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0. Introduction

In a recent paper [Lu], Lustig established a beautiful connection between
the 6 Weierstrass points on a Riemann surface M2 of genus 2 and inter-
section points of closed geodesics for the associated hyperbolic metric. As
a consequence, he was able to construct an action of the mapping class
group Out(π1M2) of M2 on the Weierstrass points of M2 which afforded an
epimorphism Out(π1M2) → S6 ([Lu], Lemma 3.4). (Here S6 denotes the
symmetric group on 6 elements.) Furthermore, he showed that the stabi-
lizer in Out(π1M2) of a single Weierstrass point P acts naturally on π1M2

affording a virtual splitting of Aut(π1M2) → Out(π1M2) ([Lu], Theorem
3.5). Our discussion in this paper begins with the observation that these
two results of Lustig’s are direct consequences of the work of Birman and
Hilden ([B-H]) on equivariant homotopies for surface homeomorphisms.

It is a well-known fact of finite group theory that there is an exceptional
isomorphism S6 → Sp4(Z2) ([O]). On the other hand, it is a well-known
fact of surface topology that Out(π1M2) acts on H1(M2,Z2) affording an
epimorphism Out(π1M2) → Sp4(Z2). (In this context Sp4(Z2) arises as
the automorphisms of H1(M2,Z2) which preserve the Z2-valued intersec-
tion pairing on H1(M2,Z2).) In this paper, we show that the exceptional
isomorphism S6 → Sp4(Z2) of finite group theory arises from a natural con-
nection between the Weierstrass points on M2 and H1(M2,Z2). As a conse-
quence, we show that the exceptional isomorphism S6 → Sp4(Z2) identifies
Lustig’s representation Out(π1M2) → S6 with the Z2 symplectic represen-
tation Out(π1M2) → Sp4(Z2).

Here is an outline of the paper. In section 1, using the work of Birman
and Hilden referred to above, we construct an action of Out(π1M2) on the
set of Weierstrass points of M2 and a virtual splitting of Aut(π1M2) →
Out(π1M2). In section 2, we develop the connection between the Weierstrass
points of M2 and H1(M2,Z2) and the corresponding actions of Out(π1M2).
We identify the kernel of the action of Out(π1M2) on the set of Weierstrass
points of M2 given in section 1. In addition, we give an independent proof
of Lustig’s condition for simple closed curves on M2 ([Lu], Theorem 3.2).
Finally, in section 3, we show that our action and virtual splitting agree
with those constructed by Lustig. In addition, we give an independent proof
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of Lustig’s result relating intersection points of base pairs and Weierstrass
points on M2 ([Lu], Theorems 2.3 and 2.4).

1. An action and a virtual splitting

Let M2 be a closed Riemann surface of genus 2. Let W denote the set of 6
Weierstrass points of M2. Let i : M2 → M2 be the hyperelliptic involution.
The set of fixed points of i is equal to W ([F-K], pp. 101 - 102). The action
of i on M2 affords a 2-fold branched covering map q : M2 → S2 branched
over the 6 points of q(W ) in S2. (See Figure 1.)

Figure 1

As a 2-fold branched covering of S2 branched over q(W ), q is classified
by a homomorphism λ : H1(S2 \ q(W )) → Z2. For each Weierstrass point P
of M2, let βP be a small loop in S2 \ q(W ) around the point q(P ). H1(S2 \
q(W ),Z) is generated by the homology classes of the loops βP . Let αP be
the preimage of βP in M2 \W . αP is a small loop in M2 \W around the
point P . (See Figure 2.) Since P is an isolated fixed point of the orientation
preserving hyperelliptic involution i, the restriction of q to αP is a two fold
covering map q| : αP → βP . Hence, λ assigns 1 to the homology class of
each loop βP .

Suppose that g : M2 → M2 is a homeomorphism of M2. We say that g
preserves the fibers of q if q(x) = q(y) implies that q(g(x)) = q(g(y)). If
h : S2 → S2 is a homeomorphism of S2 for which h ◦ q = q ◦ g, we say that
g is a lift of h. It is easy to see that the following are equivalent:

• g preserves the fibers of q,
• g is the lift of a homeomorphism of S2,
• g commutes with i.
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Figure 2

If g commutes with i, then g must preserve the fixed point set of i. Hence,
if Homeo(M2, i) denotes the group of homeomorphisms of M2 which com-
mute with i, Homeo(M2, i) acts on W . Since we have chosen a labeling
of the points of W , W = {P1, ..., P6}, this action affords a representation
ρ : Homeo(M2, i) → S6.

Lemma 1.1. The representation ρ : Homeo(M2, i) → S6 is surjective.

Proof. Let σ ∈ S6. Let h be a homeomorphism of S2 such that h(q(Pi)) =
q(Pσ(i)). Let (h|)∗ be the automorphism of H1(S2 \ q(W ),Z) induced by the
restriction h| : S2 \ q(W ) → S2 \ q(W ). Clearly, (h|)∗ maps the homology
class of a small loop around q(Pi) to the homology class of a small loop
around q(Pσ(i)). Thus, from the description of λ given above, we conclude
that λ ◦ (h|)∗ = λ. It follows from elementary covering space theory that h
lifts to a homeomorphism g of M2 such that g(Pi) = Pσ(i). Since g is a lift
of a homeomorphism of S2, g ∈ Homeo(M2, i). �

Let Γ2 be the full (or extended) mapping class group of M2 and Γ+
2 be the

mapping class group of M2. Γ+
2 is the subgroup of index 2 in Γ2 consisting

of the mapping classes of orientation preserving homeomorphisms of M2. As
observed in the proof of Theorem 4.8 of [B], there exists a collection of twist
maps gi : M2 →M2, i = 1, ..., 5 such that:

• gi is the lift of a homeomorphism of S2 for i = 1, ..., 5,
• Γ+

2 is generated by the isotopy classes of gi, i = 1, ..., 5.
Let h0 be an orientation reversing homeomorphism of S2 which fixes each
point of q(W ). By the proof of Lemma 1.1, h0 lifts to a homeomorphism
g0 of M2 which fixes each point of W . Since h0 is orientation reversing, g0
is orientation reversing. Hence, Γ2 is generated by the isotopy classes of
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gi, i = 0, ..., 5. Since gi is a lift of a homeomorphism of S2, gi is an element
of Homeo(M2, i), i = 0, ..., 5. Hence, we have an epimorphism:

Lemma 1.2. The natural homomorphism η : Homeo(M2, i) → Γ2 is sur-
jective.

Proposition 1.1. There exists a unique representation r such that the fol-
lowing diagram commutes:

Homeo(M2, i) Γ2

S6.

-η

Q
Q

Q
Q

QQs
ρ

?

r

The associated action of Γ2 on the set of Weierstrass points of M2 is given
by the rule τ ·P = g(P ) for every Weierstrass point P of M2, every mapping
class τ in Γ2 and every homeomorphism g ∈ Homeo(M2, i) representing τ .
Moreover, r is surjective.

Proof. The second and third statements follow immediately from the first
statement and Lemma 1.1. Suppose that h is in the kernel of η. We must
show that h is in the kernel of ρ. By our assumption and the previous
observations, h is a homeomorphism of M2 which respects the fibers of q
and is isotopic to the identity. By Theorem 4.7 of [B], there is an isotopy
ht between h = h0 and id = h1 such that for each t ∈ [0, 1] the map ht
is fiber-preserving. By the previous observations, each homeomorphism ht
acts on the set of Weierstrass points of M2. Since this is a discrete set of
points, it follows that ht(P ) = h0(P ) for all t ∈ [0, 1] and all P ∈ W . Since
h1 = h and h0 = id, we conclude that h is in the kernel of ρ. �

By our previous discussion, Γ2 is generated by Γ+
2 and the mapping class

of an orientation reversing homeomorphism g0 of M2 which fixes each Weier-
strass point of M2. Since Γ+

2 is generated by the mapping classes of Dehn
twists about nonseparating simple closed curves, r is completely determined
by the action of such classes. We now describe the action of these classes.

Lemma 1.3. Let c be an isotopy class of unoriented nonseparating simple
closed curves on M2. There exists a nonseparating simple closed curve γ ∈ c
such that i(γ) = γ.

Proof. This is an easy consequence of Theorem 3.2 of [Lu]. We now give
an independent proof which illustrates the nature of our arguments in this
paper.

Let P and Q be a pair of distinct Weierstrass points. Let J be an em-
bedded arc in S2 such that J meets q(W ) precisely at its endpoints q(P )
and q(Q). The preimage γ0 = q−1(J) in M2 is a nonseparating simple
closed curve on M2 and i(γ0) = γ0. Since γ0 is a nonseparating simple
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closed curve on M2, there exists a homeomorphism h such that h(γ0) rep-
resents c. By Lemma 1.2, there exists a homeomorphism h′ such that h
is isotopic to h′ and i ◦ h′ = h′ ◦ i. Let γ = h′(γ0). Since γ0 is a non-
separating simple closed curve, γ is a nonseparating simple closed curve.
Since h′ is isotopic to h and h(γ0) ∈ c, γ ∈ c. Finally, since i(γ0) = γ0,
i(γ) = i(h(γ0)) = h(i(γ0)) = h(γ0) = γ. �

Lemma 1.4. Let γ be a nonseparating simple closed curve on M2 such that
i(γ) is equal to γ. Then γ contains exactly two Weierstrass points of M2.

Proof. The restriction of i to γ is an involution i| of a circle. Since i has only
finitely many fixed points, i| is a nontrivial involution. If i| is orientation
preserving, then i| has no fixed points. On the other hand, if i| is orientation
reversing, then i| has exactly two fixed points. It suffices, therefore, to show
that i| has at least one fixed point.

Suppose that i| has no fixed points. Then the restriction of q to γ gives
a two fold covering q| : γ → q(γ) and γ = q−1(q(γ)). The image q(γ) is
an embedded simple closed curve in S2. Hence, q(γ) bounds a disc D in
S2. Since γ = q−1(q(γ)), γ bounds the surface q−1(D) in M2. Since γ is
nonseparating, this is impossible. �

Proposition 1.2. Let γ be a nonseparating simple closed curve on M2 such
that i(γ) = γ and P and Q be the two Weierstrass points of M2 on γ. Let
τγ ∈ Γ2 be the mapping class of a Dehn twist about γ. Then the action of
τγ on the set of Weierstrass points of M2 is given by the transposition of P
and Q.

Proof. Let J = q(γ) be the image of γ in S2. Since the restriction of i to
γ is an involution with two fixed points P and Q, J is an embedded arc
in S2 joining q(P ) to q(Q) and γ = q−1(J). Since P and Q are the only
Weierstrass points of M2 on γ, q(P ) and q(Q) are the only points of q(W )
on J . Let D be a regular neighborhood of J in S2 such that P and Q are
the only Weierstrass points of M2 in q−1(D). Let h be a homeomorphism of
S2 which fixes S2 \D pointwise and permutes q(P ) and q(Q). We assume
that the restriction of h to D represents the standard generator of the braid
group on two strings. h lifts to a homeomorphism g of M2 which represents
τγ and permutes P and Q. Since g is a lift of a homeomorphism of M2,
g ∈ Homeo(M2, i). Hence, by Proposition 1.1, the action of τγ on W is
equal to the action of g on W . �

Lemma 1.5. Let c be an isotopy class of unoriented nontrivial separating
simple closed curves on M2. There exists a nontrivial separating simple
closed curve γ ∈ c such that i(γ) = γ.

Proof. This is an easy consequence of Theorem 3.2 of [Lu]. We give an
independent proof.

Let D be a disc in S2 such that D meets q(W ) in precisely 3 points
none of which lie on the boundary β of D. The preimage γ0 = q−1(β) is a
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simple closed curve in M2 bounding the preimage T = q−1(D). Since T is
a two-fold branched cover of D branched over 3 points, T is a torus with
one hole. Hence, γ0 separates M2 into two tori with one hole each. Thus
γ0 is a nontrivial separating simple closed curve on M2. Moreover, since
γ0 = q−1(β), i(γ0) = γ0. Since γ0 is a nontrivial separating simple closed
curve on M2, there exists a homeomorphism h such that h(γ0) represents c.
The result follows as in the proof of Lemma 1.3. �

Lemma 1.6. Let γ be a nontrivial separating simple closed curve on M2

such that i(γ) is equal to γ. Then γ contains no Weierstrass points of M2.

Proof. The restriction of i to γ is an involution i| of a circle. Since i has only
finitely many fixed points, i| is a nontrivial involution. If i| is orientation
preserving, then i| has no fixed points. On the other hand, if i| is orientation
reversing, then i| has exactly two fixed points. It suffices, therefore, to show
that i| has no fixed points.

Suppose that i| has a fixed point. Then i| has two fixed points P and Q
and the image q(γ) is an embedded arc J which meets q(W ) precisely at
its endpoints q(P ) and q(Q) and γ = q−1(J). This is impossible, since it
implies that γ is a nonseparating simple closed curve in M2. �

We are now able to give an independent proof of Lustig’s criterion for
simple closed curves.

Theorem 1.1 (Lustig). Consider the presentation of π1M2 arising from an
appropriate edge pairing of an octagon π1M2 =< a, b, c, d|abcda−1b−1c−1d−1 >
and the automorphism j : π1M2 → π1M2 which maps each of the generators
a, b, c and d to its inverse. Let w ∈ π1M2 be such that the homotopy class
[w] contains a simple closed curve C on M2. If C is separating, it follows
that j(w) is conjugate to w. If C is nonseparating, then j(w) is conjugate
to w−1.

Proof. Let P1, ..., P6 be the Weierstrass points of M2. Let Ji, i = 1, ..., 4 be
a collection of embedded arcs in S2 with the following properties:

• Ji and Jj meet precisely at q(P1) for each distinct pair i and j,
• Ji meets q(W ) precisely at its endpoints q(P1) and q(Pi+1),
• the indexing of these arcs agrees with their cyclic ordering around
q(P1).

Let γj = q−1(Jj) so that γj is a nonseparating simple closed curve on M2

such that q(γj) = γj and P1 and Pj+1 are the two Weierstrass points of M2

on γj . (See Figure 3.) By our previous remarks, the restriction of i to γj is
an orientation reversing involution with fixed points P1 and Pj+1. Hence, if
xj denotes the element of π1(M2, P1) represented by γj , i∗(xj) = x−1

j .
If we orient the curves γj , we see that the cyclic ordering of the curves

γj around P1 is γ1, γ2, γ3, γ4, γ
−1
1 , γ−1

2 , γ−1
3 , γ−1

4 . If we cut M2 open along
the curves γj we obtain a surface F which is a 2-fold branched cover over
the complement D of the arcs Jj in S2. Since D is a disc with one branch
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Figure 3

point q(P6), F is a disc. On the other hand, our observation regarding the
cyclic ordering implies that the boundary of F is represented by the word
γ1γ4γ

−1
3 γ2γ

−1
1 γ−1

4 γ3γ
−1
2 . (See Figure 4.) Hence, since M2 is obtained from

F by the obvious edge pairing, we obtain the presentation of π1M2 given in
the theorem provided we let a = x1, b = x4, c = x−1

3 and d = x2. Moreover,
the hyperelliptic involution i induces the given automorphism j.

Figure 4

Suppose that [w] contains a separating simple closed curve γ. We may
assume that γ is nontrivial. By Lemma 1.5, we can assume that i(γ) = γ.
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Hence, by Lemma 1.6, the restriction of i to γ has no fixed points. Therefore,
i must preserve the orientation of γ. Thus j(w) is conjugate to w.

Suppose, on the other hand, that [w] contains a nonseparating simple
closed curve γ. By Lemma 1.3, we can assume that i(γ) = γ. Hence, by
Lemma 1.4, the restriction of i to γ has exactly two fixed points. Therefore,
i must reverse the orientation of γ. Thus j(w) is conjugate to w−1. �

Let P be a Weierstrass point on M2. Let Homeo(M2, i, P ) be the sta-
bilizer in Homeo(M2, i) of P with respect to the representation ρ. Since
Homeo(M2, i, P ) is a group of homeomorphisms of the pointed space (M2, P ),
we have a natural action of Homeo(M2, i, P ) on π1(M2, P ). This action af-
fords a representation σ : Homeo(M2, i, P ) → Aut(π1M2). Let Γ2(P ) be the
stabilizer in Γ2 of P with respect to the representation r. By Lemma 1.2
and Proposition 1.1, η restricts to an epimorphism η| : Homeo(M2, i, P ) →
Γ2(P ).

Theorem 1.2. There exists a unique representation s such that the follow-
ing diagram commutes:

Homeo(M2, i, P ) Γ2(P )

Aut(π1(M2, P )).

-
η|

HHH
HHHHj
σ

?

s

The representation s is given by the rule s(τ) = g∗ for any mapping class τ ∈
Γ2 and any homeomorphism g ∈ Homeo(M2, i, P ) representing τ . Moreover,
s is a virtual splitting of the natural homomorphism Aut(π1(M2, P )) →
Out(π1(M2, P )).

Proof. The second and third statements are immediate consequences of the
first statement, the surjectivity of η| and the definition of σ. Suppose that
h is in the kernel of η|. We must show that h is in the kernel of σ. By our
assumption and the previous observations, h is a homeomorphism of M2

which respects the fibers of q and is isotopic to the identity. By Theorem
4.7 of [B], there is an isotopy ht between h = h0 and id = h1 such that for
each t ∈ [0, 1] the map ht is fiber-preserving. By the previous observations,
each homeomorphism ht acts on the set of Weierstrass points of M2. Since
this is a discrete set of points, it follows that ht(P ) = h0(P ) for all t ∈ [0, 1].
Thus, h is isotopic to id relative to P and, consequently, the action of h on
π1(M2, P ) agrees with that of id. Hence, h is in the kernel of σ. �

Proposition 1.3. Let τ ∈ Γ2(P ). Then s(τ) is the unique automorphism
φ in the outer automorphism class τ such that φ ◦ i∗ = i∗ ◦ φ.

Proof. Let h ∈ Homeo(M2, i, P ) represent the mapping class τ . Then i◦h =
h◦ i and h(P ) = P . By Theorem 1.2, s(τ) = h∗. Since i◦h = h◦ i, it follows
that h∗ ◦ i∗ = i∗ ◦ h∗. It remains to prove the uniqueness statement.
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Suppose that φ ∈ Aut(π1(M2, P )) is a representative of the outer auto-
morphism class τ and φ◦i∗ = i∗◦φ. Since φ and h∗ represent the same outer
automorphism class τ , φ = χc◦h∗ where χc denotes the inner automorphism
of π1(M2, P ) corresponding to an element c of π1(M2, P ). Since h∗ and φ
both commute with i∗, we conclude that χc commutes with i∗. Since the
center of π1(M2, P ) is trivial, this implies that i∗(c) = c. Hence, by Lemma
1.1 of [B-H], we conclude that c is the identity element of π1(M2, P ). Hence,
φ = h∗. �

2. Weierstrass points and Z2-homology

The restriction q| of q to M2 \ W and S2 \ q(W ) induces a homomor-
phism (q|)∗ : H1(M2 \W,Z2) → H1(S2 \ q(W ),Z2). Since M2 is obtained
from M2 \W by replacing the points of W , the inclusion inc : M2 \W →M2

induces an epimorphism inc∗ : H1(M2 \W,Z2) → H1(M2,Z2). For each
Weierstrass point P of M2, let αP ⊂ M2 \ W and βP ⊂ S2 \ q(W ) be
small loops around P and q(P ) respectively as defined in section 1 and de-
picted in Figure 2. H1(S2 \ q(W ),Z2) is generated by the homology classes
of the loops βP . Indeed, H1(S2 \ q(W ),Z2) is naturally isomorphic to the
quotient of the free Z2 module on the loops βP by the single relation:∑

P∈W
βP = 0. (2.1)

The kernel of inc∗ is generated by the homology classes of the loops αP . On
the other hand, since P is an isolated fixed point of the orientation preserving
hyperelliptic involution i, we conclude that q∗([αP ]) = 2[βP ] = 0 ∈ H1(S2 \ q(W ),Z2).
Hence, we have the following lemma.

Lemma 2.1. There exists a unique homomorphism ω such that the following
diagram commutes:

H1(M2 \W,Z2) H1(M2,Z2)

H1(S2 \ q(W ),Z2).

-inc∗

HH
HHH

HHj
(q|)∗

?

ω

The homomorphism ω is given by the rule ω(v) = (q|)∗(v′) for every homol-
ogy class v ∈ H1(M2,Z2) and v′ ∈ H1(M2 \W,Z2) such that inc∗(v′) = v.

Lemma 2.2. Let γ be a nonseparating simple closed curve such that i(γ) = γ
and v be the homology class of γ in H1(M2,Z2). Let P and Q be the two
Weierstrass points of M2 on γ. Then ω(v) = βP + βQ.

Proof. The image J = q(γ) is an embedded arc in S2 which meets q(W )
precisely at its endpoints q(P ) and q(Q). Let δ be the boundary of a regular
neighborhood D of J . We assume that q(P ) and q(Q) are the only points
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of q(W ) in D. In particular, this implies that δ represents the homology
class βP + βQ. The preimage A = q−1(D) is a regular neighborhood of γ
and P and Q are the only points of W in A. Let γ′ be one of the boundary
components of A. Then γ′ ∈ v, γ′ ⊂M2 \W and (q|)∗([γ′]) = [δ]. �

Lemma 2.3. Let v be a nontrivial homology class in H1(M2,Z2). There
exists a unique pair of distinct Weierstrass points P and Q such that ω(v) =
βP + βQ.

Proof. Suppose that v is a nontrivial element of H1(M2,Z2). Then there is
a nonseparating simple closed curve γ representing v. By Lemma 1.3, we
can assume that i(γ) = γ. Thus, by Lemma 1.4, there are precisely two
Weierstrass points P and Q on γ. Hence, by Lemma 2.2, ω(v) = βP +
βQ. This proves the existence statement. The uniqueness follows from the
previous description of H1(S2 \ q(W ),Z2) in terms of the relation 2.1. �

Lemma 2.4. The homomorphism ω : H1(M2,Z2) → H1(S2 \ q(W ),Z2) is
injective.

Proof. Suppose that v is a nontrivial element of H1(M2,Z2). Then, by
Lemma 2.3, there are precisely two Weierstrass points P and Q, such that
ω(v) = βP + βQ. By the previous description of H1(S2 \ q(W ),Z2) in terms
of the relation 2.1, we conclude that βP + βQ 6= 0. �

Lemma 2.5. Let P and Q be a distinct pair of Weierstrass points of M2.
Then there exists a unique nontrivial homology class v in H1(M2,Z2) such
that ω(v) = βP + βQ.

Proof. The uniqueness follows from Lemma 2.4. Let J be an embedded
arc in S2 meeting q(W ) precisely at its endpoints q(P ) and q(Q) and let
γ = q−1(J). Then γ is a nonseparating simple closed curve in M2, i(γ) = γ
and P and Q are the two Weierstrass points of M2 on γ. Let v be the
homology class of γ. By Lemma 2.2, ω(v) = βP + βQ. �

Henceforth, if v is a nontrivial homology class in H1(M2,Z2) and P and
Q are the unique pair of Weierstrass points such that ω(v) = βP + βQ, we
say that P and Q are the two Weierstrass points of M2 on v. Lemmas 2.3
and 2.5 establish a bijection:

Ω : H1(M2,Z2)∗ → S∗
2(W )

between the set H1(M2,Z2)∗ of nontrivial homology classes in H1(M2,Z2)
and the set S∗

2(W ) of pairs of distinct Weierstrass points of M2. Ω(v) =
{P,Q} if and only if ω(v) = βP + βQ. The naturality of Ω is expressed in
the following lemma.

Lemma 2.6. Let v ∈ H1(M2,Z2)∗ and τ ∈ Γ2. If Ω(v) = {P,Q}, then
Ω(τ · v) = {τ · P, τ ·Q}.

Proof. Let g ∈ Homeo(M2, i) represent the mapping class τ . Since g com-
mutes with i, g(W ) = W . Moreover, there exists a homeomorphism h of
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S2 such that h ◦ q = q ◦ g. Hence, h(q(W )) = q(g(W )) = q(W ). Hence, g
restricts to a homeomorphism g| of M2 \W and h restricts to a homeomor-
phism h| of S2 \ q(W ). Since h ◦ q = q ◦ g, h| ◦ q| = q| ◦ g|, where q| is the
restriction of q to M2 \W and S2 \ q(W ). Applying H1( ,Z2), we conclude
that (q|)∗ ◦ (g|)∗ = (h|)∗ ◦ (q|)∗. From the definition of ω, it follows that
ω ◦ (g)∗ = (h|)∗ ◦ ω.

By the definition of the action of Γ2 on W , τ ·P = g(P ) and τ ·Q = g(Q).
On the other hand, τ · v = g∗(v). Since h ◦ q = q ◦ g, h(q(P )) = q(g(P )) and
h(q(Q)) = q(g(Q)). Hence, (h|)∗(βP ) = βg(P ) and (h|)∗(βQ) = βg(Q). By
assumption, ω(v) = βP + βQ. Since ω ◦ (g)∗ = (h|)∗ ◦ ω, we conclude that:

ω(g∗(v)) = (h|)∗(ω(v)) = (h|)∗(βP + βQ) = βg(P ) + βg(Q).

�

Let <,> be the Z2-valued intersection form on H1(M2,Z2).

Lemma 2.7. Let v1 and v2 be two nontrivial homology classes in H1(M2,Z2)
and Pi and Qi be the two Weierstrass points of M2 on vi, i = 1, 2. Then
< v1, v2 > is equal to the congruence class modulo 2 of the number of points
in {P1, Q1} ∩ {P2, Q2}.

Proof. Let Jj be an embedded arc in S2 joining q(Pj) to q(Qj). We may
assume that J1 ∩ J2 = {q(P1), q(Q1)} ∩ {q(P2), q(Q2)}. Let γj = q−1(Jj).
Then γj is a simple closed curve in M2 such that i(γj) = γj and Pj and
Qj are the two Weierstrass points of M2 on γj . By choosing the arcs Ji
carefully, we may assume that γ1 and γ2 are transverse. Hence, < v1, v2 >
is equal to the congruence class modulo 2 of the number of points in γ1∩γ2.
On the other hand, since J1 ∩J2 is equal to {q(P1), q(Q1)}∩{q(P2), q(Q2)},
γ1 ∩ γ2 = {P1, Q1} ∩ {P2, Q2}. �

Let v and w be two nontrivial homology classes in H1(M2,Z2). We say
that v and w are Z2 disjoint if < v,w >= 0. By Lemma 2.7 and the fact
that Ω is injective, v and w are Z2 disjoint if and only if they are equal or
have no common Weierstrass point. We say that {v, w} is a Z2 base pair if
< v,w >= 1. Again, by Lemma 2.7, {v, w} is a Z2 base pair if and only if
there is exactly one common Weierstrass point on v and w. The following
result is an immediate consequence of these observations.

Proposition 2.1. Let {v1, w1} and {v2, w2} be Z2 base pairs on M2 which
are Z2 disjoint from one another. Then the Weierstrass points of M2 consist
of the following 6 points:

• the common Weierstrass points Pi of vi and wi, i = 1, 2;
• the remaining Weierstrass points on the 4 homology classes v1, w1,
v2 and w2.

Remark 2.1. A result of W. B. R. Lickorish [Li] implies that Γ+
2 is gener-

ated by the mapping classes of Dehn twists τi, i = 1, ..., 5 about any system



12 JOHN D. MCCARTHY

of nonseparating simple closed curves γi, i = 1, .., 5 with the following prop-
erties:

• γi and γj are transverse for all i 6= j,
• γi and γi+1 meet in precisely one point,
• γi and γj are disjoint whenever |i− j| ≥ 2.

(A result of S. Humphries [H] implies that this system of Dehn twists is the
smallest system of Dehn twists generating Γ+

2 .) By an argument similar to
the proof of Lemma 1.3, we may assume that i(γj) = γj , j = 1, ..., 5. Hence,
each of these curves contain exactly two Weierstrass points. The above
results imply that we may label the Weierstrass points P1, ..., P6 such that Pi
and Pi+1 are the Weierstrass points of M2 on γi. Hence, by Proposition 1.2,
τi is sent to the i-th standard generator of S6, the transposition interchanging
Pi and Pi+1. Hence, we have a complete description of the representation r.

The Z2-valued intersection form<,> is a Z2 symplectic form onH1(M2,Z2).
We recall the fact that the action of homeomorphisms on homology respects
this form and induces an epimorphism ψ : Γ2 → Sp4(Z2).

Theorem 2.1. There exists a unique isomorphism µ such that the following
diagram commutes:

Γ2 S6

Sp4(Z2).

-r

@
@

@@R
ψ

?

µ

where r : Γ2 → S6 is the representation of Proposition 1.1 and ψ is the
standard Z2 symplectic representation Γ2 → Sp4(Z2).

Proof. Since r and ψ are both epimorphisms, it suffices to show that they
have the same kernel. The action of Γ2 onW associated to the representation
r induces an action of Γ2 on S∗

2(W ). Let r∗ denote the representation of
Γ2 associated to this action. Likewise, the action of Γ2 on H1(M2,Z2)
associated to the representation ψ induces an action of Γ2 on H1(M2,Z2)∗

with an associated representation ψ∗. Clearly, the kernel of ψ∗ is equal to
the kernel of ψ. On the other hand, by Lemma 2.6, Ω is a Γ2 equivariant
bijection of the Γ2 sets H1(M2,Z2)∗ and S∗

2(W ). Thus, the kernel of r∗ is
equal to the kernel of ψ∗. Hence, it suffices to show that the kernel of r∗ is
equal to the kernel of r.

Clearly, the kernel of r is contained in the kernel of r∗. Suppose, on the
other hand, that τ is an element of Γ2 contained in the kernel of r∗. Let
P be a Weierstrass point of M2. We must show that τ · P = P . Suppose,
that τ · P 6= P . Let Q be a Weierstrass point of M2 with P 6= Q. Since τ
is in the kernel of r∗, {τ · P, τ ·Q} = {P,Q}. Since τ · P 6= P , we conclude
that τ ·P = Q. This last identity holds for every Weierstrass point Q of M2

with P 6= Q. Since there are more than two Weierstrass points on M2, this
is impossible. �
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Corollary 2.1. The subgroup of Γ+
2 that acts trivially on the set of Weier-

strass points of M2 via the representation r : Γ2 → S6 of Proposition 1.1 is
equal to the subgroup of Γ2 generated by all squares of Dehn twists on simple
closed curves in M2.

Proof. Let Γ+
g be the mapping class group of a closed Riemann surface Mg of

genus g. By Theorem 8 of [W], the subgroup Γ+
g [2] of Γ+

g which acts trivially
on H1(Mg,Z2) is equal to the subgroup of Γ+

g generated by all squares of
Dehn twists on simple closed curves in Mg. Hence, the corollary follows
immediately from Theorem 2.1. �

Remark 2.2. In the classical argument, (Theorem 3.1.5 of [O]), an isomor-
phism from Sp4(Z2) to S6 is established by considering configurations in V ,
where V is a 4-dimensional regular alternating space over Z2. By definition,
a configuration is any subset C of 5 elements in V with the property that no
two distinct elements of C are orthogonal (with respect to the alternating
form). It is shown that there are precisely 6 configurations in V and that
Sp4(Z2) acts effectively on the set of configurations in V . Hence, there is
a monomorphism ν : Sp4(Z2) → S6. Since Sp4(Z2) and S6 have the same
order, one concludes that ν is an isomorphism.

Now in our context, V is equal to H1(M2,Z2) equipped with the intersec-
tion form <,>. Configurations in V are naturally identified with Weierstrass
points as follows. Let P be a Weierstrass point of M2. Let:

CP = {Ω−1({P,Q})|Q ∈W \ {P}}.

Lemma 2.7 implies that CP is a configuration. It is easy to see that the
correspondence P 7→ CP defines a bijection between the set of Weierstrass
points of M2 and the set of configurations in H1(M2,Z2). The correspon-
dence P 7→ CP is in some sense “dual” to our correspondence Ω. From this
duality, we see that the isomorphism µ of Theorem 2.1 is the inverse of the
isomorphism ν constructed by the classical argument with configurations.

This duality can be understood as follows. Let G denote the full graph
on 6 vertices (i.e. the 1 skeleton of a 5 -simplex). G has two interpreta-
tions relevant to our discussion. In the first interpretation, the vertices of G
correspond to the Weierstrass points of M2 and the edges of G correspond
to the distinct pairs of Weierstrass points of M2. The vertices of an edge
of G correspond to the two Weierstrass points of the corresponding pair.
In the second interpretation, the vertices of G correspond to the configu-
rations and the edges of G correspond to the nontrivial homology classes
in H1(M2,Z2). The vertices of an edge of G are the two configurations
containing the corresponding homology class. From this point of view, the
correspondence P 7→ CP is a “vertex” isomorphism and the correspondence
Ω is the associated “edge” isomorphism.
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3. Identification with Lustig’s action and virtual splitting

Let d be the unique hyperbolic metric associated to the Riemann surface
M2. Since the hyperelliptic involution i is a conformal automorphism of M2

([F-K]), it is an isometry of d. We recall that there exists a unique simple
closed hyperbolic geodesic of the hyperbolic surface (M2, d) in the isotopy
class of any nontrivial simple closed curve on M2.

Lemma 3.1. Let c be an isotopy class of a nonseparating simple closed
curve on M2 and γ be the unique hyperbolic geodesic of (M2, d) in c. Then
i(γ) = γ.

Proof. This is a consequence of Theorem 2.3 of [Lu]. We give an independent
argument.

By Lemma 1.3, there exists a nonseparating simple closed curve γ′ ∈ c
such that i(γ′) = γ′. Thus i preserves the isotopy class c. Since i is an
isometry, i(γ) is a geodesic. By the uniqueness of the geodesic in a given
isotopy class, therefore, i(γ) = γ. �

In order to state our next theorem, we recall the following notions from
[Lu]. A geodesic base pair on a Riemann surface M is a pair of simple closed
geodesics on M which meet in exactly one point. A pair of points P and Q
on a closed geodesic γ on M are antipodes on γ if P and Q separate γ into
two geodesic segments of equal hyperbolic length.

Theorem 3.1 (Lustig). The Weierstrass points of M2 coincide for any two
disjoint geodesic base pairs on M2 with the two intersection points and the
four antipodes.

Proof. This is essentially Theorems 2.3 and 2.4 of [Lu]. We give an inde-
pendent proof.

By Lemmas 1.4 and 3.1, we see that there are exactly two Weierstrass
points on each of the geodesics in the given base pairs. By Lemma 2.2,
these two points are the Weierstrass points on the corresponding nontrivial
homology classes in H1(M2,Z2). These homology classes form a pair of Z2

disjoint Z2 base pairs on M2. Hence, the result follows immediately from
Proposition 2.1. �

Theorem 3.2. The representation r : Γ2 → S6 of Proposition 1.1 is equal
to the induced map p : Out(π1M2) → S6 of Lemma 3.4 of [Lu].

Proof. Let g ∈ Homeo(M2, i) represent an element τ of Γ2 and let P be a
Weierstrass point of M2. Let γ1 and γ2 be a base pair of geodesics of (M2, d)
such that P = γ1 ∩ γ2. Let Qj be the Weierstrass point of M2 such that P
and Qj are the two Weierstrass points of M2 on γj , j = 1, 2. Let γ′j be the
unique hyperbolic geodesic in the isotopy class of g(γj), j = 1, 2. We must
show that g(P ) is the common Weierstrass point of γ′1 and γ′2.

Since g ∈ Homeo(M2, i), i(g(γj)) = g(γj) and g(P ) and g(Qj) are the two
Weierstrass points of M2 on i(γj), j = 1, 2. On the other hand, by Lemma
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3.1, i(γ′j) = γ′j , j = 1, 2. Since γ′j is isotopic to g(γj) and γj is a nonseparat-
ing simple closed curve, γ′j and g(γj) represent the same nontrivial homology
class in H1(M2,Z2). Hence, by Lemmas 2.2 and 2.3, the Weierstrass points
of γ′j and g(γj) coincide. Thus, g(P ) is a common Weierstrass point of γ′1
and γ′2. �

Remark 3.1. From Theorem 3.2 and Corollary 2.1, we see that the sub-
group of Γ+

2 which acts trivially on the set of Weierstrass points of M2 via
the induced map p : Out(π1M2) → S6 of Lemma 3.4 of [Lu] is equal to the
subgroup of Γ2 generated by all squares of Dehn twists on simple closed
curves in M2.

The previous lemma implies that Γ2(P ) = p−1(Stab(P )). By Theorem 3.5
of [Lu], there is a subgroup 0S(M2 of Aut(π1M2) which maps isomorphically
to p−1(Stab(P )) via the natural homomorphism Aut(π1M2) → Out(π1M2).
Since p−1(Stab(P )) has finite index in Out(π1M2), the inverse of OS(M2) →
p−1(Stab(P )) is a virtual splitting of Aut(π1M2) → Out(π1M2).

Theorem 3.3. The representation s : Γ2(P ) → Aut(π1M2) of Theorem 1.2
corresponds to the virtual splitting of Theorem 3.5 of [Lu].

Proof. As observed in the proof of Proposition 3.6 of [Lu], the factor OS(M2)
of the splitting of Theorem 3.5 of [Lu] can be characterized precisely as fol-
lows. Let φ ∈ Aut(π1(M2, P )). Then φ ∈ OS(M2) if and only if i∗(φ(x)) =
φ(x−1) for each element x of a specified set {a, b, c, d} of generators of
π1(M2, P ). But i∗(x) = x−1 for each element x of this set of generators.
Hence, φ ∈ OS(M2) if and only if i∗ ◦ φ = φ ◦ i∗.

Thus, by Proposition 1.3, s(Γ2(P )) ⊂ OS(M2). By Theorem 3.5 of [Lu],
OS(M2) is mapped isomorphically to p−1(Stab(P )) = Γ2(P ) by the natural
homomorphism Aut(π1(M2, P )) → Out(π1(M2, P )). Since s is a virtual
splitting of this homomorphism on the subgroup of finite index Γ2(P ), we
conclude that s(Γ2(P )) is equal to OS(M2). �
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