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Organization

Anderson localization in more than one particle systems
What is Anderson Localization?
One particle localization - illustrate by fractional moment
multiparticle/many body localization

Introduction to Holstein model - distinguished particle with many
Bosons

Intermediate multiparticle to many body model
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Scaling Binomial model

Assume initial security price S0 with volatility σ.
Assume risk-free bond with yearly effective interest rate re

Divide year into N steps
The step-wise interest becomes:

rδ = (1 + re)1/N − 1 ≈ re/N

The value of a bond is: A k
N

= (1 + rδ)
k
N

The stepwise fluctuations are

σ∆ = σ/
√

N

Ie ∆2 ≈ δ
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The upwards and downwards fluctuations are,

m± = rδ ± σ∆

The values of the stock price are

S0,S1/N ,S2/N , ...

so that

P(S k+1
N

= (1 + m+)S k
N

) = P(S k+1
N

= (1 + m−)S k
N

) =
1
2
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Cox - Rubinstein - Ross

Consider a European call with payoff H = (ST − X )+ at time of
expiry T , in discrete steps the expiry time is step n = bNT c
Lower integration bound ST > X :

k0 =

⌊
ln X

(1+m−)nS0

ln 1+m+

1+m−

⌋

Value:

V0 =
n∑

k=k0

1
2n

(
n
k

)[
S0

[
1 + m+

1 + ∆r

]k [1 + m−
1 + ∆r

]n−k

− X
(1 + ∆r )n

]
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Gaussian approximation of the CRR formula

Shifted probability: q± = 1
2

1+m±
1+rδ = 1

2
1+rδ±σ∆

1+rδ

Value:

V0 = S0N+

(
k0 − q+n

(q+q−n)1/2

)
− X

(1 + re)T N+

(
k0 − n 1

2

(1
4n)1/2

)

Where N+(w) = P(Z ≥ w) for a standard normal random variable
Z .
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Approximating the approximation
Terms: as N →∞

k0 ≈
ln X

S0
− n ln(1 + m−)

ln 1+m+

1+m−

≈
ln X

S0
− NT (rδ − σ∆− 1

2σ
2∆2)

2σ∆

q+n =

(
1 + rδ + σ∆

1 + rδ

)
NT
2

(q−q+n)1/2 =

(
(1 + rδ)2 − σ2∆2)1/2

1 + rδ
N1/2T 1/2

2

k0 − q+n
(q−q+n)1/2 →

ln X
S0
− T (r + 1

2σ
2)

σT 1/2 =: D+
0

2k0 − n
n1/2 →

ln X
S0
− T (r − 1

2σ
2)

σT 1/2 =: D−0
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Stochastic model

Stock price model:

dSt = rStdt + σStdWt

solution:
St = S0e(r− 1

2σ
2)t+σWt

European option, payoff of HT = g(ST ) a function of the security
value at expiry.
Value of option at time t if present value of security is x ,

V (t , x) = e−r(T−t)E(g(ST )|St = x)
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Black Scholes PDE for European Option

V satisfies the PDE:

rV = V̇ + rxV ′ +
1
2
σ2x2V ′′

in x > 0 and 0 < t < T with boundary condition,

V (T , x) = g(x) V (t ,0) = g(0)

Rajinder Mavi (MSU) Computational pricing of options April 21, 2017 9 / 27



Black Scholes value of European Call

Value of Euro call at expiry: HT = (ST − X )+.
Solution to the PDE:

V (t ,St ) = StN+(−D+
t ,St

)− Xe−r(T−t)N+(−D−t ,St
)

where

D±t ,S =
ln S

X + (r ± 1
2σ

2)(T − t)
σ
√

T − t

Comparison to CRR solution, as N →∞:

V0 = S0N+

(
−D+

0

)
− Xe−rTN+

(
−D−0

)
That is, the values converge as the step size goes to 0.
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Example - European call

Security: S0 = 80; σ = .03. Bond rate r = 1.5%

Option T = 9 months, strike price X = 80.
Time steps per year: N = 100.
Value at time of issue (t = 0):

V0 = $1.3497
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Example - European call - Value at 3 months
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Computation - layout of program

Input parameters
Stock initial value S0 and volatility = σ
Risk free interest rate = r
Option properties: Strike = X , and maturity = T
Step size/ total number of steps = n

Model parameters:
T/n amount of time per step
(1 + rT/N) Discount factor over 1 step
stock price fluctuation up / down per step
u = (1 + rT/N + σ

√
T/N)

d = (1 + rT/N − σ
√

T/N)
Probability fluctuation up = Probability fluctuation down = 1/2.
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Introduce n + 1× n + 1 matrix S for the values of the Stock.
S[0,0] = S0
for i = 1 to n + 1: S[i ,0] = S[i − 1,0](1 + u);
for j = 1 to i : S[i , j] = S[i − 1, j − 1](1 + d)

∴ S[i , j] ≡ security price at timestep i with i − j steps up and j
steps down.
Note according to the model, for t = iT/n

P(St = S[i , j]) =

(
i
j

)
1
2i
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European Valuation

Introduce n + 1× n + 1 matrix EC for the values of the (European
Call) Option.
Find the values of the option at expiry:
For i = 0 to n: EC[n, i] = g(S[n, i]) = (S[n, i]− X )+

Evolve the values from expiry back to time 0:
For i = n − 1 to 0:
For j = 0 to i :
EC[i , j] = (1 + rT/n)−1 (1

2EC[i + 1, j] + 1
2EC[i + 1, j + 1]

)
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American Valuation

Extra step in the American (Put) Valuation, testing for early exercise.
Introduce n + 1× n + 1 matrix Am and H for the values of the
Option and intrisic value.
Find Intrisic values of option
For i = 0 to n:
For j = 0 to i :
H[i , j] = (X − S[i , j])+

Set values of Am at expiry equal to intrinsic value.
Evolve the values from expiry back to time 0:
For i = n − 1 to 0:
For j = 0 to i :
G = (1 + rT/n)−1 (1

2Am[i + 1, j] + 1
2Am[i + 1, j + 1]

)
Am[i , j] = max(G,H[i , j])
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Greeks

The Greeks quantify the sensitivity of Options to variables in the model
- ie, these are partial derivatives.

Delta: ∆ ≡ ∂V
∂S . Sensitivity with respect to security price.

Gamma: Γ = ∂2V
∂S2 . Second order sensitivity with respect to

security price.
Theta: Θ ≡ ∂V

∂t . Sensitivity with respect to time.

Vega: ν ≡ ∂V
∂σ . Sensitivity with respect to security’s implied

volatility.
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Delta

We can compute the Greeks directly from the results of the program:
Delta: ∆ ≡ ∂V

∂S .
Introduce n + 1× n + 1 matrix Delta

∆[i , j] =
EC[i + 1, j]− EC[i + 1, j + 1]

S[i + 1, j]− S[i + 1, j + 1]

According to Black Scholes model:

∆t ,S = N+(−D+
t ,S) = N (D+

t ,S)

This is the proportion of the replicating portfolio invested in the
stock.
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Example - Delta
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Delta Hedging

Fix time step η for each hedging event – we hedge times
0, η,2η, ..,nη = T
Calculate current value of portfolio V0 and define initial replicating
portfolio

V0 = X0S0 + Y0A0

setting X0 = ∆[0,S0]; A0 = 1;
Y0 = V0 − X0S0

At time step (k + 1)η let X(k+1)η = ∆[(k + 1)η,S(k+1)η] solve for
Y(k+1)η:

Y(k+1)η = (Xkη − X(k+1)η)S(k+1)η + Ykη

As the stock price varies continuously some errors occur from the
discritization. Find

VT − X(n−1)ηST − Y(n−1)ηAT
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Gamma

Gamma: Γ ≡ ∂2V
∂S2

Introduce n + 1× n + 1 matrix Gamma (restrict to index
[2 : n − 1,2 : n − 1])

Γ[i , j] =
EC[i , j + 1]− 2 ∗ EC[i , j] + EC[i , j − 1]

(S[i , j]− S[i , j − 1])2

Formula due to Black-Scholes:

Γt ,S =
φ(D+

t ,S)

Sσ
√

T − t
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Example - Gamma
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Theta

Theta: Θ ≡ ∂V
∂t

Introduce n + 1× n + 1 matrix Gamma (restrict to index
[0 : n − 2, :])

Θ[i , j] =
EC[i + 2, j + 1]− EC[i , j]

2δ

δ ≡ time step
Formula due to Black-Scholes:

Θt ,S = −
Sσφ(D+

t ,S)

2
√

T − t
− rXe−r(T−t)N (D−t ,S)
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Asian Option

Asian options allow exchanges of security based on average price.
Let

AT =
1
T

∫ T

0
Stdt

The Asian Call with fixed strike price has payoff at expiry

HT = (AT − X )+

The Asian Call with floating strike has payoff at expiry

HT = (ST − AT )+

A mathematically simpler version of this option replaces the
arithmetic average with a geometric average, that is replace AT
with

GT = e
1
T

∫ T
0 ln St dt
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Monte Carlo Valuation of Asian option

Note the Asian option is path dependent. Thus, for an n step discrete
model the total number of terms/paths to average over is 2n.

This is too large to effectively implement.

Soln: Conduct trials indexed by j . For each j , simulate stock value over
n steps:

A(j)
T =

1
n

n∑
i=1

S(j)
i .

Then approximate the value of the call by the average of results over
M trials:

HT ≈
M∑

j=1

(A(j)
T − ST )+
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Example - Fixed strike Asian Call

HT = (AT − X )+

Security: S0 = 80; σ = .03. Bond rate r = 1.5%

Option T = 9 months, strike price X = 80.
Time steps per year: N = 100. Total number of trials: M = 1000
Value at time of issue (t = 0):

V0 = $0.7225

Value for geometric version: $0.7188.
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Example - Fixed strike Asian Call - Distribution of values

P(HT < .01) = 362
1000

Value frequencies above 1¢
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