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DISCRETENESS AND HOMOGENEITY OF THE
TOPOLOGICAL FUNDAMENTAL GROUP

JACK S. CALCUT AND JOHN D. McCARTHY

Abstract. For a locally path connected topological space,
the topological fundamental group is discrete if and only if the
space is semilocally simply-connected. While functoriality of
the topological fundamental group, with target the category
of topological groups, remains an open question in general,
the topological fundamental group is always a homogeneous
space.

1. Introduction

The concept of a natural topology for the fundamental group
appears to have originated with Witold Hurewicz [8] in 1935. It
received further attention in 1950 by James Dugundji [2] and more
recently by Daniel K. Biss [1], Paul Fabel [3], [4], [5], [6], and others.
The purpose of this note is to prove the following folklore theorem.

Theorem 1.1. Let X be a locally path connected topological space.
The topological fundamental group πtop

1 (X) is discrete if and only
if X is semilocally simply-connected.

Theorem 5.1 of [1] is Theorem 1.1 without the hypothesis of local
path connectedness. However, a counterexample of Fabel [6] shows
that this stronger result is false. Fabel [6] also proves a weaker
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version of Theorem 1.1, assuming that X is locally path connected
and a metric space. In this note we remove the metric hypothesis.

Our proof proceeds from first topological principles, making no
use of rigid covering fibrations [1] nor even of classical covering
spaces. We make no use of the functoriality of the topological
fundamental group, a property which was also a main result in [1,
Corollary 3.4] but, in fact, is unproven [5, pp. 188–189]. Beware
that the misstep in the proof of Proposition 3.1 in [1], namely the
assumption that the product of quotient maps is a quotient map,
is repeated in Theorem 2.1 of [7].

In general, the homeomorphism type of the topological funda-
mental group depends on a choice of basepoint. We say that
πtop

1 (X) is discrete, without reference to a basepoint, provided
πtop

1 (X,x) is discrete for each x ∈ X. If x and y are connected by
a path in X, then πtop

1 (X,x) and πtop
1 (X, y) are homeomorphic.

This fact was proved in Proposition. 3.2 of [1], and a detailed proof
is provided for completeness in section 4 of this paper. Theorem 1.1
now immediately implies the following.

Corollary. Let X be a path connected and locally path connected
topological space. The topological fundamental group πtop

1 (X, x) is
discrete for some x ∈ X if and only if X is semilocally simply-
connected.

As mentioned above, it is open whether πtop
1 is a functor from the

category of pointed topological spaces to the category of topological
groups. The unsettled question is whether multiplication

πtop
1 (X, x)× πtop

1 (X, x)
µ // πtop

1 (X,x)

([f ] , [g]) Â // [f ] · [g]

is continuous. By Theorem 1.1, if X is locally path connected
and semilocally simply-connected, then πtop

1 (X,x), and, hence, the
product πtop

1 (X, x) × πtop
1 (X,x) are discrete and so µ is trivially

continuous. Continuity of µ, in general, remains an interesting
question.
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Lemma 5.1 below shows that if (X, x) is an arbitrary pointed
topological space, then left and right multiplication by any fixed el-
ement in πtop

1 (X,x) are continuous self maps of πtop
1 (X, x). There-

fore, πtop
1 (X, x) acts on itself by left and right translation as a

group of self homeomorphisms. Clearly, these actions are transi-
tive. Thus, we obtain the following result.

Theorem 1.2. Let (X, x) be a pointed topological space. Then
πtop

1 (X,x) is a homogeneous space.

This note is organized as follows. Section 2 contains definitions
and conventions, section 3 proves two lemmas and Theorem 1.1,
section 4 addresses change of basepoint, and section 5 shows left
and right translation are homeomorphisms.

2. Definitions and conventions

By convention, neighborhoods are open. Unless stated otherwise,
homomorphisms are inclusion induced.

Let X be a topological space and x ∈ X. A neighborhood U
of x is relatively inessential (in X) provided π1 (U, x) → π1 (X, x)
is trivial. X is semilocally simply-connected at x provided there
exists a relatively inessential neighborhood U of x. X is semilocally
simply-connected provided it is so at each x ∈ X. A neighborhood
U of x is strongly relatively inessential (in X) provided π1 (U, y) →
π1 (X, y) is trivial for every y ∈ U .

The fundamental group is a functor from the category of pointed
topological spaces to the category of groups. Consequently, if A and
B are any subsets of X such that x ∈ A ⊂ B ⊂ X and π1 (B, x) →
π1 (X, x) is trivial, then π1 (A, x) → π1 (X, x) is trivial as well. This
observation justifies the convention that neighborhoods are open.

If X is locally path connected and semilocally simply-connected,
then each x ∈ X has a path connected relatively inessential neigh-
borhood U . Such a U is necessarily a strongly relatively inessential
neighborhood of x, as the reader may verify (see for instance, [9,
Exercise 5, p. 330]).

Let (X, x) be a pointed topological space and let I = [0, 1] ⊂ R.
The space

Cx(X) = {f : (I, ∂I) → (X, x) | f is continuous}
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is endowed with the compact-open topology. The function

Cx(X)
q // π1 (X, x)

f Â // [f ]

is surjective, so π1 (X, x) inherits the quotient topology, and one
writes πtop

1 (X,x) for the resulting topological fundamental group.
Let ex ∈ Cx(X) denote the constant map. If f ∈ Cx(X), then f−1

denotes the path defined by f−1(t) = f(1− t).

3. Proof of Theorem 1.1

We prove two lemmas and then Theorem 1.1.

Lemma 3.1. Let (X, x) be a pointed topological space. If {[ex]} is
open in πtop

1 (X, x), then x has a relatively inessential neighborhood
in X.

Proof: The quotient map q is continuous and {[ex]} ⊂ πtop
1 (X, x)

is open, so q−1 ([ex]) = [ex] is open in Cx (X). Therefore, ex has a
basic open neighborhood

(3.1) ex ∈ V =
N⋂

n=1

V (Kn, Un) ⊂ [ex] ⊂ Cx (X) ,

where each Kn ⊂ I is compact, each Un ⊂ X is open, and each
V (Kn, Un) is a subbasic open set for the compact-open topology
on Cx (X). We will show that

U =
N⋂

n=1

Un

is a relatively inessential neighborhood of x in X. Clearly, U is
open in X and, by (3.1), x ∈ U . Finally, let f : (I, ∂I) → (U, x).
For each 1 ≤ n ≤ N , we have

f (Kn) ⊂ U ⊂ Un.

Thus, f ∈ [ex] by (3.1), so [f ] = [ex] is trivial in π1 (X,x). ¤

Lemma 3.2. Let (X,x) be a pointed topological space and let f ∈
Cx(X). If X is locally path connected and semilocally simply-connected,
then {[f ]} is open in πtop

1 (X, x).
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Proof: As q is a quotient map, we must show that q−1 ([f ]) = [f ]
is open in Cx(X). So let g ∈ [f ]. For each t ∈ I, let Ut be a path
connected relatively inessential neighborhood of g(t) in X. The
sets g−1 (Ut), where t ∈ I, form an open cover of I. Let λ > 0 be a
Lebesgue number for this cover. Choose N ∈ N so that 1/N < λ.
For each 1 ≤ n ≤ N , let

In =
[
n− 1

N
,

n

N

]
⊂ I.

Reindex the Ut’s so that

g (In) ⊂ Un for each 1 ≤ n ≤ N.

The Un’s are not necessarily distinct, nor does the proof require this
condition. For each 1 ≤ n ≤ N , let Wn denote the path component
of Un ∩ Un+1 containing g (n/N), so

(3.2) g
( n

N

)
∈ Wn ⊂ (Un ∩ Un+1) ⊂ X.

Consider the basic open set

(3.3) V =

(
N⋂

n=1

V (In, Un)

)
∩

(
N−1⋂

n=1

V
({ n

N

}
,Wn

))
⊂ Cx(X).

By construction, g ∈ V . It remains to show that V ⊂ [f ]. So, let
h ∈ V . As [g] = [f ], it suffices to show that [h] = [g].

By (3.3) we have

h (In) ⊂ Un for each 1 ≤ n ≤ N and

h
( n

N

)
∈ Wn for each 1 ≤ n ≤ N − 1.(3.4)

For each 1 ≤ n ≤ N − 1, let γn : I → Wn be a continuous path
such that

γn(0) = h
( n

N

)
and

γn(1) = g
( n

N

)
,
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which exists by (3.2) and (3.4). Let γ0 = ex and γN = ex. For each
1 ≤ n ≤ N , define

I
sn // In

t
Â // 1

N t + n−1
N

and let

gn = g ◦ sn and
hn = h ◦ sn.

So, gn and hn are affine reparameterizations of g|In
and h|In

, re-
spectively. For each 1 ≤ n ≤ N ,

δn = gn ∗ γ−1
n ∗ h−1

n ∗ γn−1

is a loop in Un based at gn(0) (see Figure 1). As Un is a strongly rel-

hn

gn

γn
γn−1

UnUn−1 Un+1

Figure 1. Loop δn = gn ∗ γ−1
n ∗ h−1

n ∗ γn−1 in Un

based at gn(0).

atively inessential neighborhood, [δn] = 1 ∈ π1 (X, gn(0)). There-
fore, gn and γ−1

n−1 ∗ hn ∗ γn are path homotopic. In π1 (X, x), we
have

[h] = [h1 ∗ h2 ∗ · · · ∗ hN ]

=
[
γ−1

0 ∗ h1 ∗ γ1 ∗ γ−1
1 ∗ h2 ∗ γ2 ∗ · · · ∗ γ−1

N−1 ∗ hN ∗ γN

]

= [g1 ∗ g2 ∗ · · · ∗ gN ]

= [g] ,

proving the lemma. ¤
In the previous proof, the second collection of subbasic open

sets in (3.3) is essential. Figure 2 shows two loops g and h based
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at x in the annulus X = S1 × I. All conditions in the proof are
satisfied, except g(1/N) and h(1/N) fail to lie in the same connected
component of U1 ∩ U2. Clearly, g and h are not homotopic loops.

x

h

gg( )

U1

U2

1

N

h( )1
N

Figure 2. Loops g and h based at x in the annulus X.

Proof of Theorem 1.1: First, assume πtop
1 (X) is discrete and let

x ∈ X. By definition, πtop
1 (X,x) is discrete, so {[ex]} is open in

πtop
1 (X,x). By Lemma 3.1, x has a relatively inessential neighbor-

hood in X. The choice of x ∈ X was arbitrary, so X is semilocally
simply-connected.

Next, assume X is semilocally simply-connected and let x ∈
X. Points in πtop

1 (X,x) are open by Lemma 3.2, so πtop
1 (X, x)

is discrete. The choice of x ∈ X was arbitrary, so πtop
1 (X) is

discrete. ¤

4. Basepoint change

Lemma 4.1. Let X be a topological space and x, y ∈ X. If x
and y lie in the same path component of X, then πtop

1 (X, x) and
πtop

1 (X, y) are homeomorphic.

Proof: Let γ : I → X be a continuous path with γ(0) = y and
γ(1) = x. Define the function

Cy(X) Γ // Cx(X)

f Â //
(
γ−1 ∗ f

) ∗ γ .
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First, we show that Γ is continuous. Let I1 = [0, 1/4], I2 =
[1/4, 1/2], and I3 = [1/2, 1]. Define the affine homeomorphisms

I1
s1 // I I2

s2 // I I3
s3 // I

t
Â // 4t t

Â // 4t− 1 t
Â // 2t− 1

and note that

I
Γ(f) // X

t
Â // γ−1 ◦ s1(t) 0 ≤ t ≤ 1

4

t
Â // f ◦ s2(t) 1

4 ≤ t ≤ 1
2

t
Â // γ ◦ s3(t) 1

2 ≤ t ≤ 1 .

Consider an arbitrary subbasic open set

V = V (K, U) ⊂ Cx(X).

Observe that Γ(f) ∈ V if and only if

γ−1 ◦ s1 (K ∩ I1) ⊂ U,(4.1)

f ◦ s2 (K ∩ I2) ⊂ U, and(4.2)

γ ◦ s3 (K ∩ I3) ⊂ U.(4.3)

Define the subbasic open set

V ′ = V (s2 (K ∩ I2) , U) ⊂ Cy(X).

Observe that f ∈ V ′ if and only if (4.2) holds. As conditions (4.1)
and (4.3) are independent of f , either Γ−1(V ) = ∅ or Γ−1(V ) = V ′.
Thus, Γ is continuous. Next, consider the diagram

Cy(X) Γ //

qy

²²

Cx(X)

qx

²²
πtop

1 (X, y)
π(Γ) //___ πtop

1 (X, x) .

The composition qx ◦ Γ is constant on each fiber of qy, so there
is a unique set function making the diagram commute, namely
π (Γ) : [f ] 7→ [Γ(f)]. As qy is a quotient map, the universal prop-
erty of quotient maps [9, Theorem 11.1, p. 139] implies that π (Γ)
is continuous. It is well known that π (Γ) is a bijection [9, Theo-
rem 2.1, p. 327]. Repeating the above argument with the roles of
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x and y interchanged and the roles of γ and γ−1 interchanged, we
see that π (Γ)−1 is continuous. Thus, π (Γ) is a homeomorphism as
desired. ¤

5. Translation

Lemma 5.1. Let (X,x) be a pointed topological space. If [f ] ∈
πtop

1 (X,x), then left and right translation by [f ] are self homeo-
morphisms of πtop

1 (X, x).

Proof: Fix [f ] ∈ πtop
1 (X, x) and consider left translation by [f ]

on πtop
1 (X,x)

πtop
1 (X, x)

L[f ] // πtop
1 (X, x)

[g] Â // [f ] · [g] .

Plainly, L[f ] is a bijection of sets. Consider the commutative dia-
gram

(5.1) Cx(X)
Lf //

q

²²

Cx(X)

q

²²
πtop

1 (X, x)
L[f ] // πtop

1 (X, x) ,

where Lf is defined by

Cx(X)
Lf // Cx(X)

g Â // f ∗ g .

First, we show Lf is continuous. Let I1 = [0, 1/2] and I2 = [1/2, 1].
Define the affine homeomorphisms

I1
s1 // I I2

s2 // I

t
Â // 2t t

Â // 2t− 1

and note that

I
f∗g // X

t
Â // f ◦ s1(t) 0 ≤ t ≤ 1

2

t
Â // g ◦ s2(t) 1

2 ≤ t ≤ 1 .
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Consider an arbitrary subbasic open set

V = V (K, U) ⊂ Cx(X).

Observe that f ∗ g ∈ V if and only if

f ◦ s1 (K ∩ I1) ⊂ U and(5.2)

g ◦ s2 (K ∩ I2) ⊂ U.(5.3)

Define the subbasic open set

V ′ = V (s2 (K ∩ I2) , U) ⊂ Cx(X).

Observe that g ∈ V ′ if and only if (5.3) holds. As condition (5.2)
is independent of g, either L−1

f (V ) = ∅ or L−1
f (V ) = V ′. Thus,

Lf is continuous. The composition q ◦ Lf is constant on each fiber
of the quotient map q and (5.1) commutes, so the universal prop-
erty of quotient maps [9, Theorem 11.1, p. 139] implies that L[f ] is
continuous.

Applying the previous argument to f−1, we get L−1
[f ] = L[f−1]

is continuous and L[f ] is a homeomorphism. The proof for right
translation is almost identical. ¤

References

[1] Daniel K. Biss, The topological fundamental group and generalized covering
spaces, Topology Appl. 124 (2002), no. 3, 355–371.

[2] J. Dugundji, A topologized fundamental group, Proc. Nat. Acad. Sci. U. S.
A. 36 (1950), 141–143.

[3] Paul Fabel, The fundamental group of the harmonic archipelago. 2005
Preprint. Available at http://front.math.ucdavis.edu/math.AT/0501426
and http://www2.msstate.edu/∼fabel/.

[4] , The topological Hawaiian earring group does not embed in the
inverse limit of free groups, Algebr. Geom. Topol. 5 (2005), 1585–1587.

[5] , Topological fundamental groups can distinguish spaces with iso-
morphic homotopy groups, Topology Proc. 30 (2006), no. 1, 187–195.

[6] , Metric spaces with discrete topological fundamental group, Topol-
ogy Appl. 154 (2007), no. 3, 635–638.

[7] H. Ghane, Z. Hamed, B. Mashayekhy, and H. Mirebrahimi, Topological
homotopy groups, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 3,
455–464.

[8] Witold Hurewicz, Homotopie, homologie und lokaler zusammenhang, Fund.
Math. 25 (1935), 467–485.



DISCRETENESS OF THE TOPOLOGICAL FUNDAMENTAL GROUP 11

[9] James R. Munkres, Topology: A First Course. Englewood Cliffs, N.J.:
Prentice-Hall, Inc., 1975.

(Calcut) Department of Mathematics; Michigan State University;
East Lansing, Michigan 48824-1027

E-mail address: jack@math.msu.edu

URL: http://www.math.msu.edu/∼jack/
(McCarthy) Department of Mathematics; Michigan State Univer-

sity; East Lansing, Michigan 48824-1027
E-mail address: mccarthy@math.msu.edu

URL: http://www.math.msu.edu/∼mccarthy/


