

E-Published on , 2009

DISCRETENESS AND HOMOGENEITY OF THE TOPOLOGICAL FUNDAMENTAL GROUP

JACK S. CALCUT AND JOHN D. McCARTHY

ABSTRACT. For a locally path connected topological space, the topological fundamental group is discrete if and only if the space is semilocally simply-connected. While functoriality of the topological fundamental group, with target the category of topological groups, remains an open question in general, the topological fundamental group is always a homogeneous space.

1. INTRODUCTION

The concept of a natural topology for the fundamental group appears to have originated with Witold Hurewicz [8] in 1935. It received further attention in 1950 by James Dugundji [2] and more recently by Daniel K. Biss [1], Paul Fabel [3], [4], [5], [6], and others. The purpose of this note is to prove the following folklore theorem.

Theorem 1.1. Let X be a locally path connected topological space. The topological fundamental group $\pi_1^{\text{top}}(X)$ is discrete if and only if X is semilocally simply-connected.

Theorem 5.1 of [1] is Theorem 1.1 without the hypothesis of local path connectedness. However, a counterexample of Fabel [6] shows that this stronger result is false. Fabel [6] also proves a weaker

²⁰⁰⁰ Mathematics Subject Classification. Primary 55Q52, 54F35.

Key words and phrases. discrete, functoriality, homogeneous space, semilocally simply-connected, topological fundamental group.

^{©2009} Topology Proceedings.

version of Theorem 1.1, assuming that X is locally path connected and a metric space. In this note we remove the metric hypothesis.

Our proof proceeds from first topological principles, making no use of rigid covering fibrations [1] nor even of classical covering spaces. We make no use of the functoriality of the topological fundamental group, a property which was also a main result in [1, Corollary 3.4] but, in fact, is unproven [5, pp. 188–189]. Beware that the misstep in the proof of Proposition 3.1 in [1], namely the assumption that the product of quotient maps is a quotient map, is repeated in Theorem 2.1 of [7].

In general, the homeomorphism type of the topological fundamental group depends on a choice of basepoint. We say that $\pi_1^{\text{top}}(X)$ is *discrete*, without reference to a basepoint, provided $\pi_1^{\text{top}}(X, x)$ is discrete for each $x \in X$. If x and y are connected by a path in X, then $\pi_1^{\text{top}}(X, x)$ and $\pi_1^{\text{top}}(X, y)$ are homeomorphic. This fact was proved in Proposition. 3.2 of [1], and a detailed proof is provided for completeness in section 4 of this paper. Theorem 1.1 now immediately implies the following.

Corollary. Let X be a path connected and locally path connected topological space. The topological fundamental group $\pi_1^{\text{top}}(X, x)$ is discrete for some $x \in X$ if and only if X is semilocally simply-connected.

As mentioned above, it is open whether π_1^{top} is a functor from the category of pointed topological spaces to the category of topological groups. The unsettled question is whether multiplication

$$\pi_1^{\text{top}}(X, x) \times \pi_1^{\text{top}}(X, x) \xrightarrow{\mu} \pi_1^{\text{top}}(X, x)$$
$$([f], [g]) \longmapsto [f] \cdot [g]$$

is continuous. By Theorem 1.1, if X is locally path connected and semilocally simply-connected, then $\pi_1^{\text{top}}(X, x)$, and, hence, the product $\pi_1^{\text{top}}(X, x) \times \pi_1^{\text{top}}(X, x)$ are discrete and so μ is trivially continuous. Continuity of μ , in general, remains an interesting question. Lemma 5.1 below shows that if (X, x) is an arbitrary pointed topological space, then left and right multiplication by any fixed element in $\pi_1^{\text{top}}(X, x)$ are continuous self maps of $\pi_1^{\text{top}}(X, x)$. Therefore, $\pi_1^{\text{top}}(X, x)$ acts on itself by left and right translation as a group of self homeomorphisms. Clearly, these actions are transitive. Thus, we obtain the following result.

Theorem 1.2. Let (X, x) be a pointed topological space. Then $\pi_1^{\text{top}}(X, x)$ is a homogeneous space.

This note is organized as follows. Section 2 contains definitions and conventions, section 3 proves two lemmas and Theorem 1.1, section 4 addresses change of basepoint, and section 5 shows left and right translation are homeomorphisms.

2. Definitions and conventions

By convention, neighborhoods are open. Unless stated otherwise, homomorphisms are inclusion induced.

Let X be a topological space and $x \in X$. A neighborhood U of x is relatively inessential (in X) provided $\pi_1(U, x) \to \pi_1(X, x)$ is trivial. X is semilocally simply-connected at x provided there exists a relatively inessential neighborhood U of x. X is semilocally simply-connected provided it is so at each $x \in X$. A neighborhood U of x is strongly relatively inessential (in X) provided $\pi_1(U, y) \to \pi_1(X, y)$ is trivial for every $y \in U$.

The fundamental group is a functor from the category of pointed topological spaces to the category of groups. Consequently, if A and B are any subsets of X such that $x \in A \subset B \subset X$ and $\pi_1(B, x) \to \pi_1(X, x)$ is trivial, then $\pi_1(A, x) \to \pi_1(X, x)$ is trivial as well. This observation justifies the convention that neighborhoods are open.

If X is locally path connected and semilocally simply-connected, then each $x \in X$ has a path connected relatively inessential neighborhood U. Such a U is necessarily a strongly relatively inessential neighborhood of x, as the reader may verify (see for instance, [9, Exercise 5, p. 330]).

Let (X, x) be a pointed topological space and let $I = [0, 1] \subset \mathbb{R}$. The space

$$C_x(X) = \{f : (I, \partial I) \to (X, x) \mid f \text{ is continuous}\}\$$

is endowed with the compact-open topology. The function

$$C_x(X) \xrightarrow{q} \pi_1(X, x)$$
$$f \longmapsto [f]$$

is surjective, so $\pi_1(X, x)$ inherits the quotient topology, and one writes $\pi_1^{\text{top}}(X, x)$ for the resulting topological fundamental group. Let $e_x \in C_x(X)$ denote the constant map. If $f \in C_x(X)$, then f^{-1} denotes the path defined by $f^{-1}(t) = f(1-t)$.

3. Proof of Theorem 1.1

We prove two lemmas and then Theorem 1.1.

Lemma 3.1. Let (X, x) be a pointed topological space. If $\{[e_x]\}$ is open in $\pi_1^{\text{top}}(X, x)$, then x has a relatively inessential neighborhood in X.

Proof: The quotient map q is continuous and $\{[e_x]\} \subset \pi_1^{\text{top}}(X, x)$ is open, so $q^{-1}([e_x]) = [e_x]$ is open in $C_x(X)$. Therefore, e_x has a basic open neighborhood

(3.1)
$$e_x \in V = \bigcap_{n=1}^{N} V(K_n, U_n) \subset [e_x] \subset C_x(X),$$

where each $K_n \subset I$ is compact, each $U_n \subset X$ is open, and each $V(K_n, U_n)$ is a subbasic open set for the compact-open topology on $C_x(X)$. We will show that

$$U = \bigcap_{n=1}^{N} U_n$$

is a relatively inessential neighborhood of x in X. Clearly, U is open in X and, by (3.1), $x \in U$. Finally, let $f : (I, \partial I) \to (U, x)$. For each $1 \leq n \leq N$, we have

$$f(K_n) \subset U \subset U_n$$

Thus, $f \in [e_x]$ by (3.1), so $[f] = [e_x]$ is trivial in $\pi_1(X, x)$.

Lemma 3.2. Let (X, x) be a pointed topological space and let $f \in C_x(X)$. If X is locally path connected and semilocally simply-connected, then $\{[f]\}$ is open in $\pi_1^{\text{top}}(X, x)$.

Proof: As q is a quotient map, we must show that $q^{-1}([f]) = [f]$ is open in $C_x(X)$. So let $g \in [f]$. For each $t \in I$, let U_t be a path connected relatively inessential neighborhood of g(t) in X. The sets $g^{-1}(U_t)$, where $t \in I$, form an open cover of I. Let $\lambda > 0$ be a Lebesgue number for this cover. Choose $N \in \mathbb{N}$ so that $1/N < \lambda$. For each $1 \leq n \leq N$, let

$$I_n = \left[\frac{n-1}{N}, \frac{n}{N}\right] \subset I.$$

Reindex the U_t 's so that

$$g(I_n) \subset U_n$$
 for each $1 \leq n \leq N$.

The U_n 's are not necessarily distinct, nor does the proof require this condition. For each $1 \le n \le N$, let W_n denote the path component of $U_n \cap U_{n+1}$ containing g(n/N), so

(3.2)
$$g\left(\frac{n}{N}\right) \in W_n \subset (U_n \cap U_{n+1}) \subset X$$

Consider the basic open set

(3.3)
$$V = \left(\bigcap_{n=1}^{N} V\left(I_{n}, U_{n}\right)\right) \cap \left(\bigcap_{n=1}^{N-1} V\left(\left\{\frac{n}{N}\right\}, W_{n}\right)\right) \subset C_{x}(X).$$

By construction, $g \in V$. It remains to show that $V \subset [f]$. So, let $h \in V$. As [g] = [f], it suffices to show that [h] = [g].

By (3.3) we have

(3.4)
$$h(I_n) \subset U_n \quad \text{for each } 1 \le n \le N \text{ and}$$
$$h\left(\frac{n}{N}\right) \in W_n \quad \text{for each } 1 \le n \le N-1.$$

For each $1 \leq n \leq N-1$, let $\gamma_n : I \to W_n$ be a continuous path such that

$$\gamma_n(0) = h\left(\frac{n}{N}\right)$$
 and
 $\gamma_n(1) = g\left(\frac{n}{N}\right),$

which exists by (3.2) and (3.4). Let $\gamma_0 = e_x$ and $\gamma_N = e_x$. For each $1 \le n \le N$, define

$$I \xrightarrow{s_n} I_n$$
$$t \longmapsto \frac{1}{N}t + \frac{n-1}{N}$$

and let

$$g_n = g \circ s_n$$
 and
 $h_n = h \circ s_n.$

So, g_n and h_n are affine reparameterizations of $g|_{I_n}$ and $h|_{I_n}$, respectively. For each $1 \le n \le N$,

$$\delta_n = g_n * \gamma_n^{-1} * h_n^{-1} * \gamma_{n-1}$$

is a loop in U_n based at $g_n(0)$ (see Figure 1). As U_n is a strongly rel-

FIGURE 1. Loop $\delta_n = g_n * \gamma_n^{-1} * h_n^{-1} * \gamma_{n-1}$ in U_n based at $g_n(0)$.

atively inessential neighborhood, $[\delta_n] = 1 \in \pi_1(X, g_n(0))$. Therefore, g_n and $\gamma_{n-1}^{-1} * h_n * \gamma_n$ are path homotopic. In $\pi_1(X, x)$, we have

$$[h] = [h_1 * h_2 * \dots * h_N]$$

= $[\gamma_0^{-1} * h_1 * \gamma_1 * \gamma_1^{-1} * h_2 * \gamma_2 * \dots * \gamma_{N-1}^{-1} * h_N * \gamma_N]$
= $[g_1 * g_2 * \dots * g_N]$
= $[g]$,

proving the lemma.

In the previous proof, the second collection of subbasic open sets in (3.3) is essential. Figure 2 shows two loops g and h based

6

at x in the annulus $X = S^1 \times I$. All conditions in the proof are satisfied, except g(1/N) and h(1/N) fail to lie in the same connected component of $U_1 \cap U_2$. Clearly, g and h are not homotopic loops.

FIGURE 2. Loops g and h based at x in the annulus X.

Proof of Theorem 1.1: First, assume $\pi_1^{\text{top}}(X)$ is discrete and let $x \in X$. By definition, $\pi_1^{\text{top}}(X, x)$ is discrete, so $\{[e_x]\}$ is open in $\pi_1^{\text{top}}(X, x)$. By Lemma 3.1, x has a relatively inessential neighborhood in X. The choice of $x \in X$ was arbitrary, so X is semilocally simply-connected.

Next, assume X is semilocally simply-connected and let $x \in X$. Points in $\pi_1^{\text{top}}(X, x)$ are open by Lemma 3.2, so $\pi_1^{\text{top}}(X, x)$ is discrete. The choice of $x \in X$ was arbitrary, so $\pi_1^{\text{top}}(X)$ is discrete. \Box

4. BASEPOINT CHANGE

Lemma 4.1. Let X be a topological space and $x, y \in X$. If x and y lie in the same path component of X, then $\pi_1^{\text{top}}(X, x)$ and $\pi_1^{\text{top}}(X, y)$ are homeomorphic.

Proof: Let $\gamma: I \to X$ be a continuous path with $\gamma(0) = y$ and $\gamma(1) = x$. Define the function

$$C_y(X) \xrightarrow{\Gamma} C_x(X)$$
$$f \longmapsto (\gamma^{-1} * f) * \gamma$$

First, we show that Γ is continuous. Let $I_1 = [0, 1/4], I_2 = [1/4, 1/2]$, and $I_3 = [1/2, 1]$. Define the affine homeomorphisms

and note that

$$I \xrightarrow{\Gamma(f)} X$$

$$t \longmapsto \gamma^{-1} \circ s_1(t) \qquad 0 \le t \le \frac{1}{4}$$

$$t \longmapsto f \circ s_2(t) \qquad \frac{1}{4} \le t \le \frac{1}{2}$$

$$t \longmapsto \gamma \circ s_3(t) \qquad \frac{1}{2} \le t \le 1$$

Consider an arbitrary subbasic open set

$$V = V(K, U) \subset C_x(X).$$

Observe that $\Gamma(f) \in V$ if and only if

(4.1)
$$\gamma^{-1} \circ s_1 \left(K \cap I_1 \right) \subset U,$$

(4.2)
$$f \circ s_2 (K \cap I_2) \subset U$$
, and

(4.3)
$$\gamma \circ s_3 (K \cap I_3) \subset U.$$

Define the subbasic open set

$$V' = V\left(s_2\left(K \cap I_2\right), U\right) \subset C_y(X).$$

Observe that $f \in V'$ if and only if (4.2) holds. As conditions (4.1) and (4.3) are independent of f, either $\Gamma^{-1}(V) = \emptyset$ or $\Gamma^{-1}(V) = V'$. Thus, Γ is continuous. Next, consider the diagram

The composition $q_x \circ \Gamma$ is constant on each fiber of q_y , so there is a unique set function making the diagram commute, namely $\pi(\Gamma) : [f] \mapsto [\Gamma(f)]$. As q_y is a quotient map, the universal property of quotient maps [9, Theorem 11.1, p. 139] implies that $\pi(\Gamma)$ is continuous. It is well known that $\pi(\Gamma)$ is a bijection [9, Theorem 2.1, p. 327]. Repeating the above argument with the roles of

8

x and y interchanged and the roles of γ and γ^{-1} interchanged, we see that $\pi(\Gamma)^{-1}$ is continuous. Thus, $\pi(\Gamma)$ is a homeomorphism as desired.

5. TRANSLATION

Lemma 5.1. Let (X, x) be a pointed topological space. If $[f] \in \pi_1^{\text{top}}(X, x)$, then left and right translation by [f] are self homeomorphisms of $\pi_1^{\text{top}}(X, x)$.

Proof: Fix $[f] \in \pi_1^{\text{top}}(X, x)$ and consider left translation by [f] on $\pi_1^{\text{top}}(X, x)$

$$\pi_1^{\text{top}}(X, x) \xrightarrow{L_{[f]}} \pi_1^{\text{top}}(X, x)$$
$$[g] \longmapsto [f] \cdot [g] .$$

Plainly, $L_{\left[f\right]}$ is a bijection of sets. Consider the commutative diagram

(5.1)
$$C_{x}(X) \xrightarrow{L_{f}} C_{x}(X)$$

$$q \downarrow \qquad \qquad \downarrow q$$

$$\pi_{1}^{\text{top}}(X, x) \xrightarrow{L_{[f]}} \pi_{1}^{\text{top}}(X, x) ,$$

where L_f is defined by

$$C_x(X) \xrightarrow{L_f} C_x(X)$$
$$g \longmapsto f * g.$$

First, we show L_f is continuous. Let $I_1 = [0, 1/2]$ and $I_2 = [1/2, 1]$. Define the affine homeomorphisms

$$I_1 \xrightarrow{s_1} I \qquad I_2 \xrightarrow{s_2} I \\ t \longmapsto 2t \qquad t \longmapsto 2t - 1$$

and note that

$$I \xrightarrow{f*g} X$$

$$t \longmapsto f \circ s_1(t) \qquad 0 \le t \le \frac{1}{2}$$

$$t \longmapsto g \circ s_2(t) \qquad \frac{1}{2} \le t \le 1.$$

Consider an arbitrary subbasic open set

$$V = V(K, U) \subset C_x(X).$$

Observe that $f * g \in V$ if and only if

- (5.2) $f \circ s_1 (K \cap I_1) \subset U$ and
- (5.3) $g \circ s_2 (K \cap I_2) \subset U.$

Define the subbasic open set

$$V' = V\left(s_2\left(K \cap I_2\right), U\right) \subset C_x(X).$$

Observe that $g \in V'$ if and only if (5.3) holds. As condition (5.2) is independent of g, either $L_f^{-1}(V) = \emptyset$ or $L_f^{-1}(V) = V'$. Thus, L_f is continuous. The composition $q \circ L_f$ is constant on each fiber of the quotient map q and (5.1) commutes, so the universal property of quotient maps [9, Theorem 11.1, p. 139] implies that $L_{[f]}$ is continuous.

Applying the previous argument to f^{-1} , we get $L_{[f]}^{-1} = L_{[f^{-1}]}$ is continuous and $L_{[f]}$ is a homeomorphism. The proof for right translation is almost identical.

References

- Daniel K. Biss, The topological fundamental group and generalized covering spaces, Topology Appl. 124 (2002), no. 3, 355–371.
- J. Dugundji, A topologized fundamental group, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 141–143.
- Paul Fabel, The fundamental group of the harmonic archipelago. 2005 Preprint. Available at http://front.math.ucdavis.edu/math.AT/0501426 and http://www2.msstate.edu/~fabel/.
- [4] _____, The topological Hawaiian earring group does not embed in the inverse limit of free groups, Algebr. Geom. Topol. 5 (2005), 1585–1587.
- [5] _____, Topological fundamental groups can distinguish spaces with isomorphic homotopy groups, Topology Proc. 30 (2006), no. 1, 187–195.
- [6] _____, Metric spaces with discrete topological fundamental group, Topology Appl. 154 (2007), no. 3, 635–638.
- [7] H. Ghane, Z. Hamed, B. Mashayekhy, and H. Mirebrahimi, *Topological homotopy groups*, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 3, 455–464.
- [8] Witold Hurewicz, Homotopie, homologie und lokaler zusammenhang, Fund. Math. 25 (1935), 467–485.

10

[9] James R. Munkres, *Topology: A First Course*. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975.

(Calcut) DEPARTMENT OF MATHEMATICS; MICHIGAN STATE UNIVERSITY; EAST LANSING, MICHIGAN 48824-1027 *E-mail address*: jack@math.msu.edu

URL: http://www.math.msu.edu/~jack/

(McCarthy) Department of Mathematics; Michigan State University; East Lansing, Michigan 48824-1027

E-mail address: mccarthy@math.msu.edu *URL*: http://www.math.msu.edu/~mccarthy/