implies that @ = a +4 for some i € I. Similarly b= b+ j for some j € I.
Thus 3
a+b=(a+i)+(b+j)=(a+b)+(i+])).

Since i,7 € I and I is closed under addition, i + j € I and so by [4.1.10{ (a + b) + I = (a + b) + 1.
Also 3
ab=(a+i)(b+j)=ab+ (aj +ib+ij)

Since i,7 € I and I absorbs R we conclude that aj,ib and ij all are in I. Since I is closed under
addition this implies that aj +ib+ij €I and so ab+ I =ab+ I by |4.1.10 O

Definition 4.2.2. Let I be an ideal in the ring R. Then we define an addition + and multiplication
-on R by
(a+D)+(b+I)=(a+b)+I and (a+I)-(b+I)=ab+1

for all a,b e R.
Note here that these operations are well defined by

Remark 4.2.3. (a) Let R be a commutative ring and n € R. Then R, = R/nR.

(b) Let F be a field and p € F[x]. Then F[z]/(p) = F[x]/pF|[z].
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Proof. (&) By Remark the relations ‘= (modn)’ and ‘= (modnR)’ are the same. So also their
sets of equivalence classes R,, and R/nR are the same.

([b) Since F[x]/(p) = F[x], this is a special case of (a)). O
Theorem 4.2.4. Let R be a ring and I an ideal in R

(a

(b) (R/I,+,-) is a ring.

The function w: R - R/I, a— a+ 1 is a surjective homomorphism.

)

)
(c) Opyr=0p+1=1.
(d) If R is commutative, then R/I is commutative.

(e) If R has an identity, then R/I has an identity and 1p; = 1g + 1.
Proof. @ Let a,be R. Then

Def 7 Def + Def 7

m(a+b) (a+b)+1 "= (a+I1)+(b+1I) =" w(a)+m(b)

and

m(ab) P27 ab+ I ¢ (a+ Db+ 1) PL™ n(a)7(b)

So 7 is a homomorphism. Let v € R/I. By definition, R/I = {a+ 1 |a € R} and so there exists
a€ R with uw=a+1. Thus n(a) =a+ I =w and so 7 is surjective.

@, and @: By @ m is a surjective homomorphism. Thus we can apply and conclude

that (]E[), and @ hold.

@: By @ 7 is a surjective homomorphism. Thus @ follows from [2.11.8|(al) O

Theorem 4.2.5. Let R be a ring and I an ideal in R. Let r € R. Then the following statements are
equivalent:

(a) rel.

(b) r+I=1.

(C) T+IZOR/I.

Proof.@«:»@: By4.1.10|r € Og + [ if and only if r + I =0 + I. ByOR+I:Iandso

@ and (]E[) are equivalent.

@ — : By [4.2.4{(c) Og/; = I and so @ and are equivalent. O

Definition 4.2.6. (a) Let f: R — S be a homomorphism of rings. Then

ker f:={aeR| f(a) =0g}.
ker f is called the kernel of f.
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(b) Let I be an ideal in the ring R. The function
nm: R—->R|I, r—>r+]
is called the natural homomorphism from R to R/I.
Theorem 4.2.7. Let f: R— S be homomorphism of rings. Then ker f is an ideal in R.

Proof. By definition, ker f is a subset of R. We will now verify the four conditions of the Ideal
Theorem Let r € R. By definition of ker f we have

(*) r € ker f —  [f(r)=0s.
Let a,beker f. By

(%) f(a)=0s  and  f(b)=0s.
i) f(OR) 0s and so Op € ker f by .

@) fla+d) "™ f(a)+ £(5) 2 0g+05 BER g and so a+beker f by (3).
(iii)  f(ra) £ hom f(r)f(a) f(r)0g 0g and so ra € ker f by .

Similarly, ar € ker f.

(iv)  f(-a) CARNI -f(a) -0g 0s and so —a € ker f by . O

Example 4.2.8. Define
®: R[z]->C, f~f@)

Verify that @ is a surjective homomorphism and compute ker ®.

Define p: R - C,r + r. Then p is a homomorphism and ® is the function p; from Theorem [3.4.1
So ® is a homomorphism. Alternatively, note that for f, g€ R[x]:

O(f +9) = (f+9)(@) = f(i) + g(i) = (f) + B(g) and ®(fg) = (f9)(i) = f(i)g(i) = ()P (9)-

To show that f is surjective, let ¢ € C. Then ¢ = a+bi for some a,b € R. Thus ®(a+bx) =a+bi=c
and so @ is surjective.

To compute ker f let f € R[x]. We need to determine when f(i) = 0. According to the Division
algorithm, f = (22 +1)-q +r, where ¢,r € R[z] with deg(r) < deg(2? + 1) = 2. Then 7 = a + bz for
some a,b € R and so
(*) FG) = (@2 +1) - q+7) () = (% +1) - q(0) + (i) =0+ q(3) + (a -+ bi) =+ bi

It follows that
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fekerd

o(f)=0 — definition of ker ®

f(@)=0 — definition of ®

a+bi=0 —(*)

a=0and b=0 — Property of C

a+bxr=0 — definition of polynomial ring
r=0 -r=a+br

22+ 1|f 527

f=(2*+1)-q for some q e R[z] - Definition of ‘divide’
fe(@®+DR[x] — Definition of (22 + 1)R[z]

Thus ker @ = (2% + 1)R[z].

Theorem 4.2.9. Let R be a ring.

(a) Let I an ideal in R and

m: R—->R[I, ara+]l.

the natural homomorphism from R to I. Then kerm = 1.

(b) Let I be subset of R. Then I is an ideal in R if and only if I =ker f for some homomorphism

of rings f: R— S.

Proof. @: Let r € R. Then
rekerm
< m(r)=0g/; - definition of kerw
< r+1=0g; - definition of 7
<~ rel -@2.3
Thus kerm = I.
(b) The forward direction follows from () and the backwards direction from O

Theorem 4.2.10. Let f: R — S be a ring homomorphism.

(a) Let a,be R. Then

fa) = f(b)
a-bekerf
a+ker f=b+kerf

<~
<
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(b) f is injective if and only if ker f = {Og}.

Proof. @
fla) = f(b)
— f(@)-f() = 0s - 2290
= fla=b) = 0s - 2.117(d)
— a—-bekerf — Definition of ker f
— a+kerf = b+kerf -EILIO

@ ==: Suppose f is injective and let a € R. Then

ac€kerf
— f(a) =0g — Definition of ker f
= f@=70n - ETIE
<~ a=0g — f is injective

Thus ker f = {Og}.
<=: Suppose ker f = {Og} and let a,b € R with f(a) = f(b). Then by (a) a —b € ker f. As
ker f = {Og} this gives a —b=0g, so a =b by R.2.9({). Hence f is injective. O

Theorem 4.2.11 (First Isomorphism Theorem). Let f: R - S be a ring homomorphism. Recall
that Im f = {f(a) |a € R}. The function

f: R/kerfeImf, a+kerf - f(a)
is a well-defined ring isomorphism. In particular R/ker f and Im f are isomorphic rings

Proof. Let a,be R. By f(a) = f(b) if and only if a + ker f = b+ ker f. The forward direction
shows that f is injective and backwards direction shows that f is well-defined.

If seIm f, then s = f(a) for some a € R and so f(a+ker f) = f(a) = s. Hence f is surjective.

It remains to verify that f is a ring homomorphism. We compute

Def + De

1=
|

?((a+kerf)+(b+kerf)) = ?((a+b)+kerf) fla+b)
T pa)+f) P27 Flavker f)+ F(b+ker f)
and
F((askerf)-beker)) P& Flabwkers) P27 f(ab)
f hom De:ff

= [fa)-f(b) fla+ker f)- f(b+kerf)

and so f is a homomorphism. O
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Example 4.2.12. Let n and m be non-zero integers with ged(n,m) = 1. Apply the isomorphism
theorem to the homomorphism

[2Z > Ly x Ly, a"’([a]na[b]m)

We first compute ker f

acker f
— fla) =0z, 2, — definition of kerm
= f(@) = ([0]n, [0)m)  -RLAE), R6AE)
— ([a]n [0]m) = ([0]n, [O]im) ~ definition of f
— [a]n =[0], and [b]m, =[0], —[L32
— nla-0 and ml|a-0 -24.9
— nla and ml|a {2.2.9([)
— nm|a - ged(n, m) = 1, Exercise 2.9
— a=nmk for some keZ — definition of ’divide’
— a € nm — definition of nmZ

Thus ker f = nmZ and so

Z]ker f = Z|nmZ = Ly

where the last equality holds by [4.2.3|(a)).
By the First Isomorphism Theorem Z/ker f is isomorphic to Im f and so

(%) Ly 18 isomorphic to  Im f.

Thus

|Tm f| = |Zpm| = nm.

Also

|Zn % Ly | = |Zn| - |Zim| = nm,
Hence |Im f| = |Zy, x Zy,|. Since Im f € Z,, x Z, this gives Im f = Z,, x Z,,. Hence implies

Lo, 1s isomorphic to  Z, x Zyy,.



Appendix A

Logic

A.1 Rules of Logic

In the following we collect a few statements which are always true.

Theorem A.1.1. Let P, Q and R be statements, let T be a true statement and F' a false statement.
Then each of the following statements holds.

F=—P.

P=T.

LR 3) not-(not-P) < P.
LR 4) (not-P = F) = P.
PorT.

LR 6) not-(P and F).

LR 8

(

(

(

(

(LR 5
(

(

( (Por F) < P.
(

LR 9) (P and P) < P.

LR 10) (P or P) < P.
LR 11) P or not-P.

LR 13

)
)
)
)
)
)
LR 7) (P and T) <= P.
)
)
)
)
)
) (P and Q) <> (Q and P).
)

(
(
(LR 12) not -(P and not -P).
(
(

LR 14) (Por Q) < (Q or P).

143
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(LR 15) (P <= Q) — ((P and Q) or (not -P and not —Q))

(LR 16) (P = Q) < (not-P or Q).

(LR 17) not -(P = Q) < (P and not -Q).

(LR 18) (P and (P = Q)) — Q.

(LR 19) ((P= Q) and (Q=P)) <= (P = Q).
(LR 20) (P = Q) = (P = Q).

(LR 21) (P = Q) <= (not -Q = not -P)

(LR 22) (P <= Q) <= (not -P <= not -Q).

(LR 23) not -(P and Q) <= (not -P or not -Q)

(LR 24) not -(P or Q) <= (not -P and not -Q)
(LR 25) ((P and Q) and R) — (P and (Q and R)).
(LR 26) ((P or Q) or R) <= (P or (Q or R)).
(LR 27) ((P and Q) or R) <= ((P or R) and (Q or R)).
(LR 28) ((P or Q) and R) — ((P and R) or (Q and R)).
9) ((P= Q) and(Q = R)) = (P = R)
(LR 30) ((P <= Q) and (Q += R)) = (P <= R)
Proof. If any of these statements are not evident to you, you should use a truth table to verify it. [

Theorem A.1.2. Let P(x) be a statement involving the variable x. Then

(there exists z : P(z)) and ( there exists at most onez : P(x))

if and only if
there exists a uniquex : P(x)
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Proof. =>: Suppose first that

( there exists z: P(z)) and ( there exists at most onex : P(x))

holds. By definition of “There exists:” we conclude that there exists an object a such that

(*) P(a) is true

q Also by definition of “There exists at most one”:

(%) for all z: for all y : P(z) and P(y) = x=1y.

From and the definition of “for all x :” we get

(% *) for all y : P(a) and P(y) — a=y

By |A.1.1[ILR 7)) P < (T and P) whenever P is a statement and T is a true statement. Since
P(a) is a true statement we conclude that

for all y P(y) — P(a) and P(y).
By [A.1.1|[LR 20) P = @ implies P = @ and so we conclude that

(+) for all y: P(y) - P(a) and P(y)
By [A.LT[LR 29)

((P:>Q) and (Q :>T)) = (P:>Q)
Together with and this gives

(4++) for all y P(y) == a=y.

If a = y, then since P(a) is true, the Principal of Substitution shows that P(y) is true. Thus

(+++) for all y : a=vy — P(y)
By [A.1.1J[LR 20) P = Q if and only if P = @ and Q = P. Together with (++]) and (4+++])
we get

for all y : P(y) — a=y.
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Thus by definition of ‘there exists x :’ this gives

there exists = : for all y: P(y) — x

I
<

Hence the definition of “There exists a unique” gives

There exists a unique x : P(z).

<=: Suppose next that

There exists a unique x : P(z)

holds. Then by definition of “There exists a unique”:

there exists z: for all y: P(y) <= x=y.

and so there exists an object a such that

(#) for all y: P(y) — a

I
<=

In particular, by definition of “for all y”:

P(a) — a=a

Since a = a is true, we conclude that P(a) is true. Thus

(##) there exists z : P(x).

holds.

Suppose “P(x) and P(y) “is true. Then P(x) is true and shows that = = a. Also P(y) is
true and gives y = a. From = = a and y = a we get = = y by the Principal of Substitution. We
proved that

for all z: for all y: P(z)and P(y) =— x=y.

and so the definition of “There exists at most one” gives

(F##H#) There exists at most onex:  P(x).

From (##) and (###) we have

there exists z: P(x) and there exists at most onex : P(x).
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Theorem A.1.3. Let S be a set, let P(x) be a statement involving the variable x and ®(x) a formula
such that ®(s) is defined for all s in S for which P(s) is true. Then there exists a set, denoted by

{®(s) | s€ 5 and P(s)} such that
te{®(s) | seSand P(s)} <=  there existss€ S: (P(s) and t = &(s))
Proof. Define
(*) {®(s) | se S and P(s)} = {@(s) | s {res| P(r)}}
Then
te{®(s)|seSand P(s)}
te{a(s)|sefres| e} By (+)

there exists s € {r e S| P(r)} with t = ®(s) 2.0

1

<> there exists s with [se{re S| P(r)} and t = ®(s)| definition of ‘there exists s € see [[.2.7]

<= there exists s with (s €S and P(s)) and t = ®(s)| [25

<= there exists s with [ s € S and (P(s) and t = <I>(s)) Rule of Logic: [A.1.1J[LR 25) :

(P and(Q and R)) <= ((P and Q) and R)
— there exists s € S with (P(s) and t = <I>(s)) definition of ‘there exists s € see [[2.7]

O]
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Appendix B

Relations, Functions and Partitions

B.1 Equality of functions

Theorem B.1.1. Let f: A— B and g: C - D be functions. Then f =g if and only if A=C, B=D
and f(a) =g(a) for all a € A.

Proof. By definition of a function, f = (A,B,R) and g = (C,D,S) where Rc Ax B and ScC x D.
by L3 :
(*) f=gifand only of A=C, B=D and R=S.

== If f =g, then the Principal of Substitution implies, f(a) = g(a) for all a € A. Also by (),
A=C and B=D.

<—: Suppose now that A =C, B =D and f(a) = g(a) for all a € A. By it suffices to show
that R=S.
Let ae A and be B.

(a,b) e R
— afb —definition of a fb
<= b= f(a) -the definition of f(a)
<= b=g(a) -since f(a)=g(a)
— agb —definition of g(a)
<= (a,b) €S —definition of agb

Since A =C and B = D, both R and S are subsets of A x B. Hence each element of R and S is
of the form (a,b),a € A,be B. It follows that « € R if and only if x € S and so R =S by O

B.2 The inverse of a function

Definition B.2.1. Let f: A— B and g: B - A be functions.

149
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(a) g is called a left inverse of f if go f=1id4.
(b) g is called a right inverse of g if fog=idp.
(¢) g is a called an inverse of f if go f =idg and fog=idp.

Theorem B.2.2. Let f : A > B and h: B - A be functions. Then the following statements are
equivalent.

(a) g is a left inverse of f.

(b) f is a right inverse of g.
(c) g(f(a))=a forallac A.
)

(d) For allae A and be B:
fla)=b = a=g(b)

Proof. @ = (]ED: Suppose that g is a left inverse of f. Then go f = id4 and so f is a right
inverse of g.
@ — : Suppose that f is a right inverse of g. Then by definition of ‘right inverse’

(1) gOf:idA

Let a € A. Then

g(f(a)) = (gof)(a) - definition of composition
= ida(e)  -(1)
= a — definition of id 4

() = (d): Suppose that g(f(a)) =a for all a € A. Let a € A and b€ B with f(a) =b. Then
by the principal of substitution g(f(a)) = g(b), and since g(f(a)) = a, we get a = g(b).
@ = @: Suppose that for all a € A,b € B:

(2)) fla)=b=a=g(b)
Let a € A and put

(3) b= f(a)

Then by (2)

(4) a=g(b)

and so
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(9o f)(a) = g(f(a)) - definition of composition
= 9@ (3
= a (4)
= ida(a) - definition of id4
Thus by go f=idy4. Hence g is a left inverse of f. O

Theorem B.2.3. Let f: A - B and h: B - A be functions. Then the following statements are
equivalent.

(a) g is an inverse of f.

)
(b) f is a inverse of g.
(¢) g(fa)=a for allae A and f(gb) =b for all be A.
)

(d) For allae A and be B:
fa=b <= a=gb

Proof. Note that g is an inverse of f if and only if g is a left and a right inverse of f. Thus the
theorem follows from [B.2.2] ]

Theorem B.2.4. Let f: A — B be a function and suppose A + @.
(a) f is injective if and only if f has a right inverse.
(b) f is surjective if and only if f has left inverse.
(¢) f is a injective correspondence if and only f has inverse.

Proof. =>: Since A is not empty we can fix an element ag € A. Let be B. If b ¢ Im f choose a; € A
with fap =b. If b ¢ Im f, put ap = ag. Define

g:B—>A, b-a

@ Suppose f is injective. Let a € A and b e B with b= fa. Then beIm f and fa, =b = fa. Since
f is injective, we conclude that a, = b and so ga = ap = b. Thus by g is right inverse of f.

(]E[) Suppose f is surjective. Let a € A and b € B with gb = a. Then a = a;. Since f is surjective,
B=Imf and so a € Im f and f(ap) = b. Hence fa = b and so by (with the roles of f and f
interchanged), ¢ is left inverse of f.

Suppose f is a injective correspondence. Then f is injective and surjective and so by the
proof of @ and (]ED, g is left and right inverse of f. So g is an inverse of f.

<
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@ Suppose ¢ is a left inverse of f and let a,c € A with fa = fc. Then by the principal of

substitution, g(fa) = g(fc). By[B-2.2 g(fa) =a and g(fb) =b. So a=b and f -s injective.
Suppose g is a right inverse of f and let b € B. Then by f(gb) =band so f is surjective.
Suppose f has an inverse. Then f has a left and a right inverse and so by @ and (]ED, fis
injective and surjective. So f is a injective correspondence. O

B.3 Partitions

Definition B.3.1. Let A be a set and A set of non-empty subsets of A.

(a) A is called a partition of A if for each a € A there exists a unique D € A with a € D.

(b) ~aA= (A,A, {(a,b) e Ax Al{a,b} €D for some D € A})

Example B.3.2. The relation corresponding to a partition A = {{1, 3}, {2}} of A={1,2,3}

{1,3} is the only member of A containing 1, {2} is the only member of A containing 2 and {1, 3}
is the only member of A containing 3. So A is a partition of A.

Note that {1,2} is not contained in an element of A and so 1 #a 2. {1,3} is contained in {1,3}
and so 1 ~a 3. Altogether the relation ~a can be described by the following table

~A 11l 2 3
1 |z - =z
2 |-z -
3|z -

where we placed an x in row a and column b of the table iff a ~a b.
We now computed the classes of ~o. We have

[1]={be A|1~ab}={1,3}
[2]={be A[2~a b} = {2}

and
[3]={beA[3~ab}={1,3}

Thus A/ ~a={{1,3},{2}} = A.
So the set of classes of relation ~a is just the original partition A. The next theorem shows that
this is true for any partition.

Theorem B.3.3. Let A be set.

(a) If ~ is an equivalence relation, then A[ ~ is a partition of A and ~=~4...



B.3. PARTITIONS 153

(b) If A is partition of A, then ~a is an equivalence relation and A = Al ~.

Proof. (@) Let a € A. Since ~ is reflexive we have a ~ a and so a € [a] by definition of [a]. Let
D e A/ ~ with ae D. Then D = [b] for some b€ A and so a € [b]. implies [a] = [b] = D. So [a]
is the unique member of A/ ~ containing a. Thus A/ ~ is a partition of A. Put ~=~,4,.. Then a ~ b
if and only if {a,b} ¢ D for some D € A/ ~. We need to show that a ~ b if and only if a ~ b.

So let a,b e A with a ~ b. Then {a,b} € D for some D € A/ ~. By the previous paragraph, [a] is
the only member of A/ ~ containing a. Thus D = [a] and similarly D = [b]. Thus [a] = [b] and
implies a ~ b.

Now let a,b e A with a ~b. Then both a and b are contained in [b] and so a » b.

We proved that a ~ b if and only if a ~ b and so @ is proved.

() Let a € A. Since A is a partition, there exists D € A with a € A. Thus {a,a} ¢ D and hence
a~a a. So ~a is reflexive. If a ~A b then {a, 5} € D for some D € A. Then also {b,a} € D and hence
b ~a. There ~ is symmetric. Now suppose that a,b,c € A with a ~o b and b ~A ¢. Then there exists
D,FE ¢ A with a,b € D and b,c € E. Since b is contained in a unique member of A, D = E and so
a ~A ¢. Thus ~a is an equivalence relation.

It remains to show that A = A/ ~a. For a € A let [a] = [a].a. We will prove:

(*) Let DeA andaeD. Then D =[a].

Let be D. Then {a,b} € D and so a ~a b by definition of ~ao. Thus b € [a] by definition of [a]. Tt
follows that D ¢ [a].

Let b € [a]. Then a ~A b by definition of [a] and thus {a,b} € E for some E € A. Since A is a
partition, a is contained in a unique member of A and so F = D. Thus b e D and so [a] € D. We
proved D ¢ [a] and [a] € D and so holds.

Let D e A. Since A is a partition of A, D is non-empty subset of A. So we can pick a € D and
implies D = [a]. Thus D € A/ ~a and so A A/ ~a

Let E € A/ ~ao. Then E = [a] for some a € A. Since A is a partition, a € D for some D € A.
gives D =[a] = F and so E € A. This shows A/ ~oC A.

Together with A ¢ A/ ~a this gives A = A/ ~a and (b) is proved. O
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Appendix C

Real numbers, integers and natural
numbers

In this part of the appendix we list properties of the real numbers, integers and natural numbers we
assume to be true.

C.1 Definition of the real numbers
Definition C.1.1. The real numbers are a quadtruple (R, +,-,<) such that

(R i) R is a set (whose elements are called real numbers)

(R ii) + is a function ( called addition) , R xR is a subset of the domain of + and

a+beR (Closure of addition)

for all a,b e R, where a® b denotes the image of (a,b) under +;

(R iii) - is a function (called multiplication), R x R is a subset of the domain of - and

a-beR (Closure of multiplication)

for all a,b € R where a-b denotes the image of (a,b) under -. We will also use the notion ab

for a-b.
(R iv) < is a relation from R and R;
and such that the following statements hold:
(RAx 1) a+b=b+a for all a,beR. (Commutativity of Addition)

(RAx2) a+(b+c)=(a+b)+c forall a,b,ceR; (Associativity of Addition)

155



156

(R Ax 3)

(R Ax 4)

(R Ax 10)

(R Ax 11)

(R Ax 12)

(R Ax 13)

(R Ax 14)

(R Ax 15)

APPENDIX C. REAL NUMBERS, INTEGERS AND NATURAL NUMBERS

There exists an element in R, denoted by 0 (and called zero), such that a+0=a and 0+a=a

for all a e R; (Existence of Additive Identity)
For each a € R there exists an element in R, denoted by —a (and called negative a) such that
a+(-a)=0 and (-a)+a=0; (Existence of Additive Inverse)
a(b+c)=ab+ac for all a,b,ceR. (Right Distributivity)
(a+Db)c=ac+bc for all a,b,ceR (Left Distributivity)
(ab)c = a(be) for all a,b,ce R (Associativity of Multiplication)

There exists an element in R, denoted by 1 (and called one), such that la = a for all a € R.
(Multiplicative Identity)

For each a € R with a # 0 there exists an element in R, denoted by % (and called ‘a inverse’)
such that aa™' =1 and a*a = 1;

(Existence of Multiplicative Inverse)

For all a,beR,
(a<bandb<a) <= (a=b)

For all a,b,ceR,
(a<bandb<c)= (a<c)

For all a,b,ceR,
(a<band 0<c) = (ac<be)

For all a,b,ceR,
(a<b)=(a+c<b+c)

Each bounded, non-empty subset of R has a least upper bound. That is, if S is a non-empty
subset of R and there exists u € R with s <u for all s € S, then there exists m € R such that for
all r e R,

(sSTforallsES)@(er)

For all a,b e R such that b+ 0 and 0 < b there exists a positive integer n such that a <nb. (Here
na is inductively defined by la =a and (n+1)a =na+a).

Definition C.1.2. The relations <, > and > on R are defined as follows: Let a,beR, then

(a)
(b)
()

a<bifa<banda#b.
a>bifb<a.

a>bifb<aanda#bd



C.2. ALGEBRAIC PROPERTIES OF THE INTEGERS

C.2 Algebraic properties of the integers

Theorem C.2.1. Let a,b,ceZ. Then

(1) a+beZ.

2) a+(b+c)=(a+b)+c.
3) a+b=b+a.
4) a+0=a=0+a.
5
6

)
)
)
)
)
7) a(be) = (ab)e.
)
)
)
)

There exists x € Z with a +x = 0.

abeZ.

8) a(b+c)=ab+ac and (a+b)c=ac+ be.

(
(
(
(
(
(
(
(

9) ab = ba.
(10) al =a=1a.
(11) Ifab=0 thena=0 orb=0.

C.3 Properties of the order on the integers
Theorem C.3.1. Let a,b,c be integers.

(a) Ezactly one of a<b,a =0 and b< a holds.

(b) Ifa<b and b<c, then a< c.

(¢) If ¢ >0, then a < b if and only if ac < be.

[§]

)
)
(d) If ¢<0, then a <b if and only if be < ac.
) If a<b, thena+c<b+c.

)

(
(f

1 is the smallest positive integer.

C.4 Properties of the natural numbers

Theorem C.4.1. Let a,be N. Then
(a) a+beN.

(b) abeN.

Theorem C.4.2 (Well-Ordering Axiom). Let S be a non-empty subset of N.

element

157

Then S has a minimal
O
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Appendix D

The Associative, Commutative and
Distributive Laws

D.1 The General Associative Law

Definition D.1.1. Let G be a set.

(a) A binary operation on G is a function + such that G x G is a subset of the domain of + and
+(a,b) € G for all a,beG.

(b) If + is a binary operation on G and a,b € G, then we write a+b for +(a,b).
(c) A binary operation + on G is called associative if a+ (b+c) = (a+0b) +c for all a,b,ceG.

Definition D.1.2. Let G be a set and +: G x G - G, (a,b) > a+b a function. Let n be a positive
integer and ai1,as,...a, € G. Define 21-1:1 a; = a1 and inductively for n>1

n n—-1
Z a; = ( ai) + ap.
i=1 i=1

soYria;= (( ... ((a1 +asg) +a3) +.+ an_g) + an_l) +ay.

Inductively, we say that z is a sum of (ai,...,a,) provided that one of the following holds:
(1) n=1and z=ay.

(2) n > 1 and there exists an integer k with 1 < k < n and z,y € G such that x is a sum of
(a1,...,ax), y is a sum of (k1 Agy2y---,an) and z =T +y.

For example a is the only sum of (a), a + b is the only sum of (a,b), a+ (b+¢) and (a+b) +¢
are the sums of (a,b,¢), and a+ (b+ (c+d)),a+ ((b+c)+d),(a+b)+(c+d),(a+(b+c))+d and
((a+0b)+c)+d are the sums of (a,b,c,d).
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Theorem D.1.3 (General Associative Law). Let + be an associative binary operation on the set G.
Then any sum of (a1,as,...,ay) is equal to Y1 a;.

Proof. The proof is by complete induction. For a positive integer n let P(n) be the statement:
If a1,a2,...a, are elements of G and z is a sum of (a1,as,...,ay,), then z =37, a;.

Suppose now that n is a positive integer with n and P(k) is true all integer 1 < k < n. Let
ai,as,...a, be elements of G and z is a sum of (ai,as,...,a,). We need to show that z = Y1, a;.

Assume that n = 1. By definition a; is the only sum of (a1) and Z}zl ar=aj. Soz=a; =Y

Assume next that n > 1. We will first show that

(*) If w is any sum of (ay,...,ap-1), then u+a, =Y, a;.

Indeed by the induction assumption, P(n—1) is true and so u = Z?:_ll a;. Thus u+a, = Z?:_ll a;+ay
and the definition of }.}* a; implies u + a, = Y- a;. So (*) is true.

By the definition of ‘sum’ there exists 1 < k < n, a sum x of (ay,...,ax) and a sum y of
(@41, .. ,ay) such that z=x +y.

Case 1: k=n-1.

In this case z is a sum of (ai,...,a,-1) and y a sum of (ay). So y = a, and by (**) applied with
x=uwehave z=x+y=x+a, =2 a.

Case 2: 1<k<n-1.

Observe that n—k <n—1<n and so by the induction assumption P(n — k) holds. Since y is a
sum of agy1,...,a,) we conclude that y = Z?;lk Qpi- Since k <n -1, 1 <n -k and so by definition of
3,y = Z;‘;lk_l Qg+ + apn. Since + is associative we compute

n—k n—k-1
z:x+y=$+(2ak+i+an):(ﬂv+ Z Ak4i) + an
i=1 i=1
Put u =z + Z?z_lk_l ak+i- Then z = u + a,. Also z is a sum of (aq,...,a;) and Z?z_lk_l Gjri 1S
a sum of (ag,...,an—1). So by definition of a sum, u is a sum of (aj,...,an-1). Thus by (**),

Z=UH Ay = 2o 4.

We proved that in both cases z = Yi';a;. Thus P(n) holds. By the principal of complete
induction, P(n) holds for all positive integers n. O

D.2 The general commutative law

Definition D.2.1. A binary operation + on a set G is called commutative if a + b = b+ a for all
a,bed.

Theorem D.2.2 (General Commutative Law I). Let + be an associative and commutative binary
operation on a set G. Let aj,as9,...,a, € G and f:[1...n]—>[1...n] a bijection. Then

n

;%=Z%m

i=1
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Proof. Obsere that the theorem clearly holds for n = 1. Suppose inductively its true for n — 1.

Since f is surjective there exists a unique integer k with f(k) = n.

Define g: {1,...n-1} - {1,...,n=1} by g(i) = f(i) if i <k and g(i) = f(i+1) if i > k. We claim
that g is a bijection. For this let 1 </ <n -1 be an integer. Then [ = f(m) for some 1 < m < n. Since
[ #n and f is injective, m # k. If m < k, then g(m) = f(m) =1 and if m > k, then g(m—-1) = f(m) = 1.
Thus g is surjective and by (]ED g is also injective. By assumption the theorem is true for n -1
and so

n—-1 n—1
(*) D @i = ), g
i=1 i=1
Using the general associative law (GAL, Theorem |D.1.3) we have

Xie1 O
(GAL)
(n=f(k))

(‘ +' commutative )

(it apey) + (apay + X1 aray)
(T apgy) + (an + Ty apsy)
(25 ap(iy) + (Ziper apgiy + an)
(S ag@) + (T agi)) + an
(S5 apy) + (Z)5 apany)) +an
(S ag@y) + (05 ag)) + an
(Zi5" agaiy) + an

(Ti5 @) +an

Yiey

So the Theorem holds for n and thus by the Principal of Mathematical induction for all positive
integers. O

("+'associative )

(Substitution j =7 +1)

(definition of g)
(GAL)
(%)
(definition of }7)

Theorem D.2.3. Let + be an associative and commutative binary operation on a set G. I a non-
empty finite set and foriel let by e G. Let g,h:{1,...,n} - I be bijections, then

;bgu) = ;bhm

Proof. For 1 <i<n, define a; = by(;). Let f = g Yo h. Then f is a bijection. Moreover, go f = h and
ar(iy =bg(s(i)) = bn(ay)- Thus

n n n n
;bhu):;am) < ;GF;%(@
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Definition D.2.4. Let + be an associative and commutative binary operation on a set G. I a finite
set and fori e I let b; € G. Then Yy a; = ¥ity byey, where n = |I| and f = {1,...,n} is bijection.
(Observe here that by this does not depend on the choice of f.)

Theorem D.2.5 (General Commutative Law II). Let + be an associative and commutative binary
operation on a set G. I a finite set, (I;,|j € J) a partition of I and foriel let a;e G. Then

So-T( 2l

iel jeJ \iely
Proof. The proof is by induction on |J|. If |J| = 1, the result is clearly true. Suppose next that |J| = 2
and say J = {ji,j2}. Let f;:{1,...,n;} = I;, be a bijection and define f: {1...,n1 +ngo} - I by
fG)=fi(i)if 1<i<ng and f(i) = fo(i—nq) if ng +1 <i <nq+ng. Then clearly f is a surjective
and so by [G.1.7(0)), f is injective. We compute

Yierai = Y ag)
GAL
= (S apw) (T2 ap)

(T apm) + (Z2 anam)
(Zidjl ai) + (Zi61j2 ai)
= et (zidj a;)

Thus the theorem holds if |J| = 2. Suppose now that the theorem is true whenever |J| = k. We
need to show it is also true if |J| =k +1. Let je J and put Y =1~ J;. Then (I |j+ ke J) is a
partition of Y and (I;,Y") is partition of I. By the induction assumption, ¥;cy @i = ¥ jikes (Zidk ai)
and so by the |J| = 2-case

Yier Ui = (Ziejj a;) + (Ziey i)
(ZiEIj a;) + (Zjenes (Tier, ai))
= Yjes (Zier, ai)
The theorem now follows from the Principal of Mathematical Induction. O

D.3 The General Distributive Law

Definition D.3.1. Let (+,-) be a pair of binary operation on the set G. We say that
(a) (+,-) is left-distributive if a(b+ c) = (ab) + (ac) for all a,b,c e G.
(b) (+,-) is right-distributive if (b+ c)a = (ba) + (ca) for all a,b,c € G.

(¢) (+,-) is distributive if its is right- and left-distributive.
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Theorem D.3.2 (General Distributive Law). Let (+,-) be a pair of binary operations on the set
G.

(a) Suppose (+,-) is left-distributive and let a,by,...by € G. Then
a- (Y, b;) =) ab;
j=1 j=1
(b) Suppose (+,-) is right-distributive and let ay,...an,be G. Then

(ial)bZ ialb

i=1

(¢) Suppose (+,-) is distributive and let ay,...an,b1,...by € G. Then

n

( la»-(f:lbj):i(iaibj)

i= i=1 \j=1
Proof. @ Clearly @ is true for m = 1. Suppose now @ is true for k and let a, b1, ...bg 1 € G. Then

a- (S b)

a- (T bi) + brsn)
a-(XF b)) +a b
(Zle abi) + abpi1
(definition of ) = YMlab,

(definition of }7)

(left-distributive)

(induction assumption)

Thus holds for k£ + 1 and so by induction for all positive integers n.
The proof of (]E[) is virtually the same as the proof of @ and we leave the details to the reader.

(&) (i“) _ (il bi) ® Z(a ibj) (@ Z (iaz-w)

i=1 j=1
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Appendix E

Verifying Ring Axioms

Theorem E.0.3. Let (R,+,-) be ring and (S,®,0) a set with binary operations & and ®. Suppose
there exists an surjective homomorphism ® : R — S ( that is an surjective function ® : R — S with
P(a+b)=P(a)® P(b) and (ab) = P(a) ® ®(b) for all a,be R. Then

(a) (S,,0) is a ring and ® is ring homomorphism.

(b) If R is commutative, so is S.
Proof. @ Clearly if S is a ring, then ® is a ring homomorphism. So we only need to verify the eight

ring axioms. For this let a,b,c € S. Since ® is surjective ther exist x,y, z € R with ®(z) = a,®(y) =b
and ®(z) =c.

[AXx 1] By assumption @ is binary operation. So[Ax 1] holds for S.
[Ax 2]

ad® (bec)
= 2((z+y)+2))

() P(y+2)
(@(z) ® (y)) ® O(2)

S(zx+(y+2))
(adb)®C

O(z) @ (2(y) ® 2(2))
D(x+y) @ P(2)

Ax 3 aeb=2(z)eP(y)=P(z+y)=P(y+2)=P(y)dP(x)=bda
[Ax 4] Put 0g = ®(0g). Then

a®0g=P(x)dP(0r)=P(z+0gr)=P(z)=a

Os+a=®(0g) @ P(x) =20 +x)=D(z) =a.
[AX 5] Put d=®(-z). Then

add=o(x)d P(-x)=P(z+(-x)) =P(0r) =0g
[AX 6] By assumption © is binary operation . So[Ax 6] holds for S.
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Ax 7|
a0 (boc) = 2(z)o(2(y)o2(z)) = ®(z) © 2(yz) = ®(z(y2))
= B(ay)2) = Bay)edz) = (B(x)ed(y))ed(x) = (aob)oc
[Ax 8
a®(bec) = P(x)o(P(y)od(z)) = ()0 P(y+2) = P(x(y+2))
= P(zy+zz) = O(zy) + P(x2) = (P(x)o®(y))+(P(z)0o®(2)) = (a0b)d(adc)

Similarly (a®b)©c=(a@c)® (boc).
@ Suppose R is commutative then
2.1.2) a0b=d(z)0P(y)=d(xy) =P(yx) =d(y) ©oP(z)=b0a O



Appendix F

Constructing rings from given rings

F.1 Direct products of rings

Definition F.1.1. Let (R;);s be a family of rings (that is I is a set and for each i € I, R; is a
ring).

(a) X ey Ri is the set of all functions r: 1 - Ujes Ri,i — r; such that r; € R; for all i € I.

(b) X ey Ri is called the direct product of (R;)er-

(

c) We denote re X .; R; by (vi)ier, (1:)i or (73).
(d) Forr=(r;) and s =(s;) in R definer +s=(r; +s;) and rs = (r;s;).

Theorem F.1.2. Let (R;)ier be a family of rings.
(a) R:= X,y Ri is a ring.

(b) Or = (OR, )ier-

(c) =(ri) = (=r4).

(d) If each R; is a ring with identity, then also X, R; is a ring with identity and 1r = (1R,).
(e) If each R; is commutative, then X ;. R; is commutative.

Proof. Left as an exercise. O

F.2 Matrix rings

Definition F.2.1. Let R be a ring and m,n positive integers.

(a) An m x n-matrix with coefficients in R is a function

A:A{1,...om}x{1,....,n} = R, (i,)) ~ ai;.
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(b) We denote an m x n-matriz A by [aij]1<i<m, [aijlij, [aij] or

1<j<n
ail ai19 e A1n
a1 a22 ... a2n
aAml Am2 ... Qmn

(c) Let A = [ai;] and B = [bj;] be m x n matrices with coefficients in R. Then A+ B s the
m x n-matric A+ B = [a;; + b;j].

(d) Let A =[as]ij be an mxn-matriz and B = [bji] ;i an nxp matriz with coefficients in R. Then
AB is the m x p matriz AB = [¥]_y aijbji ]k

(€) Mumn(R) denotes the set of all m x n matrices with coefficients in R. My, (R) = My, (R).
It might be useful to write out the above definitions of A+ B and AB in longhand notation:

all a2 e QA1p b11 blg e bln
asy ano e aon b21 b22 e bgn
+
Gm1l Am2 ... Gmn bml bm2 e bmn
ail + b11 aig + b12 e ainp + bln
agy + le a9 + b22 e agn + bgn
Am1 +bma ama+bma ... Qmp + bn
and ) ) ) )
all a2 ... Qln bll b12 e blp
a1 ago ce. Qop 521 1)22 e bgp
Aml Am2 ... AOmn bn1 bng . bmp
a11b11 + a12b21 +...+ alnbn1 aublg + a12b22 + ...+ alnbnz - a11b1p + a12b2p + ...+ alnbnp
a21b11 + a22621 +...+ aznbnl a21612 + agzbgz +...+ agnbng . aglblp + aggbgp + ...+ agnbnp

amlbu + amzbzl +...+ amnbnl am1612 + amzbgz +...+ amnbnz . amlblp + amgbgp +...+ amnbnp
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Theorem F.2.2. Let n be an integer and R an ring. Then
(a) (M, (R),+,) is a ring.
(b) O, (r)y = (OR)ij-
(c) —[ai;] = [-ai;] for any [aij] € Mn(R).
(d) If R has an identity, then M, (R) has an identity and In, (R) = (8i5), where

Irp  ifi=j
0ij = L
Orp ifi#]

Proof. Put J={1,...,n} x {1 .,m} and observe that (M, (R),+) = (X c; R, +). Sonnphes
that [Ax THAX 5] (@ and (d hold

Clearly [AX 6l holds. To verify [2 let A = [ai;],B = [bjr] and C = [cg] be in M, (R). Put
D = AB and E = BC. Then

M=

(AB)C =DC = deckl = (i

Lk=1 B k=1 \j=1

dil

and

nM:

A(BC) = AE =

™
&
D
I
S M:

b w)];[ i

44l L

Thus A(BC) = (AB)C.

(A+B)C = [aij + bijlij - [cji ik = [Z (aij + bij)cjk
=1 ik

= AC + BC.

n n
=2 aijeie | +| 2 bijci
j=1 g=1 ik

So (A+ B)C = AC + BC' and similarly A(B+C) = AB + AC. Thus M,,(R) is a ring.
Suppose now that R has an identity 1. Put I = [d;;];;, where

o= for

ik

O0p ifi=y
If i # 7, then 5ijajk =0grajr =0R and if 7 = j then 5Z-jajk = 1pa;, = a;;. Thus

Z 6Z]ajk] azk]zk =A
ik

and similarly Al = A. Thus A is an identity in R and so @ holds. O
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F.3 Polynomial Rings

In this section we show that if R is ring with identity then existence of a polynomial ring with
coefficients in R.

Theorem F.3.1. Let R be a ring. Let P be the set of all functions f: N - R such that there exists
m e N* with

(1) f(i)=0g for alli>m

We define an addition and multiplication on P by
(2) (f+9)(@) = f(i) +g(i) and (fg)(i) = 21: f(@)g(k 1)
k=0

(a) P is a ring.

(b) Forre R define r° € P by

o | ifi=0
(3) T(Z)’_{OR ifi+0

Then the map R — P,r +~ r° is a injective homomorphism.

(¢) Suppose R has an identity and define x € P by

o |1 s
RV op ifiet

Then (after identifying r € R with r° in P), P is a polynomial ring with coefficients in R and
indeterminate x.

Proof. Let f,g e P. Let deg f be the minimal m € N* for which (1) holds. Observe that (2) defines
functions f + ¢ and fg from N to R. So to show that f + g and fg are in P we need to verify that
(1) holds for f+ g and fg as well. Let m = maxdeg f,degg and n = deg f + degg. Then for i > m,
f(i)=0g and g(i) =0g and so also (f +¢)(i) =0g. Also if i >n and 0 < k <4, then either k < deg f
or i —k >degg. In either case f(k)g(i-k) =0g and so (fg)(i) = 0g. So we indeed have f + g € P
and fg € P. Thus axiom [Ax 1] and [Ax 6l hold. We now verify the remaining axioms one by one.
Observe that f and g in P are equal if and only if f(i) = g(i) for all i e N. Let f,g,h e P and i € N.
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(F+9)+n)@) = (F+9)@)+h() = (f@)+g9(@)+nr() = f@)+(g()+n(i))
= J@+ @) +h@) = f@O+@+h)E) = (F+g+n))(0)

Ax3  (f+9)(@) = f(@) +9() = g(i) + f(2) = (g+ [)(9)
Define Op € P by 0p(i) =0p for all i € N. Then

(f +0p)(i) = f(i) + 0p(i) = f(i) + Or = f(3)
(0p + f)(@) = 0p(i) + f(i) = 0r + f (i) = f (i)
[Ax Bl Define —f € P by (=f)(i) = —f(i) for all i € N. Then
(f + (=) = (@) + (=f)(@) = f(@) + (=f(i)) = 0r = 0p(4)

[Ax 7] Any triple of non-negative integers (k,l,p) with k + [ + p =4 be uniquely written as (k,j —
k,i—j) where 0 <j<iand 0<k<j—k) and uniquely as (k,l,i—k—[) where 0 <i<kand 0<I<i—k.
This is used in the fourth equality sign in the following computation:

(F)) () = i(fgxy) hi - ) - io((zfuc)g(g k))h(z’—j))
3=0 3=0 \ \k=0
J 1 -k

_ z(zﬂk)g(j—k»h(i—j)) _ Z(Zf(k)g(l)h(i—k—l)))
=0 \k=0 k=0 \1=0
7 -k 7

- Z(f(k; (Zg(l)h(i—k—l))) = Z ) - (gh)(i-k)
k=0 =0 k=0
_ (F(gh)) (i)
[Ax §
(f-(g+m)(i) = iZOf(j)-(g+h)(i—j) - iZOf(j)-(g(i—j)%(i—j))

i:)f(j)g(i i)+ FGRG - )
(Fo)(@) + (FR)(0)

i%f(j)g(i )+ jZof(j)h(i )
(Fg+ F1)(0)

((f +9)- 1)) i(f(j) +g()) - hi - )

S+ 9)(G) - h(i— )
7=0

zo FGIRGi- §) + g()R(i - )
(Fh)(0) + (gh) (7)

if(y (i-7) + 3 9)h i - )
(fh+gh)(i)
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Since [Ax 1] through [Ax 8 hold we conclude that P is a ring and (a)) is proved. Let r,s € R and
k,l € N. We compute

@) (r+5)°00) - {OR LS @) = ()

and

(r°s)(i) = > r°(k)s(i - k)
k=0

Note that r°(k) = 0p unless k£ = 0 and s°(i—k) = Og unless and i —k = 0. Hence 7°(k)s(i—k) =0g
unless k=0 and i—k =0 (and so also i = 0). Thus (r°s)(i) =0if i # 0 and (r°s)(0) =r°(0)s°(0) = rs.
This
(5) r°s = (rs)°

Define p: R - P,r— r°. If r;s € R with r° = s°, then 7 = 7°(1) = s°(1) = s and so p is injective.
By (4) and (5), p is a homomorphism and so (b)) is proved.

Assume from now on that R has an identity.
For k € N let 6 € P be defined by

1p ifi=k
§] 0r.(7) =
(6) #(0) {OR Witk

Let f e P. Then

% k
(7) (r°f)(@) = ];)rc’(k)f(i—k) =7 f(i)+ ;ORf(i—k‘) =r- f(i)

and similarly

(8) (fro)(@) = f(@)-r

In particular, 1% is an identity in P. Since dp = 13 we conclude

9) o =1p=1p

For f = d; we conclude that
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r ifi=k

(10) owmm=wwww=%Ri“¢k

Let m € N and ayg,...a,, € R. Then (10) implies

() (iawyw=$ii“ﬁm
k=0

Op ifi>m

We conclude that if f € P and ag,aq,ao,...a, € R then

(12) f=>apd, <= m>degfanday=f(k)forall0<k<m
k=0

We compute

(13) wmxw=§%uwm—ﬂ

Since 05 (7)0;(i—j) is O unless j = k and [ =i — j, that is unless j = k and ¢ = [ + k, in which case
it is 1g, we conclude

1p fi=k+I
14 0roy) (1) = = 0 )
(14) (0101) (4) {OR ikl k()
and so
(15) 8101 = Ot
Note that z = §;. We conclude that
(16) z* = 5,
By (10)
(17) r°x=xr® forallreR

We will now verify the four conditions (i)-(iv) in the definition of a polynomial. By (b)) we we
can identify r with 7° in R. Then R becomes a subring of P. By (9), 1% = 1p. So (i) holds. By (17),
(ii) holds. (iii) and (iv) follow from (12) and (16). O
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Theorem F.3.2. Let R and P be rings and x € P. Suppose that Conditions (i)-(id}) in hold
under the convention that fox° := fo for all fo € R. Then R and P have identities and 1 = 1p.

Proof. Since x € P, shows that = = Y7 e;2" for some m € N and eg, e1,...e, € R. Let r € R.
Then

n

n . .
re=ry ez’ =Y (re;)z.
i=0

=0

So shows that req = r. Since rz = xr by a similar argument gives ejr = e and

S0 e is an identity in R and e; = 1g. Now let f € P. Then f = 7%, f;x* for some n € N and
fo,---, fn € R. Thus

Jolp= (ifixi) g - ﬁg(fim)x" - Eg]fa: _y

Similarly, 1g- f = f and so 1g is an identity in P. O



Appendix G

Cardinalities

G.1 Cardinalities of Finite Sets
Notation G.1.1. For a,beZ set [a...b]:={ceZ|a<c<b}.

Theorem G.1.2. Let A¢[1...n]. Then there exists a bijection a: [1...n] - [1...n] with a(A) c
[1...n-1].

Proof. Since A # [1...n] there exists m € [1...n] with m ¢ A. Define a : [1...n] - [1...n]
by a(n) = m, a(m) = n and a(i) =i for all i € [1...n] with n # i #+ m. It is easy to verify
that « is bijection. Since a(m) = n and m ¢ A, a(a) # n for all a € A. So n ¢ a(A) and so
a(A)c[l...n]-1. O

Theorem G.1.3. Let neN and let :[1...n] > [1...n] be a function. If 8 is injective, then [ is
surjective.

Proof. The proof is by induction on n. If n = 1, then 5(1) = 1 and so (8 is surjective. Let A =
B([1...n-1]). Since B(n) ¢ A, A+ [1...n]. Thus by [G.1.2] there exists a bijection «: [1...n] with
a(A)c[l...n-1]. Thus afB([1...n-1]) c[1...n—-1]. By induction af([1...n-1]=[1...n-1].
Since af is injective we conclude that a(n) =n. Thus af is surjective and a3 is a bijection. Since
« is also a bijection this implies that 3 is a bijection. O

Definition G.1.4. A set A is finite if there exists n € N and a bijection av: A —[1...n].

Theorem G.1.5. Let A be a finite set. Then there exists a unique n € N for which there exists a
bijection a: A —[1...n].

Proof. By definition of a finite set there exist n € N and a bijection av: A - [1...n]. Suppose
that also m € N and f: A - [1...m] is a bijection. We need to show that n = m and may
assume that n <m. Let v :[1...n] - [1...m],i - i and § :== yoa o f7L. Then v is a injective
function from [1...m] to [1...m] and so by J is surjective. Thus also v is surjective. Since
v([1...n])=[1...n] we conclude that [1...n]=[1...m] and so also n = m. O

175
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Definition G.1.6. Let A be a finite set. Then the unique n € N for which there exists a bijection
a:A—[1...n] is called the cardinality or size of A and is denoted by |Al.

Theorem G.1.7. Let A and B be finite sets.
(a) If a: A — B is injective then |A| < |B|, with equality if and only if « is surjective.
(b) If a: A - B is surjective then |A| > |B|, with equality if and only if « is injective.
(c) If Ac B then |A| <|B|, with equality if and only if |A| = |B|.

Proof. () If « is surjective then « is a bijection and so [A| = |B|. So it suffices to show that if
|A| > |B|, then « is surjective. Put n=|A| and m=|B|and let 5: A—[1...n] and v: B - [1...m]
be bijection. Assume n > m and let § : [1...m] - [1...n] be the inclusion map. Then dyaB~" is
a injective function form [1...n] to [1...n] and so by its surjective. Hence § is surjective,
n=m and § is bijection. Since also ~ is bijection, this forces a8~ to be surjective and so also « is
surjective.

(]E[) Since « is surjective there exists §: B - A with a8 =idg. Then g is injective and so by @),
|B| < |A| and B is a bijection if and only if [A| = |B|. Since « is a bijection if and only if 3 is, (b)) is
proved.

Follows from @ applied to the inclusion map A — B. ]

Theorem G.1.8. Let A and be B be finite sets. Then
(a) If AnB =g, then |Au B| = |A|+|B].
(b) [Ax B[ =[A[-|B].
Proof. (@) Put n = |A|, m =|B|and let 3: A— [1...n] and v : B - [1...m] be bijections. Define
v:AuB—[l...n+m] by
a(ce) ifce A
(e) = .
B(c)+n ifceB

Then it is readily verified that « is a bijection and so |Au B| =n+m = |A| +|B].

() The proof is by induction on |B|. If |B| = 0, then B = @ and so also Ax B = @. If | B| = 1, then
B = {b} for some b € B and so the map A - AxB,a — (a,b) is a bijection. Thus |AxB| =|A| = |A|-|B].
Suppose now that (]E[) holds for any set B of size k. Let C' be a set of size k+ 1. Pick ce C and put
B =C~{c}. Then C = Bu{c} and so () implies |B| = k. So by induction |[A x B| = |A|- k. Also
|A x {c} = |A] and so by (&)

[AxC|=|AxB|+|Ax{c} =|A|-k+|A|=|A]- (k+1) = |A||C]
(]E[) now follows from the principal of mathematical induction m O
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