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ABSTRACT

ABELIAN SUBGROUPS AND AUTOMORPHISMS OF THE
TORELLI GROUP

By

William R. Vautaw

Let S be a closed, connected, oriented surface of genus g ≥ 3. The

mapping class group M of S is defined to be the group of isotopy

classes of self-homeomorphisms of S, while the Torelli group T of S

is the subgroup of M consisting of the isotopy classes of those self-

homeomorphisms of S that induce the identity permutation of the first

homology group of S.

This work considers two aspects of the Torelli group. The first is

the Abelian subgroups of T . This portion of the work, where graph

theory is the principal tool, contains two primary theorems. One gives

a complete description of the multitwist subgroups of T , and the other

states that any Abelian subgroup of T has rank at most 2g − 3.

The second subject of investigation is automorphisms of the Torelli

group; specifically, we ask whether any automorphism Ψ : T → T is

induced by a homeomorphism of S. In several formal and informal

announcements made between October 2001 and March 2002, Benson

Farb stated that he was able to prove that this is indeed the case for

g ≥ 4. In this work, we lay the foundation for proving that it is also true

for g = 3. This involves three basic steps. The first is to characterize
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algebraically certain elements of the Torelli group, namely powers of

Dehn twists about separating curves and powers of bounding pair maps.

The characterization given by Farb is valid for g ≥ 4, while our’s is valid

for g ≥ 3. The second step is to show that Ψ induces an automorphism

Ψ∗ of C, the complex of curves of S. This difficult step remains incom-

plete at the time of this writing. In the last step we use a theorem of

Ivanov which states that Ψ∗ is induced by a homeomorphism h of the

surface S, and conclude, under the assumption that it is possible to

complete the second step, that the automorphism of the Torelli group

induced by the homeomorphism h agrees with our automorphism Ψ.
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INTRODUCTION

The subject of this work is surface mapping class groups, generally

classified as within the realm of geometric topology along with other

areas of mathematics such as knot theory, cobordism theory, the theory

of retracts, and so on. This in spite of the fact that, although surface

topology plays an essential role, our true object of interest is an alge-

braic one - a group. For the key technique is to consider configurations

of curves on surfaces. This strategy will lead us to graph theory in

chapters 1 and 2, and in chapter 3 to a well-known abstract simpli-

cial complex first introduced by William Harvey [8], the “complex of

curves.”

In this introductory chapter we give the notation, definitions, and

essential foundational theorems that we will rely on in the later chap-

ters. We also present the specific problem we will be addressing and

some historical background.

Throughout this work, S represents a closed, connected, oriented

surface of genus g ≥ 3. We use the symbols a, b, c, etc., to denote (the

isotopy classes of) simple closed curves on S. In general, we confuse a

curve and its isotopy class, and thus to say that two curves are distinct

means that they are not isotopic. We use the symbol S to denote

the set of all nonoriented (isotopy classes of) homotopically nontrivial

simple closed curves on S. The geometric intersection number of a and
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b is given by

i(a, b) = min{card{a′ ∩ b′} : a′ is isotopic to a and b′ is isotopic to b}.

If a ∈ S is separating, then SÂa has two components S1 and S2, and

we define the genus of a to be the smaller of the two numbers genus(S1)

and genus(S2). A reduction system E on S is a set of distinct, mutually

disjoint, homotopically nontrivial simple closed curves on S, and we use

SE to denote the natural compactification of SÂ
⋃

a∈E

a; that is, “S cut

along E.” If E = {a}, then we write Sa instead of S{a}. Note that a

reduction system consists of at most 3g − 3 elements, and a reduction

system containing 3g − 3 elements gives a pants decomposition of S.

The mapping class group of S,M(S), is the group of isotopy classes,

or mapping classes, of orientation-preserving self-homeomorphisms of

S. In general, our notation will not distinguish between a homeomor-

phism f : S → S and its mapping class. Given a ∈ S and f ∈ M(S),

we let f(a) denote the isotopy class of the image of any curve repre-

senting the class of a under any map representing the class of f .

The symbol Da will denote the right Dehn twist about a ∈ S. Two

standard results are that Dehn twists Da and Db commute if and only

if i(a, b) = 0, and that if f ∈ M(S) then fDaf
−1 = Df(a). Given a

reduction system E on S, we define a multitwist on E to be a compo-

sition of left and right Dehn twists about the curves in E, and denote

the group of all multitwists on E by DE. Clearly DE is a free Abelian

group with basis {Da : a ∈ E}, and so rank(DE) = card(E).

The mapping class group acts in an obvious way on the first homology

2



          

group of S: given an oriented simple closed curve b on S, f sends the

homology class of b to the homology class of f(b). In the case of a right

Dehn twist we have a specific formula for the image class. If a and b

are oriented simple closed curves on S, then in H1(S) we have

Da(b) = b + 〈a, b〉a,

where 〈a, b〉 denotes the algebraic intersection number of a with b.

The Torelli group of S, which we denote by T (S) or simply T , is

defined to be the kernel of this action of M(S) on H1(S). The Torelli

group is torsion-free, and is trivial in the case of the sphere or torus.

Also, the center of the Torelli group of any closed surface is trivial.

We define the mapping class group and Torelli group of a surface with

boundary analogously; we simply require that homeomorphisms and

admissible isotopies fix each component of the boundary setwise. Note

that the Torelli group of a surface with boundary (with the exceptions

of a disc and an annulus) is still torsion-free, and that the Torelli groups

of a pair of pants and a one-holed torus are trivial.

Given a reduction system E on S, we use the symbol ME(S) to

denoted the stabilizer of E in M(S), and define the reduction homo-

morphism Λ : ME(S) → M(SE) as follows: For f ∈ ME(S), there

exist a representative f̄ of f and a set Ē of disjoint representatives of

E such that f̄(Ē) = Ē. We let Λ(f) be the unique extension of f̄ |SÂĒ

to SE. The kernel of Λ is DE.

We say that f ∈M(S) is reducible if f ∈ME(S) for some nonempty

reduction system E. In this case we call E a reduction system for f and
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each a ∈ E a reduction class for f . Nikolai Ivanov has proved a theorem

([9], Theorem 1.2) which implies the following useful result concerning

the Torelli group, which we refer to as Ivanov’s Theorem:

Theorem 0.1 (Ivanov’s Theorem) Let f ∈ T and suppose E is a re-

duction system for f . Then f leaves each curve in E invariant and Λ(f)

leaves each component and each boundary component of SE invariant.

Hence if f ∈ T reduces along E, then Λ(f) restricts to each compo-

nent of SE. We call each component of SE as well as each restriction

of Λ(f) a component of f (determined by E). In particular, if S′ is a

component of SE, and the restriction of Λ(f) to S′ is a pseudo-Anosov

element of M(S′), then we say that S′ is a pseudo-Anosov component

of f .

The notion of an adequate reduction system, which we describe

presently, was first introduced by Birman, Lubotzky, and McCarthy

in [2]. However, their paper deals with a more general situation (the

mapping class group of a disconnected surface) than we will need to

consider (the Torelli group of a connected surface), and so the defini-

tion we give is specialized to suit our needs. We say that a reduction

system E for an element f ∈ T (S) is an adequate reduction system for

f if each component of f is either trivial or is pseudo-Anosov, and in

this case, we say that Λ(f), the reduction of f along E, is adequately re-

duced. Using this concept and fact that the Torelli group is torsion-free,

Thurston’s classification of mapping classes (cf. [7]) implies that every

element f of the Torelli group is either reducible or pseudo-Anosov, and
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if f is reducible, then it has an adequate reduction system.

We say that a reduction class a for f ∈M(S) is an essential reduction

class for f if and only if for each b ∈ S such that i(a, b) 6= 0, the isotopy

classes fm(b) and b are distinct for all m 6= 0. Given f ∈ M(S), we

define the essential reduction system for f by

Ef = {a ∈ S : a is an essential reduction class for f}.

The following facts are proved in [2]:

Theorem 0.2 (Birman, Lubotzky, and McCarthy)

i) Let a and b be reduction classes for f ∈ M(S). If a is essential,

then i(a, b) = 0.

ii) Let E be an adequate reduction system for f and let a ∈ E. Then

a is essential if and only if EÂ{a} is not an adequate reduction

system for fm, for any m 6= 0.

iii) For all g ∈M(S), g(Ef) = Egfg−1.

iv) Efm = Ef for all m 6= 0.

v) Ef is an adequate reduction system for f .

vi) Ef ⊆ E for each adequate reduction system E for f .

Note that (ii) above implies that the essential reduction system of

an infinite order reducible mapping class is nonempty, and (iii) implies

that if f and g commute, then the essential reduction system for f is a

reduction system for g. A standard result is that if f = Dn1
a1
Dn2

a2
· · ·Dnk

ak
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is a multitwist about the reduction system E = {a1, a2, . . . , ak}, where

each exponent is nonzero, then Ef = E. In particular, EDa
= {a}.

John McCarthy has proved the following, which we refer to as Mc-

Carthy’s Theorem:

Theorem 0.3 (McCarthy’s Theorem)([11], Theorem 1 and Corol-

lary 3) Let f be a pseudo-Anosov element in the mapping class group

M of a compact, connected, orientable surface with possibly nonempty

boundary. Then the centralizer CM(f) of the cyclic subgroup of M
generated by f is a finite extension of an infinite cyclic group, and

consequently every torsion-free subgroup of CM(f) is infinite cyclic.

This theorem implies the following useful corollary concerning the

Torelli group:

Corollary 0.4 Let A be an Abelian subgroup of the Torelli group of a

compact, connected, orientable surface with possibly nonempty bound-

ary. If A contains a pseudo-Anosov mapping class, then A is infinite

cyclic, and any generator is pseudo-Anosov.

The specific issue addressed in this work concerns automorphisms of

the Torelli group of S. Namely, are all automorphisms of T topological

(i.e., induced by homeomorphisms of the surface)?

In the 1980’s Nikolai Ivanov answered affirmatively the analogous

question for the mapping class group (genus ≥ 3). One of the inspira-

tions for Ivanov’s work was the results concerning Abelian subgroups of

the mapping class group published in 1983 by Birman, Lubotzky, and
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McCarthy [2]. The idea of the essential reduction system, introduced

in their paper, played a central role in Ivanov’s arguments as he char-

acterizes certain elements of the mapping class group in terms of their

centralizers and centers of centralizers. He then proceeded by using

algebraic methods involving relations in the mapping class group.

Using Harvey’s complex of curves, Ivanov later proved a stronger

theorem [9], which includes as a special case the result about automor-

phisms of the mapping class group. Specifically, he first showed that

an automorphism Ψ of the mapping class group induces an automor-

phism of the complex of curves, and then that any automorphism of

the complex of curves is induced by a homeomorphism h of the surface.

The theorem is proved when he shows that the automorphism of the

mapping class group induced by h is the same as the automorphism Ψ.

We follow the same basic steps in the case of the Torelli group. First

we investigate the Abelian subgroups, proving two primary theorems.

The first gives a complete description of “Torelli multitwists,” and the

second states that any Abelian subgroup of T has rank at most 2g− 3.

In this portion of the work, in chapters 1 and 2, graph theory is the

principal tool.

We then deal with the automorphism question directly. In several

formal and informal announcements made between October 2001 and

March 2002, Benson Farb announced that he was able to prove that

every automorphism of the Torelli group is induced by a homeomor-

phism of S, for genus g ≥ 4, [4], [6]. He outlined his proof in [5].

7



      

In chapter 3 we lay the foundation for proving that this is also true

for g = 3. Following Ivanov, we use centralizers and centers of cen-

tralizers to give algebraic charactertizations of certain elements of the

Torelli group, namely powers of Dehn twists about separating curves

and powers of bounding pair maps. We note that Farb’s characteriza-

tion is valid only for g ≥ 4, whereas the characterization we give is valid

for g ≥ 3. The second step, showing that any automorphism Ψ of the

Torelli group induces an automorphism Ψ∗ of the complex of curves,

remains incomplete at the time of this writing. In the last step we use

Ivanov’s theorem stating that Ψ∗ is induced by a homeomorphism h of

the surface S to conclude, under the assumption that it is possible to

complete the second step, that the automorphism of the Torelli group

induced by the homeomorphism h agrees with our automorphism Ψ.

The apparent difficulty in proving this result purely algebraically (i.e.,

without using the complex of curves) suggests that the automorphism

theorem for the Torelli group is a deeper result than for the mapping

class group.
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CHAPTER 1

Reduction Systems and Reduction

System Graphs

1.1 Graph Terminology

We use graph-theoretic terminology consistent with its use in [3]. We re-

mind the reader of the less familiar terms, and give the graph-theoretic

definitions of those terms that may be used in different ways in ordinary

topology.

We let G denote a connected, finite linear graph. We include the

possibility that G may contain loops or parallel edges. E = E(G) will

denote the edge set of G, and we use the symbols a, b, c, etc. to denote

edges of G. For E ′ ⊂ E(G), G − E ′ denotes the subgraph obtained

from G by deleting the edges in E ′, while G+E ′′ is the graph obtained

from G by adding a set of edges E ′′. If E ′ = {e}, then we write G− e
and G+e instead of G−{e} and G+{e}. A bond E ′ in G is a minimal

subset of E(G) such that G − E ′ is disconnected. Note that G − E ′

consists of precisely two components. We say that the edge e is a cut

edge if G − e is disconnected. We use the symbols u, v, x, y to denote

vertices of G. The degree of a vertex v is the number of edges incident

with v, each loop counting as two edges.
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A (v0, vn)–walk W of length n is a finite nonempty alternating se-

quence, W = v0e1v1e2v2 . . . envn, of vertices and edges such that the

ends of the edge ei are the vertices vi−1 and vi for 1 ≤ i ≤ n. If the

edges of W are distinct, W is called a trail. A cycle in G is a closed

trail of positive length whose origin and internal vertices are distinct.

Thus a cycle is an embedded circle in G. For our purposes, to denote

a trail or cycle, it will be enough to give its sequence of edges, and we

do not distinguish between a closed trail W and another closed trail

whose sequence of edges is a cyclic permutation of W ’s.

A spanning tree T is a subgraph of G with the same vertex set as G

such that T contains no cycles. The number of edges in any spanning

tree is equal to one less than the number of vertices of G. Note that

if T is a spanning tree, and e is an edge of G not in T , then T + e

contains a unique cycle C, and e is an edge of C, so the rank of π1(G)

is equal to the number of edges of G outside any spanning tree. Every

connected graph contains a spanning tree.

Given a subgraph H of G, we let G•H denote the graph obtained by

deleting every edge e of H and identifying the ends of e. Equivalently,

thinking of G as a CW–complex and H as a subcomplex, G •H is the

complex obtained from G by crushing each component of H to a point.

Thus, we have a quotient (“contraction”) map p : G → G • H. Next,

by a cut vertex of G, we mean a vertex v of G such that when v, and

only v, is removed from the topological space G, the resulting space is

disconnected. (This is not the definition used by graph theorists, but

10



              

is an equivalent topological one.) A block is a connected graph without

cut vertices, and a block of a graph is a subgraph that is a block and is

maximal with repsect to that property. Any graph is the union of its

blocks.

1.2 Reduction Systems and Reduction System Graphs

Let E be a reduction system on S, as defined in the introduction.

We partition the set E = {e1, e2, . . . , en} according to the equivalence

relation ∼ generated by the rule

ei ∼ ej if





ei = ej

or

{ei, ej} is a minimal separating set in E

Here, “{ei, ej} is a minimal separating set” means that S{ei,ej} is dis-

connected, but both Sei and Sej are connected. There are three types

of ∼–equivalence classes:

i) Singleton classes {a1}, {a2}, . . . , {ap} consisting of the separating

curves a1, a2, . . . , ap in E. Such a curve wil be called an a–type

curve.

ii) Classes {b11, . . . , b1q1
}, {b21, . . . , b2q2

}, . . . , {br1, . . . , brqr} of cardinal-

ity at least 2. Each such class {bi1, . . . , bini} is characterized by the

following three properties:

a) No curve bij is separating.

b) bij is homologous to bij′ for every pair bij, bij′.

11



           

c) Maximal with respect to (a) and (b).

A curve in such a class will be called a b–type curve.

iii) Singleton classes {c1}, {c2}, . . . , {cs} where each ci is non-separating

and is homologous to no other curve in E. Such a curve will be

called a c–type curve.

According to (i), (ii), and (iii) above, we write

E = {a1, . . . , ap, b11, . . . , b1q1
, b21, . . . , b2q2

, . . . , br1, . . . , brqr , c1, . . . , cs}.

We use E to define a graph GE, which we call the reduction system

graph of E, as follows:

Vertices of GE correspond to the components of SE.

Edges of GE correspond to the curves in the reduction system E, with

(Links) Two distinct vertices are connected by the edge ei if and

only if the curve ei in E is a common boundary curve of the two

components of SE which correspond to the vertices in question.

(Loops) A vertex has a loop ei if and only if the curve ei in E

represents two boundary curves of the component of SE which

corresponds to the vertex in question.

Note that GE is connected, and that any connected graph G is GE

for some surface S and some reduction system E on S. However, the

genus of S is not determined by G, any two possible S’s differing by

the genera of their complementary components. But, unless G is the
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graph consisting of a single vertex and either no edges or a single loop,

then genus(S) ≥ rank(π1(G)) + (number of vertices of degree ≤ 2).

Since S and E will be fixed, we will denote GE simply by G.

The equivalence relation ∼ on the curves in E induces a equivalence

relation ∼ on the edge set E(G) = {e1, e2, ..., en} of G. It is generated

by

ei ∼ ej if





ei = ej

or

{ei, ej} is a bond

(Again, it should be noted that this equivalence relation may be defined

for any graph G.) The three types of equivalence classes described

above become, for G,

i) Singleton classes {a1}, . . . , {ap} consisting of the cut edges a1, . . . , ap

of G. Such an edge will be called an a-type edge.

ii) Classes {b11, . . . , b1q1
}, {b21, . . . , b2q2

}, . . . , {br1, . . . , brqr} of cardinal-

ity at least 2. Each such class is characterized by the following

three properties:

a) No edge bij is a cut edge.

b) {bij, bij′} is a bond for every pair bij, bij′.

c) Maximal with respect to (a) and (b).

An edge in such a class will be called a b-type edge.

13



           

iii) Singleton classes {c1}, . . . , {cs} where each ci is not a cut edge, and

forms a 2–edge bond with no other edge of G. Such an edge will

be called a c-type edge.

According to (i), (ii), and (iii) above, we write

E(G) = {a1, . . . , ap, b11, . . . , b1q1
, b21, . . . , b2q2

, . . . , br1, . . . , brqr , c1, . . . , cs}

Figure 1.1 shows a typical example of a reduction system and its graph.

Figure 1.1: On left: A surface with a reduction system. On right: The reduction system graph.

Now let h be a simple closed curve on S that intersects each element

of E transversely at most once. Starting at any point on h and travelling

in either direction gives a cyclic ordering of the reduction curves which

h intersects, thus defining a closed trail H in G. Note that H is a

cycle in G if and only if h ∩ Si is either empty or is a single (that is,

connected) arc, for every component Si of SE. Likewise, given a closed

trail H in G, there is such a curve h on S defining H. The fact that the

isotopy class of h is never unique is not important for our purposes.

Figure 1.2 shows a typical example. Note that h1 and h2 are noniso-

topic curves which both define the cycle H = b11c2b12.
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Figure 1.2: On left: Curves h1 and h2. On right: The cycle H “produced” by h1 and h2.

1.3 Results on Graphs

This section presents some purely graph-theoretic results, concluding

with Theorem 1.4, which is used to prove the main theorem of section

2.1. Here, G denotes an arbitrary connected, finite linear graph.

Lemma 1.1 If G has no cut edges, then any two vertices of G are

connected by two edge-disjoint paths.

Proof:

We prove by induction on d(u, v) that any two vertices u and v in G

are connected by two edge-disjoint paths.

d(u, v) = 1 :

In this case, uv is an edge, and so by hypothesis uv is not a cut edge.

By [3], page 27, uv is contained within a cycle C. Then uv and C − uv
are two edge-disjoint (u, v)-paths.

Now suppose the theorem is true for any two vertices at distance less

than k, and let d(u, v) = k ≥ 2. Consider a (u, v)-path of length k, and

let w be the vertex preceding v on this path. Then d(u, w) = k − 1, so

by the induction hypothesis, there are two edge-dijoint (u, w)-paths P

and Q in G. Since G has no cut edges, G−wv is connected, so there is a
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(u, v)-path P ′ in G−wv. Lew x be the last vertex of P ′ lying in P ∪Q,

and suppose that x ∈ P . Then G has two edge-disjoint (u, v)-paths:

one composed of the portion of P from u to x, the other is Q+wv. ¤

Lemma 1.2 Let b1 and b2 be edges of G such that {b1, b2} is a bond. If

C is a cycle in G, and b1 is an edge of C, then so is b2.

Proof:

Let b1 have ends u1 and v1, and let b2 have ends u2 and v2. Since {b1, b2}
is a bond, G − b1 and G − b2 are connected, but G − {b1, b2} is not,

having two components which, without loss of generality, separate u2

and v2.

Let C = b1e1e2 · · · en, and suppose b2 is not an edge of C. Then

e1e2 · · · en is a path in G = {b1, b2} connecting u1 and v1, so u1 and v1

lie in the same component of G−{b1, b2}. Since there is no (u2, v2)-path

in G−{b1, b2}, but there is a (u2, v2)-path P in G− b2, P must contain

b1. Let P1 be the portion of P from u2 to, say, u1, and let P2 be the

portion of P from v1 to v2. Then P1 + e1e2 · · · en + P2 is a (u2, v2)-path

in G− {b1, b2}. This is a contradiction.

Hence b2 must also be an edge of C. ¤

Lemma 1.3 Let c be a c–type edge in G that is not a loop. Then c is

contained within two cycles of G, the intersection of whose edge sets is

precisely c.
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Proof:

Assume that G is a block. If G has exactly two vertices, then each

edge of G is a link, and G must have at least three edges, since c is a

c–type edge. The result is clear in this case. Otherwise, G has at least

three vertices and no cut edges. Consider the graph G − c. If G − c
has a cut edge e, then G − {c, e} is not connected, so {c, e} is a bond

of G. This contradicts the fact that c is a c–type edge. So G − c has

no cut edges. By Lemma 1.1, there are two edge-disjoint paths P and

P ′ in G − c connecting the ends of c. Then the cycles C = P + c and

C ′ = P ′ + c have exactly the edge c in common. In the case that G is

not a block, we let B be the block of G containing c. It is easy to see

that c is a c–type edge of B, so we apply the first case to B and find

two such cycles within B. ¤

Theorem 1.4 Let G have edge set

E(G) = {a1, . . . , ap, b11, . . . , b1q1
, . . . , br1, . . . , brqr , c1, . . . , cs},

notated according to a– , b–, and c–type equivalence classes. Let w :

E(G) → Z be a weighting of G. Then w(H) = 0 for every cycle H in

G if and only if

i) w(ci) = 0, 1 ≤ i ≤ s, and

ii) w(bj1) + w(bj2) + · · ·+ w(bjqj) = 0, 1 ≤ j ≤ r.

Proof:

⇒) Assume that w(H) = 0 for every cycle H in G.
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i) Let c be a c–type edge with ends u and v. If c is a loop, then

w(c) = 0, by hypothesis. Otherwise, there are two edge-disjoint (u, v)–

paths, P and P ′, in G − c. We have three cycles: P + c, P ′ + c, and

P + P ′. Thus,

w(P ) + w(c) = w(P + c) = 0

w(P ′) + w(c) = w(P ′ + c) = 0

w(P ) + w(P ′) = w(P + P ′) = 0





=⇒ w(c) = 0

ii) Let B be the equivalence class of the b–type edge b, and B = BÂ{b}.
Let p : G → G • B be the contraction map. Suppose that b is a cut

edge of G •B, separating it into two components G1 and G2. Then the

restriction of p to G − b maps onto the disconnected space G1 ∪ G2,

and so G− b is disconnected. This is a contradiction to the hypothesis

that b is a b–type edge of G. We obtain a similar contradiction if we

suppose {b, e} is a bond in G •B. Thus b is a c–type edge in G •B. If

b is a loop in G •B, then p−1(b) = B, which therefore forms a cycle in

G. So equation (ii) holds for the equivalence class of b.

If b is not a loop in G • B, then by Lemma 1.3 there are two cycles

H and H ′ in G •B, the intersection of whose edge sets is {b}. Lemma

1.2 implies that p−1(H) and p−1(H ′) are cycles H and H ′, respectively,

the intersection of whose edge sets is precisely B. Thus we have

0 = w(H) = w(B)+w(H−B)

0 = w(H ′) = w(B)+w(H ′−B)



⇒ 0 = 2w(B) + w(H∆H ′) = 2w(B)
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And so, w(B) = 0. Here we have used the fact that the symmetric

difference H∆H ′ of the cycles H and H ′ is a disjoint union of cycles

(regarded as sets of edges).

⇐) Assume that

i) w(ci) = 0, 1 ≤ i ≤ s, and

ii) w(bj1) + w(bj2) + · · ·+ w(bjqj) = 0, 1 ≤ j ≤ r.

Let H be a cycle in G. H contains no a–type edges, since they are cut

edges, and by Lemma 1.2, if H contains one edge of a b–type class, then

it contains the whole class. So the assumptions imply that w(H) = 0.

¤
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CHAPTER 2

Abelian Subgroups of the Torelli

Group

2.1 Multitwists in the Torelli Group

We at first consider a specific type of Abelian subgroup of the Torelli

group T (S), namely one consisting of multitwists — that is, composi-

tions of left and right Dehn twists about a fixed reduction system E on

S.

Theorem 2.1 Let S be a closed, connected, oriented surface, and let

E = {a1, . . . , ap, b11, . . . , b1q1
, b21, . . . , b2q2

, . . . , br1, . . . , brqr , c1, . . . , cs}

be a reduction system on S, notated by a–, b–, and c–type ∼–equivalence

classes as in section 1.2. Let DE be the multitwist group on E, and let

f = Dα1
a1
· · ·Dαp

apD
β11

b11
· · ·Dβ1q1

b1q1
Dβ21

b21
· · ·Dβ2q2

b2q2
· · ·Dβrqr

brqr
Dγ1

c1
· · ·Dγs

cs

be an element of DE. Then f is an element of DE ∩ T ≡ TE, which we

call the Torelli multitwist group of E, if and only if

i) γi = 0, 1 ≤ i ≤ s, and

ii) βj1 + βj2 + · · ·+ βjqj = 0, 1 ≤ j ≤ r.
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Consequently, TE is a free Abelian group of rank

p+ (q1 − 1) + (q2 − 1) + · · ·+ (qr − 1) = p+ q1 + q2 + · · ·+ qr − r.

Proof:

⇒) Assume that f ∈ TE.

Let G be the reduction system graph of E with edge set E(G). We

weight each edge of G according to the exponent in f of the twist

about its corresponding curve in E, giving w : E(G)→ Z.

Let H = e1e2, . . . , en be a cycle in G. Then, as in section 1.2, H

is defined by any simple closed curve h on S that intersects each of

the corresponding curves e1, e2, . . . , en of E exactly once, and does not

intersect any of the other curves of E. Orient h. Then orient the curves

e1, e2, . . . , en so that 〈h, ei〉 = 1. So we have

0 = 〈h, h〉 = 〈h, f(h)〉 = 〈h, h + ε1e1 + ε2e2 + · · ·+ εnen〉 = ε1 + ε2 + · · ·+ εn,

where εi = w(ei). Hence the weight of every cycle in G is zero. The

conclusion follows from Theorem 1.4.

⇐) Assume that

i) γi = 0, 1 ≤ i ≤ s, and

ii) βj1 + βj2 + · · ·+ βjqj = 0, 1 ≤ j ≤ r.

Since H1(S) has a basis consisting of simple closed curves, in order to

prove that f ∈ T , it suffices to show that in H1(S), we have f(h) = h

for any simple closed curve h on S. Note that for any such h, we have

〈ai, h〉 = 0, 1 ≤ i ≤ p, and after orienting h and then each bij so that
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〈bij, h〉 = 〈bi1, h〉, we have bij = bi1, 2 ≤ j ≤ qi, 1 ≤ i ≤ r. Let

δi = 〈bi1, h〉. Then in H1(S) we have

f(h) = Dα1
a1
· · ·Dαp

apD
β11

b11
· · ·Dβ1q1

b1q1
Dβ21

b21
· · ·Dβ2q2

b2q2
· · ·Dβrqr

brqr
Dγ1

c1
· · ·Dγs

cs
(h)

= h + β11〈b11, h〉b11 + · · ·+ β1q1
〈b1q1

, h〉b1q1
+ · · ·

+βr1〈br1, h〉br1 + · · ·+ βrqr〈brqr , h〉brqr
= h + δ1(β11 + · · ·+ β1q1

)b11 + · · ·+ δr(βr1 + · · ·+ βrqr)br1

= h

¤

Theorem 2.2 Let S be a closed connected oriented surface, and let

E = {e1, e2, . . . , en} be a reduction system on S. Let f = Dε1
e1
Dε2

e2
· · ·Dεn

en

be a multitwist on E. Let G be the reduction system graph of E, and

define a weighting w : E(G)→ Z of G by w(ei) = εi. Then f is in the

Torelli multitwist group TE if and only if the weight of every cycle in G

is zero.

Proof:

Partition E into ∼–equivalence classes and write

E = {a1, . . . , ap, b11, . . . , b1q1
, b21, . . . , b2q2

, . . . , br1, . . . , brqr , c1, . . . , cs}.

Theorems 1.4 and 2.1 show the conditions to be equivalent. ¤

Given a pair, e1 and e2, of disjoint, non-separating, but homologous

simple closed curves on S, we call De1
D−1

e2
a bounding-pair map. Powell
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[12] has shown that the Torelli group T is generated by bounding pair

maps and Dehn twists about separating simple closed curves.

Corollary 2.3 Let S, E, DE, and TE be as in Theorem 2.1. Let D′ be

the subgroup of M(S) generated by

i) bounding pair maps about bounding pairs in E, and

ii) Dehn twists about separating curves in E.

Then D′ = DE ∩ T = TE.

Proof:

By the definition of DE, it is clear that every generator of D′ is in DE.

By Powell’s result noted above, every generator of D′ is in T . Thus

D′ ⊆ DE ∩ T . We must show that DE ∩ T ⊆ D′.
Let f ∈ DE ∩ T . By Theorem 3.1, we know that

f = Dα1
a1
· · ·Dαp

apD
β11

b11
· · ·Dβ1q1

b1q1
Dβ21

b21
· · ·Dβ2q2

b2q2
· · ·Dβr1

br1
· · ·Dβrqr

brqr
,

where βi1+βi2+· · ·+βiqi = 0, 1 ≤ i ≤ r. Since each Dαi
ai

is a product of

type–(ii) generators of D′, we will be done if we write Dβi1
bi1
Dβi2

bi2
· · ·Dβiqi

biqi

as a product of bounding pair maps. We do this:

Dβi1
bi1
Dβi2

bi2
· · ·Dβiqi

biqi
= (Dbi2D

−1
bi1

)βi2(Dbi3D
−1
bi1

)βi3 · · · (Dbiq1
D−1

bi1
)βiqi ,

where we note that −βi2 − βi3 − · · · − βiqi = βi1. ¤

Corollary 2.4 Let S be a closed, connected, oriented surface, and let

E = {a1, . . . , ap, b11, . . . , b1q1
, b21, . . . , b2q2

, . . . , br1, . . . , brqr , c1, . . . , cs}
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be a reduction system on S, notated by a–, b–, and c–type ∼–equivalence

classes as in section 2. Let DE be the multitwist group on E, and let

f = Dα1
a1
· · ·Dαp

apD
β11

b11
· · ·Dβ1q1

b1q1
Dβ21

b21
· · ·Dβ2q2

b2q2
· · ·Dβrqr

brqr
Dγ1

c1
· · ·Dγs

cs

be an element of DE. Let m ≥ 2 be an integer.

Then f ∈ ΓS(m) ≡ {g ∈ M(S) : g acts trivially on H1(S;Zm)} if and

only if

i) γi ≡ 0 (mod m), 1 ≤ i ≤ s, and

ii) βj1 + βj2 + · · ·+ βjqj ≡ 0 (mod m), 1 ≤ j ≤ r.

Let S be the surface of genus g ≥ 2 and E the reduction system

on S shown in Figure 2.1. Since E consists of 2g − 3 a–type curves,

rank(TE) = 2g−3. This example, along with Theorem 2.7 below, shows

that the maximal rank of an Abelian subgroup of the Torelli group is

attained by a multitwist group.

Figure 2.1: The rank of the Torelli multitwist group on this reduction system is 2g − 3.
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2.2 The Rank of Abelian Subgoups of the Torelli Group

We prove that for any closed oriented surface of genus g ≥ 2, the general

Abelian subgoup of its Torelli group has rank ≤ 2g − 3. We first give

two lemmas.

Lemma 2.5 Let S be a closed, connected, oriented surface, and E a

reduction system on S with reduction system graph G. Let TE be the

Torelli multitwist group on E, as in Theorem 2.1. Then rank(TE) ≤
ν − 1, where ν is the number of vertices of G, or, equivalently, the

number of components of SE.

Proof:

Let G have edge set

E(G) = {a1, . . . , ap, b11, . . . , b1q1
, b21, . . . , b2q2

, . . . , br1, . . . , brqr , c1, . . . , cs}

notated according to a- b-, and c-type equivalence classes. Let

E ′ = {b11, . . . , b1(q1−1), b21, . . . , b2(q2−1), . . . , br1, . . . , br(qr−1)} ⊆ E(G)

and let G′ = G[E ′]. Then G′ contains no cycles, since any cycle con-

taining one edge of a b–type class contains the whole class. Therefore,

G′ is contained in a spanning tree T . T contains each cut edge ai,

1 ≤ i ≤ p, so T contains the set of edges E ′ ∪ {a1, a2, . . . , ap}, and by

Theorem 2.1, the cardinality of this set equals the rank of TE. Hence

ν − 1 = card(E(T )) ≥ p+ (q1 − 1) + · · ·+ (qr − 1) = rank(TE)

¤

25



           

Lemma 2.6 Let S be a closed, connected, oriented surface of genus

g ≥ 2, and let E be a reduction system on S. Let Ω denote the number

of components of SE not homeomorphic to a pair of pants or a one-holed

torus. Let TE be the Torelli multitwist group on E. Then rank(TE)+Ω ≤
2g − 3.

Proof:

Let G be the reduction system graph of E. We use the following nota-

tion:

• Γ is the maximum genus of any component of SE.

• ∆ is the maximum degree of any vertex of G, or, equivalently, the

maximum number of boundary curves of any component of SE.

• νb is the number of vertices of G of degree b, or, equivalently, the

number of components of SE with b boundary curves.

• νγb (ν≥γb ) is the number of components of SE of genus γ (≥ γ) having

b boundary curves, or, equivalently, the number of vertices of G of

degree b corresponding to a component of SE of genus γ (≥ γ).

So we have

νb =
Γ∑

γ=0

νγb and ν =
∆∑

b=1

νb

But the assumption that each element of E is homotopically nontrivial

means ν0
1 = 0, and the assumption that the elements of E are pairwise

nonisotopic means ν0
2 = 0. So, in fact, ν = ν≥1

1 +ν≥1
2 +ν3 +ν4 + · · ·+ν∆.

Now, ν1
1 is the number of one-holed tori, and ν0

3 is the number of pairs
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of pants, so by the definition of Ω, we have

Ω = ν≥2
1 + ν≥1

2 + ν≥1
3 + ν4 + · · ·+ ν∆.

Hence 2g−2 = −χ(S)

=
∑

components V of SE

−χ(V)

=
Γ∑

γ=1

(2γ − 1)νγ1 +
Γ∑

γ=1

(2γ)νγ2 +
∆∑

b=3

Γ∑

γ=0

(2γ + b− 2)νγb .

By Lemma 3.1, rank(TE) ≤ ν − 1, so we have

rank(TE) + Ω≤ν + Ω− 1 (2.1)

= (ν≥1
1 +ν≥2

1 +· · ·+ν∆)+(ν≥2
1 +ν≥1

2 +ν≥1
3 +ν4+· · ·+ν∆)−1

= [(ν1
1 +2ν≥2

1 )+2ν≥1
2 +(ν0

3 +2ν≥1
3 )+2ν4+2ν5+· · ·+2ν∆]−1

≤
[ Γ∑

γ=1

(2γ − 1)νγ1 +
Γ∑

γ=1

(2γ)νγ2 +
∆∑

b=3

Γ∑

γ=0

(2γ + b− 2)νγb

]
−1

=−χ(S)− 1

= 2g − 3

¤

Theorem 2.7 Let S be a closed, connected, oriented surface of genus

g ≥ 2, and let A be an Abelian subgroup of T , the Torelli group of S.

Then rank(A) ≤ 2g − 3.

Proof:

Let f ∈ A, f 6= 0. As mentioned in the introduction, by Thurston’s

classification, f is either reducible or pseudo-Anosov.

27



            

Case 1: f is pseudo-Anosov.

By the corollary to McCarthy’s Theorem given in the introduction, A
is infinite cyclic.

Case 2: f is reducible.

Let E =
⋃

h∈A
Eh. Then E is an adequate reduction system for each

h ∈ A ([2], Lemma 3.1(1)), and f reducible implies E 6= ∅, so every

element of A is reducible.

Let Λ : ME(S) → M(SE) be the reduction homomorphism. Then

ker(Λ) = DE, the multitwist group on E, and thus

ker(Λ|A) = ker(Λ) ∩ A = DE ∩ A = DE ∩ T ∩ A = TE ∩ A.

We now have a short exact sequence

0 −→ TE ∩ A −→ A
Λ|A−→ Λ(A) −→ 0

of free Abelian groups, which shows that

rank(A) = rank(TE ∩ A) + rank(Λ(A)) ≤ rank(TE) + rank(Λ(A))

By applying Lemma 2.6, we will be done if we show that rank(Λ(A)) ≤
Ω, the number of components of SE not homeomorphic to a pair of

pants or a one-holed torus.

Ivanov’s theorem, given in the introduction, implies that Λ(f) re-

stricts to each component S1,S2, . . . ,Sν of SE, giving “projections”

pi : Λ(A) −→ M(Si) induced by restricting representatives. Set

Ai = pi(Λ(A)) ⊆ M(Si). Then Λ(A) ⊆ ⊕Ai, so rank(Λ(A)) ≤
∑

rank(Ai). We make the following observations:

i) If Si is a pair of pants, then M(Si) is finite, so rank(Ai) = 0.
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ii) If Si is a one-holed torus, then the homomorphism H1(Si)→ H1(S)

induced by inclusion is injective. Any homeomorphism f representing

an element of A maps a circle c in Si to a circle c′ in Si, so Ai lies

within the Torelli group of Si, which is trivial in this case.

iii) If Si is neither a pair of pants nor a one-holed torus, then Ai is

either trivial or is an adequately reduced torsion-free Abelian subgroup

of M(Si). So again by McCarthy’s theorem, rank(Ai) ≤ 1.

These observations tell us that

rank(Λ(A)) ≤
ν∑

i=1

rank(Ai) ≤ Ω. (2.2)

¤
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CHAPTER 3

Automorphisms of the Torelli

Group

Our reason for investigating Abelian subgroups of the Torelli group is

to provide the necessary algebraic information about the Torelli group

so that we may prove the following, the principal problem of this work.

Conjecture 1 Let S be a closed, connected, oriented surface of genus

g ≥ 3, and let Ψ : T → T be an automorphism of the Torelli group T
of S. Then Ψ is induced by an homeomorphism h : S → S. That is,

for any f ∈ T , we have Ψ(f) = hfh−1.

As stated in the introduction, our strategy for proving this conjecture

is comprised of three basic steps. The first, in section 3.1, is to give

algebraic characterizations of power of Dehn twists about separating

curves and powers of bounding pair maps. From this it will follow that

Ψ must permute the set of left and right Dehn twists about separating

curves and that Ψ must permute the set of bounding pair maps. The

second step, in section 3.2, is to show that Ψ therefore induces an

automorphism of C(S), the complex of curves of S. At the time of this

writing, this step is incomplete. Finally, a theorem of Ivanov states

that any automorphism of C(S) (in particular, Ψ) is induced by a
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homeomorphism h of S. In section 3.3 we apply this theorem and

show, assuming that it is possible to complete step two, that the two

automorphisms of T , Ψ and the one induced by the homeomorphism

h, are the same. This method of proof was first employed by Ivanov in

[9] to prove the analogous theorem about the mapping class group.

In several formal and informal announcements made between Octo-

ber 2001 and March 2002, Benson Farb stated that he is able to prove

this conjecture in the case g ≥ 4, [4], [5], [6]. His strategy is the same,

but we note that his characterization of powers of Dehn twists about

separating curves and powers of bounding pair maps is only valid for

genus at least 4, whereas our characterization is valid for genus 3 and

above. Also, his proof that an automorphism of the Torelli group in-

duces an automorphism of the complex of curves appears to rely on the

ability to produce three curves on the surface, each pair of which is a

bounding pair. This is possible only for genus 4 and above.

3.1 The Algebraic Characterization of Elementary T Classes

In this section assume that the genus of S is at least 3.

Recall that if f ∈ T (S) is reducible along E, and Λ : ME(S) →
M(SE) is the reduction homomorphism, then, by Ivanov’s Theorem

given on page 4, Λ(f) leaves each component of SE invariant, and so

Λ(f) restricts to the mapping class group of each component. Also,

f(a) = a for each a ∈ E.

Lemma 3.1 i) Let f ∈ T (S) be reducible along the separating simple

31



              

closed curve a, and Λ the reduction along a. Let S′ be a component of

Sa and f ′ the restriction of Λ(f) to M(S′). Then f ′ ∈ T (S′).

ii) Let f ∈ T (S) be reducible along the bounding pair {a, b}, and Λ

the reduction along {a, b}. Let S′ be a component of S{a,b} and f ′ the

restriction of Λ(f) to M(S′). Then f ′ ∈ T (S′).

Proof:

i) Since a is separating, we may consider S′ to be a subsurface of S.

Then a symplectic basis for H1(S
′) may be extended to a symplectic

basis for H1(S) (see figure 3.1). Thus H1(S
′) is a direct summand of

H1(S), and since f acts trivially on H1(S), its restriction to S′, which

is f ′, acts trivially on H1(S
′). That is, f ′ ∈ T (S′).

Figure 3.1: A symplectic basis for H1(S′) completed to a symplectic basis for H1(S).

ii) Since the two boundary components of S′ correspond to the distinct

curves a and b in S, we may again consider S′ to be a subsurface of

S. Again, a basis for H1(S
′) may be extended to a basis for H1(S)

(see figure 3.2) so H1(S
′) is a direct summand of H1(S). As in (i),

f ′ ∈ T (S′).

¤
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Figure 3.2: A basis for H1(S′) containing b completed to a symplectic basis for H1(S).

Lemma 3.2 Let E consist of either a single separating curve or a single

bounding pair, and let Λ :ME(S)→M(SE) denote the reduction along

E. Let S′ and S′′ be the components of SE. If f ∈ T (S) is reducible

along E, and if f ′ is the restriction of Λ(f) to M(S′), then there exists

h ∈ T (S), reducible along E, such that the restriction of Λ(h) toM(S′)

is equal to f ′ and the restriction of Λ(h) to M(S′′) is trivial.

Note: By Lemma 3.1, all mapping classes mentioned in this lemma

actually lie in the Torelli group of their respective surfaces.

Proof:

As in the preceding lemma, we may consider S′ and S′′ to be subsur-

faces of S. Now, take a homeomorphism F ′ : S′ → S′ representing f ′

and extend F ′ trivially to a map F ′′ : S → S. In the case that E is a

separating curve, we may let h be the mapping class of F ′′. In the case

that E is a bounding pair, we may compose F ′′ with a multitwist about

E so that the resulting mapping class h lies in the Torelli group of S.
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In either case then, h ∈ T (S) is reducible along E, and the restriction

of Λ(h) to T (S′) is equal to f ′, while S′′ is a trivial component of h. ¤

We use the symbol CG(x) to denote the centralizer of x in the group

G, and Z(G) to denote the center of G.

Lemma 3.3 Let a be a separating simple closed curve on S and 0 6=
n ∈ Z. Then CT (Dn

a ) consists of all elements of T that are reducible

along a, and Z(CT (Dn
a )) = Z(CT (Da)) = 〈Da〉.

Proof:

Let f ∈ T be reducible along a. Then fDn
af
−1 = Dn

f(a) = Dn
a ⇒

fDn
a = Dn

af , so f ∈ CT (Dn
a ). Now let f ∈ CT (Dn

a ). That is, f ∈ T and

fDn
a = Dn

af . Then f(a) = f(EDn
a
) = EfDn

a f
−1 = EDn

f(a)
= EDn

a
= a, so f

is reducible along a. This proves the first assertion.

Now we show that Z(CT (Da)) = 〈Da〉.
First, Da ∈ Z(C(Da)), so 〈Da〉 ⊆ Z(C(Da)). Now, Sa consists of two

components, S1 and S2, at most one of which is a one-holed torus. If

Si, i ∈ {1, 2}, is not a one-holed torus, then it is a surface of genus

at least 2 with one boundary component. In each such component of

Sa, perform the following construction: Choose a separating curve c,

and a family {e1, e2, . . . , em} of curves which together with c fill Si. Let

d = DemDem−1
· · ·De1

(c), where ej ∩Dej−1
Dej−2

· · ·De1
(c) 6= ∅. Then d is

a separating curve in Si and c and d fill Si, since the complementary

components of c∪ d are the same as the complementary components of

c ∪ e1 ∪ e2 ∪ · · · ∪ em. Let fi = DcD
−1
d and gi = D2

cD
−1
d . Then fi and
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gi do not commute, and both fi and gi are pseudo-Anosov elements of

the Torelli group of Si (cf. [7]).

It follows from the two preceding lemmas that there exist elements

f and g of T (S) that are reducible along a such that the reduction

of f to each component Si which is not a one-holed torus is fi and

the reduction of g to Si is gi. (The reduction to any one-holed torus

component of Sa must be trivial.)

Let h be a nontrivial element of Z(CT (Da)). Then h ∈ T , so h has

infinite order, and h ∈ CT (Da), so h is reducible along a. As remarked

in the introduction, then, Eh 6= ∅. We claim that Eh = {a}.
Suppose a 6= b ∈ Eh. Since b is essential and a is a reduction class

for h, a and b are disjoint (Theorem 0.2 (i)), so b lies in either S1 or

S2. If Si is a one-holed torus, then h is trivial on Si, and in this case,

b ⊂ Si implies that b is not essential, since the removal of b from any

adequate reduction system for h leaves an adequate reduction system

contradicting Theorem 0.2 (ii). So b lies within Si, where Si is not a

one-holed torus component of Sa. Since each of f and g constucted

above are reducible along a, we know that f and g are elements of

CT (Da). Thus, both f and g commute with h. In particular, the facts

that f and h commute and b is an essential reduction class for h imply

that b is a reduction class for f . But f has no reduction class within

Si, since by construction the restriction of f to Si is pseudo-Anosov.

We conclude that Eh = {a}.
So Z(CT (Da)) is a finitely generated, torsion free Abelian subgroup
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of T , and
⋃

h∈Z(CT (Da))

Eh = {a}.

Let Λ : Ma(S) → M(Sa) be the reduction homomorphism, and

denote Z(CT (Da)) by simply Z. Now, ker(Λ) = 〈Da〉, so ker(Λ|Z) =

〈Da〉∩Z = 〈Da〉. We have the short exact sequence of Abelian groups:

1 −→ 〈Da〉 −→ Z
Λ|Z−→ Λ(Z) −→ 1

Since h commutes with both f and g, Λ(h) commutes with both

Λ(f) and Λ(g). Let Si be a component of Sa that is not a one-holed

torus, and let hi be the restriction of Λ(h) to Si. Then hi commutes

with both fi and gi. By McCarthy’s theorem given in the introduction

CT (Si)(fi), the centralizer of fi in T (Si), is infinite cyclic since T (Si),

and thus also CT (Si)(fi), is torsion-free. Similarly, CT (Si)(gi) is infinite

cyclic. Since fi and gi do not commute, the cyclic subgroups CT (Si)(fi)

and CT (Si)(gi) intersect trivially. But hi is in this intersection, and hence

we see that each component of h is trivial. Therefore Λ(Z) = {1}, so

that 〈Da〉 −→ Z(CT (Da)) is an isomorphism.

Finally, it is clear that Z(CT (Dn
a )) = Z(CT (Da)). ¤

Lemma 3.4 Let {a, b} be a bounding pair on S, and let 0 6= n ∈ Z.

Then CT ((DaD
−1
b )n) consists of all elements of T that are reducible

along both a and b, and

Z(CT ((DaD
−1
b )n)) = Z(CT (DaD

−1
b )) = 〈DaD

−1
b 〉.

Proof:

Let f ∈ T be reducible along both a and b. Then fDaD
−1
b f−1 =
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fDaf
−1fD−1

b f−1 = Df(a)D
−1
f(b) = DaD

−1
b , so f ∈ CT (DaD

−1
b ).

Now let f ∈ CT (DaD
−1
b ). That is, f ∈ T , and fDaD

−1
b = DaD

−1
b f .

Then

f({a, b}) = f(EDaD
−1
b

) = EfDaD
−1
b f−1 = EDf(a)D

−1
f(b)

= EDaD
−1
b

= {a, b}.

Therefore f is reducible along both a and b. This proves the first

assertion.

The proof of the second assertion follows the proof of Lemma 3.3. ¤

Definition Let 1 6= f ∈ T . We say that f is an elementary T class

if and only if f is either a power of a Dehn twist about a separating

curve or a power of a bounding pair map.

Theorem 3.5 Let f ∈ T . Then f is an elementary T class if and only

if each of the following are true:

i) CT (f) is not infinite cyclic,

ii) Z(CT (f)) is infinite cyclic, and

iii) f is contained in an Abelian subgroup of T having rank 2g − 3.

Proof:

⇒) Assume f is an elementary T class.

Case 1: f is a power of a Dehn twist about a separating curve a,

say, f = Dn
a , where n 6= 0. In this case, a can be completed to a pants

decomposition E on S whose reduction system graph is shown in Figure

3.3.
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Figure 3.3: The Torelli multitwist group on a reduction system with this graph has rank 2g − 3.

The Torelli multitwist group on E, TE, is an Abelian subgroup of T
with rank 2g − 3, and f ∈ TE, so f ∈ TE ⊂ CT (f). Since g ≥ 3, it

follows that 2g − 3 ≥ 3, so CT (f) is not infinite cyclic. So both (i) and

(iii) hold. Finally, by Lemma 3.3, Z(CT (f)) is infinite cyclic.

Case 2: f is a power of a bounding pair map, say, f = (DaD
−1
b )n,

where n 6= 0. In this case, {a, b} can be completed to a pants decom-

position E whose reduction system graph is shown in Figure 3.4.

Figure 3.4: The Torelli multitwist group on a reduction system with this graph has rank 2g − 3.

The Torelli multitwist group on E, TE, is an Abelian subgroup of T
with rank 2g − 3, and f ∈ TE, so f ∈ TE ⊂ CT (f). Since g ≥ 3, it

follows that 2g− 3 ≥ 3, so that CT (f) is not infinite cyclic. So both (i)

and (iii) hold. Finally, by lemma 3.3, Z(CT (f)) is infinite cyclic.

⇐) Assume (i), (ii), and (iii) hold.

Since CT (1) = T and Z(T ) = {1}, we have by (ii) that f 6= 1. Then

f ∈ T implies that f is either pseudo-Anosov or infinite-order reducible.

But CT (f) is not infinte cyclic by (i), so f is not pseudo-Anosov. Hence

f is infinite-order reducible, and therefore Ef , the essential reduction

38



             

system for f , is nonempty.

Assume that f is not an elementary T class. We obtain a contradic-

tion by considering Ef .

First, suppose Ef contains a separating curve a.

Let g ∈ CT (f). Then g(Ef) = Egfg−1 = Ef , so a is a reduction class

for g. Ivanov’s theorem implies that g(a) = a, and so

gDag
−1 = Dg(a) = Da ⇒ gDa = Dag.

Since f ∈ CT (f), the paragraph above shows that Da ∈ CT (f), as well

as that Da ∈ Z(CT (f)). Consider the short exact sequence of Abelian

groups

0 −→ 〈Da〉 −→ Z(CT (f)) −→ Z(CT (f))/〈Da〉 −→ 0

Claim 1: Z(CT (f))/〈Da〉 is not a torsion group.

Proof: Now, f ∈ Z(CT (f)) and f /∈ 〈Da〉 since f is not an elementary

T class, but suppose that fm = Dn
a for some integers m and n. Then

{a} = EDa
= EDn

a
= Efm = Ef , so the reduction of f along a is

adequately reduced. But f /∈ 〈Da〉 implies that the reduction of f

along a is not trivial, so that f has a pseudo-Anosov component. But

then fm = Dn
a is impossible unless m = n = 0. Hence f generates an

infinite cyclic subgroup in Z(CT (f))/〈Da〉, proving Claim 1.

Therefore, the rank of Z(CT (f))/〈Da〉 is at least one, so the rank of

Z(CT (f)) is at least 2, contradicting condition (ii). We conclude that

Ef can contain no separating curves.

Second, suppose that Ef contains a bounding pair {a, b}.
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Let g ∈ Z(CT (f)). Then g(Ef) = Egfg−1 = Ef , so both a and b are

reduction classes for g. Ivanov’s theorem implies that g(a) = a and

g(b) = b, so

gDaD
−1
b g−1 = Dg(a)D

−1
g(b) = DaD

−1
b ⇒ gDaD

−1
b = DaD

−1
b g.

Since f ∈ CT (f), the paragraph above shows that DaD
−1
b ∈ CT (f),

as well as that DaD
−1
b ∈ Z(CT (f)). Consider the short exact sequence

of Abelian groups

0 −→ 〈DaD
−1
b 〉 −→ Z(CT (f)) −→ Z(CT (f))/〈DaD

−1
b 〉 −→ 0

Claim 2: Z(CT (f))/〈DaD
−1
b 〉 is not a torsion group.

Proof: Now, f ∈ Z(CT (f)) and f /∈ 〈DaD
−1
b 〉, since f is not an

elementary T class, but suppose that fm = (DaD
−1
b )n for some integers

m and n. Then {a, b} = EDaD
−1
b

= E(DaD
−1
b )n = Efm = Ef , so the

reduction of f along {a, b} is adequately reduced. If the reduction of f

along {a, b} were trivial, it would follow that

f ∈ 〈Da, Db〉 ∩ T = T{a,b} = 〈DaD
−1
b 〉

which is a contradiction. So we conclude that f has a pseudo-Anosov

component. But then fm = (DaD
−1
b )n is impossible unless m = n = 0.

Hence f generates an infinite cyclic supgroup in Z(CT (f))/〈DaD
−1
b 〉,

proving Claim 2.

Therefore, the rank of Z(CT (f))/〈DaD
−1
b 〉 is at least one, so the rank

of Z(CT (f)) is at least two, contradicting condition (ii). We conclude

that Ef contains no bounding pairs.

Therefore, Ef consists of a collection of c-type curves.
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Let A be an Abelian subgroup of T containing f , and let E =
⋃

g∈A
Eg.

Then Ef ⊂ E.

By equations 2.1 and 2.2, we know that

rank(A) ≤ rank(TE) + Ω ≤ ν + Ω− 1 ≤ 2g − 3.

By considering equation 2.1, we see that the last inequality above will

be strict unless each of the following are true:

• Each component of SE having one or two boundary components

has genus 1.

• Each component of SE having three or four boundary components

has genus 0.

• No component of SE has more than four boundary components.

Suppose each of these conditions hold. Consider the pseudo-Anosov

components of f ; each of them must be a pseudo-Anosov component of

each 1 6= h ∈ A. None can have exactly one or two boundary curves,

since such boundary curves are elements of E, and we have already seen

that E contains no separating curves or bounding pairs. None can be

a pair of pants, since pants do not support pseudo-Anosov mapping

classes. So every pseudo-Anosov component of f must be a four-holed

sphere, and we note that in the reduction system graph of E, such a

component would correspond to a non-cut vertex of degree 4. But by

the following lemma, then, rank(A) < 2g − 3. That is, f cannot lie in

an Abelian subgroup of T having rank 2g − 3, contradicting condition

(iii).
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We conclude that f must be an elementary T class. ¤

Lemma 3.6 Let A be a reducible Abelian subgroup of T , and let E =
⋃

g∈A
Eg be the essential reduction system for A. If the reduction system

graph for E has a non-cut vertex of degree ≥ 3, then rank(A) < 2g− 3.

Proof:

In this proof, we use the notation and results found in Chapters 1 and

2.

Let v be a non-cut vertex of degree ≥ 3. Then no two of the at-least

three edges incident with v are ∼-equivalent b-type edges and none are

cut edges (a-type edges). So there exists a spanning tree T in the graph

containing none of the b-type edges incident with v. Hence T contains

a c-type edge, incident with v, so

ν − 1 = card(E(T )) > p+ (q1 − 1) + (q2 − 1) + · · ·+ (qr − 1) = rank(TE)

But then rank(A) ≤ rank(TE) + Ω < ν − 1 + Ω ≤ 2g − 3. ¤

Theorem 3.7 Let f be an elementary T class. Then f is a power of

a Dehn twist about a separating curve of genus 1 if and only if f is

contained in an Abelian subgroup of T of rank 2 which is not contained

within any Abelian subgroup of T having higher rank.

Proof:

⇒) Assume the f is a power of a Dehn twist about a separating curve

of genus 1, say f = Dp
a, where 0 6= p ∈ Z.
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Let S′ be the component of Sa having genus > 1, and let S′′ be the

genus 1 component of Sa. Let h ∈ T be reducible along a such that

S′ is a pseudo-Anosov component of h. Since h reduces along a, f and

h commute, so 〈f, h〉 is Abelian. We have a short exact sequence of

Abelian groups

0 −→ 〈f〉 −→ 〈f, h〉 −→ 〈f, h〉/〈f〉 −→ 0

Suppose that hm = fn for some integers m and n. Since hm has a

pseudo-Anosov component for all nonzero integersm, whereas fn has no

pseudo-Anosov component for any integer n, we must have n = m = 0,

so that the coset of h has infinite order in 〈f, h〉/〈f〉. Thus 〈f, h〉/〈f〉
is not a torsion group, and hence has rank 1. By our sequence, then,

we see that that 〈f, h〉 has rank 2.

We must show now that ifA is an Abelian group and 〈f, h〉 ∈ A ⊂ T ,

then the rank of A is at most 2. We have a short exact sequence of

Abelian groups

0 −→ 〈f, h〉 −→ A −→ A/〈f, h〉 −→ 0

so rank(A) = 2 + rank(A/〈f, h〉). We show that A/〈f, h〉 is a torsion

group, and hence has rank 0.

Let 1 6= a ∈ A. We prove that am ∈ 〈f, h〉 for some nonzero integer

m, which will establish that A/〈f, h〉 is a torsion group. Now, f, a ∈ A
imply that a and f commute, so a is reducible along a, and a ∈ T
implies that a has infinite order. Therefore, the essential reduction

system for a, Ea, is nonempty. Suppose there exists a 6= b ∈ Ea. Then
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a and b must be disjoint, so either b lies within S′, or b lies within S′′.

But in the second case, since a is trivial on this component, b would

not be essential. So b ⊂ S′. But the fact that a commutes with h

implies that h is reducible along b. This is a contradiction, since S′ is

a pseudo-Anosov component of h. Hence Ea = {a}.
Let Λ : Ma(S) → M(Sa) be the reduction homomorphism. So

f ∈ ker(Λ) = 〈Da〉. Now, for any d ∈ A, the restriction of Λ(d) to S′′ is

trivial. Thus Λ(A) is isomorphic to a torsion-free Abelian subgroup of

T (S′) (Lemma 3.1) containing the pseudo-Anosov class Λ(h). By the

corollary to McCarthy’s Theorem, Λ(A) is cyclic. Hence if a /∈ ker(Λ),

then there are nonzero integers m and n such that Λ(a)m = Λ(h)n.

But then amh−n ∈ ker(Λ), so have am = Dk
ah

n for some integer k, and

therefore apm = Dpk
a h

pn = fkhnp. That is, apm ∈ 〈f, h〉. In the case

that a ∈ ker(Λ), so that a = Dk
a , it follows that ap = fk ∈ 〈f, h〉.

⇐) Assume that f is not a power of a Dehn twist about a separating

curve of genus 1.

Then f is a power of a Dehn twist about a separating curve of genus

at least 2, say f = kn where k = Da, or else f is a power of a bounding

pair map, say f = kn where k = DaD
−1
b . In either case, we want to

show that it is not true that f is contained in Abelian subgroup of T of

rank 2 which is not contained in an Abelian subgroup of T with higher

rank. In other words, if f ∈ A ⊂ T , where A is Abelian and of rank

2, then there exists an Abelian subgroup B ⊂ T such that A ⊂ B and

rank(B) > 2. We consider the two possibilites for k simultaneously.
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Let p be the smallest positive integer such that kp ∈ A.

Claim: A/〈kp〉 is torsion-free.

Proof: Suppose that h ∈ AÂ〈kp〉, but hq ∈ 〈kp〉 for some 0 6= q ∈ Z.

That is, hq = kpr for some 0 6= r ∈ Z. Since Eh = Ehq = Ekpr = Ek by

Theorem 0.2 (iv), we see that h reduces along Ek, which is either the

separating curve a or the bounding pair {a, b}, whichever the case may

be. Let Λ denote the reduction along Ek. So Λ(h)q = Λ(hq) = Λ(kpr) =

1. By Ivanov’s Theorem, Λ(h) leaves both of the two components of SEk

invariant, and since h is in the Torelli group of S and we are reducing

along either a separating curve of a bounding pair, by Lemma 3.1 each

restriction of Λ(h) lies in the Torelli group of its component, which is

torsion-free. These facts imply that Λ(h) = 1, so that h is a Torelli

multitwist about Ek, which then implies that h is a power of k. But

then it is easy to see that this will contradict either the minimality of

p or the assumption that h /∈ 〈kp〉, proving the claim.

Since A has rank two, it follows that there exists t ∈ A such that

A = 〈kp〉 ⊕ 〈t〉, and since t and k commute, t reduces along Ek. Let S1

and S2 be the two components of SEk (neither of which is a one-holed

torus), and Λ the reduction along Ek. Note that Λ(t) is not trivial; we

may assume without loss of generality that S1 is a nontrivial component

of t. By Lemma 3.2, there exists t1 ∈ T (S) reducible along Ek such

that the restrictions of Λ(t) and Λ(t1) to T (S1) are the same, and that

S2 is a trivial component of t1. If S2 is also a nontrivial component of

t, then we have t2 ∈ T (S) defined analogously to t1. For the case that
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S2 is a trivial component of t, note that S2 contains a separating curve

c, so let t2 = Dc. In either case, methods as employed in the preceding

lemmas show that B = 〈kp, t1, t2〉 is an Abelian subgroup of the Torelli

group with rank 3. Then t = t1t2k
r or t = t1k

r for some integer r, so

t ∈ B. Thus f ∈ A ⊂ B ⊂ T , and we are done. ¤

Theorem 3.8 Let f be an elementary T class. Then f is a power of

a Dehn twist about a separating curve of genus ≥ 2 if and only if there

exist g Dehn twists Da1
, Da2

, . . . Dag about separating curves of genus

1 such that 〈f,Da1
, Da2

, . . . Dag〉 is an Abelian subgoup of T with rank

g + 1.

Proof:

⇒) Assume f is a power about a separating curve of genus ≥ 2, say

f = Dp
a.

Then there are g separating curves a1, a2, . . . , ag of genus 1 that are

pairwise disjoint and each disjoint from a. See figure 3.5. It follows

that 〈f,Da1
, Da2

, . . . Dag〉 is an Abelian subgroup of T with rank g+ 1.

Figure 3.5: g pairwise disjoint separating curves of genus 1, each disjoint from a.

⇐) Assume that f is not a power of a Dehn twist about a separating

curve of genus ≥ 2.
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First, suppose that f is a power of a Dehn twist about a separating

curve a of genus 1. In this case, there do not exist g separating curves

that are pairwise disjoint and disjoint from a.

Second, if f is a power of a bounding pair map, say f = (DaD
−1
b )p,

then there do not exist g separating curves of genus 1 that are pairwise

disjoint and each disjoint from both a and b.

So in either case, no such group 〈f,Da1
, Da2

, . . . Dag〉 can exist. ¤

Theorem 3.9 Let Ψ : T → T be an automorphism of the Torelli group

of S. Then Ψ permutes that set of left and right Dehn twists about

separating curves, and Ψ permutes the set of bounding pair maps.

Proof:

Let f ∈ T .

If CT (f) is not infinite cyclic, then CT (Ψ(f)) is not infinite cyclic. If

Z(CT (f)) is infinite cyclic, then Z(CT (Ψ(f))) is infinite cyclic, and if f

is contained within an Abelian subgroup A ⊂ T with rank 2g−3, then

Ψ(f) is contained within the Abelian subgroup Ψ(A), which has rank

2g − 3. Thus, Ψ sends elementary T classes to elementary T classes.

Now suppose that Ψ(f) is an elementary T class. Since Ψ−1 : T → T
is also an automorphism, and thus also sends elementary T classes to

elementary T classes, we know that Ψ−1(Ψ(f)) = f is an elementary

T class. Since Ψ is a bijection of T , it follows that Ψ permutes the set

of elementary T classes.

Similarly, we see that Ψ permutes the set of powers of Dehn twists

47



              

about separating curves of genus 1, permutes the set of powers of Dehn

twists about separating curves of genus ≥ 2, and permutes the set of

powers of bounding pair maps.

If f = Da is a right Dehn twist about a separating curve, we know

that Ψ(f) is a power of a Dehn twist about a separating curve, say

Ψ(f) = Dp
b, 0 6= p ∈ Z. Then Ψ−1(Db) is also a power of a Dehn twist

about a separating curve, say Ψ−1(Db) = Dq
c , 0 6= q ∈ Z. Hence

Dqp
c = Ψ−1(Db)

p = Ψ−1Ψ(f) = f = Da.

Since EDa
= {a} and EDqp

c
= {c}, we see that a = c. Hence Da = Dqp

a .

But since Da has infinite order, we must have qp = 1, so that p = ±1.

So Ψ permutes the set of left and right Dehn twists about separating

curves.

If f = DaD
−1
b is a bounding pair map, we know that Ψ(f) is a

power of a bounding pair map, say Ψ(f) = (DcD
−1
d )p, 0 6= p ∈ Z. Then

Ψ−1(DcD
−1
d ) is also a power of a bounding pair map, say Ψ−1(DcD

−1
d ) =

(DeD
−1
f )q, 0 6= q ∈ Z. Hence

(DeD
−1
f )qp = Ψ−1(DcD

−1
d )p = Ψ−1Ψ(f) = f = DaD

−1
b .

Since EDaD
−1
b

= {a, b} and E(DeD
−1
f )qp = {e, f}, we see that {a, b} =

{e, f}. Hence DaD
−1
b = (DaD

−1
b )±qp. But since DaD

−1
b has infinite or-

der, we must have qp = ±1, so that p = ±1. So Ψ also permutes the

set of bounding pair maps. ¤
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3.2 The Complex of Curves

First introduced by William Harvey [8], the complex of curves, C(S),

of S is an abstract simplicial complex whose vertex set is S, the set

of unoriented isotopy classes of homotopically nontrivial simple closed

curves on S, and a collection of vertices forms a simplex if and only

if the vertices have a set of mutually disjoint representative curves. In

other words, a simplex is a reduction system as defined in the intro-

duction. By an automorphism C(S)→ C(S) we mean a bijective map

S→ S of the vertex set of C(S) such that the image of any simplex is

a simplex (i.e., the map is simplicial.)

Notation: Let a be a nonseparating simple closed curve on S. We

write Sa = {b ∈ S : {a, b} is a bounding pair }.

We want to show that our automorphism Ψ : T → T of the Torelli

group induces an automorphism Ψ∗ : C(S) → C(S), where we make

the following definition:

An automorphism Ψ∗ : C(S)→ C(S) is induced by Ψ if and only if

i) for all a separating, Ψ∗(a) = a′ ⇔ Ψ(Da) = (Da′)
ε(a), where ε(a) =

±1, and

ii) for all a nonseparating, Ψ∗(a) = a′ ⇔ there exist functions

σa,a′ : Sa → Sa′ and δa : Sa → {±1}
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such that for all b ∈ Sa, we have

Ψ(DaD
−1
b ) = (Da′D

−1
σa,a′(b))

δa(b).

Our definition above makes it clear where Ψ∗ should send the vertex

corresponding to a separating curve. Conjecture 2 below says that there

exists a unique well-defined image vertex for each vertex corresponding

to a nonseparating curve. The proof of uniqueness is straight-forward

and is stated and proved as the following lemma. The proof of existence,

on the other hand, seems quite difficult, and is incomplete at the time

of this writing. We must also show that the bijection S→ S we get is

simplicial.

Lemma 3.10 Let a be a nonseparating simple closed curve on S. Then

there exists at most one nonseparating simple closed curve a′ on S with

the property that there exist functions σa,a′ : Sa → Sa′ and δa : Sa →
{±1} such that for all b ∈ Sa, we have Ψ(DaD

−1
b ) = (Da′D

−1
σa,a′(b))

δa(b).

Proof:

Suppose there also exists a′′ with σa,a′′ : Sa → Sa′′ and γa : Sa → {±1}
such that for all b ∈ Sa, we have Ψ(DaD

−1
b ) = (Da′′D

−1
σa,a′′(b))

γa(b).

Then for each b ∈ Sa, we have (Da′D
−1
σa,a′(b))

δa(b) = (Da′′D
−1
σa,a′′(b))

γa(b)

and hence

{a′, σa,a′(b)} = {a′′, σa,a′′(b)}. (3.1)

Claim:
⋂

b∈Sa

{a′, σa,a′(b)} = {a′}
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Proof: Suppose there exists a′ 6= c ∈ {a′, σa,a′(b)} for all b ∈ Sa.

That is, c = σa,a′(b) for all b ∈ Sa. This implies that

card{(Da′D
−1
σa,a′(b))

δa(b) : b ∈ Sa} ≤ 2.

But this is a contradiction since Sa, and thus also {DaD
−1
b : b ∈ Sa},

is infinite, and {(Da′D
−1
σa,a′(b))

δa(b) : b ∈ Sa} is the image of the set

{DaD
−1
b : b ∈ Sa} under the injective map Ψ. This proves the claim.

Likewise,
⋂

b∈Sa

{a′′, σa,a′′(b} = {a′′}. But equation (3.1) implies that

∩{a′, σa,a′(b)} = ∩{a′′, σa, a′′(b)}.

That is, a′ = a′′.

¤

Conjecture 2 Let a be a nonseparating simple closed curve on S. Then

there exists a unique nonseparating simple closed curve a′ on S with the

property that there exist functions σa,a′ : Sa → Sa′ and δa : Sa → {±1}
such that for all b ∈ Sa, we have Ψ(DaD

−1
b ) = (Da′D

−1
σa,a′(b))

δa(b).

3.3 Proof that Conjecture 2 implies Conjecture 1

We now prove Conjecture 1, stated on page 30, under the assumption

that Conjecture 2 is true.

Conjecture 2 implies that our automorphism Ψ : T → T induces an

automorphism Ψ∗ : C(S)→ C(S), given by

• for a ∈ S separating, Ψ∗(a) = a′ ⇔ Ψ(Da) = (Da′)
ε(a), and
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• for a ∈ S nonseparating, Ψ∗(a) = a′ ⇔ there exist unique functions

σa : Sa → Sa′ and δa : Sa → {±1}

such that for all b ∈ Sa we have Ψ(DaD
−1
b ) = (Da′D

−1
σa(b)

)δa(b).

Now, if h : S→ S is a homeomorphism, then h induces two functions:

• an automorphism h∗ : C(S)→ C(S) defined for a ∈ S by a 7→ h(a)

• an automorphism h] : T → T defined by f 7→ hfh−1.

By Ivanov ([9], Theorem 1), Ψ∗ = h∗ for some homeomorphism h : S→
S. Our goal is to show that Ψ = h].

Here, Ψ∗ = h∗ means that if a ∈ S, then Ψ∗(a) = h∗(a). Specifically,

if a is separating, then Ψ∗(a) = h∗(a) means that Ψ(Da) = (Dh(a))
ε(a),

while if a is nonseparating, Ψ∗(a) = h∗(a) means that for all b ∈ Sa,

Ψ(DaD
−1
b ) = (Dh(a)D

−1
σa(b))

δa(b).

Let f ∈ T , and let a ∈ S. We have two cases.

Case 1: a is separating. In this case we have

Ψ(fDaf
−1) = Ψ(Df(a)) = D

ε(a)
hf(a).

On the other hand, we also have

Ψ(fDaf
−1) = Ψ(f)Ψ(Da)Ψ(f)−1 = Ψ(f)D

ε(a)
h(a)Ψ(f)−1 = D

ε(a)
Ψ(f)(h(a)),

and so Ψ(f)(h(a)) = hf(a). If we write a = h−1(b), then this shows

that Ψ(f)(b) = hfh−1(b) for all b ∈ S separating.

Case 2: a is nonseparating. Let b ∈ Sa. Then we have

Ψ(fDaD
−1
b f−1) = Ψ(Df(a)D

−1
f(b)) = (Dhf(a)D

−1
σf(a)(f(b)))

δf(a)(f(b)).
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On the other hand, we also have

Ψ(fDaD
−1
b f−1) = Ψ(f)Ψ(DaD

−1
b )Ψ(f)−1

= Ψ(f)(Dh(a)D
−1
σa(b))

δa(b)Ψ(f)−1

= Ψ(f)D
δa(b)
h(a) D

−δa(b)
σa(b) Ψ(f)−1

= Ψ(f)D
δa(b)
h(a) Ψ(f)−1Ψ(f)D

−δa(b)
σa(b) Ψ(f)−1

= D
δa(b)
Ψ(f)(h(a))D

−δa(b)
Ψ(f)(σa(b))

= (DΨ(f)(h(a))D
−1
Ψ(f)(σa(b)))

δa(b).

Hence, for all b ∈ Sa we have

{hf(a), σf(a)(f(b))} = {Ψ(f)(h(a)),Ψ(f)(σa(b))}. (3.2)

Claim:
⋂

b∈Sa

{hf(a), σf(a)(f(b))} = {hf(a)}

Proof: Suppose there exists hf(a) 6= c ∈ {hf(a), σf(a)(f(b))} for all

b ∈ Sa. That is, c = σf(a)(f(b)) for all b ∈ Sa. This implies that

card{(Dhf(a)D
−1
σf(a)(f(b)))

δf(a)(f(b)) : b ∈ Sa} ≤ 2.

But the set Sa is infinite, and since f is injective, so is {Df(a)D
−1
f(b) :

b ∈ Sa}. And since {(Dhf(a)D
−1
σf(a)(f(b)))

δf(a)(f(b)) : b ∈ Sa} is the image

of the infinite set {Df(a)D
−1
f(b) : b ∈ Sa} under the injective map Ψ, we

obtain a contradiction. This proves the claim.

Likewise,
⋂

b∈Sa

{Ψ(f)(h(a)),Ψ(f)(σa(b))} = {Ψ(f)(h(a))}. So by (3.2)

we have hf(a) = Ψ(f)(h(a)). If we write a = h−1(d), then this shows

that hfh−1(d) = Ψ(f)(d) for all d ∈ S nonseparating.

Cases 1 and 2 together show that Ψ(f)(a) = hfh−1(a) for all a ∈ S,

and since the genus g of S is at least 3, this implies that Ψ(f) = hfh−1
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for all f ∈ T . That is, Ψ = h] : T → T .
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