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Let M be an orientable, connected, compact Riemann surface of negative
euler characteristic. Let M(M) be the mapping class group of M , the group
of isotopy classes of orientation preserving self homeomorphisms of M . Let
τ be a pseudo-Anosov mapping class belonging to M(M). We recall that τ
is pseudo-Anosov if it contains a pseudo-Anosov diffeomorphism t.

A diffeomorphism, t, of M is pseudo-Anosov if there exists a pair of
transverse measured foliations, (Fs, µs), (Fu, µu), and a real number λ > 1
such that t(Fs, µs) = (Fs, λ−1µs) and t(Fu, µu) = (Fu, λµu). The measured
foliation (Fs, µs) is called the stable foliation for t; the measured foliation
(Fu, µu) is called the unstable foliation for t; λ is the dilatation of t.

In this article we prove the following theorem and two corollaries:

Theorem 1 . The centralizer, C(τ), of the cyclic subgroup of M(M) gen-
erated by τ is a finite extension of an infinite cyclic group. The normalizer,
N(τ), of the cyclic subgroup of M(M) generated by τ is either equal to C(τ)
or contains C(τ) as a normal subgroup of index 2.

Corollary 2 . C(τ) and N(τ) are virtually infinite cyclic (i.e. contain
infinite cyclic subgroups of finite index).

Corollary 3 . Every torsion free subgroup of C(τ) or N(τ) is infinite cyclic.

The main tool for proving these results is given by the following lemma. I
thank Albert Fathi of the Universite de Paris-Sud, Orsay, France for showing
me how to prove a special case of this lemma.

Lemma 1 . Suppose s is a diffeomorphism of M and k is a nonzero integer
such that sts−1 is isotopic to tk. Then there exists a homeomorphism, r,
of M , isotopic to s, and a positive real number, ρ, such that the following
conditions hold:

(1) rtr−1 = tk,
(2) if k < 0, then r(Fs, µs) = (Fu, ρ−1µu) and r(Fu, µu) = (Fs, ρµs),
(3) if k > 0, then r(Fs, µs) = (Fs, ρ−1µs) and r(Fu, µu) = (Fu, ρµu).

Furthermore, k = −1, or +1.
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Proof. Let t1 = tk and t2 = sts−1. Let (Fs
2 , µs

2) = s(Fs, µs) and (Fu
2 , µu

2) =
s(Fu, µu). Then the following equalities hold:

• t1(Fs, µs) = (Fs, λ−kµs) and t1(Fu, µu) = (Fu, λkµu),
• t2(Fs

2 , µs
2) = (Fs

2 , λ−1µs
2) and t1(Fu

2 , µu
2) = (Fu

2 , λµu
2).

Therefore, t1 and t2 are isotopic pseudo-Anosov diffeomorphisms. By the
uniqueness of pseudo-Anosovs, ([FLP], Theorem III, Expose 12), there ex-
ists a diffeomorphism, h, isotopic to the identity, such that ht2h

−1 = t1.
Therefore, if we let r = hs, then r is isotopic to s and rtr−1 = tk. This
proves (1).

Following the argument in the proof of Lemma 16, Expose 12, [FLP], we
conclude that r sends the stable foliation of t to the stable foliation of tk,
and the unstable foliation of t to the unstable foliation of tk.

If k < 0, then r(Fs) = Fu and r(Fu) = Fs. By the unique ergodicity
of the foliations Fs and Fu, ([FLP], Theorem I, Expose 12), it follows that
there exists positive real numbers α and β such that r(Fs, µs) = (Fu, αµu)
and r(Fu, µu) = (Fs, βµs). Furthermore, we conclude that αβ = 1, since
µs

⊗
µu gives an area element whose total area must be preserved by any

diffeomorphism of M . (M has finite area under this form.) This proves (2).
(3) follows in a similar manner.

If k < 0, then rtr−1(Fu, µu) = (Fu, λ−1µu). Since, on the other hand,
tk(Fu, µu) = (Fu, λkµu), we conclude that k = −1. Similarly, if k > 0, then
k = 1. �

From this lemma, we conclude that if σ ∈ N(τ), then σ may be repre-
sented by a diffeomorphism preserving the pair of measured foliations for t
up to scalar multiplications. Therefore, we now turn our attention to study
the group of such diffeomorphisms.

Let F = {F1,F2} be the pair of foliations for t. Let G be the group of
diffeomorphisms, r, such that r(F) = F . Let G∗ be the subgroup of diffeo-
morphisms, r, such that r(F1) = F1 and r(F2) = F2. Clearly, G∗ is a normal
subgroup of index 1 or 2 in G. (There may not be any diffeomorphisms of
M exchanging the pair of foliations.)

Let µi be a transverse measure on Fi, i = 1, 2. Again, by the unique
ergodicity of the foliations F1 and F2, it follows that for each r ∈ G, there
exists a positive real number, λr, such that either:

• r(F1, µ1) = (F2, λ
−1
r µ2) and r(F2, µ2) = (F1, λrµ1)

or

• r(F1, µ1) = (F1, λ
−1
r µ1) and r(F2, µ2) = (F2, λrµ2).

In particular, this provides a dilatation homomorphism, λ : G∗ → R+. Let
Λ = λ(G∗) and Sym = kernel(λ). (Note: if r ∈ G and r(F1) = F2, then
r2 ∈ Sym. If r ∈ G∗, then r is pseudo-Anosov if and only if λr 6= 1.)

Lemma 2 . There exists λ0 > 1 such that Λ = {λn
0 |n ∈ Z}.
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Proof. The set of dilatation factors for pseudo-Anosov maps on a surface
of fixed genus is a subset of the algebraic integers. Indeed, it is a discrete
subset. This fact was pointed out in [T]. A proof may be found in the paper
of Arnoux and Yoccoz [AY]. Their arguments also show that this set is
closed. Therefore, Λ is a discrete subgroup of algebraic integers. The result
follows from standard theorems. �

Lemma 3 . Sym is a finite group.

Proof. Let L be the collection of separatrices for F1, (i.e. leaves of F1

emanating from a singularity of F1). Since each element in G∗ must permute
the leaves of L, we have a natural action of G∗ on L, which restricts to an
action of Sym on L.

Suppose L ∈ L, r ∈ Sym and r(L) = L. Since λr = 1, it follows that r
fixes L pointwise. Since L is dense in M , ([FLP], Expose 9, Lemma 6), r
fixes M pointwise. That is, r is the identity. Therefore, the action of Sym
on L is free and Sym is a finite group. �

Lemma 4 . Let π : Homeo+(M) → M(M) be the natural quotient. The
restriction π : G →M(M) is injective.

Proof. If π(r) = 1, then, by definition of π, r is isotopic to the identity.
Therefore, r2 is isotopic to the identity. But r2 is in G∗. Since pseudo-
Anosov diffeomorphisms are not isotopic to the identity, we conclude that
r2 ∈ Sym. By Lemma 3, r2 is finite order, and therefore r is finite order.
But a periodic map which is isotopic to the identity is the identity, ([FLP],
Expose 12, Lemma 12). �

Proof of Theorem 1. Let H = π(G) and H∗ = π(G∗). By Lemmas 2 and 3,
G∗ is a finite extension of an infinite cyclic group. As noted before, either
G = G∗ or G∗ is a normal subgroup of index 2 in G. By Lemma 1, C(τ) ⊂ H∗,
N(τ) ⊂ H and N(τ) ∩ H∗ = C(τ). The result follows immediately from
Lemma 4. �

Proof of Corollary 2. It suffices to show that G∗ is virtually infinite cyclic.
But there is a short exact sequence:

1 → Sym → G∗ λ→ Λ → 1

with Λ infinite cyclic and Sym finite. Such a sequence always splits, and
any splitting determines an infinite cyclic subgroup of finite index in G∗. �

Proof of Corollary 3. Let G be a torsion free subgroup of N(τ) and σ ∈ G.
By Lemma 1, if σ switches the pair of foliations for τ , then σ2 ∈ Sym. By
Lemma 3, this is impossible. Hence, by Lemma 1, G ⊂ C(τ). But then we
have a short exact sequence:

1 → G ∩ Sym → G
λ→ λ(G) → 1; λ(G) ⊂ Λ.
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Since G is torsion free, G∩Sym = {1}. (Again, this follows from Lemma 3.)
Hence, G is isomorphic to a subgroup of Λ. The result follows from Lemma
2. �

References

[AY] Arnoux, P. and Yoccoz, J., Construction de diffeomorphisme pseudo-Anosov, C.
R. Acad. Sc. Paris, 292 (1981), 75-78

[FLP] Fathi, A., Laudenbach, F. and Poénaru, V., Travaux de Thurston sur les surfaces,
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