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0. Introduction

In his book, Partial Differential Relations, Gromov introduced the sym-
plectic analogue of the complex analytic operations of blowing up and blow-
ing down. Of course, in complex geometry one of the primary uses of blowing
up is to resolve singularities. Gromov proposed, in §3.4.4(D) of Partial Dif-
ferential Relations, a program for resolving the singularities of symplectic
immersions with symplectic crossings via blowing up, in exact analogue with
the well known complex analytic technique. The purpose of this note is to
show that this program cannot work. We show that there are symplectically
immersed surfaces in symplectic 4-manifolds which do not have a symplec-
tically embedded proper transform in any blow up of the four manifold.
In particular, there are double points of a symplectically immersed surface
which cannot be resolved symplectically using blowing up. We produce ex-
amples of such surfaces with only double point singularities. Interestingly,
double points of immersed surfaces can be resolved using blowing up in the
topological category and in the complex category. Symplectic immersions,
however, are flexible enough to allow negative double points yet rigid enough
to satisfy a symplectic version of the adjunction formula. This combination
leads to our result. While all techniques used in this paper are elementary,
the main result (Corollary 4.1) that singularities of symplectic immersions
cannot be resolved by blowing up is not obvious. This result shows that the
resolution of symplectic singularities will require further techniques.

1. Blowing Up in Symplectic 4-Manifolds

In this section we briefly review the essential ideas of blowing up (and
down) in the case of symplectic 4-manifolds. These ideas have been worked
out in detail by Guillemin and Sternberg [G-S] and McDuff [McD1].

In complex analysis blowing up replaces a point p, in a complex surface
X2, by the space of complex lines through p; that is, by CP 1. More pre-
cisely, blowing up constructs a complex manifold X̃ and a holomorphic map
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π : X̃ → X such that π−1(p) = CP 1 and π−1 : M \ p → M̃ \ CP 1 is a bi-
holomorphism. The complex curve π−1(p) ⊂ X̃, called the exceptional curve
and usually denoted E, is an imbedded 2−sphere with self-intersection −1.

In the symplectic category it is not possible to carry out such an infini-
tesimal operation, rather the construction must be made locally. The idea
is to replace, not a point p, but a symplectic ball around p, by a neighbor-
hood of CP 1. Precisely, consider CP 1 with area form σ normalized so that∫
CP 1 σ = πλ2. Symplectically imbed (CP 1, σ) into a symplectic 4-manifold

so that its self-intersection is −1. Denote such an embedded surface by E.
By the symplectic neighborhood theorem a sufficiently small tubular neigh-
borhood of E is determined, up to symplectomorphism, by σ and the self-
intersection number −1, alone. Consider the ball B4(λ + ε) ⊂ R4 equipped
with the standard symplectic structure on R4.

Proposition 1.1. For ε sufficiently small there is a symplectomorphism φ
from B4(λ+ε)\B4(λ) onto Nε(E)\E, where Nε(E) is a tubular neighborhood
of E. The map φ extends continuously over ∂B4(λ) to be the Hopf map.

Proof. The proposition is proved by building a model for the symplectic
structure on the tubular neighborhood Nε(E) and then giving φ explicitly.
For details see [G-S] or [McD1]. �

The blow up of the symplectic 4-manifold (M,ω) at p depends on the
choice of a symplectic embedding ρ : B4(λ) → M, ρ(0) = p. Given such an
embedding, extend ρ to a symplectic embedding ρ′ : B4(λ+ ε) → M . Delete
B4(λ) and glue in Nε(E) via the symplectomorphism φ. It then follows that
the resulting symplectic manifold (M̃, ω̃) is (up to isotopy) independent of
the choice of extension ρ′ of ρ and of ε. (M̃, ω̃) is called the blow-up of (M,ω)
at p of weight λ.

Suppose (M,ω) is a symplectic 4-manifold containing a symplectically
embedded 2−sphere E of self-intersection −1 with area

∫
E ω = πλ2. Then

E can be blown down by reversing the above procedure. The resulting
symplectic 4-manifold has a symplectically imbedded ball B4(λ) replacing
the symplectic surface E.

2. The Adjunction Formula

Let (M,ω) be a symplectic 4-manifold. ω determines, up to homotopy,
an almost complex structure on M and hence the Chern classes ci(M,ω)
are well-defined. Consider a symplectic immersion f : (Σ, η) → (M,ω).
By a small perturbation of f we can assume that the immersion has only
simple double points. Moreover since the condition that an immersion be
symplectic is open it is possible to keep the map symplectic throughout the
perturbation, if we also allow η to be perturbed. Hence the symplectic im-
mersions with only double points are a family of maps of particular interest.
We have:
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Theorem 2.1. Let f : (Σ, η) → (M,ω) be a symplectic immersion of a com-
pact symplectic surface (Σ, η) into a symplectic 4-manifold (M,ω). Suppose
that f has only double points. Then:

c1(M,ω)[Σ] = 2− 2g + Σ · Σ− 2D (2.1)

where g is the genus of Σ, D is the number of double points of f counted
with sign and Σ ·Σ is the self-intersection of the class represented by f(Σ).

Proof. Consider f∗TM as a symplectic vector bundle over Σ. Since f is a
symplectic map TΣ is a symplectic subbundle of f∗TM . A symplectic com-
plement to TΣ can be canonically defined using the symplectic orthogonal
to TxΣ at each x ∈ Σ. Denote this bundle ν. Then:

f∗TM = TΣ⊕ ν

as symplectic vector bundles and consequently as complex vector bundles.
It follows that:

c1(M,ω)[Σ] = f∗c1(TM)

= c1(f∗TM)

= c1(TΣ) + c1(ν).

Noting that ν is the normal bundle to f(Σ) we have:

c1(ν) = χ(ν) = Σ · Σ− 2D

and:
c1(TΣ) = χ(Σ) = 2− 2g.

The result follows. �

We will often abbreviate c1(M,ω)[Σ] = c1(M)(Σ).
Formula 2.1 for holomorphically immersed curves in Kähler surfaces fol-

lows from the classical adjunction formula of algebraic geometry. Conse-
quently we will call 2.1 the symplectic adjunction formula. Analogous formu-
las for J-holomorphic curves in symplectic 4-manifolds are given by McDuff
[McD2]. These formulas are, it should be noted, deeper than 2.1. How-
ever, a symplectically immersed compact surface in a symplectic 4-manifold
with only double points need not be J-holomorphic for any almost complex
structure J . Hence, formula 2.1 does not follow from these deeper results.

3. Proper Transforms

Let (M,ω) be a compact symplectic 4-manifold with first Chern class
c1(M) = c1(M,ω). Blowing up M at the points p1 · · · pk constructs a new
symplectic 4-manifold that we denote (M̃k, ω̃k). Each point pi determines
a symplectically embedded 2−sphere Ei of self intersection −1 in M̃k. Let
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[Ei] denote the integral homology class determined by Ei and denote its
Poincare dual by [Ei]]. Then it follows that:

c1(M̃k) = c1(M)−
k∑

i=1

[Ei]] (3.1)

Further, there are neighborhoods Ni(Ei) ⊂ M̃k of the Ei and neighborhoods
Bi(pi) ⊂ M of the pi such that there is a symplectomorphism:

π : M̃k \
⋃
i

Ni(Ei) → M \
⋃
i

Bi(pi).

Each Bi can be taken to be the symplectic ball around pi that determines
the blow-up at pi, and each Ni(Ei) is then the tubular neighborhood of Ei

determined by the symplectomorphism of Proposition 1.1.
Let f : (Σ, η) → (M,ω) be a symplectic immersion of the surface (Σ, η)

into (M,ω). Let f̃ : (Σ̃, η̃) → (M̃k, ω̃k) be a symplectic immersion of the
surface (Σ̃, η̃) into (M̃k, ω̃k). Denote the immersed surfaces by f(Σ) ⊂ M

and f̃(Σ̃) ⊂ M̃k, respectively. We say f̃ is a proper transform of f if:

π(f̃(Σ̃) \
⋃
i

(f̃(Σ̃) ∩Ni(Ei))) = f(Σ) \
⋃
i

(f(Σ) ∩Bi(pi)).

A proper transform is not unique, unlike the analogous definition in com-
plex geometry. A resolution of the singularities of the immersion f through
blowing up is a symplectic embedding f̃ : (Σ̃, η̃) → (M̃, ω̃) where (M̃, ω̃) is
some blow up of (M,ω), such that f̃ is a proper transform of f .

To resolve the singularities of a given symplectic immersion f we can, as
remarked above, assume that f has only isolated double points, we hence-
forth make this assumption. Each double point p has a sign which we will
call its index and denote i(p). Thus, in formula 2.1, if {p1 · · · pr} denote the
double points of the immersion then

D =
r∑

j=1

i(pj).

Theorem 3.1. Let f : (Σ, η) → (M,ω) be a symplectic immersion of a
compact surface into a symplectic 4-manifold such that f has only isolated
double points, {p1 · · · pr}. If i(pj) = −1 for some j then there does not exist
a resolution of f through blowing up.

Proof. Since blow up is a local construction to prove the theorem it suffices
to show that there does not exist a proper transform of f whose only double
points are {p1 · · · p̂j · · · pr}. In other words it suffices to show that blowing
up cannot resolve a double point with index −1.

Applying the symplectic adjunction formula to f(Σ) we have

c1(M)[Σ] = 2− 2g + Σ · Σ− 2D (3.2)

where g = g(Σ) is the genus of Σ and D =
∑r

`=1 i(p`). Suppose M̃ is
obtained from M by blowing up the point pj and that f̃ : (Σ̃, η̃) → (M̃, ω̃)
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is a resolution of the singularity of f at pj . In other words, suppose that
f̃ is a proper transform of f with double points {p1 · · · p̂j · · · pr}. Applying
the adjunction formula to f̃ we have

c1(X̃)(Σ̃) = 2− 2g̃ + Σ̃ · Σ̃− 2D̃ (3.3)

where g̃ = g(Σ̃) is the genus of Σ̃ and

D̃ = D + 1. (3.4)

M̃ contains a new class represented by the exceptional curve E = Epj . Since
f̃ is a proper transform of f the homology classes represented by f and f̃
satisfy:

[f̃(Σ̃)] = [f(Σ)] + k[E] (3.5)

for some integer k. The adjunction formula 3.3 becomes using 3.1, 3.4 and
3.5

(c1(X)− [E]])([f(Σ)] + k[E]) = 2− 2g̃ + ([f(Σ)] + k[E])2 − 2(D + 1).
(3.6)

Hence,

c1(X)[Σ] + k = 2− 2g̃ + Σ · Σ− k2 − 2D − 2. (3.7)

Using 3.2 this becomes:

g̃ − g = −1
2
(k(k + 1))− 1. (3.8)

Thus, regardless of the value of k, we have:

g̃ < g. (3.9)

Therefore the proper transform f̃ has strictly smaller genus than f . This
means that by a local operation we have reduced the number of handles of
Σ. This is clearly impossible. �

Remark 3.1. In the topological category, double points of immersed sur-
faces can be resolved using blowing up, regardless of whether they are pos-
itive or negative. In this category, blowing up corresponds to connect sum
with CP 2.

4. Examples

In this section we produce examples of symplectic immersions of com-
pact surfaces into symplectic four manifolds which have only isolated double
points, some of which must have negative index.

Let (T 2, ω1) be the 2−torus with area form ω1 and (S2, ω2) the 2−sphere
with area form ω2. Set (M,ωλ) = (T 2 × S2, ω1 ⊕ λω2) where λ > 0. Let Σ
be a 2−torus and define F = (fn, g−k):

F : Σ → M

x 7→ (fn(x), g−k(x))
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where fn : T 2 → T 2 is an n−fold covering map and g−k : T 2 → S2 is a
smooth map of degree −k. Since fn is an immersion, F is an immersion.
Moreover:

F ∗(ω1 ⊕ λω2) = f∗
n(ω1) + λg∗−k(ω2). (4.1)

Clearly, choosing λ sufficiently small F is a symplectic map. Perturb F so
that it remains a symplectic immersion and has only isolated double points.
The symplectic adjunction formula 2.1 gives:

c1(T 2 × S2)[F (Σ)] = χ(T 2) + Σ · Σ− 2D (4.2)

where D = the total number of double points counted with sign. It follows
that :

−2k = 0 + 2n(−k)− 2D. (4.3)

Hence:

D = k(1− n). (4.4)

For n > 1, D is negative, so there must be double points with negative
index.

From Theorem 3.1, we see that these surfaces provide counterexamples
to Gromov’s program for resolving the singularities of symplectic immer-
sions with symplectic crossings via blowing up as outlined in §3.4.4(D) of
Partial Differential Relations. Hence, these examples establish the following
corollary of Theorem 3.1.

Corollary 4.1. There exist symplectic immersions with symplectic crossings
whose singularities cannot be resolved by blowing up.

5. Resolving Double Points with Positive Index

Double points of a symplectic immersion with index = +1 can, unlike
double points of index = −1, be resolved using blowing up. In fact there are
different ways of doing this reflecting the nonuniqueness of the symplectic
proper transform. In this section we outline one method which has a close
analogy to resolution in the complex category.

Let p be a double point of the symplectic immersion f : (Σ, η) → (M,ω)
with index = +1. Consider a neighborhhood U of p which we symplectically
identify with a neighborhood of the origin in R4 equipped with the standard
linear symplectic form ω0. Such a neighborhood U is called a Darboux
neighborhood of p. By perturbing f , if necessary, we can suppose that the
image of f in a neighborhood V ⊂ U coincides with the two tangent planes
of f passing through the origin.

We are thus led to consider the geometry of a pair of symplectic planes in
R4 which intersect positively and transversely in the origin. This problem
has been analyzed by McDuff [McD3]. She shows that there is an almost
complex structure J tamed by ω0 so that both planes are J−holomorphic
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lines. J in general will not be ω0−compatible (i.e., ω0(J−,−) will not be a
hermitian metric). However, if J is ω0− compatible, then we have:

Proposition 5.1. Let p be a double point given locally by the intersection
of two transverse symplectic planes which are J−holomorphic lines for a
ω0−compatible almost complex structure J . Then p can be symplectically
resolved by blowing up.

Proof. There is a 3−sphere, S3
λ = ∂B4(λ), centered on the origin so that the

planes intersect S3
λ in distinct fibers of the Hopf fibration of S3

λ. Any proper
transform for the blow up of p of weight λ then must intersect ∂N (E) in two
distinct fibers of the normal circle bundle of E. Thus a symplectic proper
transform which resolves p can be defined by extending across the two fibers
of the normal bundle. �

Remark 5.1. This construction determines a unique proper transform;
closely analogous to the proper transform of complex geometry.

In the general case when J is not ω0−compatible, it can be shown that:

Proposition 5.2. Let f : (Σ, η) → (M,ω) be a symplectic immersion with
a positive double point at p ∈ M . Suppose in a Darboux neighborhood V of
p that the image of f is two symplectic planes intersecting transversely in
the origin. Then there is a smooth family ft : Σ → (M,ω) of symplectic
immersions t ∈ [0, 1], such that

(i) f0 = f
(ii) ft|M\V = f0

(iii) ft|V \{p} are imbeddings
(iv) There is a neighborhood W ⊂ V such that the image of f1|W consists

of two J−holomorphic lines intersecting transversely in the origin,
where J is a ω0−compatible almost complex structure.

Combining Propositions 5.1 and 5.2 shows that positive double points of
symplectic immersions can be resolved.
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