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Introduction

Let S denote a compact, connected, orientable surface with genus g and h boundary
components. We refer to S as a surface of genus g with h holes. LetMS denote the mapping
class group of S, the group of isotopy classes of orientation-preserving homeomorphisms
S → S.

Let G be a group. G is hopfian if every homomorphism from G onto itself is an automor-
phism. G is residually finite if for every g ∈ G with g 6= 1 there exists a normal subgroup of
finite index in G which does not contain g. Every finitely generated residually finite group is
hopfian ([12], [11]). A group G is hyperhopfian ([2],[3]) if every homomorphism ψ : G→ G

with ψ(G) normal in G and G/ψ(G) cyclic is an automorphism. As observed in [14], exam-
ples of hopfian groups which are not hyperhopfian are afforded by the fundamental groups
of torus knots.

By a result of Grossman [5], MS is residually finite. Since MS is also finitely generated,
it is hopfian. It is a natural question to ask whether MS is hyperhopfian. In this paper,
we shall answer a more general question. We say that a group G is ultrahopfian if every
homomorphism ψ : G→ G with ψ(G) normal in G and G/ψ(G) abelian is an automorphism.
Note that an ultrahopfian group is hyperhopfian. We shall prove the following result.

Theorem A. Let S denote a connected orientable surface of genus g with h holes.
Suppose that S is not an annulus, a sphere with four holes or a torus with at least two holes.
Then MS is ultrahopfian.

Note that by combining this with the description of automorphisms of MS given in [6]
and [13], we have a complete description of all homomorphisms ψ : G → G with ψ(G)
normal in G and G/ψ(G) abelian, where G is the mapping class group of any surface S as
in Theorem A.

Theorem A is false if S is an annulus. In this case, MS is a cyclic group of order
two. Hence, the trivial homomorphism MS → MS demonstrates that MS is not even
hyperhopfian. We do not know whether MS is ultrahopfian, or even hyperhopfian, in the
remaining cases not covered by this theorem, (i.e. a sphere with four holes or a torus with
at least two holes).
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Here is an outline of the paper. In Section 1, we define the notions of bridges and circles
on S and the corresponding notions of dual equivalence for each of these objects. We prove
that all bridges on S are dually equivalent, provided h ≥ 3, and all nonseparating circles
on S are dually equivalent, provided g ≥ 1. In Section 2, we discuss Dehn twists and
elementary braids on S. We show that MS and certain subgroups of MS are generated
by appropriate Dehn twists and elementary braids and we describe some useful relations
between these generators. In Section 3, we compute the first homology H1(MS) of MS .
Except for Theorem 3.13, the results of this section are not essential for the proof of Theorem
A. On the other hand, these results are a natural development of the previous discussion,
and serve as a “warmup” for the results of the next section. In Section 4, using the results
of Section 1, we prove that certain derived subgroups of MS are perfect subgroups of finite
index in MS , provided g 6= 1. In most cases, we establish this property for the commutator
subgroup of MS . The exceptional cases occur when g ≥ 2 and h = 2, 3 or 4. In Section 5,
we prove the main result of this paper, Theorem A.

1. Bridges and circles

In this section, S denotes a surface of genus g with h holes.

We say that a properly embedded arc a in S is a bridge if a joins distinct boundary
components A and B of S. Note that S admits a bridge if and only if h ≥ 2.

We say that two bridges a and b are dual if a and b are disjoint and there exists three
distinct boundary components of S, A, B and C, such that a joins A to B and b joins B to
C. Note that S admits a pair of dual bridges if and only if h ≥ 3.

Let a and b be bridges on S. We shall say that a is dually equivalent to b if there exists
a sequence of bridges a1, a2, ..., an on S such that a1 is isotopic to a, ai and ai+1 are dual
bridges, for 1 ≤ i < n, and an is isotopic to b.

Theorem 1.1. Let S be a surface of genus g with h holes, where h ≥ 3. Suppose that a
and b are bridges on S. Then a and b are dually equivalent.

Proof: We may assume that a and b are transverse and do not meet at their endpoints.
We shall prove the result by induction on the number of points of a ∩ b.

Suppose that a joins the boundary components A and B of S and b joins the boundary
components C and D of S.

Suppose that a and b are disjoint. There are three possibilities to consider, (i) {A,B} =
{C,D}, (ii) {A,B} and {C,D} share exactly one element, and (iii) {A,B} ∩ {C,D} = ∅.

In the first case, since h ≥ 3, there exists a boundary component E of S which is not
equal to A or B. We may construct a bridge c from A to E which is disjoint from both a

and b. It follows that a is dual to c and c is dual to b. Hence, a and b are dually equivalent.

In the second case, a and b are dual. Hence, again, a and b are dually equivalent.

Finally, in the third case, we may construct a bridge c from A to C which is disjoint
from a and b. It follows that a is dual to c and c is dual to b. Hence, a and b are dually
equivalent.
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Now suppose that the result holds for bridges which meet in at most n points, where n
is a nonnegative integer. Suppose that a and b meet in n+ 1 points. Choose an orientation
for the surface S and for the bridge a. Beginning at the initial endpoint of a travel along the
right side of a to the first point x of intersection of a with b. Orient b so that the orientation
of S at x is the sum of the orientations of b and a at x. Now continue along the right side
of b to the terminal point of b. In this manner, we construct a properly embedded arc c
disjoint from b, meeting a in at most n points and joining the initial boundary component
of a to the terminal boundary component of b. In a similar manner, by traveling along
the left side of a to x and continuing along the left side of b (with respect to the opposite
orientation on b), we construct a properly embedded arc d disjoint from b, meeting a in
at most n points and joining the initial boundary component of a to the initial boundary
component of b. Since b is a bridge, the initial boundary component of b is not equal to the
terminal boundary component of b. Hence, at least one of c and d is a bridge on S.

It follows that there exists a bridge e on S such that a meets e in at most n points and
e is disjoint from b. By induction, a is dually equivalent to e and e is dually equivalent to
b. Since dual equivalence is an equivalence relation, a is dually equivalent to b. 2

A circle a on S is a closed, connected, one-dimensional submanifold of S embedded in
the interior of S. Sa denotes the surface obtained by cutting S along a. We say that a
is separating if Sa is disconnected. Note that Sa has one component if a is nonseparating
and two components if a is separating. We say that a is trivial if a is separating and one
of the two components of Sa is either a disc or an annulus. Let k be an integer such that
0 ≤ k ≤ h. We shall say that a separating circle a on S is k-separating if one of the two
components of Sa is a sphere with k+ 1 holes. Note that every nonseparating circle on S is
nontrivial.

We say that two circles a and b on S are dual if they are transverse and meet at exactly
one point. Note that dual circles are nonseparating. Hence, S admits a pair of dual circles
if and only if g ≥ 1.

Let a and b be nonseparating circles on S. We shall say that a is dually equivalent to b
if there exists a sequence of nonseparating circles a1, a2, ..., an on S such that a1 is isotopic
to a, ai and ai+1 are dual circles for 1 ≤ i < n, and an is isotopic to b.

Theorem 1.2. Let S be a surface of positive genus g with h holes. Suppose that a and
b are nonseparating circles on S. Then a and b are dually equivalent.

Proof: First, we prove the result for closed surfaces.

Suppose that S is a torus. We may identify S with the quotient of R2 by the lattice
Z2. Moreover, we may equip S with the euclidean metric induced by the natural map from
R2 to this quotient. Then every nonseparating circle on S is isotopic to a simple closed
euclidean geodesic on S, the image of a line of slope q/p for some pair of relatively prime
integers p and q. We shall denote such a geodesic by [p, q]. It suffices to show that [1, 0] and
[p, q] are dually equivalent. Note that [p, q] = [−p,−q]. Hence, we may assume that q ≥ 0.
We shall prove that [1, 0] and [p, q] are dually equivalent by induction on q.
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Suppose that q = 0. Since [p, q] = [−p,−q], we may assume that p ≥ 0. Since p and q

are relatively prime, it follows that p = 1. Hence, in this case, [p, q] = [1, 0]. Hence, [1, 0] is
dually equivalent to [p, q].

Let n be a nonnegative integer and suppose that the result is true when q is less than
or equal to n. Suppose that q = n + 1. Each element of the mapping class group of S is
isotopic to an orientation-preserving affine map of S induced by the action of an element
A of SL(2,Z) on R2. We shall denote this induced affine map of S by A. We may choose
such an orientation-preserving affine map A which maps [1, 0] to [1, 0] and [0, 1] to [m, 1],
where m is an integer. A maps [p, q] to [p+mq, q]. Since A is a homeomorphism, it suffices
to show that [1, 0] is dually equivalent to [p+mq, q]. By choosing m appropriately, we may
assume that 0 < p+mq ≤ q. Hence, we may assume that 0 < p ≤ q. Note that [1, 0] is dual
to [1, 1]. Hence, it suffices to prove that [1, 1] is dually equivalent to [p, q].

Now consider an orientation-preserving affine map B that sends [1, 0] to [1,−1] and [0, 1]
to [0, 1]. Note that B sends [1, 1] to [1, 0] and [p, q] to [p, q − p]. Since 0 < p ≤ q, we
conclude that 0 ≤ q − p < q. Hence, by our induction hypothesis, [1, 0] is dually equivalent
to [p, q − p]. Note that dual equivalence is preserved under the action of homeomorphisms
on pairs of nonseparating circles. Since B−1 is a homeomorphism of S, we conclude that
[1, 1] is dually equivalent to [p, q]. Hence, [1, 0] is dually equivalent to [p, q].

This completes the induction and, hence, establishes the result for a torus.

Now suppose that S is a closed surface of genus g ≥ 2.

By a result of Ivanov ([7]), there exists a sequence a1, a2, ..., an of nontrivial circles on S
such that a1 is isotopic to a, ai is disjoint from ai+1 and an is isotopic to b. Choose such a
sequence of shortest length n. Suppose that some element ai in this sequence is a separating
circle on S. Since a and b are nonseparating circles, 1 < i < n. Since S is a closed surface
of genus ≥ 2 and ai is nontrivial, Sai

has two components, each a surface of positive genus
with one hole. Since ai is disjoint from ai−1 and ai+1, ai−1 and ai+1 each lie in one of the
components of Sai . If ai−1 and ai+1 lie in different components of Sai , then we may shorten
the sequence a1, a2, ..., an of consecutively disjoint nontrivial circles on S by deleting ai.
This contradicts our assumption about choosing a shortest such sequence. Hence, ai−1 and
ai+1 lie in the same component of Sai . Since the other component of Sai has positive genus,
we may choose a nonseparating circle c in this other component. We may then replace the
term ai in the sequence a1, a2, ..., an of consecutively disjoint nontrivial circles on S by the
nonseparating circle c on S, without affecting the length of this sequence. It follows, by
induction on the number of separating circles in the sequence a1, a2, ..., an of consecutively
disjoint nontrivial circles on S, that we may choose such a sequence so that each circle ai is
nonseparating.

Now for each integer i with 1 ≤ i < n, ai and ai+1 are a pair of disjoint nonseparating
circles on S. It follows that we may choose a circle ci on S so that ci is dual to ai and ai+1.
In this way, we may construct a sequence a1, c1, a2, c2, ..., an−1, cn−1, an of consecutively
dual circles on S, beginning with a and ending with b. In other words, a is dually equivalent
to b.
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This completes the proof for closed surfaces of genus g ≥ 2.
Hence, we have established the result for all closed surfaces of positive genus.
Now suppose that S is a surface of positive genus with h holes, where h > 0. We may

assume that a and b are in minimal position, (i.e. that a and b are transverse and have
the least number of intersections among all pairs of circles a′ and b′ isotopic to a and b

respectively). We may also assume that a is not isotopic to b.
Consider the closed surface T of genus g associated to S by capping off each boundary

component of S with a disc. We may consider a and b as circles on T . Suppose that a
and b are in minimal position on T . Then we may choose a metric of constant curvature
on T , (euclidean if g = 1 and hyperbolic if g ≥ 2), such that a and b are geodesic. By
the result for closed surfaces, there exists a sequence a1, ..., an of consecutively dual circles
on T such that a1 is isotopic to a and an is isotopic to b. We may replace each of the
circles ai in this sequence, where 1 < i < n, by any geodesic in its isotopy class. Since
geodesics in distinct isotopy classes of circles are in minimal position, these geodesics are
still consecutively dual. Hence, we may assume that the sequence a1, ..., an of consecutively
dual circles on T begins with a and ends with b. Since the holes of S are disjoint from a and
b, there exists a homeomorphism F : T → T which is isotopic to the identity, fixes a∪ b and
maps a1 ∪ a2 ∪ ...∪ an into S. Applying this homeomorphism F to the sequence a1, ..., an of
consecutively dual circles on T beginning with a and ending with b, we obtain a sequence
of consecutively dual circles on S beginning with a and ending with b. Hence, a is dually
equivalent to b.

We shall now complete the proof by induction on the number n of points of a ∩ b. If a
and b are disjoint, then a and b are in minimal position in T and the result follows by the
argument in the previous paragraph. Hence, we may assume that n > 0. Likewise, we may
assume that a and b are not in minimal position on T . Then there must exist an embedded
sphere D with k + 1 holes in S, where k > 0, k of which correspond to holes of S and 1 of
which is equal to the union c∪d of an arc c of a and an arc d of b which meet a∩ b precisely
at their common endpoints P and Q. We shall refer to D as a “bigon” with holes in the
complement of a ∪ b. Orient a and b so that P is the first endpoint of both c and d. Equip
S with the orientation determined by the sum of the orientations of a and b at the point P .
Beginning at a point x near Q, on the right side of a and b, travel along the right side of b
to the vicinity of P . Then take a right turn and travel along the right side of a to the point
x. In this way, we construct an embedded circle e such that e is disjoint from b, e meets a
in n − 2 points, and e is isotopic to b on T . From the construction of e, we may construct
a circle f on S which is dual to e and b. Hence, e is dually equivalent to b. It suffices,
therefore, to prove that a is dually equivalent to e. Since isotopic nonseparating simple
closed curves are dually equivalent, we may assume that a and e are in minimal position.
Note that this assumption does not affect the fact that e intersects a in less than n points.
Hence, by the induction hypothesis, a is dually equivalent to e. 2

2. Generators and relations for certain subgroups of MS

In this section, S denotes a surface of genus g with h holes; MS denotes the mapping class
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group of S, the group of isotopy classes of orientation-preserving homeomorphisms S → S;
[MS ,MS ] denotes the commutator subgroup of MS ; and PMS denotes the pure mapping
class group of S, the subgroup of MS consisting of isotopy classes of orientation-preserving
homeomorphisms S → S which preserve each boundary component of S. We shall give
generators for MS , [MS ,MS ] and PMS and describe some useful relations satisfied by
these generators. We assume that S is oriented.

We recall that a pair of pants is a sphere with three holes. Let F : S → S be a
homeomorphism such that F is supported on a pair of pants P in S, exactly two of the
boundary components of P are boundary components of S, and F interchanges these two
boundary components of P . Let c denote the boundary component of P which is preserved
by F . Note that c is a circle on S. Moreover, F 2 is isotopic to a power of a right or left
Dehn twist about c. We shall say that F is a right (left) elementary braid supported on P
if F 2 is isotopic to a right (left) Dehn twist about c.

Recall that two bridges or circles, a and b, on S are topologically equivalent if there
exists an (orientation-preserving) homeomorphism F : S → S such that F (a) = b.

If a is a bridge on S joining the boundary components A and B of S, then a regular
neighborhood of a∪A∪B in S is a pair of pants P as above. We denote by σa the isotopy
class of a right elementary braid supported on P . σa depends only upon the isotopy class
of a in S. We shall refer to σa as a right elementary braid. If f is the isotopy class of
an orientation-preserving homeomorphism F : S → S, then fσaf

−1 = σF (a). Since any
two bridges on S are topologically equivalent, it follows that right elementary braids are
all conjugate in MS . In particular, they represent the same class ψ in the abelianization
H1(MS) of MS .

For each circle c on S, tc denotes the isotopy class of a right Dehn twist about c. tc

depends only upon the isotopy class of c in S. We shall refer to tc as a right Dehn twist
about c. If f is the isotopy class of an orientation-preserving homeomorphism F : S → S,
then ftcf−1 = tF (c). Since any two nonseparating circles on S are topologically equivalent,
it follows that right Dehn twists about nonseparating circles on S are all conjugate in MS .
In particular, they represent the same class τ in H1(MS).

There are two well-known “braid” relations between right elementary braids on S and
right Dehn twists about nonseparating circles on S. First, if a and b are dual bridges, then:

σaσbσa = σbσaσb. (2.1)

Secondly, if a and b are dual circles, then:

tatbta = tbtatb. (2.2)

Suppose that S is a sphere with h holes. Then we have the following well-known result
concerning generators for MS .

Theorem 2.1. Let S be a sphere with h holes. If h = 0 or 1, then MS is trivial. If
h = 2, then MS is a cyclic group of order two generated by a single right elementary braid.
If h ≥ 3, then MS is generated by a finite collection of right elementary braids in MS.



Surface mapping class groups are ultrahopfian 7

Theorem 2.2. Let S be a sphere with h holes, where h ≥ 3. Then the commutator
subgroup of MS is generated by the collection of elements of the form σaσ

−1
b , where a and

b are dual bridges on S.

Proof: Let Σ be the subgroup of MS generated by the collection of elements of the form
σaσ

−1
b , where a and b are dual bridges on S.
Suppose that a and b are dual bridges on S and F : S → S is an orientation-preserving

homeomorphism. Let c = F (a) and d = F (b). Then c and d are dual bridges on S. Let f
denote the isotopy class of F . Then f(σaσ−1

b )f−1 = σcσ
−1
d . It follows that Σ is a normal

subgroup ofMS . (Moreover, since any two pairs of dual bridges are topologically equivalent,
Σ is normally generated by any element of the form σaσ

−1
b , where a and b are dual bridges

on S.)
Let A denote the quotient of MS by the normal subgroup Σ. Suppose that a and b are

dual bridges on S. Then the element σaσ−1
b lies in Σ. Hence, the classes in A of σa and σb

are equal.
Let a and b be dual bridges on S. Since right elementary braids are all conjugate

in MS , the element σaσ−1
b lies in the commutator subgroup [MS ,MS ] of MS . Indeed,

σ−1
b = fσ−1

a f−1 for some f in MS . It follows that Σ is contained in [MS ,MS ]. Hence, it
remains only to show that A is abelian. Indeed, we shall show that A is cyclic.

Since, by Theorem 2.1, MS is generated by right elementary braids, it suffices to show
that the classes in A of any two right elementary braids σa and σb are equal. We have
already observed this to be true when a and b are dual bridges. Since, by Theorem 1.1, any
two bridges on S are dually equivalent (provided h ≥ 3), the result follows. 2

Now suppose that the genus of S is positive. Then we have the following well-known
result concerning generators for PMS and MS .

Theorem 2.3. Let S be a surface of positive genus g with h holes. Then PMS is
generated by a finite collection of right Dehn twists about nonseparating circles on S.

Theorem 2.4. Let S be a surface of positive genus g with h holes. If h = 0 or 1, then
MS is generated by a finite collection of right Dehn twists about nonseparating circles on S.
If h = 2, then MS is generated by a finite collection of right Dehn twists about nonseparating
circles on S and one right elementary braid on S. If h ≥ 3, then MS is generated by a
finite collection consisting of right Dehn twists about nonseparating circles on S and right
elementary braids on S.

Note that PMS = MS if h = 0 or 1.

Theorem 2.5. Let S be a surface of positive genus with h holes. Then the commutator
subgroup of PMS is generated by the collection of elements of the form tat

−1
b , where a and

b are dual circles on S.

Proof: Let T be the subgroup of PMS generated by the collection of elements of the
form tat

−1
b , where a and b are dual circles on S.

Suppose that a and b are dual circles on S and F : S → S is an orientation-preserving
homeomorphism. Let c = F (a) and d = F (b). Then c and d are dual circles on S.
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Let f denote the isotopy class of F . Then f(tat−1
b )f−1 = tct

−1
d . It follows that T is a

normal subgroup of MS and, hence, of PMS . (Moreover, since any two pairs of dual circles
are topologically equivalent by an orientation-preserving homeomorphism preserving each
boundary component of S, T is normally generated by any element of the form tat

−1
b , where

a and b are dual circles on S.)
Let B denote the quotient of PMS by the normal subgroup T . Suppose that a and b

are dual circles on S. By the definition of T , the element tat−1
b lies in T . Hence, the classes

in B of ta and tb are equal.
Let a and b be dual circles on S. Since right Dehn twists about nonseparating circles on S

are all conjugate in PMS , the element tat−1
b lies in the commutator subgroup [PMS ,PMS ]

of PMS . It follows that T is contained in [PMS ,PMS ]. Hence, it remains only to show
that B is abelian. Indeed, we shall show that B is cyclic.

Since PMS is generated by right Dehn twists about nonseparating circles on S, it suffices
to show that the classes in B of any two right Dehn twists ta and tb about nonseparating
circles a and b on S are equal. We have already observed this to be true when a and b

are dual circles. Since, by Theorem 1.2, any two nonseparating circles on S are dually
equivalent, the result follows. 2

As a consequence of Theorem 2.5, we obtain the following result.

Theorem 2.6. Let S be a surface of positive genus with h holes, where h = 0 or 1.
Then the commutator subgroup of MS is generated by the collection of elements of the form
tat

−1
b , where a and b are dual circles on S.

Proof: In the case where h = 0 or 1, MS = PMS . 2

The argument in the proof of Theorem 2.5 may be adapted slightly further to prove the
following result.

Theorem 2.7. Let S be a surface of positive genus with 2 holes. Then the commutator
subgroup of MS is generated by the collection of elements of the form tat

−1
b , where a and b

are dual circles on S.

Proof: Let T be defined as in the proof of Theorem 2.5. By the proof of Theorem 2.5,
T is a normal subgroup of MS . Let C be the quotient of MS by its normal subgroup T .
Since S has 2 holes, it follows that MS is generated by PMS and the isotopy class of a right
elementary braid σb, where b is any bridge on S. It follows, from the proof of Theorem 2.5,
that C is generated by the class τ of a right Dehn twist ta about any nonseparating circle
a on S and the class ψ of σb. We may choose a nonseparating circle a on S such that a
and b are disjoint. Then ta and σb commute. Hence, τ and ψ commute. It follows that C
is abelian. The result follows as in the proof of Theorem 2.5. 2

Suppose now that h ≥ 3.

Theorem 2.8. Let S be a surface of positive genus with h holes, where h ≥ 3. Then the
commutator subgroup of MS is generated by the collection consisting of all elements of the
form tat

−1
b , where a and b are dual circles on S and all elements of the form σcσ

−1
d , where

c and d are dual bridges on S.
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Proof: Let U be the subgroup of MS generated by the collection of all elements of the
form tat

−1
b , where a and b are dual circles on S and all elements of the form σcσ

−1
d , where

c and d are dual bridges on S.

As in the previous proofs, it follows that U is a normal subgroup of MS . (Moreover, as
in the previous proofs, it follows that U is normally generated by two elements, any element
of the form tat

−1
b , where a and b are dual circles on S and any element of the form σcσ

−1
d ,

where c and d are dual bridges on S.)

Let C denote the quotient of MS by the normal subgroup U . By the usual argument, it
suffices to show that C is abelian. On the other hand, by the usual argument and Theorem
2.4, it follows that C is generated by two elements, the class of a right Dehn twist ta about
any nonseparating circle a on S and the class of a right elementary braid σb, where b is any
bridge on S. Since we may choose a and b to be disjoint, the result follows as in the proof
of Theorem 2.7. 2

In addition to the above braid relations, (2.1) and (2.2), for dual bridges and dual circles
on S, we shall require the following relations between right elementary braids and right
Dehn twists about circles on S.

Suppose that h ≥ 5. Let A1, ..., A5 be five distinct boundary components of S. Let a, b
and c be three disjoint bridges on S such that a joins A1 to A2, b joins A2 to A3, and c joins
A4 to A5. (Note that a and b are dual bridges.) Then we have the following reformulation
of the braid relation (2.1) for dual bridges:

σaσ
−1
b = [σcσ−1

b , σcσ
−1
a ], (2.3)

where [x, y] = xyx−1y−1.

This relation is actually equivalent to the braid relation (2.1) for dual bridges on S. Since
c and the boundary components of S joined by c are disjoint from a and b, σc commutes
with σa and σb. Hence, the relation (2.3) is equivalent to the relation σaσ

−1
b = [σ−1

b , σ−1
a ].

Expanding the commutator, we see that this last relation is equivalent to the braid relation
(2.1) for dual bridges.

Suppose that g ≥ 2. Let a, b and c be three nonseparating circles on S such that a and
b are dual circles and c is disjoint from a and b. Then we have the following reformulation
of the braid relation (2.2) for dual circles:

tat
−1
b = [tct−1

b , tct
−1
a ]. (2.4)

This relation is actually equivalent to the braid relation (2.2) for dual circles on S. The
argument is the same as that given for the reformulated braid relation (2.3) for dual bridges
on S.

Consider a sphere S0 with four holes embedded in S so that the boundary components
are circles d0, d1, d2 and d3 on S. Let b12, b13 and b23 be three disjoint bridges on S0 such
that bij joins di to dj . The complement of b12 ∪ b13 ∪ b23 in S0 consists of two components,
an annulus A containing d0 and a disk D. We assume that the bridges b12, b13 and b23 are
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chosen so that D is on the right of b12 as we traverse b12 from d1 to d2. (This assumption is
equivalent to the assumption that D is on the right of b23 as we traverse b23 from d2 to d3,
as well as to the assumption that D is on the left of b13 as we traverse b13 from d1 to d3.)

Let Pij be a regular neighborhood in S0 of the union bij ∪ di ∪ dj , so that Pij is a pair of
pants in S0 with boundary components, di, dj and dij for some circle dij on S0. Then we
have the following “lantern” relation ([4], [9]):

td0td1td2td3 = td12td13td23 . (2.5)

Consider a torus T with two holes embedded in S such that the boundary components
of T are circles on S. Let q1 and q2 denote the two boundary components of T . Let a, b
and c denote circles on T such that (i) a, c and q1 cobound a pair of pants P1 in T , (ii) a,
c and q2 cobound a pair of pants P2 in T , (iii) a and b are dual circles on T , and (iv) b and
c are dual circles on T . Then we have the following “two-holed torus” relation ([10]):

tq1tq2 = (tatctb)4. (2.6)

3. Homological results for MS

In this section, S denotes a surface of genus g with h holes. Using the results of Section
2, we shall compute H1(MS). Except for Theorem 3.13, the results of this section are not
essential for the proof of the main theorem of this paper, Theorem A.

If the genus of S is 0, we have the following well-known presentation ofMS ([1], Theorem
4.5).

Theorem 3.1. Let S be a sphere with h holes. If h = 0 or 1, then MS is trivial.
If h ≥ 2, then MS has a presentation consisting of generators w1, .., wh−1 and defining
relations:

wiwj = wjwi |i− j| ≥ 2

wiwi+1wi = wi+1wiwi+1

w1...wh−2w
2
h−1wh−2...w1 = 1

(w1w2...wh−1)h = 1.

The generators w1, .., wh−1 in the above theorem may be constructed as follows. Index
the boundary components of S, ∂1, ..., ∂h. Choose a family of disjoint bridges, a1, ..., ah−1

such that ai joins ∂i to ∂i+1. Finally, let wi be the right elementary braid σai
.

The following result is an immediate corollary of Theorem 3.1.

Theorem 3.2. Let S be a sphere with h holes. If h = 0 or 1, then H1(MS) is trivial.
If h is an odd integer greater than 1, then H1(MS) = Zh−1. If h is an even integer greater
than 1, then H1(MS) = Z2(h−1).

If g ≥ 1, let τ denote the class in H1(MS) of a right Dehn twist about a nonseparating
circle a on S. If h ≥ 2, let ψ denote the class in H1(MS) of a right elementary braid σa
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on S, where a is a bridge on S. Since right Dehn twists about nonseparating circles on S

(resp. right elementary braids on S) are all conjugate in MS , we see that the class τ (resp.
ψ) is well-defined independently of the choice of nonseparating circle (resp. bridge) a on S.
Hence, we have the following immediate corollary of Theorem 2.4.

Theorem 3.3. Let S be a surface of positive genus with h holes. If h = 0 or 1, then
H1(MS) is generated by the class τ . If h ≥ 2, then H1(MS) is generated by the two
elements, τ and ψ.

Theorem 3.4. Let S be a torus with h holes. Then τ12 = 1.

Proof: By assumption, g = 1. Let a and b be a pair of dual circles on S. A regular
neighborhood R of the union a ∪ b is a torus with one hole c, where c is an h-separating
circle on S. It is well-known that:

(tatb)6 = tc.

If h = 0 or 1, then tc = 1. Hence, if h = 0 or 1, τ12 = 1.
Suppose, therefore, that h ≥ 2. Let k be an integer, where 0 ≤ k ≤ h. Let γk denote

the class in H1(MS) of a right Dehn twist about any k-separating circle on S. Note that
any two k-separating circles on S are topologically equivalent. Hence, γk is a well-defined
class depending only on k.

Now suppose that k is less than h. We may embed the four-holed sphere S0 of Section 2
in S so that d0 is a 1-separating circle on S, d1 and d2 are nonseparating circles on S, and
d3 is a k-separating circle on S. It follows that d12 is (k + 1)-separating, whereas d13 and
d23 are nonseparating. Since d0 is a 1-separating circle on S, td0 is trivial. Hence, by the
lantern relation (2.5), it follows that:

1× τ × τ × γk = γk+1 × τ × τ.

Hence, γk+1 = γk. On the other hand, γ1 is trivial. Hence, by induction, γh is trivial. Since
a and b are dual circles, they are both nonseparating. Hence, ta and tb both map to τ in
H1(MS). On the other hand, since c is h-separating, tc maps to γh in H1(MS). Hence,
since (tatb)6 = tc, we conclude that τ12 = 1. 2

Theorem 3.5. Suppose that S is a surface of genus 2 with h holes. Then τ10 = 1.

Proof: Since g = 2, we may embed the torus T with two holes in S so that the boundary
components q1 and q2 of T are nonseparating circles on S. (The complement of T in S is
then a sphere with h+ 2 holes.) It follows that the curves q1, q2, a, b and c involved in the
two-holed torus relation (2.6) are all nonseparating circles on S. It follows that the twists
tq1 , tq2 , ta, tb and tc all map to τ in H1(MS). Hence, the two-holed torus relation (2.6)
implies that τ2 = τ12. In other words, τ10 = 1. 2

Theorem 3.6. Suppose that S is a surface of genus g ≥ 3 with h holes. Then τ is
trivial.

Proof: Since g ≥ 3, we may embed a sphere S0 with 4 holes in S so that the circles di
and djk associated with the lantern relation (2.5) are all nonseparating circles on S. Since
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Dehn twists about nonseparating circles on S are all conjugate in MS , it follows that tdi

and tdjk
map to τ . We conclude, by the lantern relation (2.5), that τ4 = τ3. Hence, τ is

trivial. 2

Theorems 3.4, 3.5 and 3.6 give an upper bound to the order of τ . Using the following
well-known result, we may obtain a lower bound and, hence, determine the order of τ .

Theorem 3.7. Let T be a closed, connected orientable surface of genus g. If g = 1,
then H1(MT ) = Z12. If g = 2, then H1(MT ) = Z10. If g ≥ 3, then H1(MT ) is trivial.

Now, let T be the closed surface of genus g obtained from S by filling in each hole of
S with a disc, (i.e. by “coning off” each boundary component of S). There is a natural
homomorphism φ : MS → MT obtained by extending homeomorphisms F : S → S over
T by “coning off” their restrictions to the boundary of S. We shall refer to φ as the filling
homomorphism.

Theorem 3.8. Let S be a torus with h holes. Then τ has order 12.

Proof: By Theorem 3.4, τ12 = 1. Hence, the order of τ divides 12. On the other
hand, the filling homomorphism maps τ to a generator τ0 of H1(MT ), where T is the torus
obtained by capping off each boundary component of S. Since, by Theorem 3.7, H1(MT )
is a cyclic group of order 12, we conclude that the order of τ is divisible by 12. Hence, the
order of τ is equal to 12. 2

Theorem 3.9. Suppose that S is a surface of genus 2 with h holes. Then τ has order
10.

Proof: This follows from Theorem 3.5 and Theorem 3.7 by the same argument as in the
proof of Theorem 3.8. 2

Now suppose that S is a surface of positive genus with h ≥ 2.

Theorem 3.10. Let S be a surface of positive genus with h holes, where h ≥ 2. Then
ψ2 = 1.

Proof: Let k be an integer with 0 ≤ k ≤ h. We recall that γk denotes the class in
H1(MS) of a right Dehn twist about any k-separating circle on S. By the same argument
as in the proof of Theorem 3.4, γk is trivial. In particular, γ2 is trivial.

Now let P be a regular neighborhood of the union a ∪ b ∪ c, where b and c are the two
boundary components of S joined by the bridge a. The boundary components of P are b, c
and d, where d is a 2-separating circle on S. By the definition of a right elementary braid,
σ2
a = td. Hence, td maps to ψ2. On the other hand, by the definition of γ2, td maps to γ2.

We conclude that ψ2 = 1. 2

As Theorems 3.4, 3.5 and 3.6 did for τ , this result gives an upper bound to the order of
ψ. In the same manner in which we computed the order of τ in the proofs of Theorems 3.8
and 3.9, we shall compute the order of ψ by finding an appropriate homomorphism from
MS to Z2. In addition to the filling homomorphism employed in the proofs of Theorems 3.8
and 3.9, there is another natural homomorphism from MS which corresponds to the action
of homeomorphisms F : S → S on the set of boundary components of S. After indexing
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the boundary components of S, this action yields a natural homomorphism β : MS → Σh,
where Σh denotes the trivial group if h = 0 and the group of permutations of the set {1, ..., h}
if h ≥ 1. We shall refer to β as the boundary permutation homomorphism.

Theorem 3.11. Let S be a surface of positive genus with h holes, where h ≥ 2. Then
ψ has order 2.

Proof: By Theorem 3.10, ψ2 = 1. Hence, the order of ψ divides 2. On the other hand,
the boundary permutation homomorphism β : MS → Σh maps ψ to a 2-cycle ψ0. Since
h ≥ 2, H1(Σh) is a cyclic group of order 2 generated by the class of any 2-cycle. We conclude
that the order of ψ is divisible by 2. Hence, the order of ψ is equal to 2. 2

We are now ready to compute H1(MS).

Theorem 3.12. Let S be a surface of positive genus with h holes. If g = 1 and h = 0
or 1, then H1(MS) = Z12. If g = 1 and h ≥ 2, then H1(MS) = Z12

⊕
Z2. If g = 2 and

h = 0 or 1, then H1(MS) = Z10. If g = 2 and h ≥ 2, then H1(MS) = Z10

⊕
Z2. If g ≥ 3

and h = 0 or 1, then H1(MS) is trivial. If g ≥ 3 and h ≥ 2, then H1(MS) = Z2.

Proof: The abelianizations of the filling homomorphism φ and the boundary permutation
homomorphism β afford a homomorphism (φ∗, β∗) : H1(MS) → H1(MT )

⊕
H1(Σh). It

suffices to show that (φ∗, β∗) is an isomorphism.

By the previous remark, H1(MT ) is generated by the class of any right Dehn twist about
a nonseparating circle c on T . We may assume that c lies in S and is, hence, a nonseparating
circle on S. If h = 0 or 1, then H1(Σh) = 0. On the other hand, if h ≥ 2, then H1(Σh) is
equal to Z2 and is generated by the class of any 2-cycle in Σh.

Let c be a nonseparating circle on S. Since tc preserves each boundary component of
S, it follows that (φ∗, β∗)([tc]) = ([tc], 0). It follows that H1(MT )

⊕
{0} is contained in the

image of (φ∗, β∗). If h = 0 or 1, it follows that (φ∗, β∗) is onto.

Suppose now that h ≥ 2. Let σb be a right elementary braid on S. Let F : S → S be
a right elementary braid representing σb. By coning off F , we obtain a homeomorphism
G : T → T which is supported on a disc D embedded in T . Indeed, F is supported on
a pair of pants P where two of the boundary components of P are boundary components
of S. D is the disc obtained from P by capping off these two boundary components of
P . It follows that G is isotopic to the identity. Hence, (φ∗, β∗)([σb]) = (0, [β(σb)]). Since
σb interchanges exactly two boundary components of S, β(σb) is a 2-cycle in Σh. Hence,
{0}

⊕
H1(Σh) is contained in the image of (φ∗, β∗). Since H1(MT )

⊕
H1(Σh) is generated

by H1(MT )
⊕
{0} and {0}

⊕
H1(Σh), it follows that (φ∗, β∗) is onto.

Hence, (φ∗, β∗) is onto for all surfaces of positive genus.

On the other hand, by the previous results H1(MS) is generated by the class τ if h = 0
or 1, and by the two classes τ and ψ if h ≥ 2. We have seen that the orders of τ and ψ are
equal to the orders of the cyclic groups H1(MT ) and H1(Σh) respectively. Hence, H1(MS)
is a finite group whose order is at most that of the direct product H1(MT )

⊕
H1(Σh). It

follows that the epimorphism (φ∗, β∗) is an isomorphism. 2
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Note, in particular, that MS is perfect if g ≥ 3 and h = 0 or 1. Since MS is Hopfian, it
follows that MS is hyperhopfian and ultrahopfian if g ≥ 3 and h = 0 or 1.

As a corollary of this section, we have the following result.

Theorem 3.13. For any surface S, the index in MS of the commutator subgroup of
MS is finite.

4. Perfect derived subgroups of finite index in MS

In this section, S denotes a surface of genus g with h holes. Using the results of Section
1, we shall prove that certain derived subgroups of MS are perfect subgroups of finite index
in MS , provided g 6= 1. In most cases, we shall in fact establish this property for the
commutator subgroup of MS . The exceptional cases occur when g ≥ 2 and h = 2, 3 or 4.

Suppose that S is a sphere with h holes, where h ≥ 5. Using the braid relation (2.1) for
dual bridges and its reformulation (2.3), we have the following result.

Theorem 4.1. Let S be a sphere with h holes, where h ≥ 5. Then the commutator
subgroup of MS is perfect.

Proof: Let Γ denote the commutator subgroup of MS . By Theorem 2.2, Γ is generated
by the elements of the form σaσ

−1
b , where a and b are dual bridges on S. Let a and b be

dual bridges on S. Since h ≥ 5, we may choose a bridge c such that c and the boundary
components of S joined by c are disjoint from a and b. Since right elementary braids on S

are all conjugate in MS , the elements σcσ−1
b and σcσ−1

a lie in Γ. Hence, the commutator of
these elements lies in [Γ,Γ]. Hence, by the reformulation (2.3) of the braid relation for dual
bridges, σaσ−1

b lies in [Γ,Γ]. We conclude that Γ is contained in [Γ,Γ]. Hence, Γ = [Γ,Γ].
In other words, Γ is perfect. 2

Suppose now that S is a torus with h holes. Let Γ denote the commutator subgroup of
MS . Let T be the torus obtained from S by capping off the boundary components of S.
It is well-known that MT is isomorphic to SL(2,Z). On the other hand, the commutator
subgroup Γ0 of SL(2,Z) maps onto a free group of rank 2. The natural “filling” homomor-
phism φ : MS →MT described in Section 3 is an epimorphism. We conclude that Γ maps
onto Γ0 and, hence, onto a free group of rank 2. It follows that the derived subgroups of
MS have infinite index commutator subgroups. Moreover, they all map onto free groups of
positive rank. Hence, none of the derived subgroups of MS are perfect.

Suppose now that g ≥ 2.

Theorem 4.2. Let S be a surface of genus g ≥ 2 with h holes. Then the commutator
subgroup of PMS is perfect.

Proof: Let Γ denote the commutator subgroup of PMS . By Theorem 2.5, Γ is generated
by the elements of the form tat

−1
b , where a and b are dual circles on S. Let a and b be dual

circles on S. Since g ≥ 2, we may choose a nonseparating circle c on S such that c is disjoint
from a and b. Since right Dehn twists about nonseparating circles on S are all conjugate in
PMS , the elements tct−1

b and tct
−1
a lie in Γ. Hence, the commutator of these elements lies
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in [Γ,Γ]. Hence, by the reformulated braid relation (2.4) for dual circles, tat−1
b lies in [Γ,Γ].

We conclude that Γ is contained in [Γ,Γ]. Hence, Γ = [Γ,Γ]. In other words, Γ is perfect. 2

Since PMS = MS when h = 0 or 1, we have the following immediate corollary of
Theorem 4.2.

Theorem 4.3. Let S be a surface of genus g ≥ 2 with h holes, where h = 0 or 1. Then
the commutator subgroup of MS is perfect.

Suppose now that g ≥ 3. Then we have the following additional results.

Theorem 4.4. Let S be a surface of genus g ≥ 3 with h holes. Then PMS is perfect.

Proof: Since right Dehn twists about nonseparating circles on S are all conjugate in
PMS , they map to the same element τ in H1(PMS). It follows, by Theorem 2.3, that
H1(PMS) is generated by τ . Hence, by Theorem 3.6, H1(PMS) is trivial. 2

Since PMS = MS when h = 0 or 1, we have the following immediate corollary of
Theorem 4.4.

Theorem 4.5. Let S be a surface of genus g ≥ 3 with h holes, where h = 0 or 1. Then
MS is perfect.

Suppose now that g ≥ 2 and h = 2, 3 or 4.

Theorem 4.6. Let S be a surface of genus g ≥ 2 with h holes, where h = 2, 3 or
4. Then the fourth derived subgroup M(4)

S of MS is equal to the commutator subgroup of
PMS. In particular, M(4)

S is a perfect derived subgroup of finite index in MS.

Proof: Since h ≤ 4, Σh is solvable. Indeed, the third derived subgroup of Σh is trivial.
Hence, we have a sequence of subgroups of Σh:

G3 ⊂ G2 ⊂ G1 ⊂ G0

where G0 = Σh, G3 is the trivial group, Gi+1 is normal in Gi, and the quotient of Gi by
Gi+1 is abelian.

Let Γi denote the preimage of Gi in MS under the boundary permutation homomor-
phism β : MS → Σh of Section 3. Then, we obtain a sequence of subgroups of MS :

Γ3 ⊂ Γ2 ⊂ Γ1 ⊂ Γ0

where Γ0 = MS , Γ3 = PMS , Γi+1 is normal in Γi, and the quotient of Γi by Γi+1 is abelian.
Since the quotient of Γi by Γi+1 is abelian, it follows by induction that the ith derived

subgroup Γ(i)
0 of MS is contained in Γi. Hence, the commutator subgroup Γ(4)

0 of Γ(3)
0 is

contained in the commutator subgroup Γ(1)
3 of Γ3.

Since Γ3 is equal to PMS , Γ(1)
3 is perfect, by Theorem 4.2. On the other hand, Γ0 is

equal to MS . Hence, Γ(1)
3 is a perfect subgroup of Γ0. It follows by induction that Γ(1)

3 is
contained in Γ(n)

0 for all n. In particular, Γ(1)
3 is contained in Γ(4)

0 .
We conclude that Γ(4)

0 is equal to Γ(1)
3 , the commutator subgroup of PMS .

By Theorem 2.3 and the usual argument, H1(PMS) is generated by the class τ̃ in
H1(PMS) of a right Dehn twist about a nonseparating circle on S. By the arguments in



16 Mustafa Korkmaz and John D. McCarthy

the proofs of Theorem 3.5 and 3.6, τ̃ has finite order. Hence, H1(PMS) is finite. In other
words, the commutator subgroup Γ(4)

0 of PMS has finite index in PMS . Since PMS has
finite index in MS , we conclude that Γ(4)

0 has finite index in MS . Hence, Γ(4)
0 is a perfect

derived subgroup of finite index in MS . 2

Suppose now that g ≥ 2 and h ≥ 5.

Theorem 4.7. Let S be a surface of genus g ≥ 2 with h holes, where h ≥ 5. Then the
commutator subgroup of MS is perfect.

Proof: Let Γ denote the commutator subgroup of MS . By Theorem 2.8, Γ is generated
by the collection consisting of all elements of the form σaσ

−1
b , where a and b are dual bridges

on S, and all elements of the form tct
−1
d , where c and d are dual circles on S. Using the

reformulations, (2.3) and (2.4), of the braid relations for dual bridges and dual circles in
S, we deduce, as in the proofs of Theorems 4.1 and 4.2, that each of these elements lie in
[Γ,Γ]. As before, we conclude that Γ is perfect. 2

5. The main result

In this section, S denotes a surface of genus g with h holes. We shall prove the main
theorem described in the introduction, Theorem A. Let us denote by M∗

S the extended
mapping class group of S, the group of isotopy classes of all diffeomorphisms of S, including
orientation-reversing ones.

We shall require the following results.

Theorem 5.1. ([7]) Let S be a surface of genus g ≥ 2 with h holes. Suppose that S is
not a closed surface of genus 2. Let G1 and G2 be subgroups of finite index in MS. Then
any isomorphism G1 → G2 is induced by some inner automorphism of M∗

S.

Theorem 5.2.([10]) Let S be a sphere with at least five holes or a torus with at least
three holes. Let G1 and G2 be subgroups of finite index in MS. Then any isomorphism
G1 → G2 is induced by some inner automorphism of M∗

S.

The proof of Theorem 5.1 from [7] may be adapted to prove the following result.

Theorem 5.3. Let S be a closed surface of genus 2. Let Γ be a perfect subgroup of
finite index in MS and let G be a subgroup of finite index in MS. Then any isomorphism
ψ : Γ → G is induced by an inner automorphism of M∗

S.

Proof: Let a be a nontrivial circle on S. As in the proof of Theorem 5.1 from [7], there
exist nonzero integers M and N and a circle b on S such that tMa ∈ Γ and ψ(tMa ) = tNb .

We recall that the complex of curves C(S) of S is the simplicial complex whose vertices
are isotopy classes α of nontrivial circles A on S and whose k-simplices are sets {α0, ..., αk}
of isotopy classes of k + 1 pairwise nonisotopic and disjoint nontrivial circles A0, ..., Ak on
S. As in the proofs in [7] and [10], it follows that the correspondence a 7→ b defines an
automorphism of the complex of curves C(S) of S.

It is shown in [7] that this automorphism is induced by a mapping class f in M∗
S . That

is, ψ(tMa ) = tNf(a) for each circle a on S.
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Now, as in the proof in [7], we have the following equations, for any mapping class g in
Γ and for appropriately chosen nonzero powers, J , K and L:

ψ(g)ψ(tJa )ψ(g)−1 = ψ(gtJag
−1) = ψ(tJg(a)) = tKf(g(a)),

ψ(g)ψ(tJa )ψ(g)−1 = ψ(g)tLf(a)ψ(g)−1 = tLψ(g)f(a).

Hence, tKf(g(a)) = tLψ(g)f(a). This implies that f(g(a)) = ψ(g)f(a). Since this last identity
holds for every circle a on S, we conclude that fg = ψ(g)fσg, where σg is either 1 or σ,
depending upon g, and σ is the isotopy class of the hyperelliptic involution on S.

If g and h are two mapping classes in Γ, we have:

ψ(gh)fσgh = fgh.

On the other hand, since σ is of order two and since σ is in the center of MS :

ψ(gh)fσgh = ψ(g)ψ(h)fσgh = ψ(g)fhσhσgh

= fgσghσhσgh = fghσgσhσgh.

It follows that σgh = σgσh. Hence, the correspondence g 7→ σg defines a homomorphism
Γ → C(MS), where C(MS) is the center {1, σ} of MS , a cyclic group of order 2. Since Γ
is perfect, the homomorphism Γ → C(MS) is trivial. Hence, fg = ψ(g)f for each g in Γ.
In other words, ψ(g) = fgf−1 for each g in Γ. 2

Since MS is invariant under all inner automorphisms of M∗
S , we have the following

result from Theorems 5.1, 5.2 and 5.3.

Theorem 5.4. Let S denote either a sphere with at least five holes or a torus with at
least three holes or a connected orientable surface of genus at least two. Let G1 and G2 be
subgroups of finite index in MS. If S is a closed surface of genus two, suppose that G1 is a
perfect subgroup of finite index in MS. Then any isomorphism G1 → G2 is induced by an
automorphism of MS.

We are now ready to prove the main result of this paper.

Theorem A. Let S denote a compact, connected orientable surface with genus g and h
boundary components. Let MS denote the mapping class group of S, the group of isotopy
classes of orientation-preserving homeomorphisms S → S. Suppose that S is not an annulus,
a sphere with four holes or a torus with at least two holes. Then MS is ultrahopfian.

Proof: Let G denote MS . Suppose that ψ : G → G is a homomorphism with ψ(G)
normal in G and G/ψ(G) abelian. It follows that [G,G] ⊂ ψ(G) ⊂ G.

If S is a sphere with at most one hole, then G is the trivial group and the result is clear.
Suppose that S is a sphere with three holes. By the presentation given in Theorem 3.1, we

see that G is isomorphic to the symmetric group Σ3 on 3 letters. (Indeed, this isomorphism
is exhibited by the boundary permutation homomorphism β : G→ Σ3.) The abelianization
of G is a cyclic group of order 2. Hence, the commutator subgroup of G is a cyclic group of
order 3. Suppose that ψ : G→ G is not onto. Then, since [G,G] ⊂ ψ(G) ⊂ G, we conclude
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that ψ maps G onto the cyclic group [G,G] of order 3. Since the abelianization of G is a
cyclic group of order 2, this is impossible. Hence, the result holds in this case.

Suppose now that S is a torus with at most one hole. Then G is isomorphic to SL(2,Z).
In particular, G is an infinite group.

Let a and b be dual circles on S and let X = tatbta, Y = tatb and T = (tatbta)2 = (tatb)3.
G has a standard presentation with 3 generators, X, Y and T , and relations, T = X2 = Y 3

and T 2 = 1. Let I denote the identity matrix in SL(2,Z). We may obtain an isomorphism

G→ SL(2,Z) by X 7→

(
0 1
−1 0

)
, Y 7→

(
0 1
−1 1

)
and T 7→ −I. The abelianization of

G is a cyclic group of order 12. This implies that the commutator subgroup of G is of finite
index in G. Since G is an infinite group, the commutator subgroup of G is infinite. Since
ψ(G) contains the commutator subgroup of G, ψ(G) is an infinite group.

We may express the natural map from G to its abelianization as a homomorphism
µ : G → Z12 such that X 7→ 3, Y 7→ 2 and T 7→ 6. It is a well-known fact that if X ′ is an
element of order 4 in SL(2,Z), then either X ′ is conjugate to X or X ′ is conjugate to TX.
Likewise, if Y ′ is an element of order 6 in SL(2,Z), then either Y ′ is conjugate to Y or Y ′

is conjugate to TY .

Let X ′ = ψ(X) and Y ′ = ψ(Y ). Since T = X2, G is generated by X and Y . Hence, ψ(G)
is generated by X ′ and Y ′. We shall show that X ′ and Y ′ have orders 4 and 6 respectively.
Since X4 = T 2 = 1, (X ′)4 = 1. Likewise, (Y ′)6 = 1. This implies that the order of X ′

divides 4 and the order of Y ′ divides 6. Suppose that X ′ does not have order 4. Then
(X ′)2 = 1. Since I and −I are the only two elements in SL(2,Z) whose order divides 2,
we conclude that X ′ corresponds to either I or −I. Since I and −I commute with every
element in SL(2,Z), we conclude that X ′ commutes with Y ′. We conclude that ψ(G) is an
abelian group generated by two elements X ′ and Y ′ of finite order. This implies that ψ(G)
is a finite group. This is a contradiction. Hence, X ′ has order 4.

Now suppose that Y ′ does not have order 6. Then either (Y ′)2 = 1 or (Y ′)3 = 1. Since
X2 = Y 3, we conclude that (X ′)2 = (Y ′)3. Hence, either (X ′)2 = 1 or (X ′)2 = Y ′. We
have already ruled out the first possibility. Hence, Y ′ = (X ′)2. Since ψ(G) is generated by
X ′ and Y ′, we conclude that ψ(G) is generated by X ′. Since X ′ has order 4, we conclude
that ψ(G) is a finite group. Again, this is a contradiction. Hence Y ′ has order 6.

Consider the “abelianization” homomorphism µ : G→ Z12 described above. The kernel
of this homomorphism is the commutator subgroup of G. Note that ψ(G) contains this
kernel and is contained in G. In order to show that ψ(G) = G, therefore, it remains only to
prove that µ maps ψ(G) onto Z12. Let p = µ(X ′) and q = µ(Y ′). Since ψ(G) is generated
by X ′ and Y ′, we need only show that p and q generate Z12. Since X ′ has order 4, X ′ is
conjugate to one of the two elements X and TX in G. Hence, p = 3 or p = 6 + 3 = 9. On
the other hand, since Y ′ has order 6, Y ′ is conjugate to one of the two elements, Y and TY
in G. Hence, q = 2 or q = 6 + 2 = 8. It follows that p and q are relatively prime. Hence, p
and q generate Z12.

This completes the argument for a torus with at most one hole.
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It remains to consider the cases where S is a sphere with at least five holes or a surface
of genus g ≥ 2 with h holes.

Since [G,G] ⊂ ψ(G), [ψn(G), ψn(G)] = ψn([G,G]) ⊂ ψn+1(G) for any positive integer
n.

We now show that G(n) ⊂ ψn(G) for each positive integer n. For n = 1, G(1) = [G,G] ⊂
ψ(G) by the hypothesis. Suppose that G(n) ⊂ ψn(G). Then G(n+1) = [G(n), G(n)] ⊂
[ψn(G), ψn(G)] ⊂ ψn+1(G).

Since S is a sphere with at least five holes or a surface of genus g ≥ 2 with h holes,
Theorems 3.13, 4.1, 4.3, 4.6 and 4.7 imply that G(4) is a perfect subgroup of finite index
in G. Since G(4) is perfect, G(n) = G(4) for each integer n ≥ 4. We conclude that G(4)

is contained in ψn(G) for each integer n. Since ψn+1(G) is contained in ψn(G) for each
positive integer n, we conclude that:

G(4) ⊂ ... ⊂ ψn+1(G) ⊂ ψn(G) ⊂ ... ⊂ ψ(G) ⊂ G

for each integer n. Since G(4) has finite index in G, we conclude that ψn+1(G) = ψn(G) for
some integer n. Hence, restricting ψ to ψn(G) we obtain an epimorphism:

ψ| : ψn(G) → ψn+1(G) = ψn(G).

Since G(4) has finite index in G and G(4) ⊂ ψn(G) ⊂ G, ψn(G) has finite index in G.

By Grossman’s result ([5]), G is a residually finite group. Since every subgroup of a
residually finite group is residually finite, ψn(G) is residually finite. On the other hand, by
Theorems 2.1 and 2.4, G is finitely generated. Since ψn(G) has finite index in G, ψn(G) is
also finitely generated. Finally, since a finitely generated residually finite group is hopfian
([12]), ψn(G) is hopfian. Hence, the restriction ψ| : ψn(G) → ψn(G) is an automorphism of
the finite index subgroup ψn(G) of G.

Suppose, first, that S is a closed surface of genus 2. By Theorem 4.3, [G,G] is per-
fect. Since [G,G] ⊂ ψn(G) ⊂ G and since [G,G] is perfect, we conclude that [G,G] =
[[G,G], [G,G]] ⊂ [ψn(G), ψn(G)] ⊂ [G,G]. Hence, [ψn(G), ψn(G)] = [G,G]. It follows that
[G,G] is a characteristic subgroup of ψn(G). That is, it is invariant under all automorphisms
of ψn(G). In particular, the restriction of ψ to [G,G] is an automorphism of [G,G]. By Theo-
rem 5.4, the restriction of ψ to [G,G] is the restriction of an automorphism of G. Composing
ψ with the inverse of this automorphism, we can assume that ψ restricts to the identity of
[G,G]. Since the index of [G,G] in G is 10, ψ(t10a ) = t10a for each circle a. For each f ∈ G
and for each circle a, we have t10ψ(f)(a) = ψ(f)t10a ψ(f)−1 = ψ(ft10a f

−1) = ψ(t10f(a)) = t10f(a).
This implies that ψ(f)(a) = f(a). Hence, ψ(f) = fσf , where σf is either the hyperelliptic
involution σ or the identity, depending on f . Then:

fgσfg = ψ(fg) = ψ(f)ψ(g) = fσfgσg.

Since σ is in the center of G, σfg = σfσg. Hence, the correspondence f 7→ σf defines
a homomorphism G → C(G), where C(G) is the center {1, σ} of G, a cyclic group of
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order 2. Since G is generated by right Dehn twists about nonseparating circles and since
all such generators are conjugate, σta = σtb for any two nonseparating circles a, b. Let a
be a nonseparating circle on S. If σta = 1, then ψ(ta) = ta. Since this is true for any
nonseparating a, ψ is the identity. If σta = σ, then ψ(ta) = taσ. Then ψ is the exceptional
automorphism of G ([13]). In particular, ψ is an automorphism.

Suppose now that S is not a closed surface of genus 2.
By Theorem 5.4, ψ| is induced by an automorphism of G. By composing ψ with the

inverse of this automorphism of G, we may assume that ψ| = id : ψn(G) → ψn(G).
Since ψn(G) has finite index in G, we may choose a positive integer N such that tNa ∈

ψn(G) for every circle a on S. Since ψ| = id, we conclude that ψ(tNa ) = tNa for every circle
a on S. Let g be a mapping class. For any nontrivial circle a on S:

tNψ(g)(a) = ψ(g)tNa ψ(g)−1 = ψ(g)ψ(tNa )ψ(g)−1

= ψ(gtNa g
−1) = ψ(tNg(a)) = tNg(a).

Hence, ψ(g)(a) = g(a), for every nontrivial circle a on S. Since S is a sphere with at least
five holes or a surface of genus g ≥ 2 with h holes and S is not a closed surface of genus 2,
this implies that ψ(g) = g. We conclude that ψ = id : G→ G. 2
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