1.7 Problems

An intuitive idea of limits (tables and graphs)

Question 1. Consider the table of values below of f(x), a strictly decreasing function. Find the largest value δ so that $|x-2| < \delta$ guarantees that |f(x)-5| < 1.

x	1.5	1.6	1.7	1.8	1.9	2	2.1	2.2	2.3	2.4	2.5
f(x)	6.5	6.4	5.9	5.8	5.3	5	4.3	4.1	3.9	3.1	1.7
* *											
1.7-2 =.3 $ 2.2-2 =.2$											
2											
(2.2-2) =											
\											
, ,											
S = .2											

Question 2. Use a graph to find a number $\delta > 0$ such that if $|x - 1| < \delta$, then $|x^2 - 1| < \frac{1}{100}$.

1

MSU

MTH132 - Examples

Question 3. By definition, " $\lim_{x\to 0} x^2 = 0$ " means that by taking x very close to zero, we can make $|x^2 - 0|$ smaller than any small number you can name.

(a) Find a number $\delta > 0$ such that if $-\delta < x < \delta$, then $|x^2 - 0| < \frac{1}{100}$.

$$S = \frac{1}{10} \Rightarrow \text{then}$$

$$|x| < \frac{1}{10}$$

$$|x^2| < \frac{1}{100}$$

$$|x^2 - 0| < \frac{1}{100}$$

(b) Use algebra to find a number $\delta > 0$ such that if $-\delta < x - 1 < \delta$, then $|x^2 - 1| < \frac{1}{100}$.

$$-\frac{1}{100} < x^{2} - 1 < \frac{1}{100}$$

$$-\frac{1}{100} < (x-1)(x+1) < \frac{1}{100}$$

$$(x+1) < \frac{3}{300}$$

$$-\frac{1}{300} < x-1 < \frac{1}{300} : S = \frac{1}{300} suffices.$$

(c) When constructing this problem, $\frac{1}{100}$ was used as an arbitrary, smallish number. Could you have done the previous problems if we replaced $\frac{1}{100}$ by $\frac{1}{10,000}$? How about $\frac{1}{1,000,000}$?

in pzr+ (a)
$$\rightleftharpoons$$
 given ϵ , let $\delta = \sqrt{\epsilon}$
(b) given ϵ let $\delta = \frac{1}{3}\epsilon$.

MTH132 - Examples

Question 4. Determine where the fallacy lies below.

Given $f(x) = \begin{cases} 1 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$. Here prove that $\lim_{x \to 0} f(x) = 0$.

Solution: Take $\epsilon > 0$ and define $\delta = \epsilon$ and suppose $|x - 0| < \delta$ then we have:

$$|x - 0| < \delta$$

$$|x - 0| < \epsilon$$

$$|f(x) - 0| < \epsilon \quad f(x) \neq x \quad \text{(since } f(x) = x)$$

$$|x - 0| < \epsilon \text{ so by definition } \lim_{x \to \infty} f(x) = 0$$

Therefore we have shown $|x-0| < \delta \Rightarrow |f(x)-0| < \epsilon$ so by definition $\lim_{x\to 0} f(x) = 0$.

Being careful with inequalities

Question 5. Perform the operations below

(a) Square both sides of 1 < 4.

(b) Square both sides of -4 < 1.

(c) Square all sides of 1 < 3 < 4.

(d) Take the square root of 4 < 9.

(e) Take the square root of -4 < 9.

Question 6. Is the statement below true? Why or why not?

Suppose x - 1 < 5 then we know that $\sqrt{x - 1} < \sqrt{5}$.

MTH132 - Examples

Solving limit problems given equations

Question 7. How close to -3 do we have to take x so that $\frac{1}{(x+3)^4} > 10,000$?

$$\frac{1}{y^{4}} > 10000$$

if $y < \frac{1}{10}$
 $|x + 3| < \frac{1}{10}$
 $|x - (-3)| < \frac{1}{10}$

Question 8. Prove that $\lim_{x\to 1} \frac{2+4x}{3} = 2$ using the precise definition of the limit.

given
$$\varepsilon > 0$$
 let $S = \frac{3}{4} \varepsilon$

$$|x - 1| < \delta = \frac{3}{4} \varepsilon$$

$$|\frac{4}{3}x - \frac{4}{3}| < \varepsilon$$

$$|\frac{2}{3} + \frac{4}{3} - 2| < \varepsilon$$

Question 9. Prove that $\lim_{x\to 2}[x^2-4x+5]=1$ using the precise definition of the limit.

Notice
$$\chi^{2}-4\chi+5=(\chi-2)^{2}+1$$

$$\left|(\chi-2)^{2}\right|<\mathcal{E}$$

$$|\chi-2|<\mathcal{E}|.$$

Proof. given
$$\varepsilon > 0$$
 let $\delta = \sqrt{\varepsilon}$.

 $|x-2| < \delta = \varepsilon$
 $|(x-2)^2| < \varepsilon$
 $|(x-2)^2| < \varepsilon$
 $|(x-2)^2 + 1 - 1| < \varepsilon$
 $|(x^2 - 4x + 5] - 1| < \varepsilon$

MSU