3.3 Problems Part 2

Give Examples of...

Question 1. If possible, give an example of a function f that satisfies:

- f is decreasing on [1, 5]
- f is concave up on [1, 5].

Represent f as

- (a) A sketch of a graph
- (b) An equation

If it is not possible explain why.

Question 2. If possible, give an example of a function f that satisfies:

- f is increasing on [1, 5]
- f is concave up on [1,3) and is concave down on (3,5].

Represent f as

- (a) A sketch of a graph
- (b) An equation

If it is not possible explain why.

b)
$$f(x) = -(x-3)^3 + 12(x-3)$$

MTH132 - Examples

Question 3. If possible, give an example of a function f that satisfies:

- f is increasing on [-1, 2) and decreasing on (2, 4].
- f is neither concave up or concave down on [-1, 4].

Represent f as

- (a) A sketch of a graph
- (b) An equation

If it is not possible explain why.

 $f(x) = \begin{cases} x & x \in [-1, 2) \\ 4 - x & x \in [2, 4] \end{cases}$

Question 4. If possible, give an example of a function f that satisfies:

- f is neither increasing nor decreasing on [1, 4].
- f is concave up on [1, 4].

Represent f as

- (a) A sketch of a graph
- (b) An equation

If it is not possible explain why.

If it is theresing concave up on some portion of [1,4] it must uncrease or decreasenthis unterval. Question 5. Consider the function $f(x) = \frac{1}{x} + \frac{x}{16}$. Find where:

- (a) f is increasing/decreasing
- (b) f is concave up/down
- (c) Identify any local mins, local maxes, and inflection points.

$$f' = \frac{1}{-X^2} + \frac{1}{16}$$

$$f'' = \frac{2}{+X^3}$$

$$f' = 0 \Rightarrow \frac{1}{x^2} = \frac{1}{16} \Rightarrow x = \pm 4.$$

$$f' > 0 \quad \text{on} \quad (-\infty, -4) \cup (4, \infty)$$

$$f' < 0 \quad \text{on} \quad (-4, 0) \cup (0, 4).$$

(a) fis increasing on
$$(-\infty, -4) \cup (4, \infty)$$
.
fis decreasing on $(-4, 0) \cup (0, 4)$.

Question 6. Given

$$f'(x) = \frac{(x-6)(x-1)}{(x+3)},$$
 $f''(x) = \frac{(x+9)(x-3)}{(x+3)^3},$ $f(-3)$ not defined.

determine the intervals on which f(x) increases/decreases, the intervals on which the function is concave up/down and the x values in which the function has maximum, minimum and inflection.

$$f'>0$$
 on $(-\infty,3)\cup(6,\infty)\cup(-3,1)$
 $f'<0$ on $(1,6)$.
 $f''>0$ on $(3,\infty)\cup(-9,-3)$
 $f''<0$ on $(-\infty,-9)\cup(-3,3)$.
lecton points @ $x=-9,-3,3$

Question 7. Determine A and B so that the curve $y = Ax^{1/9} + Bx^{-1/9}$ has an inflection point at (1,2).

$$(X,Y) = (1,2)$$
plug into eq.

(A $\sqrt{4} + B$ $\sqrt{4} = 2 \Rightarrow A + B = 2$.

$$Y' = A + \sqrt{4} + B(-\frac{1}{7}) x^{-1/4}$$

$$Y'' = A(-\frac{3}{81})(x + B(\frac{10}{81}) x^{-\frac{17}{7}} \Rightarrow -8A + 10B = 0$$

$$Y'' = A(-\frac{3}{81})(x + B(\frac{10}{81}) x^{-\frac{17}{7}} \Rightarrow -8A + 10B = 0$$

$$X = 1$$

$$X = 1$$