2.3 Problems

Standard Problems

Example 1. Differentiate the functions:

(a)
$$f(x) = \pi^2$$
 f constant $\Rightarrow f'$ in 3 etc.
 $f'(x) = 0$

(b)
$$g(x)$$
 $(x-2)(2x+3)$ product rule.

$$g'(x) = (x-2)'(2x+3) + (x-2)(2x+3)'$$

$$= (2x+3) + (x-2)(2)$$

$$= 4x - 1$$

(c)
$$h(x) = \frac{\sqrt{x+x}}{x^2}$$
 quotient rule.

$$h'(x) = \frac{x^{2}(\sqrt{x} + x)' - (\sqrt{x} + x) 2x}{(x^{2})^{2}} = \frac{1}{2}x^{3/2} + x^{2} - x^{1/2} - 2x^{2}$$

$$= \frac{-x^{2} + \frac{1}{2}x^{3/2} - x^{1/2}}{14}$$

(d)
$$k(x) = \frac{x}{x + \frac{c}{x}}$$

$$|x| = \frac{(x + \frac{c}{x})(x)' - x(x + \frac{c}{x})'}{(x + \frac{c}{x})^2} = \frac{x + \frac{c}{x} - x(1 + \frac{c}{x^2})}{(x + \frac{c}{x})^2}$$

$$= \frac{\frac{c}{x} + \frac{c}{x^2}}{(x + \frac{c}{x})^2} - \frac{c(x + 1)}{(x^2 + c)^2}$$

Example 2. Find the equation of the tangent line of the curve y

2. Find the equation of the tangent line of the curve
$$y = \frac{3x+1}{x^2+1}$$
 through the point $(1,2)$.
$$y = \frac{(\chi^2+1)(3\chi+1)' - (3\chi+1)(\chi^2+1)'}{(\chi^2+1)^2} = 3(\chi^2+1) - 2\chi(3\chi+1)$$

$$= \frac{-3x^2 - 2x + 3}{(x^2 + 1)^2}$$

$$\frac{\hat{y}-2}{\hat{x}-1}=y(1)=\frac{-3-2+3}{(1+1)^2}=-1$$

Example 3. Find the points of the curve $y = 2x^3 + 3x^2 - 12x + 1$ where the tangent is horizontal. " +angent is horizontal" = " y' = O''

$$y' = (0x^{2} + (0x - 12) = (6(x^{2} + x - 2))$$

$$y' = (6(x + 2)(x - 1))$$

$$0 = y' = (6(x + 2)(x - 1)) = 0$$

$$X = 1 \text{ or } x = -2$$

Example 4. Let $f(x) = \begin{cases} ax^2 & \text{if } x \leq 1 \\ 3x + b & \text{if } x > 1 \end{cases}$. Find the values of a and b that make f differentiable fis differentiable => fis continuous. everywhere.

$$a = a(1)^2 = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 3(1) + b$$
. $a = 3+b$
for differentiable @ 1 if f' is continuous @ 1.

$$2a = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 3$$

$$\Rightarrow 2 = \frac{3}{2} + b = -\frac{3}{2}$$

MSU

Non-Standard (Fun) Problems

Example 5. Suppose an Environmental scientist measures the depth of a lake and the concentration of Phosphorus. They calculate that the lake is 1.2×10^9 m³ and has 1.5×10^{-8} mg/m³ phosphorus concentration. A year later they repeat the measurement and find the volume of the lake is 1.4×10^9 m³ and has 1.4×10^{-8} mg/m³ phosphorus concentration. How has the total phosphorus level changed/what is the average total phosphorus change per year?

(Total phosphorus) = (concentration $\frac{mg}{m^3}$) (volume m^3). a) t=0 Va) = 1.2 × 109 m^3 ; pa) = 1.5 × 10-8 mg/m^3 Q = total ph. Qa = 1.2 × 1.5 × 10 mg.

@ t=1 V0)=1.4 x109 m3 ; p6)=1.4 x 10-8 m3, Q(1)=(1.4)2 x10 mg.

Avg change per year: \((1.4)^2 - (1.2)(1.5)\} * 10 mg/year \) = \((0.6 mg/year \).

Suppose another scientist took measurements over the year and found the volume of the lake to follow the curve $V(t) = \sqrt{t/2 + 1.5} \times 10^9 \text{ m}^3$ and the concentration of phosphorus follows the curve $p(t) = \frac{1.4 + (1-t)^2/10 \text{ mg/m}^3}{1.4 + (1-t)^2/10 \text{ mg/m}^3}$. Fin $Q \equiv \text{total}$ quantity of phosphorus, what is the instantaneous rate of change of the quantity of phosphorus?

$$Q(t) = +0+2| phosphorus @ timt = V(t) p(t)$$

$$Q(t) = \sqrt{\frac{1}{2}(+1.5)} (1.4 + (1-t)^{2}) \times 10 \text{ mg}$$

$$Q'(t) = \int_{\frac{1}{2}}^{1} (\frac{1}{2} + 1.5)^{\frac{1}{2}} (1.4 + (1-t)^{2}) \times 10 \text{ mg}$$

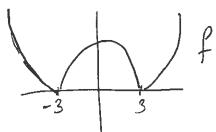
$$= (\frac{1}{2} + 1.5)^{\frac{1}{2}} (1.4 + (1-t)^{2}) \times 10 \text{ mg}$$

$$= (\frac{1}{2} + 1.5)^{\frac{1}{2}} (1.4 + (1-t)^{2}) \times 10 \text{ mg}$$

MTH132 - Examples

Example 6.

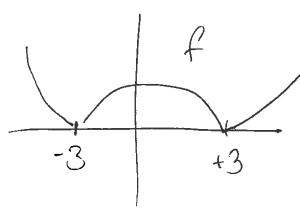
(a) For what values of x is the function $f(x) = |x^2| 9|$ differentiable? Find a formula for f'

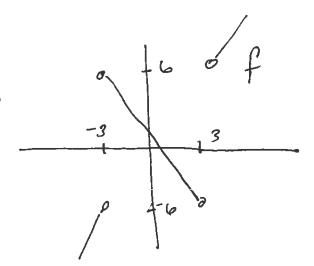


$$f = \begin{cases} x^2 - 9, & x^2 > 9 \\ 0, & x^2 = 9 \\ 9 - x^2, & x^2 < 9 \end{cases}$$

$$f' = \begin{cases} 2x, & |x| > 3 \\ -2x, & |x| < 3. \end{cases}$$

(b) Sketch the graphs of f and f'





Example 7 Evaluate
$$\lim_{x\to 1} \frac{x^{1000}-1}{x-1} = \lim_{h\to 0} \frac{(1+h)^{1000}-1}{(1+h)-1} = 1000$$

$$4 + f(x) = 1000 \times 999$$
 $4 + f(1) = 1000$