Computational pricing of options

Rajinder Mavi

Michigan State University

April 21, 2017

Organization

- Anderson localization in more than one particle systems
- What is Anderson Localization?
- One particle localization - illustrate by fractional moment
- multiparticle/many body localization
- Introduction to Holstein model - distinguished particle with many Bosons
- Intermediate multiparticle to many body model

Scaling Binomial model

- Assume initial security price S_{0} with volatility σ.
- Assume risk-free bond with yearly effective interest rate r_{e}
- Divide year into N steps
- The step-wise interest becomes:

$$
r \delta=\left(1+r_{e}\right)^{1 / N}-1 \approx r_{e} / N
$$

The value of a bond is: $A_{\frac{k}{N}}=(1+r \delta)^{\frac{k}{N}}$

- The stepwise fluctuations are

$$
\sigma \Delta=\sigma / \sqrt{N}
$$

- le $\Delta^{2} \approx \delta$
- The upwards and downwards fluctuations are,

$$
m_{ \pm}=r \delta \pm \sigma \Delta
$$

- The values of the stock price are

$$
S_{0}, S_{1 / N}, S_{2 / N}, \ldots
$$

so that

$$
\mathbb{P}\left(S_{\frac{k+1}{N}}=\left(1+m_{+}\right) S_{\frac{k}{N}}\right)=\mathbb{P}\left(S_{\frac{k+1}{N}}=\left(1+m_{-}\right) S_{\frac{k}{N}}\right)=\frac{1}{2}
$$

Cox - Rubinstein - Ross

- Consider a European call with payoff $H=\left(S_{T}-X\right)^{+}$at time of expiry T, in discrete steps the expiry time is step $n=\lfloor N T\rfloor$
- Lower integration bound $S_{T}>X$:

$$
k_{0}=\left\lfloor\frac{\ln \frac{x}{\left(1+m_{-}\right)^{n} S_{0}}}{\ln \frac{1+m_{+}}{1+m_{-}}}\right\rfloor
$$

- Value:

$$
V_{0}=\sum_{k=k_{0}}^{n} \frac{1}{2^{n}}\binom{n}{k}\left[S_{0}\left[\frac{1+m_{+}}{1+\Delta_{r}}\right]^{k}\left[\frac{1+m_{-}}{1+\Delta_{r}}\right]^{n-k}-\frac{X}{\left(1+\Delta_{r}\right)^{n}}\right]
$$

Gaussian approximation of the CRR formula

- Shifted probability: $q_{ \pm}=\frac{1}{2} \frac{1+m_{ \pm}}{1+r \delta}=\frac{1}{2} \frac{1+r \delta \pm \sigma \Delta}{1+r \delta}$
- Value:

$$
V_{0}=S_{0} \mathcal{N}_{+}\left(\frac{k_{0}-q_{+} n}{\left(q_{+} q_{-} n\right)^{1 / 2}}\right)-\frac{X}{\left(1+r_{e}\right)^{T}} \mathcal{N}_{+}\left(\frac{k_{0}-n \frac{1}{2}}{\left(\frac{1}{4} n\right)^{1 / 2}}\right)
$$

- Where $\mathcal{N}_{+}(w)=\mathbb{P}(Z \geq w)$ for a standard normal random variable Z.

Approximating the approximation

Terms: as $N \rightarrow \infty$

$$
\begin{gathered}
k_{0} \approx \frac{\ln \frac{X}{S_{0}}-n \ln \left(1+m_{-}\right)}{\ln \frac{1+m_{+}}{1+m_{-}}} \approx \frac{\ln \frac{X}{S_{0}}-N T\left(r \delta-\sigma \Delta-\frac{1}{2} \sigma^{2} \Delta^{2}\right)}{2 \sigma \Delta} \\
q_{+} n=\left(\frac{1+r \delta+\sigma \Delta}{1+r \delta}\right) \frac{N T}{2} \\
\left(q_{-} q_{+} n\right)^{1 / 2}=\frac{\left((1+r \delta)^{2}-\sigma^{2} \Delta^{2}\right)^{1 / 2}}{1+r \delta} \frac{N^{1 / 2} T^{1 / 2}}{2}
\end{gathered}
$$

$$
\begin{aligned}
& \frac{k_{0}-q_{+} n}{\left(q_{-} q_{+} n\right)^{1 / 2}} \rightarrow \frac{\ln \frac{X}{S_{0}}-T\left(r+\frac{1}{2} \sigma^{2}\right)}{\sigma T^{1 / 2}}=: D_{0}^{+} \\
& \frac{2 k_{0}-n}{n^{1 / 2}} \rightarrow \frac{\ln \frac{X}{S_{0}}-T\left(r-\frac{1}{2} \sigma^{2}\right)}{\sigma T^{1 / 2}}=: D_{0}^{-}
\end{aligned}
$$

Stochastic model

- Stock price model:

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d W_{t}
$$

solution:

$$
S_{t}=S_{0} e^{\left(r-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}}
$$

- European option, payoff of $H_{T}=g\left(S_{T}\right)$ a function of the security value at expiry.
- Value of option at time t if present value of security is x,

$$
V(t, x)=e^{-r(T-t)} \mathbb{E}\left(g\left(S_{T}\right) \mid S_{t}=x\right)
$$

Black Scholes PDE for European Option

- V satisfies the PDE:

$$
r V=\dot{V}+r x V^{\prime}+\frac{1}{2} \sigma^{2} x^{2} V^{\prime \prime}
$$

in $x>0$ and $0<t<T$ with boundary condition,

$$
V(T, x)=g(x) \quad V(t, 0)=g(0)
$$

Black Scholes value of European Call

- Value of Euro call at expiry: $H_{T}=\left(S_{T}-X\right)^{+}$.
- Solution to the PDE:

$$
V\left(t, S_{t}\right)=S_{t} \mathcal{N}_{+}\left(-D_{t, S_{t}}^{+}\right)-X e^{-r(T-t)} \mathcal{N}_{+}\left(-D_{t, S_{t}}^{-}\right)
$$

where

$$
D_{t, S}^{ \pm}=\frac{\ln \frac{S}{X}+\left(r \pm \frac{1}{2} \sigma^{2}\right)(T-t)}{\sigma \sqrt{T-t}}
$$

- Comparison to CRR solution, as $N \rightarrow \infty$:

$$
V_{0}=S_{0} \mathcal{N}_{+}\left(-D_{0}^{+}\right)-X e^{-r T} \mathcal{N}_{+}\left(-D_{0}^{-}\right)
$$

- That is, the values converge as the step size goes to 0 .

Example - European call

- Security: $S_{0}=80 ; \sigma=.03$. Bond rate $r=1.5 \%$
- Option $T=9$ months, strike price $X=80$.
- Time steps per year: $N=100$.
- Value at time of issue $(\mathrm{t}=0)$:

$$
V_{0}=\$ 1.3497
$$

Example - European call - Value at 3 months

Computation - layout of program

- Input parameters
- Stock initial value S_{0} and volatility $=\sigma$
- Risk free interest rate $=r$
- Option properties: Strike $=X$, and maturity $=T$
- Step size/ total number of steps $=n$
- Model parameters:
- T / n amount of time per step
- $(1+r T / N)$ Discount factor over 1 step
- stock price fluctuation up / down per step

$$
\begin{aligned}
& u=(1+r T / N+\sigma \sqrt{T / N}) \\
& d=(1+r T / N-\sigma \sqrt{T / N})
\end{aligned}
$$

- Probability fluctuation up $=$ Probability fluctuation down $=1 / 2$.
- Introduce $n+1 \times n+1$ matrix S for the values of the Stock.
- $S[0,0]=S_{0}$
for $i=1$ to $n+1: S[i, 0]=S[i-1,0](1+u)$;
for $j=1$ to $i: S[i, j]=S[i-1, j-1](1+d)$
$\therefore S[i, j] \equiv$ security price at timestep i with $i-j$ steps up and j steps down.
- Note according to the model, for $t=i T / n$

$$
\mathbb{P}\left(S_{t}=S[i, j]\right)=\binom{i}{j} \frac{1}{2^{i}}
$$

European Valuation

- Introduce $n+1 \times n+1$ matrix $E C$ for the values of the (European Call) Option.
- Find the values of the option at expiry:

For $i=0$ to $n: E C[n, i]=g(S[n, i])=(S[n, i]-X)^{+}$

- Evolve the values from expiry back to time 0 :

For $i=n-1$ to 0 :
For $j=0$ to i :
$E C[i, j]=(1+r T / n)^{-1}\left(\frac{1}{2} E C[i+1, j]+\frac{1}{2} E C[i+1, j+1]\right)$

American Valuation

Extra step in the American (Put) Valuation, testing for early exercise.

- Introduce $n+1 \times n+1$ matrix $A m$ and H for the values of the Option and intrisic value.
- Find Intrisic values of option

For $i=0$ to n :
For $j=0$ to i :
$H[i, j]=(X-S[i, j])^{+}$

- Set values of $A m$ at expiry equal to intrinsic value.
- Evolve the values from expiry back to time 0 :

For $i=n-1$ to 0 :
For $j=0$ to i :
$G=(1+r T / n)^{-1}\left(\frac{1}{2} A m[i+1, j]+\frac{1}{2} A m[i+1, j+1]\right)$
$A m[i, j]=\max (G, H[i, j])$

Greeks

The Greeks quantify the sensitivity of Options to variables in the model - ie, these are partial derivatives.

- Delta: $\Delta \equiv \frac{\partial V}{\partial S}$. Sensitivity with respect to security price.
- Gamma: $\Gamma=\frac{\partial^{2} V}{\partial S^{2}}$. Second order sensitivity with respect to security price.
- Theta: $\Theta \equiv \frac{\partial V}{\partial t}$. Sensitivity with respect to time.
- Vega: $\nu \equiv \frac{\partial V}{\partial \sigma}$. Sensitivity with respect to security's implied volatility.

Delta

We can compute the Greeks directly from the results of the program:

- Delta: $\Delta \equiv \frac{\partial V}{\partial S}$.
- Introduce $n+1 \times n+1$ matrix Delta

$$
\Delta[i, j]=\frac{E C[i+1, j]-E C[i+1, j+1]}{S[i+1, j]-S[i+1, j+1]}
$$

- According to Black Scholes model:

$$
\Delta_{t, S}=\mathcal{N}_{+}\left(-D_{t, S}^{+}\right)=\mathcal{N}\left(D_{t, S}^{+}\right)
$$

- This is the proportion of the replicating portfolio invested in the stock.

Example - Delta

Delta Hedging

- Fix time step η for each hedging event - we hedge times $0, \eta, 2 \eta, . ., n \eta=T$
- Calculate current value of portfolio V_{0} and define initial replicating portfolio

$$
V_{0}=X_{0} S_{0}+Y_{0} A_{0}
$$

setting $X_{0}=\Delta\left[0, S_{0}\right] ; A_{0}=1$;
$Y_{0}=V_{0}-X_{0} S_{0}$

- At time step $(k+1) \eta$ let $X_{(k+1) \eta}=\Delta\left[(k+1) \eta, S_{(k+1) \eta}\right]$ solve for $Y_{(k+1) \eta}$:

$$
Y_{(k+1) \eta}=\left(X_{k \eta}-X_{(k+1) \eta}\right) S_{(k+1) \eta}+Y_{k \eta}
$$

- As the stock price varies continuously some errors occur from the discritization. Find

$$
V_{T}-X_{(n-1) \eta} S_{T}-Y_{(n-1) \eta} A_{T}
$$

Gamma

- Gamma: $\Gamma \equiv \frac{\partial^{2} V}{\partial S^{2}}$
- Introduce $n+1 \times n+1$ matrix Gamma (restrict to index [2:n-1,2:n-1])

$$
\Gamma[i, j]=\frac{E C[i, j+1]-2 * E C[i, j]+E C[i, j-1]}{(S[i, j]-S[i, j-1])^{2}}
$$

- Formula due to Black-Scholes:

$$
\Gamma_{t, S}=\frac{\phi\left(D_{t, S}^{+}\right)}{S \sigma \sqrt{T-t}}
$$

Example - Gamma

Theta

- Theta: $\Theta \equiv \frac{\partial V}{\partial t}$
- Introduce $n+1 \times n+1$ matrix Gamma (restrict to index [$0: n-2,:]$)

$$
\Theta[i, j]=\frac{E C[i+2, j+1]-E C[i, j]}{2 \delta}
$$

$\delta \equiv$ time step

- Formula due to Black-Scholes:

$$
\Theta_{t, S}=-\frac{S \sigma \phi\left(D_{t, S}^{+}\right)}{2 \sqrt{T-t}}-r X e^{-r(T-t)} \mathcal{N}\left(D_{t, S}^{-}\right)
$$

Asian Option

- Asian options allow exchanges of security based on average price.
- Let

$$
A_{T}=\frac{1}{T} \int_{0}^{T} S_{t} d t
$$

- The Asian Call with fixed strike price has payoff at expiry

$$
H_{T}=\left(A_{T}-X\right)^{+}
$$

- The Asian Call with floating strike has payoff at expiry

$$
H_{T}=\left(S_{T}-A_{T}\right)^{+}
$$

- A mathematically simpler version of this option replaces the arithmetic average with a geometric average, that is replace A_{T} with

$$
G_{T}=e^{\frac{1}{T} \int_{0}^{T} \ln S_{t} d t}
$$

Monte Carlo Valuation of Asian option

Note the Asian option is path dependent. Thus, for an n step discrete model the total number of terms/paths to average over is 2^{n}.

This is too large to effectively implement.
Soln: Conduct trials indexed by j. For each j, simulate stock value over n steps:

$$
A_{T}^{(j)}=\frac{1}{n} \sum_{i=1}^{n} S_{i}^{(j)}
$$

Then approximate the value of the call by the average of results over M trials:

$$
H_{T} \approx \sum_{j=1}^{M}\left(A_{T}^{(j)}-S_{T}\right)^{+}
$$

Example - Fixed strike Asian Call

$$
H_{T}=\left(A_{T}-X\right)^{+}
$$

- Security: $S_{0}=80 ; \sigma=.03$. Bond rate $r=1.5 \%$
- Option $T=9$ months, strike price $X=80$.
- Time steps per year: $N=100$. Total number of trials: $M=1000$
- Value at time of issue $(\mathrm{t}=0)$:

$$
V_{0}=\$ 0.7225
$$

- Value for geometric version: $\$ 0.7188$.

Example - Fixed strike Asian Call - Distribution of values

- $\mathbb{P}\left(H_{T}<.01\right)=\frac{362}{1000}$
- Value frequencies above 1 ¢

