NORMALIZERS AND CENTRALIZERS OF PSEUDO-ANOSOV MAPPING CLASSES

JOHN D. MCCARTHY

Let M be an orientable, connected, compact Riemann surface of negative euler characteristic. Let $\mathcal{M}(M)$ be the mapping class group of M, the group of isotopy classes of orientation preserving self homeomorphisms of M. Let τ be a pseudo-Anosov mapping class belonging to $\mathcal{M}(M)$. We recall that τ is *pseudo-Anosov* if it contains a pseudo-Anosov diffeomorphism t.

A diffeomorphism, t, of M is *pseudo-Anosov* if there exists a pair of transverse measured foliations, (\mathcal{F}^s, μ^s) , (\mathcal{F}^u, μ^u) , and a real number $\lambda > 1$ such that $t(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-1}\mu^s)$ and $t(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda \mu^u)$. The measured foliation (\mathcal{F}^s, μ^s) is called the stable foliation for t; the measured foliation $(\mathcal{F}^{u}, \mu^{u})$ is called the unstable foliation for t; λ is the dilatation of t.

In this article we prove the following theorem and two corollaries:

Theorem 1. The centralizer, $C(\tau)$, of the cyclic subgroup of $\mathcal{M}(M)$ generated by τ is a finite extension of an infinite cyclic group. The normalizer, $N(\tau)$, of the cyclic subgroup of $\mathcal{M}(M)$ generated by τ is either equal to $C(\tau)$ or contains $C(\tau)$ as a normal subgroup of index 2.

Corollary 2. $C(\tau)$ and $N(\tau)$ are virtually infinite cyclic (i.e. contain infinite cyclic subgroups of finite index).

Corollary 3. Every torsion free subgroup of $C(\tau)$ or $N(\tau)$ is infinite cyclic.

The main tool for proving these results is given by the following lemma. I thank Albert Fathi of the Universite de Paris-Sud, Orsay, France for showing me how to prove a special case of this lemma.

Lemma 1. Suppose s is a diffeomorphism of M and k is a nonzero integer such that sts^{-1} is isotopic to t^k . Then there exists a homeomorphism, r, of M, isotopic to s, and a positive real number, ρ , such that the following conditions hold:

- (1) $rtr^{-1} = t^k$,
- (2) if k < 0, then $r(\mathcal{F}^s, \mu^s) = (\mathcal{F}^u, \rho^{-1}\mu^u)$ and $r(\mathcal{F}^u, \mu^u) = (\mathcal{F}^s, \rho\mu^s)$, (3) if k > 0, then $r(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \rho^{-1}\mu^s)$ and $r(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \rho\mu^u)$.

Furthermore, k = -1, or +1.

Date: June 8,1994.

This paper was originally written on March 5, 1982. The bibliography has been updated and minor changes have been made in the text to clarify the original arguments.

J. D. MCCARTHY

Proof. Let $t_1 = t^k$ and $t_2 = sts^{-1}$. Let $(\mathcal{F}_2^s, \mu_2^s) = s(\mathcal{F}^s, \mu^s)$ and $(\mathcal{F}_2^u, \mu_2^u) =$ $s(\mathcal{F}^u, \mu^u)$. Then the following equalities hold:

- $t_1(\mathcal{F}^s, \mu^s) = (\mathcal{F}^s, \lambda^{-k}\mu^s)$ and $t_1(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda^k\mu^u),$ $t_2(\mathcal{F}^s_2, \mu^s_2) = (\mathcal{F}^s_2, \lambda^{-1}\mu^s_2)$ and $t_1(\mathcal{F}^u_2, \mu^u_2) = (\mathcal{F}^u_2, \lambda\mu^u_2).$

Therefore, t_1 and t_2 are isotopic pseudo-Anosov diffeomorphisms. By the uniqueness of pseudo-Anosovs, ([FLP], Theorem III, Expose 12), there exists a diffeomorphism, h, isotopic to the identity, such that $ht_2h^{-1} = t_1$. Therefore, if we let r = hs, then r is isotopic to s and $rtr^{-1} = t^k$. This proves (1).

Following the argument in the proof of Lemma 16, Expose 12, [FLP], we conclude that r sends the stable foliation of t to the stable foliation of t^k , and the unstable foliation of t to the unstable foliation of t^k .

If k < 0, then $r(\mathcal{F}^s) = \mathcal{F}^u$ and $r(\mathcal{F}^u) = \mathcal{F}^s$. By the unique ergodicity of the foliations \mathcal{F}^s and \mathcal{F}^u , ([FLP], Theorem I, Expose 12), it follows that there exists positive real numbers α and β such that $r(\mathcal{F}^s, \mu^s) = (\mathcal{F}^u, \alpha \mu^u)$ and $r(\mathcal{F}^u, \mu^u) = (\mathcal{F}^s, \beta \mu^s)$. Furthermore, we conclude that $\alpha \beta = 1$, since $\mu^s \bigotimes \mu^u$ gives an area element whose total area must be preserved by any diffeomorphism of M. (M has finite area under this form.) This proves (2). (3) follows in a similar manner.

If k < 0, then $rtr^{-1}(\mathcal{F}^u, \mu^u) = (\mathcal{F}^u, \lambda^{-1}\mu^u)$. Since, on the other hand, $t^k(\mathcal{F}^u,\mu^u) = (\mathcal{F}^u,\lambda^k\mu^u)$, we conclude that k = -1. Similarly, if k > 0, then k = 1.

From this lemma, we conclude that if $\sigma \in N(\tau)$, then σ may be represented by a diffeomorphism preserving the pair of measured foliations for tup to scalar multiplications. Therefore, we now turn our attention to study the group of such diffeomorphisms.

Let $\mathcal{F} = \{\mathcal{F}_1, \mathcal{F}_2\}$ be the pair of foliations for t. Let \mathcal{G} be the group of diffeomorphisms, r, such that $r(\mathcal{F}) = \mathcal{F}$. Let \mathcal{G}^* be the subgroup of diffeomorphisms, r, such that $r(\mathcal{F}_1) = \mathcal{F}_1$ and $r(\mathcal{F}_2) = \mathcal{F}_2$. Clearly, \mathcal{G}^* is a normal subgroup of index 1 or 2 in \mathcal{G} . (There may not be any diffeomorphisms of M exchanging the pair of foliations.)

Let μ_i be a transverse measure on \mathcal{F}_i , i = 1, 2. Again, by the unique ergodicity of the foliations \mathcal{F}_1 and \mathcal{F}_2 , it follows that for each $r \in \mathcal{G}$, there exists a positive real number, λ_r , such that either:

•
$$r(\mathcal{F}_1, \mu_1) = (\mathcal{F}_2, \lambda_r^{-1} \mu_2)$$
 and $r(\mathcal{F}_2, \mu_2) = (\mathcal{F}_1, \lambda_r \mu_1)$

or

•
$$r(\mathcal{F}_1, \mu_1) = (\mathcal{F}_1, \lambda_r^{-1} \mu_1) \text{ and } r(\mathcal{F}_2, \mu_2) = (\mathcal{F}_2, \lambda_r \mu_2).$$

In particular, this provides a *dilatation homomorphism*, $\lambda : \mathcal{G}^* \to \mathbb{R}_+$. Let $\Lambda = \lambda(\mathcal{G}^*)$ and $\mathcal{S}ym = kernel(\lambda)$. (Note: if $r \in \mathcal{G}$ and $r(\mathcal{F}_1) = \mathcal{F}_2$, then $r^2 \in Sym$. If $r \in \mathcal{G}^*$, then r is pseudo-Anosov if and only if $\lambda_r \neq 1$.)

Lemma 2. There exists $\lambda_0 > 1$ such that $\Lambda = \{\lambda_0^n | n \in \mathbb{Z}\}.$

 $\mathbf{2}$

Proof. The set of dilatation factors for pseudo-Anosov maps on a surface of fixed genus is a subset of the algebraic integers. Indeed, it is a discrete subset. This fact was pointed out in [T]. A proof may be found in the paper of Arnoux and Yoccoz [AY]. Their arguments also show that this set is closed. Therefore, Λ is a discrete subgroup of algebraic integers. The result follows from standard theorems.

Lemma 3 . Sym is a finite group.

Proof. Let \mathcal{L} be the collection of separatrices for \mathcal{F}_1 , (i.e. leaves of \mathcal{F}_1 emanating from a singularity of \mathcal{F}_1). Since each element in \mathcal{G}^* must permute the leaves of \mathcal{L} , we have a natural action of \mathcal{G}^* on \mathcal{L} , which restricts to an action of $\mathcal{S}ym$ on \mathcal{L} .

Suppose $L \in \mathcal{L}$, $r \in Sym$ and r(L) = L. Since $\lambda_r = 1$, it follows that r fixes L pointwise. Since L is dense in M, ([FLP], Expose 9, Lemma 6), r fixes M pointwise. That is, r is the identity. Therefore, the action of Sym on \mathcal{L} is free and Sym is a finite group.

Lemma 4. Let π : Homeo⁺(M) $\rightarrow \mathcal{M}(M)$ be the natural quotient. The restriction $\pi : \mathcal{G} \rightarrow \mathcal{M}(M)$ is injective.

Proof. If $\pi(r) = 1$, then, by definition of π , r is isotopic to the identity. Therefore, r^2 is isotopic to the identity. But r^2 is in \mathcal{G}^* . Since pseudo-Anosov diffeomorphisms are not isotopic to the identity, we conclude that $r^2 \in Sym$. By Lemma 3, r^2 is finite order, and therefore r is finite order. But a periodic map which is isotopic to the identity is the identity, ([FLP], Expose 12, Lemma 12).

Proof of Theorem 1. Let $\mathcal{H} = \pi(\mathcal{G})$ and $\mathcal{H}^* = \pi(\mathcal{G}^*)$. By Lemmas 2 and 3, \mathcal{G}^* is a finite extension of an infinite cyclic group. As noted before, either $\mathcal{G} = \mathcal{G}^*$ or \mathcal{G}^* is a normal subgroup of index 2 in \mathcal{G} . By Lemma 1, $C(\tau) \subset \mathcal{H}^*$, $N(\tau) \subset \mathcal{H}$ and $N(\tau) \cap \mathcal{H}^* = C(\tau)$. The result follows immediately from Lemma 4.

Proof of Corollary 2. It suffices to show that \mathcal{G}^* is virtually infinite cyclic. But there is a short exact sequence:

$$1 \to \mathcal{S}ym \to \mathcal{G}^* \xrightarrow{\lambda} \Lambda \to 1$$

with Λ infinite cyclic and Sym finite. Such a sequence always splits, and any splitting determines an infinite cyclic subgroup of finite index in \mathcal{G}^* . \Box

Proof of Corollary 3. Let G be a torsion free subgroup of $N(\tau)$ and $\sigma \in G$. By Lemma 1, if σ switches the pair of foliations for τ , then $\sigma^2 \in Sym$. By Lemma 3, this is impossible. Hence, by Lemma 1, $G \subset C(\tau)$. But then we have a short exact sequence:

$$1 \to G \cap \mathcal{S}ym \to G \xrightarrow{\lambda} \lambda(G) \to 1; \qquad \lambda(G) \subset \Lambda.$$

J. D. MCCARTHY

Since G is torsion free, $G \cap Sym = \{1\}$. (Again, this follows from Lemma 3.) Hence, G is isomorphic to a subgroup of Λ . The result follows from Lemma 2.

References

- [AY] Arnoux, P. and Yoccoz, J., Construction de diffeomorphisme pseudo-Anosov, C.
 R. Acad. Sc. Paris, 292 (1981), 75-78
- [FLP] Fathi, A., Laudenbach, F. and Poénaru, V., Travaux de Thurston sur les surfaces, Seminaire Orsay, Astérisque, vol. 66-67, Soc. Math. France, Montrouge, 1979
- [T] Thurston, W. P., On the geometry and dynamics of diffeomorphisms of surfaces, Bull. AMS 19 (1988) no. 2, 417-431

Department of Mathematics Michigan State University East Lansing, MI 48824-1027

E-mail address: mccarthy@@mth.msu.edu