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Organization

@ Anderson localization in more than one particle systems

e What is Anderson Localization?
@ One particle localization - illustrate by fractional moment
e multiparticle/many body localization

@ Introduction to Holstein model - distinguished particle with many
Bosons

o Intermediate multiparticle to many body model
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Scaling Binomial model

@ Assume initial security price Sy with volatility .

@ Assume risk-free bond with yearly effective interest rate r,
@ Divide year into N steps

@ The step-wise interest becomes:

r6=1+4r)N-1xr/N

The value of a bond is: A% =1+ ré)%

@ The stepwise fluctuations are
oA =0c/VN

0 le A2~

Rajinder Mavi (MSU) Computational pricing of options April 21, 2017

3/27



@ The upwards and downwards fluctuations are,
my =ré+cA
@ The values of the stock price are
So; S1/n5 So/Ns -
so that

P(Sis = (14m,)Sy) = B(Suzs = (1 4+ m )Sy) = 1

k+1
N
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Cox - Rubinstein - Ross

@ Consider a European call with payoff H = (St — X)* at time of
expiry T, in discrete steps the expiry time is step n = |NT|
@ Lower integration bound St > X:

In T s
kn= | "=/
0 In 1+me

1+m_

@ Value:

B 1 /n 1+me o1+ m_1"* X
VO_Z:§<’(> [SO[1+Ar] [1+Ar] G
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Gaussian approximation of the CRR formula

@ Shifted probability: g. = 3 57 = § 1arodea
@ Value:

B k—qin\ X ko — n%
Vo = Sol ((q+q-n)1/2> (Rl ((3-1'7)1/2
@ Where N (w) = P(Z > w) for a standard normal random variable
Z.
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Approximating the approximation
Terms: as N —

I & —nin(1+m.) I & — NT(r6 — oA — 302A%)

0~ In% 20
"o 1+ré+0A\ NT
TN=\"T5mr >
(@ qunye _ (15792 —002)* N1/2T 12
-arh) = 1416 2
ko_q+n |nSLO—T(I'+%O'2) _. pt
(q-q4n)'/2 gT1/2 0

2ky —n N Ins)%— T(r— %o?)
ni/2 oT1/2

=: DO_
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Stochastic model

@ Stock price model:
adS; = rSidt + o S;dW;

solution:
N

@ European option, payoff of Hr = g(Sr) a function of the security
value at expiry.

@ Value of option at time t if present value of security is x,

V(t,x) = e""VE(g(S7)|S; = X)
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Black Scholes PDE for European Option

@ V satisfies the PDE:

rV=V+nxV + %azx2 V"
in x > 0and 0 < t < T with boundary condition,

V(T,x) = 9(x) V(t,0) = 9(0)
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Black Scholes value of European Call

@ Value of Euro call at expiry: Hr = (St — X)™.
@ Solution to the PDE:

V(t,St) = SIN‘*‘(_D;,FS,) _ Xefr(T—t)N_F(_D;St)

where
In§ +(r+ 302)(T —t)
ovT—1t

@ Comparison to CRR solution, as N — oc:

+ _
Dt,S -

Vo = SoN; (—=DF) — Xe "Ny (—Dy)

@ That is, the values converge as the step size goes to 0.
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Example - European call

@ Security: Sop = 80; 0 = .083. Bond rate r = 1.5%
@ Option T = 9 months, strike price X = 80.

@ Time steps per year: N = 100.

@ Value at time of issue (t = 0):

Vo = $1.3497
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Example - European call - Value at 3 months
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Computation - layout of program

@ Input parameters
e Stock initial value Sy and volatility = o
o Risk free interest rate = r
o Option properties: Strike = X, and maturity = T
o Step size/ total number of steps = n
@ Model parameters:
@ T/namount of time per step
e (14 rT/N) Discount factor over 1 step
@ stock price fluctuation up / down per step
u=(14+rT/N+o+/T/N)
d=(1+rT/N—-0o\/T/N)

e Probability fluctuation up = Probability fluctuation down = 1/2.
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@ Introduce n+ 1 x n+ 1 matrix S for the values of the Stock.
@ 5[0,0] =Sy
fori=1ton+1: S[i,0] = S[i —1,0](1 + v);
forj=1toi: S[i,j]=S[i—1,j—1](1+d)
.. S[i, j] = security price at timestep i with / — j steps up and j
steps down.
@ Note according to the model, for t = iT/n

o= s = ()
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European Valuation

@ Introduce n+ 1 x n+ 1 matrix EC for the values of the (European
Call) Option.
@ Find the values of the option at expiry:
Fori=0to n: EC[n,i] = g(S[n,i]) = (S[n, ] — X)*
@ Evolve the values from expiry back to time 0:
Fori=n—1to0:
Forj=0to i
EC[i,jl = (1 +rT/n)~" (LEC[i +1,] + FEC[i +1,j + 1])
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American Valuation

Extra step in the American (Put) Valuation, testing for early exercise.

@ Introduce n+1 x n+ 1 matrix Am and H for the values of the
Option and intrisic value.

@ Find Intrisic values of option
Fori=0to n:
Forj=0to
HIi, jl = (X = S[i. )™
@ Set values of Am at expiry equal to intrinsic value.

@ Evolve the values from expiry back to time 0:
Fori=n—-11t00:
Forj=0to /:
G=(1+rT/n)~" (3Am[i + 1,1 + 3Am[i +1,j + 1])
Amli,j] = max(G, H[i,])
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Greeks

The Greeks quantify the sensitivity of Options to variables in the model

- ie, these are partial derivatives.

@ Delta: A = gg Sensmvny with respect to security price.

@ Gamma: I =
security price.

@ Theta: © = 2¥. Sensitivity with respect to time.

@ Vega: v = %. Sensitivity with respect to security’s implied
volatility.

332 Second order sensitivity with respect to
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Delta

We can compute the Greeks directly from the results of the program:

;1Y
@ Delta: A = 35

@ Introduce n+ 1 x n+ 1 matrix Delta
Ajij = ECl+ 1~ ECli+1,j+1]
A= g A =S+, + 1]

@ According to Black Scholes model:
At,S = N+(_D:s) = N(D?:s)

@ This is the proportion of the replicating portfolio invested in the
stock.
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Example - Delta
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Delta Hedging

@ Fix time step n for each hedging event — we hedge times
0,n7,2n,...nmm=T

@ Calculate current value of portfolio Vy and define initial replicating
portfolio

VO — XOSO + YOAO
setting Xo = A[0, Sp]; Ap = 1;

Yo = Vo — X0So
@ Attime step (k + 1) let Xk11y, = A[(K + 1)n, S(k+1),] solve for
Yik+1)n:

Yikr1yn = Xkn = X 1)n) Stk 1)y + Y

@ As the stock price varies continuously some errors occur from the
discritization. Find

Vr = Xin—1)nST = Y(n-1)0 A1
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Gamma

L 82V
@ Gamma: I = o5

@ Introduce n+ 1 x n+ 1 matrix Gamma (restrict to index
2:n—1,2:n-1))

EC[i,j+ 1] — 2 % ECJ[i,j] + EC[i,j — 1]
(S[i, /1 = Sli,j —1])2

@ Formula due to Black-Scholes:

r[laf] =

#(Dy's)

Mg= =2t
YT SoVT 1t

Rajinder Mavi (MSU) Computational pricing of options April 21, 2017

21/27



Example - Gamma
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Theta

@ Theta: © = &Y
@ Introduce n+ 1 x n+ 1 matrix Gamma (restrict to index

0:n—-2,:])
.. EC[i+2,j+ 1] — ECJi,j]
@[Iﬂj] - 25
0 = time step
@ Formula due to Black-Scholes:
So (D
O1s = —#t’i) — rXe """ON(D;g)
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Asian Option

@ Asian options allow exchanges of security based on average price.

@ The Asian Call with fixed strike price has payoff at expiry
Hr = (Ar - X)*

@ The Asian Call with floating strike has payoff at expiry
Hr = (St —Ar)"

@ A mathematically simpler version of this option replaces the
arithmetic average with a geometric average, that is replace Ar
with ;

GT _ elT Jo InSeat
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Monte Carlo Valuation of Asian option

Note the Asian option is path dependent. Thus, for an n step discrete
model the total number of terms/paths to average over is 2.

This is too large to effectively implement.

Soln: Conduct trials indexed by j. For each j, simulate stock value over
n steps:

. 17 .
JUNEE S
i=1

Then approximate the value of the call by the average of results over

M trials:
M

Hr~ Y (AY - s)*
j=1
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Example - Fixed strike Asian Call

Hr = (A7 — X)*

@ Security: Sy = 80; o = .03. Bondrate r = 1.5%

@ Option T = 9 months, strike price X = 80.

@ Time steps per year: N = 100. Total number of trials: M = 1000
@ Value at time of issue (t = 0):

Vo = $0.7225

@ Value for geometric version: $0.7188.
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Example - Fixed strike Asian Call - Distribution of values

o P(Hr < .01) = %%
@ Value frequencies above 1¢

Frequency of option values worth over 1 cent

Option values
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