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In [McW] the authors described a method of gluing symplectic manifolds
along a class of hypersurfaces called ω-compatible hypersurfaces. They then
applied this gluing to “symplectically resolve” the isolated orbifold singu-
larities in symplectic 4-manifolds. Subsequently, Y. Eliashberg pointed out
to us that, using contact hypersurfaces, it should be possible to ”symplec-
tically resolve” isolated algebraic singularities on a symplectic 4-manifold.
The purpose of this note is to state and prove this result.

It is unfortunately the case that, at present, there is no definition of an
isolated symplectic singularity, let alone a construction of its resolution.
Certainly, any reasonable definition must include the algebraic singularities.
Accordingly we regard this paper as a first step in a program towards the
definition and resolution of this class of singularities. The resolution we
give here relies on the resolution of the singularity in the algebraic category.
This feature limits the technique. A more illuminating proof would involve
only symplectic techniques as, for example, in the resolution of orbifold
singularities [McW]. Such a procedure is not currently available.

Let X be a topological space and p ∈ X such that X \ {p} is a symplec-
tic manifold with symplectic form ω. Such a point p is called an isolated
singularity.

Definition 1. We say p is an isolated algebraic singularity in the symplectic
manifold (X \ {p}, ω) if there are:

(1) a neighborhood N(p) of p in X.

(2) an algebraic variety V ⊂ CN .

(3) an isolated singularity q ∈ V .

(4) a neighborhood U(q) ⊂ V of q such that U(q) \ {q} has symplectic
form η induced from CN .

(5) a symplectic diffeomorphism

ψ : (N(p) \ {p}, ω) → (U(q) \ {q}, η).
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Recall the notion of symplectic resolution from [McW]: Suppose that p is
an isolated singularity of X. Let U be a neighborhood of p in X.

Definition 2. We say a symplectic manifold (X̃, ω̃) is a symplectic resolu-
tion of p on U if there are:

(1) a tubular neighborhood W of a symplectic divisor D in X̃.

(2) a map π : (X̃,D) → (X, p) such that π : X̃\W → X\U is a symplectic
diffeomorphism.

A symplectic divisor in X̃ is a set D of symplectically embedded codi-
mension two manifolds which intersect transversely. We say that the divisor
is closed if each of the manifolds in D are closed.

Theorem 1. Let U be a neighborhood of an isolated algebraic singularity p
in the symplectic 4-manifold (X \ {p}, ω). There is a symplectic resolution
of p on U .

We will require the following definitions and lemmas from contact geom-
etry. Let (X,ω) be a symplectic manifold and let H ⊂ X be a hypersurface
in X. Suppose that ξ is a co-oriented contact structure on H. ξ is given as
ker(α) for a 1-form α with the property that the 2-form dα is nondegenerate
on ξ. We say that α is a contact form for ξ if α is positive on positively
co-oriented tangent vectors in H transverse to ξ. A contact form for ξ is
determined up to multiplication by a positive function. Since multiplication
of α by a positive function causes the multiplication of dα|ξ by the same
function, the conformal symplectic class of the form dα|ξ depends only on
ξ. Denote this class by CS(ξ).

Definition 3 ([E-G]). We say that the symplectic form ω on X dominates
the contact structure ξ on H if

ω|ξ ∈ CS(ξ)

.

Since contact forms for ξ are well defined up to multiplication by a func-
tion, for dominated contact structures there is a canonical contact form α
such that ω|ξ = dα|ξ. Note that α induces the given co-orientation of ξ. We
equip H with the contact orientation induced by α and the corresponding
co-orientation induced by ω. In particular, an ω-dominated hypersurface
has a canonical co-orientation.

Definition 4. We say that the contact structure ξ on H is ω-convex if

ω|H = dα

for a contact form α for ξ.
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Remark 1. For equivalent formulations of ω-convex see [E-G]. Clearly if ξ
is ω-convex then ω dominates ξ. A simple argument shows that the converse
holds when dimH > 3 (see [McD]). When dimH = 3 the converse fails (see
[E-G]).

Lemma 1 ([E1]). Let H ⊂ X be a closed hypersurface with a co-oriented
contact structure ξ. Let ω be an exact symplectic form defined near H such
that ω dominates ξ. Then there exists a symplectic structure Ω on H × R+

which is equivalent to ω near H = H × {1} and which has the form d(tα)
on H × [C,∞) for some C > 0, where t ∈ [C,∞) and α is a contact form
for ξ. In particular ξ is Ω-convex on H × {t} for t ≥ C.

The proof of Lemma 1 in [E1] shows that we may assume that the canon-
ical co-orientation on H × {1} induced by Ω is given by ∂

∂t . Hence, we may
assume that the equivalence of the previous lemma maps the negative side
of H to H × (0, 1). Note, furthermore, that the negative side of H × {t}
corresponds to H × (0, t) for all t ≥ C.

Lemma 2 ([E2]). Let H ⊂ X be a closed hypersurface with a co-oriented
contact structure ξ. Let ω0, ω1 be exact symplectic forms defined near H
such that ξ is ωi-convex, i = 0, 1. Then ω0, ω1 are conformally concordant:
There is a symplectic structure Ω on H × [0, 1] which is equivalent to ciωi

near H = H × {i}, i = 0, 1, for some positive constants c0 and c1.

Proof. Let αi be the canonical contact form for ξ induced by ωi. Since ξ
is ωi convex for i = 0, 1, α1 = fα0 for a positive function f : H → R+.
Scaling ω1 by a positive constant causes the multiplication of f by the same
constant. Hence, we may assume that f(x) > 1 for all x ∈ H.

Consider the manifold H ×R+. The 2-form d(tα0) is a symplectic struc-
ture Ω on H × R+. Let H0 = H × {1}. The restriction of Ω to H0 is equal
to dα0. By the symplectic neighborhood theorem there is a diffeomorphism
φ0 from a neighborhood of H in X to a neighborhood of H0 in H×R+ such
that φ∗0(Ω) = ω0.

Let H1 be the graph of f . Let ψ : H → H1 be the obvious diffeomor-
phism from H to H1. Then ψ∗(Ω) = d(fα0) = dα1. As above, there is a
diffeomorphism φ1 from a neighborhood of H in X to a neighborhood of H1

in H × R+ such that φ∗1(Ω) = ω1.
The restriction of Ω to the region between H0 and H1 gives the desired

symplectic concordance. �

As in Lemma 1, we may assume that the equivalences of Lemma 2 map
the sides of H as dictated by the co-orientations given by ∂

∂t .
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Proof of the Theorem: Let (V, q) be the singularity that models the
singularity (X, p). We can suppose that q is the origin in CN . Let

Sε = {(x1 · · ·xN ) ∈ CN :
N∑

i=1

|xi|2 = ε2}

denote the (2N − 1) sphere of radius ε, centered at the origin. For ε suf-
ficiently small H = Sε ∩ V is a hypersurface in U(q). The distribution of
complex lines defines a contact structure ξ on H. The Kähler form η on V ,
induced from CN , is exact near H and ξ is η-convex. Thus the hypersurface
ψ−1(H) ⊂ N(p) ⊂ X has an ω-convex contact structure ψ∗(ξ). Note that p
lies on the negative side of ψ−1(H). Let N ′(p) denote the union of {p} and
the negative side of ψ−1(H).

Since q ⊂ V is a algebraic singularity, we can resolve it in the projective
category by blowing up. The resolution is a Kähler, in fact, projective
manifold Y containing an analytic divisor D, called the exceptional divisor,
with an analytic projection π : Y → V which restricts to a biholomorphism:

Y \Dyπ
V \ {q}.

(0.1)

Denote the Kähler form on Y by τ . Let H̃ = π−1(H). H̃ is a hypersurface
with contact structure π∗(ξ). Since π is a diffeomorphism away from D, we
may identify (H̃, π∗(ξ)) with (H, ξ). Since π is a biholomorphism away from
D, the contact planes on H̃ are the distribution of complex lines contained
in TH̃. It follows that the Kähler form τ is positive on each contact plane
and hence dominates the contact structure ξ. (This step apparently fails
when dim H̃ > 3.) Again, since π is a biholomorphism, it follows that D is
on the negative side of H̃. Let Y ′ denote the union of D and the negative
side of H̃.

By the choice of H, Y ′ is a regular neighborhood of the exceptional divisor
D. By Grauert’s criterion [B-P-V], the intersection form on the second ho-
mology group H2(Y ′) is negative definite and, hence, nondegenerate. Every
class in H2(Y ′) is represented by a cycle in D. Let S be a cycle supported
in Y ′ \D. S has zero intersection with every cycle in D. Thus, S is homo-
logically trivial in Y ′. Since τ is a closed 2-form on Y ′,

∫
S τ = 0. Thus, the

periods of τ in Y ′ \ D are trivial. Since τ is closed, this implies that τ is
exact in Y ′ \D. In particular, τ is exact near H̃.

Using Lemma 1 and the subsequent remark concerning ∂
∂t , we can extend

the symplectic structure τ to a manifoldW containing Y ′ such that on ∂W '
H̃ the contact structure ξ is τ -convex. Note that W is on the negative side of
∂W . Thus, by Lemma 2 and the subsequent remark concerning ∂

∂t , rescaling
if necessary, we can delete the neighborhood N ′(p) ⊂ X and symplectically
glue into X \ N ′(p) the manifold W using a symplectic concordance. The
resulting symplectic manifold is the required symplectic resolution. �
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Remark 2. In the previous proof, the exceptional divisor may have singu-
lar components. However, by further resolution, we can assume that each
component of D is nonsingular.

An alternate proof can be given which avoids the use of Lemma 1. On
π−1(U(q)) ⊂ Y consider the 2-form ωε = π∗(η) + ετ ; for ε > 0. Since π∗η
is nonnegative and τ is positive on complex lines, ωε is nondegenerate and
therefore defines a symplectic form. Clearly, for any ε > 0, ωε dominates
the contact structure ξ on H̃. In fact on H̃:

ωε|H̃ = dα+ εdβ,

where α is a contact form and β is a 1-form. For ε sufficiently small the
1-form α+εβ defines a new contact structure on H̃ that we denote ξε. Note
that the contact structure ξε is ωε-convex. By Gray’s stability theorem [G]
the contact structures ξε and ξ are contactomorphic when ε is sufficiently
small. Hence for ε sufficiently small we may assume that the contact struc-
ture ξ on ∂Y ′ = H̃ is ωε-convex. The proof of the theorem is completed using
Lemma 2 to glue (Y ′, ωε) into (X \N ′(p), ω) by a symplectic concordance.
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