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Abstract

Following the well-known analogy between arithmetic groups and surface mapping
class groups, Ivanov asked whether the first cohomology group of any subgroup
of finite index in a surface mapping class group must be trivial. In this note, we
establish, as our first result, an affirmative answer to Ivanov’s question, provided the
surface in question has genus at least 3, and the subgroup of finite index contains
the Torelli group. Secondly, we show that our first result does not hold for any
surface of genus 2. This second result establishes, in particular, a negative answer
to Ivanov’s question for any surface of genus 2.

0 Introduction

Let S be a compact orientable surface, possibly with boundary. The mapping
class group of S is the group MS of isotopy classes of orientation-preserving
homeomorphisms S → S. MS acts naturally on the first homology group
H1(S) of S with integer coefficients. The Torelli group of S is the kernel TS of
this action.

It is well known that H1(MS) = 0. Ivanov asked whether it is true that
H1(Γ) = 0 for any subgroup Γ of finite index in MS [9, p. 135]. (Note that
Ivanov formulated his question for the extended mapping class group, which
includes the isotopy classes of orientation-reversing homeomorphisms S →
S. Since the extended mapping class group is a finite extension of MS, his
question is equivalent to the question stated above.) In this note, we prove the
following theorem.

Theorem A Let S be a connected closed orientable surface of genus g at least
3. Suppose that Γ is a subgroup of finite index in the mapping class group MS
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of S containing the Torelli group TS of S. Then the first cohomology H1(Γ) of
Γ with integer coefficients is trivial.

Our proof of Theorem A is an elementary argument involving fundamental
results of Johnson’s on generators and relations in the Torelli group. An al-
ternative argument for Theorem A, relying on deeper results of Johnson’s on
the structure of the Torelli group, has been given by Hain and Looijenga [4].

Ivanov’s question, which Theorem A addresses, has an interesting relation-
ship to the analogy between arithmetic groups and mapping class groups in-
troduced by Harvey [5]. The vanishing theorem of Kajdan [8] implies that
arithmetic groups of rank greater than 2 have trivial first cohomology (i.e.
trivial first Betti number). (Note that a cofinite subgroup of an arithmetic
group Γ is an arithmetic group with the same rank as Γ.) The results of Mill-
son [13], on the other hand, provide examples of arithmetic groups of rank
1 with nontrivial first cohomology. Hence, Ivanov’s question relates to the
analogy between arithmetic groups and surface mapping class groups and the
corresponding question concerning the rank of surface mapping class groups.
In a similar vein, consider Ivanov’s question [9, p. 135] concerning whether
surface mapping class groups satisfy the vanishing theorem of Kajdan, (i.e.
whether they satisfy Kajdan’s Property T).

Note that, as explained by Bass, Milnor and Serre [1], the vanishing of first
cohomology for arithmetic groups follows from arguments involving the con-
gruence subgroup property [12]. Since the notion of a congruence subgroup of
Γ involves passing to a quotient of the ring of integers over which Γ is defined,
this notion is defined only for arithmetic groups. Ivanov, however, has intro-
duced an analogous notion of congruence subgroups for surface mapping class
groups and has formulated the corresponding congruence subgroup property.
Ivanov asked [9, p. 134] whether surface mapping class groups satisfy this
congruence subgroup property.

It appears that an affirmative answer to Ivanov’s question could result from
establishing, for surface mapping class groups, either Kajdan’s property T or
the congruence subgroup property described by Ivanov. Unfortunately, the
tools which have been used to establish these properties, tools involving al-
gebraic groups, Lie groups and the representation theory of groups, are not
available for surface mapping class groups.

Suppose that r is a positive integer. MS acts naturally on H1(S,Zr). We recall
that the level r subgroup of MS is the subgroup Γr(S) of MS consisting of
those mapping classes which act trivially on H1(S,Zr). Since the Torelli group
TS acts trivially on H1(S), TS ⊂ Γr(S).

The assumption that g is at least 3 is a necessary hypothesis for Theorem A.
Indeed, we shall prove the following result.
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Theorem B Let S be a connected closed orientable surface of genus two and
r be an integer divisible by 2 or 3. Let Γr(S) be the level r subgroup of MS,
the subgroup of MS consisting of those mapping classes which act trivially on
H1(S,Zr). Then the first cohomology H1(Γr(S)) is nontrivial.

Here is an outline of the paper. In Section 1, we shall prove the main result
of the paper, Theorem A (Theorem 1.1), for surfaces of genus g at least 3.
In Section 2, we shall demonstrate the failure of Theorem A in genus 2 by
proving Theorem B (Theorem 2.1).

1 The Main Result

In this section, we prove the main result of the paper, Theorem A:

Theorem 1.1 Let S be a connected closed orientable surface of genus g at
least 3. Suppose that Γ is a subgroup of finite index in the mapping class group
MS of S containing the Torelli group TS of S. Then the first cohomology
H1(Γ) of Γ with integer coefficients is trivial.

PROOF. Let λ : Γ → Z be a homomorphism.

Let γ be a simple closed curve on S. We shall denote the Dehn twist about γ
by Tγ ∈ MS. We recall that a bounding pair is a pair (γ, δ) of nonseparating
disjoint homologous simple closed curves on S. Let (γ, δ) be a bounding pair.
Since Γ has finite index in TS, there exists a positive integer r such that T rγ is

in Γ. By Lemma 11 of [7], (Tγ ◦ T−1
δ )r is in the commutator [Γ, TS] of Γ and

TS. Since TS is contained in Γ, this implies that λ((Tγ ◦ T−1
δ )r) = 0.

The mapping class Tγ ◦ T−1
δ is an element of TS. Such a mapping class is

called a bounding pair map. Since Tγ ◦ T−1
δ is in TS, Tγ ◦ T−1

δ is in Γ. Hence,
λ((Tγ ◦ T−1

δ )r) = rλ(Tγ ◦ T−1
δ ). Since λ((Tγ ◦ T−1

δ )r) = 0 and r > 0, we
conclude that λ(Tγ ◦ T−1

δ ) = 0. Thus, the kernel of λ contains all bounding
pair maps. Since the genus g of S is at least 3, Theorem 2 of [6] implies that
TS is generated by bounding pair maps. Hence, TS is contained in the kernel
of λ.

Since S is a closed surface of genus g, the intersection pairing on H1(S) is a
unimodular symplectic form on a lattice of rank 2g. Hence, the natural action
of MS on H1(S) yields a homomorphism η : MS → Sp(2g,Z) with kernel TS.
This homomorphism restricts to an epimorphism η| : Γ → η(Γ). Since TS is
contained in Γ, the kernel of η| : Γ → η(Γ) is equal to TS. Since TS is contained
in the kernel of λ, λ factors through the epimorphism η|. That is, there exists
a homomorphism µ : η(Γ) → Z such that λ = µ ◦ η|.
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It is well known that η : MS → Sp(2g,Z) is surjective ([11],p. 178). Since Γ
has finite index in MS, the image η(Γ) has finite index in Sp(2g,Z). Since
g is greater than 1, Corollary 3 of [12] implies that η(Γ) contains a full con-
gruence subgroup N(2g,m) of Sp(2g,Z) for some natural number m. Since
N(2g,m) has finite index in Sp(2g,Z), N(2g,m) has finite index in η(Γ). It is
easy to see that the commutator subgroup [N(2g,m),N(2g,m)] of N(2g,m) is
a noncentral subgroup of Sp(2g,Z). (Indeed, the commutator of two transvec-
tions in symplectically nonorthogonal directions is a noncentral element of
Sp(2g,Z).) Since N(2g,m) is normal in Sp(2g,Z), [N(2g,m),N(2g,m)] is nor-
mal in Sp(2g,Z). Since g is greater than 1, Corollary 1 of [12] implies that
[N(2g,m),N(2g,m)] has finite index in Sp(2g,Z) and, hence, in η(Γ). Since
N(2g,m) ⊂ η(Γ), the homomorphism µ : η(Γ) → Z is trivial on the commuta-
tor subgroup [N(2g,m),N(2g,m)] of N(2g,m). Since [N(2g,m),N(2g,m)] has
finite index in η(Γ), we conclude that µ : η(Γ) → Z is trivial. Since λ = µ ◦ η|,
λ is trivial. 2

2 Counterexamples in Genus 2

In this section, we shall demonstrate the failure of Theorem 1.1 in genus 2, by
proving the following result, Theorem B:

Theorem 2.1 Let S be a connected closed orientable surface of genus two and
r be an integer divisible by 2 or 3. Let Γr(S) be the level r subgroup of MS,
the subgroup of MS consisting of those mapping classes which act trivially on
H1(S,Zr). Then the first cohomology H1(Γr(S)) is nontrivial.

In order to prove this theorem, we shall need some preliminary results about
certain representations of the level r subgroup Γr(S) of MS.

We recall that a circle on S is the image of an embedding S1 → S. For each
circle C on S, SC denotes the surface obtained by cutting S along C. A circle
C is nonseparating if SC is connected. Let C be a nonseparating circle on S.

Let S ′ be a closed orientable surface of genus g with a given orientation. Let
〈, 〉 : H1(S

′)×H1(S
′) → Z denote the algebraic intersection pairing on H1(S

′).
Suppose that (A1, B1, ...., Ag, Bg) is a family of oriented circles on S ′ such that
(i) Ai and Bi are tranverse and meet at exactly one point, (ii) 〈ai, bi〉 = 1,
where ai and bi are the elements of H1(S

′) represented by Ai and Bi, and (iii)
Ai∪Bi is disjoint from Aj∪Bj if i 6= j. Then, we say that (A1, B1, ...., Ag, Bg) is
a standard symplectic configuration on S ′. Note that if (A1, B1, ...., Ag, Bg) is
a standard symplectic configuration on S ′, then (a1, b1, ...., ag, bg) is a standard
symplectic basis for the integral symplectic lattice H1(S

′).
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Choose an orientation on S and an orientation of C. We may extend C to
a standard symplectic configuration (A,B,C,D) on S. Let a, b, c, and d be
the elements of H1(S) represented by the oriented circles A, B, C, and D,
respectively. Then, (a, b, c, d) is a standard symplectic basis for the integral
symplectic lattice (H1(S), 〈, 〉).

Let r ≥ 2 be an integer. As in Looijenga [10], we may construct an r-fold cyclic
covering of S as follows. Since S has genus two, SC is a torus with two holes.
The two boundary components of SC correspond to the sides of C. Let C+

be the boundary component of SC corresponding to the left side of C and C−
be the boundary component of SC corresponding to the right side of C. S is
obtained from SC by gluing C+ and C− to one another via a homeomorphism
h : C+ → C−. We denote the corresponding quotient map by pC : SC → S.
Note that pC(h(x)) = pC(x) for each x ∈ C+. Let S̃ be the quotient of SC×Zr

obtained by identifying (x, i) with (h(x), i + 1) for each x ∈ C+ and i ∈ Zr.
The rule [(x, i)] 7→ pC(x) yields a well defined r-fold cyclic covering p : S̃ → S.
The rule [(x, i)] 7→ [(x, i + 1)] defines a generator σ : S̃ → S̃ of the covering
group G of p : S̃ → S.

Orient S̃ such that p : S̃ → S is orientation-preserving. A straightforward
examination of the preimages p−1(A), p−1(B), p−1(C), and p−1(D) yields the
following result.

Lemma 2.2 Let A,B,C,D be a standard symplectic configuration on the sur-
face S of genus 2. Let p : S̃ → S be the r-fold cyclic covering obtained
by cutting S along C. Then, there exists a configuration of oriented circles
(A1, B1, ..., Ar, Br, C1..., Cr, D1) on S̃ such that:

(1) p−1(A) is the disjoint union of the circles A1, ..., Ar,
(2) p−1(B) is the disjoint union of the circles B1, ..., Br,
(3) p−1(C) is the disjoint union of the circles C1, ..., Cr,
(4) p−1(D) = D1,
(5) Ai = σi−1(A1) (as oriented circles),
(6) Bi = σi−1(B1) (as oriented circles),
(7) Ci = σi−1(C1) (as oriented circles),
(8) D1 = σ(D1) (as oriented circles),
(9) p| : Ai → A is orientation-preserving,

(10) p| : Bi → B is orientation-preserving,
(11) p| : Ci → C is orientation-preserving,
(12) p| : D1 → D is orientation-preserving.
(13) (A1, B1, ..., Ar, Br, C1, D1) is a standard symplectic configuration on S̃.

Let ai, bi, ci and d1 be the elements of H1(S̃) represented by Ai, Bi, Ci and
D1 respectively. Then, (a1, b1, ..., ar, br, c1, d1) is a standard symplectic basis
for H1(S̃).
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Let Λ denote the kernel of the induced homomorphism p∗ : H1(S̃) → H1(S).
For each element g in G, p ◦ g = p and, hence, p∗ ◦ g∗ = p∗. It follows that g∗
maps the kernel Λ of p∗ to itself. Hence, we obtain an action of G on Λ. Thus,
Λ is a ZG-module.

The homomorphism p∗ : H1(S̃) → H1(S) is determined by the conditions: (i)
p∗(ai) = a, (ii) p∗(bi) = b, (iii) p∗(c1) = c and (iv) p∗(d1) = rd. It follows that
Λ is the subgroup of H1(S̃) generated by the classes ei and fi defined by the
rule ei = ai− ai+1 and fi = bi− bi+1. Moreover, the classes e1, f1, ..., er−1, fr−1

form a free basis for the free abelian group Λ.

The action of σ on Λ is determined by the conditions: σ∗(ei) = ei+1, σ∗(fi) =
fi+1. Note that er = ar − a1 = −(e1 + ... + er−1) and fr = −(f1 + ... + fr−1).
It follows that the element N = 1 + σ + .... + σr−1 of ZG acts trivially on Λ.
Let I denote the ideal in ZG generated by N . Then the action of ZG on Λ
factors through the quotient ring ZG/I.

We assume, henceforth, that r is a prime. Then ZG/I is isomorphic to the
ring Z[ζ] ⊂ C obtained by adjoining the primitive r-th root of unity ei2π/r to
Z. Hence, the action of ZG on Λ equips Λ with the structure of a Z[ζ]-module
via the rule ζ · v = σ∗(v) for all v ∈ Λ.

Lemma 2.3 Let e1 = a1 − a2, f1 = b1 − b2. Then the kernel Λ of the homo-
morphism p∗ : H1(S̃) → H1(S) induced by the covering map p : S̃ → S is a
free Z[ζ]-module of rank 2 with free basis e1, f1.

PROOF. Note that Z[ζ] is a free abelian group of rank (r−1), (whereas ZG is
a free abelian group of rank |G| = r). Let Λ2(Z[ζ]) denote the free Z[ζ]-module
of rank 2 with free basis e, f . Consider the unique Z[ζ]-module homomorphism
η : Λ2(Z[ζ]) → Λ such that η(e) = e1 and η(f) = f1. Since σ∗(ei) = ei+1 and
σ∗(fi) = fi+1, and Λ is generated by e1, f1, ..., er−1, fr−1, η is surjective. On
the other hand, Λ2(Z[ζ]) and Λ are both free abelian groups of rank 2(r− 1).
Thus, η : Λ2(Z[ζ]) → Λ is injective and, hence, a Z[ζ]-module isomorphism.
Hence, Λ is a free Z[ζ]-module of rank 2 with free basis e1, f1. 2

Since p : S̃ → S is an r-fold cyclic covering space of S, we have a short exact
sequence:

1 → π1(S̃)
p∗→ π1(S)

χ→ G→ 1

where χ : π1(S) → G is the canonical homomorphism. Since G is a cyclic group
of order r generated by σ we may identify Zr with G via the rule i 7→ σi. Since
Zr is abelian, there exists a unique homomorphism ρ : H1(S) → Zr such that
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ρ ◦ η = χ, where η : π1(S) → H1(S) is the natural homomorphism. Since χ is
surjective, ρ is surjective.

Lemma 2.4 The homomorphism ρ : H1(S) → Zr is given by the rule ρ(v) =
[〈c, v〉] ∈ Zr. A circle K on S lifts to a circle K̃ on S̃ if and only if ρ(k) = 0,
where k is the element of H1(S) represented by K (with any given orientation).

PROOF. Let K be an oriented circle on S and k be the element of H1(S)
represented byK.K determines an element γ of π1(S) which is well-defined up
to conjugacy. By covering space theory,K lifts to S̃ if and only if γ ∈ p∗(π1(S̃)).
By the previous exact sequence, it follows that K lifts to S̃ if and only if
χ(γ) = 0. Since η(γ) = k and χ = ρ ◦ η, we conclude that K lifts to a circle
K̃ on S if and only if ρ(k) = 0.

Since A, B and C each lift to S̃, ρ(a) = ρ(b) = ρ(c) = 0. Let ∗ be the point of
intersection of C and D so that the oriented circle D yields a loop in S based
at ∗. Let y be the unique point in C− such that pC(y) = ∗ and ∗̃ = [y, 1]. Let
z be the unique point in C+ such that pC(z) = ∗, so that h(z) = y. The lift D̃
of D beginning at ∗̃ ends at [z, 1] = [h(z), 2] = [y, 2] = σ([y, 1]) = σ(∗̃), and,
hence, ρ(d) = 1. It follows that ρ is given by the rule ρ(v) = [〈c, v〉] ∈ Zr. 2

By the naturality of η and the definition of ρ, we have a commutative diagram:

1 −−−→ π1(S̃)
p∗−−−→ π1(S)

χ−−−→ G −−−→ 1y yη yη y
Λ −−−→ H1(S̃)

p∗−−−→ H1(S)
ρ−−−→ Zr −−−→ 1.

Since η is surjective, the exactness of the first row in this diagram implies
the exactness of the second. Thus, p∗(π1(S̃)) = kernel(χ) and p∗(H1(S̃)) =
kernel(ρ).

Let φ : S → S be a homeomorphism. We say that φ lifts to S̃ if there exists a
homeomorphism φ̃ : S̃ → S̃ such that p ◦ φ̃ = φ ◦ p. In this event, we say that
φ̃ is a lift of φ to S̃. Suppose that φ lifts to S̃. Then φ̃ is well-defined up to
composition with an element g ∈ G. Moreover, conjugation by φ̃ determines
an automorphism of G, g 7→ φ̃◦g◦φ̃−1. Since G is abelian and φ̃ is well-defined
up to composition with an element g ∈ G, this automorphism depends only
upon φ. We shall denote this automorphism by φ∗ : G → G. Finally, since
p∗ ◦ φ̃∗ = φ∗ ◦ p∗, the action of φ̃ on H1(S̃), φ̃∗ : H1(S̃) → H1(S̃), restricts to
an automorphism of Λ, φ̃∗ : Λ → Λ.
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We may choose a homeomorphism ψ : S → S such that ψ is isotopic to φ and
ψ(∗) = ∗, where ∗ is a basepoint for the fundamental group π1(S) = π1(S, ∗).
The automorphism ψ∗ : π1(S) → π1(S) induced by ψ depends only on the
isotopy class of φ up to an inner automorphism of π1(S). By abuse of notation,
we shall denote this automorphism by φ∗ : π1(S) → π1(S).

By the naturality of η and the definition of ρ, we have a commutative diagram:

1 −−−→ π1(S̃)
p∗−−−→ π1(S)

φ∗−−−→ π1(S)
χ−−−→ G −−−→ 1y yη yη yη y

Λ −−−→ H1(S̃)
p∗−−−→ H1(S)

φ∗−−−→ H1(S)
ρ−−−→ Zr −−−→ 1.

The homeomorphism φ : S → S lifts to S̃ if and only if φ∗(p∗(π1(S̃))) ⊂
p∗(π1(S̃)). That is, φ : S → S lifts to S̃ if and only if χ ◦ φ∗ ◦ p∗ = 0. On
the other hand, by the preceding commutative diagram, since η is surjective,
χ ◦ φ∗ ◦ p∗ = 0 if and only if ρ ◦ φ∗ ◦ p∗ = 0. That is, χ ◦ φ∗ ◦ p∗ = 0 if and only
if φ∗(p∗(H1(S̃))) ⊂ p∗(H1(S̃)). Thus, we have the following result.

Lemma 2.5 Let φ : S → S be a homeomorphism of S. φ lifts to S̃ if and
only if φ∗(p∗(H1(S̃))) ⊂ p∗(H1(S̃)).

Suppose that φ lifts to S̃. Let φ# : G→ G be the automorphism of G induced
by conjugation by a lift φ̃ of φ. Then, we have the equation φ# ◦ χ = χ ◦ φ∗.
Since χ is surjective, it follows that φ̃ commutes with each element g ∈ G if
and only if χ◦φ∗ = χ. Again, on the other hand, by the preceding observations,
χ ◦ φ∗ = χ if and only if ρ ◦ φ∗ = ρ. Hence, φ̃ commutes with each element
g ∈ G if and only if ρ ◦ φ∗ = ρ.

Let Stabρ denote the subgroup of MS consisting of the mapping classes of
orientation-preserving homeomorphisms φ : S → S such that ρ ◦ φ∗ = ρ. We
call Stabρ the stabilizer of ρ in MS.

Lemma 2.6 Suppose that φ : S → S represents an element of the stabilizer
Stabρ of ρ in MS. Then there exists a lift of φ to S̃. Moreover, each lift φ̃ of φ
commutes with each element g ∈ G and, hence, induces a ZG-automorphism
of H1(S̃), φ̃∗ : H1(S̃) → H1(S̃), and a Z[ζ]-module automorphism of Λ, φ̃∗ :
Λ → Λ.

Suppose that φ : S → S represents an element of Stabρ. With respect to the
Z[ζ]-basis e1, f1 for Λ, φ̃∗ : Λ → Λ is represented by an element of GL(2,Z[ζ]),
the group of 2× 2 matrices with coefficients in Z[ζ] which are invertible over
Z[ζ]. Henceforth, we shall abuse notation and write φ̃∗ ∈ GL(2,Z[ζ]) for the
matrix of φ̃∗ : Λ → Λ with respect to the basis e1, f1.
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Suppose now that γ ∈ Γr(S). Let φ be a representative of the mapping class
γ. By the definition of Γr(S), the homomorphism φ∗ : H1(S,Zr) → H1(S,Zr)
induced by φ is equal to the identity. There exists a unique homomorphism
ρr : H1(S,Zr) → Zr such that ρr ◦ ηr = ρ, where ηr : π1(S) → H1(S,Zr) is the
natural homomorphism. Hence, ρ◦φ∗ = ρr ◦ηr ◦φ∗ = ρr ◦φ∗ ◦ηr = ρr ◦ηr = ρ.
Thus, Γr(S) ⊂ Stabρ.

We now wish to describe generators for Γr(S).

We recall that an element w ∈ H1(S) is said to be primitive if w cannot be
written in the form w = mz, where m is an integer such that m > 1 and
z ∈ H1(S). Note that a primitive element is necessarily nonzero. An element
w ∈ H1(S) is primitive if and only if there exists an oriented circle K on S
such that w is represented by K. Since a primitive element w is nonzero, any
circle K representing w is nonseparating.

Suppose that (V, 〈, 〉) is a symplectic space. Let Sp(V, 〈, 〉) be the group of
symplectic transformations of (V, 〈, 〉). We recall that a right transvection of
(V, 〈, 〉) is an element τw ∈ Sp(V, 〈, 〉) defined by the rule v 7→ v + 〈w, v〉w for
some element w ∈ V . Suppose that w ∈ V . Let I be the identity homomor-
phism V → V . Since the pairing 〈, 〉 of V is nondegenerate, τw = I if and only
if w = 0. Suppose that m is a nonnegative integer. Then τmw = τm

2

w .

Let R be a commutative ring with identity and n be a positive integer. Let
M(n,R) be the algebra of n×nmatrices with coefficients in R and GL(n,R) be
the group of multiplicative units of M(n,R). Suppose that G is a subgroup of
GL(n,R) and r is a positive integer. The level r subgroup of G is the subgroup
Γr(G) of G consisting of those elements A in G which may be expressed in
the form A = I + rB for some matrix B in M(n,R). Note that the level r
subgroup of G is the intersection of the level r subgroup of GL(n,R) with G.

Let α : H1(S) → H1(S,Zr) and β : Sp(H1(S), 〈, 〉) → Sp(H1(S,Zr), 〈, 〉) be the
natural homomorphisms. Suppose that w ∈ H1(S). Then α(w) = 0 if and only
if w = ry for some element y ∈ H1(S). Moreover, β(τw) = τα(w).

By definition, the level r subgroup Γr(Sp(H1(S), 〈, 〉)) of Sp(H1(S), 〈, 〉) is the
kernel of β. We have the following result ([12]).

Theorem 2.7 The level r subgroup Γr(Sp(H1(S), 〈, 〉)) of Sp(H1(S), 〈, 〉) is
generated by the powers of transvections τ rz , where z is a primitive element of
H1(S).

PROOF. Suppose that z is an element of H1(S). Then τ rz (w) = w+r〈z, w〉z,
for every w in H1(S), and, hence, τ rz ∈ Γr(Sp(H1(S), 〈, 〉)). In particular, this
holds for every primitive element z of H1(S).
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Consider the symplectic lattice (H1(S), 〈, 〉). Using the standard symplectic
basis (a, b, c, d) for this lattice, we may identify Sp(H1(S), 〈, 〉) with the inte-
gral symplectic group Sp(4,Z). Under this identification, Γr(Sp(H1(S), 〈, 〉))
is identified with the congruence subgroup N(4, r) of Sp(4,Z) as in [12].

According to Theorem 10 of [12], N(4, r) = Q(4, r), where Q(4, r) is the
normal closure in Sp(4,Z) of the matrix I + re12. Under the identification
Sp(H1(S), 〈, 〉) ≡ Sp(4,Z), the matrix I + re12 is identified with the power τ ra
of the transvection τa corresponding to the primitive element a of H1(S).
It follows that Γr(Sp(H1(S), 〈, 〉)) is generated by the conjugates of τ ra in
Sp(H1(S), 〈, 〉).

Suppose that ψ is an element of Sp(H1(S), 〈, 〉), and let z = ψ(a). Since a is a
primitive element of H1(S) and ψ : H1(S) → H1(S) is an isomorphism, z is a
primitive element of H1(S). Moreover, ψ ◦ τa ◦ ψ−1 = τψ(a) = τz, and, hence,
ψ ◦ τ ra ◦ ψ−1 = τ rz .

It follows that the level r subgroup Γr(Sp(H1(S), 〈, 〉)) of Sp(H1(S), 〈, 〉) is
generated by elements in Sp(H1(S), 〈, 〉) of the form τ rz , where z is a primitive
element of H1(S). Since all such elements are in Γr(Sp(H1(S), 〈, 〉)), we con-
clude that Γr(Sp(H1(S), 〈, 〉)) of Sp(H1(S), 〈, 〉) is generated by the powers of
transvections τ rz , where z is a primitive element of H1(S). 2

For each circle K on S, let tK : S → S denote a right Dehn twist about the
circle K.

Theorem 2.8 Let r > 1 be an integer and Γr(S) be the level r subgroup of
MS, the kernel of the natural homomorphism MS → Aut(H1(S,Zr)). Then
Γr(S) is generated by the mapping classes of the following two types of home-
omorphisms of S: (i) tK, where K is a nontrivial separating circle on S, and
(ii) trK, where K is a nonseparating circle on S.

PROOF. Suppose that z is a primitive element in H1(S). Let K be an ori-
ented circle on S representing z, and TK ∈ MS be the mapping class of
the right Dehn twist tK : S → S about K. Then ξ(TK) = τz, and, hence,
ξ(T rK) = τ rz . It follows that TK ∈ Γr(S), for every nontrivial separating circle
K on S, and T rK ∈ Γr(S), for every nonseparating circle K on S.

As is well-known, the action of MS on the integral symplectic lattice H1(S)
affords a homomorphism η : MS → Sp(H1(S), 〈, 〉). By Theorem 2.7, the level
r subgroup Γr(Sp(H1(S), 〈, 〉)) of Sp(H1(S), 〈, 〉) is generated by the powers of
transvections τ rz , where z is a primitive element of H1(S). By definition, the
level r subgroup Γr(S) of MS is the preimage under η of the level r subgroup
Γr(Sp(H1(S), 〈, 〉)) of Sp(H1(S), 〈, 〉). On the other hand, by definition, the
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kernel of η is the Torelli group TS of S. TS is generated by the mapping classes
of right Dehn twists tK about nontrivial separating circles K on S [14]. (Note
that Powell provides generators for TS only for genus g ≥ 3. His argument,
however, establishes the assertion of the previous sentence for genus g = 2,
given the generators for TS in genus 2 as described in [2].) It follows that Γr(S)
is generated by the indicated mapping classes. 2

Lemma 2.9 Let φ be a right Dehn twist about a circle K on S such that
〈c, k〉 ≡ 0 (mod r), where k is the element of H1(S) represented by K (with
any given orientation). Then φ represents an element of Stabρ and there exists
a lift φ̃ of φ such that φ̃∗ ∈ SL(2,Z[ζ] ∩ R).

PROOF. Let v ∈ H1(S). Then 〈c, φ∗(v)〉 = 〈c, v+〈k, v〉k〉 = 〈c, v〉+〈k, v〉〈c, k〉.
Since 〈c, k〉 ≡ 0 (mod r), ρ(φ∗(v)) = [〈c, φ∗(v)〉] = [〈c, v〉] = ρ(v). We con-
clude that ρ ◦ φ∗ = ρ and, hence, φ represents an element of Stabρ.

As shown above, ρ(v) = [〈c, v〉] ∈ Zr. Hence, a circle K on S lifts to S̃ if
and only if the algebraic intersection 〈C,K〉 of K and C (with respect to
any given orientation of K) satisfies the congruence 〈C,K〉 ≡ 0 (mod r). By
assumption, 〈C,K〉 ≡ 0 (mod r) and, hence, K lifts to S̃.

Let K̃ be a lift of K and Ki = σi−1(K̃), so that K1 = K̃. Then, the preimage
p−1(K) consists of the r disjoint circles K1, ..., Kr in S̃. Let φ be a right
Dehn twist about K supported on an annular neighborhood A of K. The
preimage p−1(A) consists of r disjoint annuli A1, ..., Ar, where Ai is an annular
neighborhood of Ki and p| : Ai → A is a homeomorphism. Let φi be the right
Dehn twist about Ki supported on Ai and satisfying the identity p ◦ φi|Ai

=
φ ◦ p|Ai

. Then φ̃ = φ1 ◦ ... ◦ φr is a lift of φ.

Let ki be the element of H1(S̃) represented by Ki. We may express k1 in terms
of the basis (a1, b1, ..., ar, br, c1, d1) of H1(S̃):

k1 = Σr
i=1(xiai + yibi) + zc1 + wd1.

Since K1 is a circle in S̃ and Ki is disjoint from K1 if 2 ≤ i ≤ r, the algebraic
intersection 〈K1, Ki〉 of K1 and Ki is equal to zero. Hence, since Ki = σi−1(K̃):

〈k1, σ
j(k1)〉 = 0; 1 ≤ j ≤ r.

Since σ∗(ai) = ai+1, σ∗(bi) = bi+1, σ∗(c1) = c1, and σ∗(d1) = d1:

σj(k1) = Σr
i=1(xiai+j + yibi+j) + zc1 + wd1

= Σr
i=1(xi−jai + yi−jbi) + zc1 + wd1.

11



Using the fact that (a1, b1, ..., ar, br, c1, d1) is a standard symplectic basis for
(H1(S̃), 〈, 〉), we conclude that:

0 = Σr
i+1(xiyi−j − yixi−j)

where 1 ≤ j ≤ r.

Let x = Σr
i=1xiζ

i−1 ∈ Z[ζ] and y = Σr
i=1yiζ

i−1 ∈ Z[ζ]. Then (1 − σ)k1 =
xe1 + yf1, x = Σr

k=1xkζ
1−k ∈ Z[ζ], and y = Σr

k=1ykζ
1−k ∈ Z[ζ].

The previous equations imply that:

xy= Σ1≤i,j≤ryiζ
i−1xjζ

1−j

= Σ1≤i,j≤ryixjζ
i−j

= Σr
k=1(Σ

r
i=1yixi−k)ζ

k

= Σr
k=1(Σ

r
j=1xjyj−k)ζ

k

=xy.

Hence, xy = xy ∈ Z[ζ] ∩ R.

Using the fact that φi acts on H1(S̃) as the transvection corresponding to the
class of Ki in H1(S̃), we have the following identities:

φ̃∗(e1) = φ̃∗((1− σ)a1) = (1− σ)φ̃∗(a1)

= (1− σ)(a1 + Σr
j=1〈kj, a1〉kj)

= e1 + (1− σ)(Σr
j=1〈σj−1(k1), a1〉kj)

= e1 + (1− σ)(Σr
j=1〈k1, σ

1−j(a1)〉kj)
= e1 + (1− σ)(Σr

j=1〈k1, a2−j〉σj−1(k1))

= e1 + (1− σ)(Σr
j=1(−y2−j)σ

j−1(k1))

= e1 − (Σr
j=1y2−jσ

j−1)(1− σ)(k1)

= e1 − (Σr
k=1ykσ

1−k)(xe1 + yf1)

= e1 − (Σr
k=1ykζ

1−k)(xe1 + yf1)

= e1 − yxe1 − yyf1

= (1− xy)e1 − (yy)f1.

Likewise:

φ̃∗(f1) = (xx)e1 + (1 + xy)f1.

12



We conclude that, with respect to the Z[ζ]-module basis (e1, f1), the action of
φ̃ on Λ is given by the matrix:

φ̃∗ =

 1− xy xx

−yy 1 + xy

 .

By the preceding equations, all the entries of φ̃∗ lie in Z[ζ] ∩R. Moreover, we
may compute the determinant of φ̃∗:

det(φ̃∗) = (1− xy)(1 + xy) + xxyy

= 1− xy + xy − xxyy + xxyy

= 1− xy + xy = 1.

Thus, φ̃∗ ∈ SL(2,Z[ζ] ∩ R). 2

Lemma 2.10 Let ψ be a right Dehn twist about a circle K on S such that
〈C,K〉 6≡ 0 (mod r) and φ = ψr. Then there exists a lift φ̃ of φ such that
φ̃∗ : Λ → Λ is equal to the identity homomorphism of Λ.

PROOF.

Since 〈C,K〉 6≡ 0 (mod r), K does not lift to S̃. Since r is a prime and
p : S̃ → S is an r-fold cyclic covering, it follows that the preimage p−1(K)
consists of a single circle K1 in S̃ and the restriction p| : K1 → K is an r-fold
connected cyclic covering space of K. Orient K and K1 so that the restriction
p| : K1 → K is orientation-preserving.

Let k1 be the element of H1(S̃) represented by K1. We may express k1 in terms
of the basis (a1, b1, ..., ar, br, c1, d1) of H1(S̃):

k1 = Σr
i=1(xiai + yibi) + zc1 + wd1.

Since K1 = p−1(K) and σ is a covering transformation, we have a well-defined
orientation-preserving restriction σ| : K1 → K1. Hence, σ∗(k1) = k1. On the
other hand, as in the previous case:

σj(k1) = Σr
i=1(xiai+1 + yibi+1) + zc1 + wd1

= Σr
i=1(xi−1ai + yi−1bi) + zc1 + wd1,

where x0 = xr and y0 = yr. Thus, xi = xi−1 and yi = yi−1 and, hence:
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k1 = Σr
i=1(x1ai + y1bi) + zc1 + wd1

= Σr
i=1(x1σ

i−1a1 + y1σ
i−1b1) + zc1 + wd1

= (Σr
i=1σ

i−1)(x1a1 + y1b1) + zc1 + wd1.

Suppose that ψ is supported on the annular neighborhood A of K. The
preimage p−1(A) is an annular neighborhood A1 of K1 and the restriction
p| : A1 → A is a connected r-fold cyclic covering of A. There is an obvious lift
φ̃ of φ, where φ̃ is a right Dehn twist about K1 supported on A1. Using the
fact that φ̃ acts on H1(S̃) as the transvection corresponding to the class of K1

in H1(S̃), we have the following identities:

φ̃∗(e1) = φ̃∗((1− σ)a1) = (1− σ)φ̃∗(a1)

= (1− σ)(a1 + 〈k1, a1〉k1)

= e1 + 〈k1, a1〉(1− σ)k1.

On the other hand:

(1− σ)k1 = (1− σ)(Σr
i=1σ

i−1)(x1a1 + y1b1)

+z(1− σ)c1 + w(1− σ)d1

= (1− σr)(x1a1 + y1b1) = 0.

Thus, φ̃∗(e1) = e1. Likewise, φ̃∗(f1) = f1 and, hence, φ̃∗ = I, where I :
H1(S̃) → H1(S̃) is the identity homomorphism. 2

Lemma 2.11 Suppose that r = 2 and φ : S → S represents an element of
the level r subgroup Γr(S) of MS. Then φ represents an element of Stabρ and
for each lift φ̃ of φ, φ̃∗ ∈ SL(2,Z).

PROOF. Since Γr(S) ⊂ Stabρ, φ represents an element of Stabρ. Thus, for
each lift φ̃ of φ, φ̃∗ ∈ GL(2,Z[ζ]). Since r = 2, ζ = ei2π/r = −1 and, hence,
Z[ζ] = Z.

The lift φ̃ of φ is well-defined up to composition with the unique nontrivial
covering transformation σ. σ acts on Λ as −I, where I is the identity homo-
morphism Λ → Λ. Since the determinant of −I is equal to 1, it suffices to
prove that there exists a lift φ̃ of φ such that φ̃∗ has determinant equal to 1.

In order to prove existence, it suffices to construct appropriate lifts of each
of the classes of types (i) and (ii) in Theorem 2.8. For classes of type (i),
such a lift exists by Lemma 2.9. For classes of type (ii), such a lift exists by
Lemma 2.10, provided 〈C,K〉 6≡ 0 (mod r). Suppose, therefore, that K is a
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nonseparating circle on S, and 〈C,K〉 ≡ 0 (mod r). Let φ = tK . By Lemma
2.9, φ represents an element of Stabρ and there exists a lift φ̃ of φ such that
φ̃∗ ∈ SL(2,Z[ζ] ∩ R). Clearly, φ̃r is a lift of φr. Since trK = φr, φ̃r is a lift of
trK . On the other hand, since φ̃∗ ∈ SL(2,Z[ζ] ∩ R), φ̃r ∈ SL(2,Z[ζ] ∩ R). 2

Suppose that φ is a representative of an element γ of Γr(S). As observed above,
the lift φ̃ of φ is well-defined up to composition with the unique nontrivial
covering transformation σ. Since σ acts on Λ as −I, we obtain a well-defined
element [φ̃∗ : Λ → Λ] of PSL(2,Z) = SL(2,Z)/±I, independently of the lift
φ̃ of φ. Suppose that ψ is another representative of γ. We may lift an isotopy
φt from φ0 = φ to φ1 = ψ to an isotopy φ̃t. Then φ̃0 and φ̃1 are isotopic
lifts of φ and ψ, respectively. It follows that φ̃∗ = ψ̃∗ : Λ → Λ and, hence,
[φ̃∗] = [ψ̃∗] ∈ PSL(2,Z). Thus, we have the following result.

Theorem 2.12 Let r = 2 and Γr(S) be the level r subgroup of MS. Then
there is a well-defined representation λ : Γr(S) → PSL(2,Z) given by the rule
γ 7→ [φ̃∗], where φ ∈ γ and φ̃ is any lift of φ.

Suppose now that r > 2. Since r is a prime, r is odd. Since ζ · v = σ∗(v) for
each v ∈ Λ, the action of σ on Λ is given by the diagonal matrix ζI. This
matrix has determinant ζ2. Since r is odd, ζ2 is a generator of the cyclic group
of order r generated by ζ = ei2π/r.

Lemma 2.13 Suppose that r > 2 is a prime. Let Γr(S) be the level r subgroup
of MS and φ : S → S represent an element of Γr(S). Then φ represents
an element of Stabρ and there exists a unique lift φ̃ of φ such that φ̃∗ ∈
GL(2,Z[ζ]) has determinant equal to 1. Moreover, for this unique lift φ̃ of φ,
φ̃∗ ∈ SL(2,Z[ζ] ∩ R).

PROOF. Since Γr(S) ⊂ Stabρ, φ represents an element of Stabρ.

Suppose that φ̃ and ψ are lifts of φ such that the determinants of φ̃∗ and ψ∗
are equal to 1. There exists an integer j such that ψ = φ̃ ◦ σj. Since σ acts on
Λ by the diagonal matrix ζI, 1 = det(ψ∗) = det(φ̃∗)det(ζ

jI) = ζ2j = ei2πj/r.
Hence, 2j/r ∈ Z. Since r is odd, we conclude that j = mr for some integer m.
Thus, σj = σmr = 1 and, hence, ψ = φ̃ ◦ σj = φ̃. This establishes uniqueness.

In order to prove existence, it suffices to construct appropriate lifts of each
of the classes of types (i) and (ii) in Theorem 2.8. For classes of type (i),
such a lift exists by Lemma 2.9. For classes of type (ii), such a lift exists by
Lemma 2.10, provided 〈C,K〉 6≡ 0 (mod r). Suppose, therefore, that K is a
nonseparating circle on S, and 〈C,K〉 ≡ 0 (mod r). Let φ = tK . By Lemma
2.9, φ represents an element of Stabρ and there exists a lift φ̃ of φ such that
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φ̃∗ ∈ SL(2,Z[ζ]∩R). Since trK = φr, φ̃r is a lift of trK . On the other hand, since
φ̃∗ ∈ SL(2,Z[ζ] ∩ R), φ̃r ∈ SL(2,Z[ζ] ∩ R). 2

By the uniqueness clause of the previous proposition, we obtain the following
result.

Theorem 2.14 Let r > 2 be a prime and Γr(S) be the level r subgroup of
MS. Then there is a well-defined representation λ : Γr(S) → SL(2,Z[ζ] ∩ R)
given by the rule γ 7→ φ̃∗, where φ ∈ γ and φ̃ is the unique lift of φ such that
φ̃∗ ∈ GL(2,Z[ζ]) has determinant equal to 1.

We now wish to understand the images of the representations (i) λ : Γr(S) →
PSL(2,Z), when r = 2, and (ii) λ : Γr(S) → SL(2,Z[ζ] ∩ R), when r > 2.

Let Γr(Z[ζ]) be the level r subgroup of GL(2,Z[ζ]).

Lemma 2.15 Suppose that K is a nonseparating circle on S such that 〈C,K〉 ≡
0 (mod r). Let ψ be the right Dehn twist about K, φ = ψr and φ̃ be a lift
of φ to S̃. If r > 2, let φ̃ be the unique lift of φ given by Lemma 2.13. Then
φ̃∗ ∈ Γr(Z[ζ]).

PROOF. Note that φ̃∗ ∈ Γr(Z[ζ]) if and only if, for every element f of Λ,
there exists an element h of Λ such that φ̃∗(f) = f + rh.

As we saw previously,K lifts to a circleK1 in S̃ such that the preimage p−1(K)
is the disjoint union of r circlesK1, ..., Kr withKi = σi−1(K1). Moreover, there
is a lift Ψ of ψ such that Ψ = ψ1 ◦ ...◦ψr, where ψi is a right Dehn twist about
the circle Ki in S̃. Let Φ = (Ψ)r. Since Ψ is a lift of ψ, Φ is a lift of φ.

Suppose that r = 2. Then φ̃∗ = ±Φ∗. Since −I = I − 2I, −I ∈ Γr(Z[ζ]).
Since Γr(Z[ζ]) is a subgroup of GL(2,Z[ζ]), it follows that φ̃∗ ∈ Γr(Z[ζ]) if
and only if Φ∗ ∈ Γr(Z[ζ]). Hence, we may assume that φ̃ = Φ and, hence,
φ̃ = ψr1 ◦ ... ◦ ψrr .

Suppose, on the other hand, that r > 2. Then, as we saw above, Φ is the
unique lift of φ given by Lemma 2.13. Thus, by our assumptions, φ̃ = Φ and,
hence, φ̃ = ψr1 ◦ ... ◦ ψrr .

Thus, in any case, we may assume that φ̃ = ψr1 ◦ ... ◦ ψrr .

Orient Ki so that the restriction p| : Ki → K is orientation-preserving and
let ki be the element of H1(S̃) represented by the oriented circle Ki. Let
li = (1− σ)ki. Since σ is a covering transformation, li is in the kernel Λ of the
homomorphism p∗ : H1(S̃) → H1(S).
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Let f ∈ Λ. Since e1, f1 is a Z[ζ]-basis for Λ, we may express f in terms of e1
and f1: f = xe1 + yf1, where x, y ∈ Z[ζ]. Let u and v be elements of ZG such
that the natural homomorphism ZG→ Z[ζ] given by the rule σ 7→ ζ maps u
to x and v to y. Then, we have the following identities:

f =xe1 + yf1 = x(1− σ)a1 + y(1− σ)b1
=u(1− σ)a1 + v(1− σ)b1
= (1− σ)(ua1 + vb1).

Thus, there exists an element g in H1(S̃) such that f = (1− σ)g.

Since ψi is a right Dehn twist about the circle Ki on S̃, we have the following
identities:

φ̃∗(f) = φ̃∗((1− σ)g)

= (1− σ)φ̃∗(g)

= (1− σ)(z + Σr
i=1r〈ki, g〉ki)

=w + r(Σr
i=1〈ki, g〉(1− σ)ki)

=w + r(Σr
i=1〈ki, g〉li)

Thus, there exists an element h = Σr
i=1〈ki, g〉li in Λ such that φ̃∗(g) = g +

rh. 2

We recall that two circles K and L on S are in minimal position if (i) K and
L are transverse, and (ii) #(K ∩ L) ≤ #(K ′ ∩ L′) for every pair of circles
(K ′, L′) on S such that K ′ is isotopic to K and L′ is isotopic to L. (Note
that two transverse circles K and L on S are in minimal position if no simply
connected component R of S \ (K ∪L) is bounded by the union of an arc α of
K and an arc β of L such that ∂α = α ∩ β = ∂β (Exposé 3, Proposition 10,
[3]). In particular, if there are no simply connected components of S \ (K∪L),
then K and L are in minimal position.)

Since ζr = 1, the ring Z[ζ] is generated by ζ. There is a unique ring homomor-
phism ε : Z[ζ] → Zr given by the rule ζ 7→ 1. This homomorphism determines
a natural homomorphism of groups ε : GL(2,Z[ζ]) → GL(2,Zr). Let Γε be the
kernel of ε : GL(2,Z[ζ]) → GL(2,Zr).

Lemma 2.16 Let φ be a right Dehn twist about a separating circle K on S
and φ̃ be a lift of φ. If r > 2, let φ̃ be the unique lift of φ given by Lemma
2.13. Then φ̃∗ ∈ Γε.
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PROOF. Choose an orientation of K. As in the proof of Lemma 2.9, we
conclude that the preimage p−1(K) consists of r disjoint circles K1, ..., Kr in
S̃ such that Ki = σi−1(K1). As in the proof of Lemma 2.9, orient Ki so that
p| : Ki → K is orientation-preserving, and let ki be the element of H1(S̃)
represented by Ki. Following the proof of Lemma 2.9, express k1 in terms of
the basis (a1, b1, ..., ar, br, c1, d1) of H1(S̃):

k1 = Σr
i=1(xiai + yibi) + zc1 + wd1,

and let x = Σr
i=1xiζ

i−1 ∈ Z[ζ] and y = Σr
i=1yiζ

i−1 ∈ Z[ζ].

As in the proof of Lemma 2.9, we conclude that, with respect to the Z[ζ]-
module basis (e1, f1), the action of φ̃ on Λ is given by the matrix:

φ̃∗ =

 1− xy xx

−yy 1 + xy

 .

Since K is separating, K represents the element 0 of H1(S). Since p(K1) = K,
k1 is in the kernel Λ of p∗ : H1(S̃) → H1(S). Hence, we may express k1 in
terms of the Z[ζ] basis (e1, f1) of Λ:

k1 = ue1 + vf1,

where u, v ∈ Z[ζ]. Let w and z be elements of ZG such that the natural
homomorphism ZG→ Z[ζ] given by the rule σ 7→ ζ maps w to u and z to v.
Then, by the definitions of e1 and f1, we have the following identities:

k1 =ue1 + vf1 = we1 + zf1

=w(1− σ)a1 + z(1− σ)b1.

Comparing the previous equations, using the fact that (a1, b1, ..., ar, br, c1, d1)
is a basis for H1(S̃), we conclude that x = u(1 − ζ) and y = v(1 − ζ). Thus,
the ring homomorphism ε : Z[ζ] → Zr given by the rule ζ 7→ 1 maps x and
y to 0. Hence, by the previous equation for φ̃∗, the natural homomorphism of
groups ε : GL(2,Z[ζ]) → GL(2,Zr) maps φ̃∗ to I ∈ GL(2,Zr). That is, φ̃∗ is
in the kernel Γε of ε : GL(2,Z[ζ]) → GL(2,Zr). 2

Lemma 2.17 Suppose that r = 2 and let Γr(S) be the level 2 subgroup of MS.
Then, the homomorphism λ : Γr(S) → PSL(2,Z) of Theorem 2.12 takes its
values in the image under the natural homomorphism SL(2,Z) → PSL(2,Z)
of the level 2 subgroup Γr(Z) of SL(2,Z).
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PROOF. Suppose that φ : S → S represents an element of Γr(S) and φ̃ is a
lift of φ. It suffices to show that φ̃∗ lies in the level 2 subgroup of SL(2,Z).

By Theorem 2.8, we may assume that φ is one of the homeomorphisms of type
(i) or (ii) in Theorem 2.8.

Suppose that φ is a Dehn twist about a nontrivial separating circle K on
S. By Lemma 2.16, φ̃∗ lies in Γε, the kernel of the natural homomorphism
GL(2,Z[ζ]) → GL(2,Zr) given by the rule ζ 7→ 1. Since r = 2, ζ = −1
and, hence, Z[ζ] = Z. Moreover, the natural homomorphism GL(2,Z[ζ]) →
GL(2,Zr) is the natural homomorphism GL(2,Z) → GL(2,Zr) corresponding
to the natural homomorphism Z → Zr. Hence, Γε is the level 2 subgroup of
GL(2,Z). We conclude that φ̃∗ lies in the level 2 subgroup of GL(2,Z). On
the other hand, by Lemma 2.11, φ̃∗ lies in SL(2,Z). Hence, φ̃∗ ∈ Γr(Z).

We may assume, therefore, that ψ is a Dehn twist about a nonseparating
circle K on S and φ = ψr. Suppose that 〈C,K〉 6≡ 0 (mod r). By Lemma
2.10, there exists a lift Φ of φ such that Φ∗ = I. Thus, φ̃∗ = ±I, and, hence,
φ̃∗ ∈ Γr(Z).

Suppose, on the other hand, that 〈C,K〉 ≡ 0 (mod r). Then, by Lemma
2.15, φ̃∗ ∈ Γr(Z[ζ]). Since r = 2, Γr(Z[ζ]) is the level 2 subgroup of GL(2,Z).
As before, we conclude that φ̃∗ ∈ Γr(Z). 2

Lemma 2.18 Suppose that r = 3 and let Γr(S) be the level 3 subgroup of
MS. Then, the homomorphism λ : Γr(S) → SL(2,Z[ζ] ∩ R) of Theorem 2.14
takes its values in the level 3 subgroup Γr(Z) of SL(2,Z).

PROOF. Since r = 3, ζ = ei2π/3 and, hence ζ + ζ = −1. It follows that
Z[ζ] ∩ R = Z. Hence, SL(2,Z[ζ] ∩ R) = SL(2,Z).

Suppose that φ : S → S represents an element of Γr(S) and φ̃ is the unique
lift of φ given by Lemma 2.13. It suffices to show that φ̃∗ lies in the level 3
subgroup of SL(2,Z).

By Theorem 2.8, we may assume that φ is one of the homeomorphisms of type
(i) or (ii) in Theorem 2.8.

Suppose that φ is a Dehn twist about a nontrivial separating circle K on
S. By Lemma 2.16, φ̃∗ lies in Γε, the kernel of the natural homomorphism
GL(2,Z[ζ]) → GL(2,Zr) given by the rule ζ 7→ 1. In other words, ε(φ̃∗) = I ∈
GL(2,Zr). The restriction of the homomorphism ε : Z[ζ] → Zr to Z ⊂ Z[ζ]
is the natural homomorphism Z → Zr. Hence, we conclude that φ̃∗ is in the
kernel of the natural homomorphism SL(2,Z) → SL(2,Zr). In other words,
φ̃∗ ∈ Γr(Z).
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We may assume, therefore, that ψ is a Dehn twist about a nonseparating
circle K on S and φ = ψr. Suppose that 〈C,K〉6≡ 0 (mod r). By Lemma
2.10, there exists a lift Φ of φ such that Φ∗ = I. Clearly, Φ is the unique
lift of φ given by Lemma 2.13. Thus, by our assumption, φ̃ = Φ and, hence,
φ̃∗ = I ∈ GL(2,Z[ζ]). This implies that φ̃∗ ∈ Γr(Z).

Suppose, on the other hand, that 〈C,K〉 ≡ 0 (mod r). Then, by Lemma
2.15, φ̃∗ ∈ Γr(Z[ζ]). Clearly, Γr(Z[ζ]) ⊂ Γε. Hence, φ̃∗ ∈ Γε. As before, we
conclude that φ̃∗ ∈ Γr(Z). 2

We have the following well-known result.

Theorem 2.19 Let Γr(Z) be the level r subgroup of SL(2,Z) and PΓr(Z) be
its image in PSL(2,Z) under the natural homomorphism SL(2,Z) → PSL(2,Z).
Then Γr(Z) is a free group, provided r ≥ 3, and PΓr(Z) is a free group, pro-
vided r ≥ 2.

PROOF. The group PSL(2,Z) is isomorphic to the free product Z2 ∗ Z3,
where the subgroups of PSL(2,Z) corresponding to the factors Z2 and Z3 of
Z2 ∗Z3 are the cyclic subgroups generated, respectively, by the classes [X] and
[Y ] in PSL(2,Z) of the matrices ([15]):

X =

 0 1

−1 0

 , Y =

 0 1

−1 1

 .

(The generators of PSL(2,Z) given here correspond to the “transposes” of
those given in [15].) Note that:

Y 2 =

−1 1

−1 0

 .

Suppose that [W ] is a nontrivial element of finite order in PΓr(Z). By Corol-
lary 4.4.5 on page 208 of [11], [W ] must be a conjugate in PSL(2,Z) of [X], [Y ]
or [Y 2]. Since Γr(Z) is a normal subgroup of SL(2,Z) and the natural homo-
morphism SL(2,Z) → PSL(2,Z) is surjective, PΓr(Z) is a normal subgroup
of PSL(2,Z). Hence, we may assume that [W ] is equal to [X], [Y ] or [Y 2]. On
the other hand, clearly, none of the elements ±X, ±Y , ±Y 2 in the preimages
of [X], [Y ] and [Y 2] lie in Γr(Z), if r ≥ 2. This proves that PΓr(Z) is torsion
free, provided r ≥ 2.
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The group PSL(2,Z) acts on the hyperbolic plane H2 as a discrete group
of isometries of the Poincare metric. The quotient of H2 by this action is
an hyperbolic orbifold M of dimension 2 with one cusp. In particular, M is
noncompact.

Suppose that r ≥ 2. Since PΓr(Z) is torsion free, PΓr(Z) acts properly dis-
continuously and freely on H2. The quotient Mr of H2 by the action of PΓr(Z)
is, therefore, an hyperbolic surface. The natural projection H2 →M induces a
surjective map Mr → M . Hence, Mr is a noncompact surface. It follows that
the fundamental group π1(Mr) of Mr is a free group. On the other hand, since
H2 is simply connected, π1(Mr) is isomorphic to PΓr(Z). We conclude that
PΓr(Z) is a free group, provided r ≥ 2.

Suppose that r ≥ 3. Clearly, −I is not in Γr(Z). Since the kernel of the natural
homomorphism SL(2,Z) → PSL(2,Z) is equal to {±I}, it follows that the
restriction Γr(Z) → PΓr(Z) of this homomorphism is an isomorphism. Since
PΓr(Z) is a free group, Γr(Z) is a free group. 2

We are now ready to give the proof of Theorem 2.1.

Proof of Theorem 2.1: MS acts naturally on H1(S,Zr). Since H1(S,Zr) is
finite, the kernel Γr(S) of this action is a subgroup of finite index in MS. Let
p be a prime factor of r. Since Γr(S) acts trivially on H1(S,Zr), Γr(S) acts
trivially on H1(S,Zp). Hence, Γr(S) is contained in the kernel Γ′ of the action
of MS on H1(S,Zp). Since Γr(S) has finite index in MS, Γr(S) has finite
index in Γ′. Suppose that H1(Γ′) is nontrivial. Then there exists a nontrivial
homomorphism λ : Γ′ → Z. Since Γr(S) has finite index in Γ′, the restriction
λ| : Γr(S) → Z of λ to Γr(S) is nontrivial. Hence, H1(Γr(S)) is nontrivial.
Thus, we may assume that r is equal to 2 or 3.

Suppose that r = 2. By Lemma 2.17, the homomorphism λ : Γr(S) →
PSL(2,Z) of Theorem 2.12 takes its values in the image PΓr(Z) under the
natural homomorphism SL(2,Z) → PSL(2,Z) of the level r subgroup Γr(Z)
of SL(2,Z). By Theorem 2.19, PΓr(Z) is free.

Let φ denote the Dehn twist about the curve A on S. Then φ represents an
element of Stabρ and, by the proof of Lemma 2.9:

φ̃∗ =

 1 0

−1 1

 .
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On the other hand, φr represents an element of Γr(S) and:

φ̃r∗ =

 1 0

−r 1

 .

Hence, λ(Γr(S)) is a nontrivial subgroup of PΓr(Z). Since PΓr(Z) is free,
λ(Γr(S)) is a nontrivial free group. Hence, there exists a surjective homomor-
phism ν : λ(Γr(S)) → Z. The composition ν ◦ λ : Γr(S) → Z is a surjective
homomorphism and, hence, H1(Γr(S)) is nontrivial.

Suppose, on the other hand, that r = 3. Then, by Lemma 2.18, the homo-
morphism λ : Γr(S) → SL(2,Z[ζ]∩R) of Theorem 2.14 takes its values in the
level 3 subgroup Γr(Z) of SL(2,Z). By Theorem 2.19, Γr(Z) is free.

As in the previous case, we conclude that H1(Γr(S)) is nontrivial. 2
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