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Abstract. In [M-W], Masur and Wolf proved that the Teichmüller
space of genus g > 1 surfaces with the Teichmüller metric is not a
Gromov hyperbolic space. In this paper, we provide an alternative
proof based upon a study of the action of the mapping class group
on Teichmüller space.

1. Introduction

As observed in [M-W], the Teichmüller space of surfaces of genus
g > 1 with the Teichmüller metric shares many properties with spaces
of negative curvature. In his study of the geometry of Teichmüller space
[Kr], Kravetz claimed that Teichmüller space was negatively curved in
the sense of Busemann [Bu]. It was not until about ten years later,
that Linch [L] discovered a mistake in Kravetz’s arguments. This left
open the question of whether or not Teichmüller space was negatively
curved in the sense of Busemann. This question was resolved in the
negative by Masur in [Ma].

A metric space X is negatively curved, in the sense of Busemann,
if the distance between the endpoints of two geodesic segments from
a point in X is at least twice the distance between the midpoints of
these two segments. An immediate consequence of this definition is that
distinct geodesic rays from a point in a Busemann negatively curved
metric space must diverge. Masur proved that Teichmüller space is
not negatively curved, in the sense of Busemann, by constructing dis-
tinct geodesic rays from a point in Teichmüller space which remain a
bounded distance away from each other.

In [G], Gromov introduced a notion of negative curvature for metric
spaces which, while less restrictive than that of Busemann, implies
many of the properties which Teichmüller space shares with spaces
of Riemannian negative sectional curvature. This raised the question
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of whether Teichmüller space was negatively curved in the sense of
Gromov, (i.e. Gromov hyperbolic). According to one of the definitions
of Gromov hyperbolicity, an affirmative answer to this question would
rule out so-called “fat” geodesic triangles in Teichmüller space. In
[M-W], Masur and Wolf resolved the Gromov hyperbolicity question in
the negative by constructing such “fat” geodesic triangles.

As observed in [M-W], the existence of distinct nondivergent rays
from a point in Teichmüller space does not preclude Teichmüller space
from being Gromov hyperbolic. Apparently for this reason, rather than
taking Masur’s construction of such rays as the starting point for their
proof, Masur and Wolf found their motivation from another source.
They observed that the isometry group of the Teichmüller metric is
the mapping class group [R], which is not a Gromov hyperbolic group,
since it contains a free abelian group of rank 2. This fact, like Masur’s
result on the existence of distinct nondivergent rays from a point, is
insufficient to imply that Teichmüller space is not Gromov hyperbolic.
Nevertheless, it served as motivation for Masur and Wolf’s construction
of “fat” geodesic triangles.

In this paper, we provide an alternative proof of the result of Ma-
sur and Wolf. Our proof, like that of Masur and Wolf, is motivated
by the fact that the mapping class group is not Gromov hyperbolic.
On the other hand, unlike the proof of Masur and Wolf, our proof de-
pends upon one of the deeper consequences of Gromov hyperbolicity.
Namely, in order for Teichmüller space to be Gromov hyperbolic, the
isometries of Teichmüller space must be governed by Gromov’s classi-
fication of isometries of Gromov hyperbolic spaces. We show that this
classification is incompatible with the structure of the mapping class
group.

The outline of the paper is as follows. In section 2, we review the
prerequisites for our proof. In section 3, we prove the theorem of Masur
and Wolf that Teichmüller space is not Gromov hyperbolic.

2. Preliminaries

2.1. Teichmüller space. Let M denote a closed, connected, orientable
surface of genus g ≥ 2. The Teichmüller space Tg of M is the space
of equivalence classes of complex structures on M , where two complex
structures S1 and S2 on M are equivalent if there is a conformal iso-
morphism h : S1 → S2 which is isotopic to the identity map of the
underlying topological surface M .

The Teichmüller distance d([S1], [S2]) between the equivalence classes
[S1] and [S2] of two complex structures S1 and S2 on M is defined as
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2
log infh K(h), where the infimum is taken over all quasiconformal

homeomorphisms h : S1 → S2 which are isotopic to the identity map
of M and K(h) is the maximal dilitation of h. This infimum is realized
by a unique quasiconformal homeomorphism, which homeomorphism
is called the Teichmüller map from S1 to S2.

As shown by Kravetz [Kr], (Tg, d) is a straight G-space in the sense
of Busemann ([Bu],[A]). Hence, any two distinct points, x and y, in
Tg are joined by a unique geodesic segment (i.e. an isometric image of
a Euclidean interval), [x,y], and lie on a unique geodesic line (i.e. an
isometric image of R), γ(x, y).

Now, fix a conformal structure S on M and let QD(S) be the space
of holomorphic quadratic differentials on S. The geodesic rays (i.e.
isometric images of [0,∞)) which emanate from the point [S] in Tg

are described in terms of QD(S). If q is a holomorphic quadratic
differential on S, p is a point on S and z is a local parameter on
S defined on a neighborhood U of p, then q may be written in the
form φ(z)dz2 for some holomorphic function φ on U . If φ(p) 6= 0 and
z0 = z(p), then on a sufficiently small neighborhood V of p contained in
U , we may define a branch φ(z)1/2 of the square root of φ. The integral
w = Φ(z) =

∫ z
z0

φ(z)1/2dz is a conformal function of z and determines
a local parameter for S on a sufficiently small neighborhood W of p
in V . This parameter w is called a natural rectangular parameter for
q at the regular point p. In terms of this parameter w, q may be
written in the form dw2. For each nonzero quadratic differential q on
S, there is a one-parameter family {SK} of conformal structures on
M and quadratic differentials {qK} on SK obtained by replacing the
natural parameters w for q on S by natural parameters wK for qK on
SK . The relationship between wK and w is given by the rule:

RewK = K1/2Rew ImwK = K−1/2Imw.

The Teichmüller distance from [SK ] to [S] is equal to log(K)/2. The
map t 7→ [Se2t ] is a Teichmüller geodesic ray emanating from [S] and
every geodesic ray emanating from [S] is of this form. Two nonzero
quadratic differentials on S determine the same Teichmüller geodesic
ray in Tg emanating from [S] if and only if they are positive multiples
of one another.

It is well-known that (Tg, d) is homeomorphic to R6g−6 and closed
balls in (Tg, d) are homeomorphic to closed balls in R6g−6. In fact, using
the previous description of geodesic rays, an homeomorphism can be
constructed from the open unit ball of QD(S) onto Tg. Suppose q is a
point in the open unit ball of QD(S). Then q = kq1 where 0 ≤ k < 1
and q1 is a quadratic differential in the unit sphere of QD(S). Map
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q to the point [SK ] on the geodesic ray through [S] in the direction
of q1 where K = (1 + k)/(1 − k). By the work of Teichmüller, this
map is an homeomorphism from the open unit ball of QD(S) onto Tg.
Since QD(S) is a complex vector space of dimension 3g−3, this proves
that Tg is homeomorphic to R6g−6. Note also that this homeomorphism
maps the closed ball of radius k centered at the origin of QD(S) onto
the closed ball of radius log(K)/2 centered at the point [S] in (Tg, d).
This proves that closed balls in (Tg, d) are homeomorphic to closed
balls in R6g−6.

The mapping class group Γg of M is the group of isotopy classes of
orientation-preserving homeomorphisms M → M . Γg acts on Tg by
pulling back conformal structures S on M . In other words, the action
of Γg on Tg is given by the well-defined rule [h] · [S] = [h∗S], where h∗S
is the conformal structure on M determined by compositions of charts
of S with restrictions of h−1). Note that, by construction, h : S → h∗S
is a conformal isomorphism. Hence, an homeomorphism g : S → S
is K-quasiconformal if and only if h ◦ g ◦ h−1 : h∗S → h∗S is K-
quasiconformal. It follows that the action of Γg on Tg is by isometries
of (Tg, d).

It is well-known that Γg acts properly discontinuously on Tg (see
[M-P2] for a simple proof of this fact).

2.2. Isometries of Gromov hyperbolic spaces. Let X be a space
equipped with a metric d. X is said to be proper if closed balls in X
are compact. Since closed balls in (Tg, d) are homeomorphic to closed
balls in R6g−6, (Tg, d) is proper. X is said to be geodesic if every pair
of points x, y ∈ X can be connected by a geodesic segment (i.e. an
isometric embedding of an interval). By Kravetz’ result that (Tg, d) is
a straight G-space in the sense of Busemann discussed in (2.1), (Tg, d)
is geodesic.

Gromov ([G], see also [C-D-P], [G-H]) introduced a notion of hy-
perbolicity for metric spaces which is now called Gromov hyperbolic-
ity. Gromov hyperbolic metric spaces share many of the qualitative
properties of hyperbolic space. The notion of Gromov hyperbolicity is
defined in terms of the following Gromov product. Let x0 be a fixed
point in X. Denote the distance d(x, y) between two points x and y
in X by |x − y|. Denote |x − x0| by |x|. The Gromov product (x, y)
is defined by the rule (x, y) = (|x| + |y| − |x − y|)/2. Note that the
triangle inequality implies that (x, y) ≥ 0 for all x and y in X. X is
said to be Gromov hyperbolic if there exists a number δ ≥ 0 such that
(x, y) ≥ min((x, z), (y, z)) − δ for all x, y and z in X. If we wish to
specify δ, we say that X is Gromov δ-hyperbolic.
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A sequence xi, i = 1, 2, ... of points in X is called convergent at
infinity if (xi, xj) →∞ for i, j →∞. We say that two sequences xi, i =
1, 2, ... and yj, j = 1, 2, ..., each convergent at infinity, are equivalent if
(xi, yj) → ∞ for i, j → ∞. Assuming that X is Gromov hyperbolic,
this defines an equivalence relation on the set of sequences in X which
are convergent at infinity. The Gromov boundary ∂X of X is defined to
be the set of equivalence classes of sequences in X which are convergent
at infinity. If a sequence xi, i = 1, 2, ... is contained in an equivalence
class a ∈ ∂X, we write xi → a as i →∞. Every isometry φ : X → X of
X induces a well defined map φ : ∂X → ∂X given by the rule φ(a) = b
if xi → a as i →∞ implies that φ(xi) → b as i →∞.

Let φ : X → X be an isometry of X and x ∈ X. φ is said to be
elliptic if the orbit {φn(x)|n ∈ Z} of x in X is bounded. φ is said to
be hyperbolic if the map φ∗ : Z → X defined by φ∗(n) = φn(x) is a
quasisometry. φ is said to be parabolic if the orbit of x in X has exactly
one point of accumulation in the boundary ∂X of X. [C-D-P]. (Note
that the notions of elliptic, hyperbolic and parabolic isometries are well
defined independently of x. Note also that the notions of elliptic and
hyperbolic isometries make sense for any metric space.)

Remark 2.3. If φ is hyperbolic then the quasigeodesic φ∗ : Z → X
has exactly two limit points on ∂X, x+ = limn→∞ φn(x) and x− =
limn→∞ φ−n(x). Each of these points is clearly fixed by φ. Moreover,
these points x+ and x− do not depend upon the choice of x. Hence,
the forward orbits {φn(y)|n > 0} of each point y in X converge to x+.
The backward orbits {φn(y)|n < 0} of each point y in X converge to
x−.

Remark 2.4. The orbit {φn(x)|n ∈ Z} of an elliptic isometry φ, being
bounded, has no accumulation points on ∂X. By the previous remark,
the orbit {φn(x)|n ∈ Z} of an hyperbolic isometry φ has exactly two
accumulation points on ∂X. Finally, by definition, the orbit {φn(x)|n ∈
Z} of a parabolic isometry φ has exactly one accumulation point on
∂X. Hence, the three types of isometries are mutually exclusive.

We shall require the following result ([C-D-P], [G-H]).

Theorem (Gromov [C-D-P], [G-H]) . Let X be a proper, geodesic,
Gromov hyperbolic space. Let φ : X → X be an isometry of X. Then
φ is either elliptic, hyperbolic or parabolic. If φ is hyperbolic, then φ
has exactly two fixed points x+ and x− in ∂X. The forward orbits
{φn(x)|n > 0} of each point x in X converge to x+. The backward
orbits {φn(x)|n < 0} of each point x in X converge to x−. If φ is
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parabolic, then φ has a unique fixed point x on the Gromov boundary
∂X of X.

If φ is hyperbolic, we refer to x+ as the attracting fixed point of φ
and to x− as the repelling fixed point of φ.

Remark 2.5. The statement that φ is either elliptic, hyperbolic or
parabolic is Theorem 2.1 of Chapter 9 of [C-D-P]. The statement that
an hyperbolic isometry has exactly two fixed points in ∂X follows from
Theorem 16 (i) in Chapter 8 of [G-H]. The convergence properties
of these two fixed points x+ and x− have already been explained in
Remark 2.3. The statement that a parabolic isometry has exactly one
fixed point on ∂X is Theorem 17 (i) in Chapter 8 of [G-H].

Remark 2.6. Ghys and de la Harpe use alternative definitions for ellip-
tic, hyperbolic and parabolic isometries than those of [C-D-P]. Their
definition of an elliptic isometry is equivalent to that of [C-D-P] by
Proposition-Definition 9 of Chapter 8 of [G-H]. Their definition of an
hyperbolic isometry is equivalent to that of [C-D-P] by Proposition
21 of Chapter 8 of [G-H]. They define a parabolic isometry to be an
isometry which is neither elliptic nor hyperbolic, as defined in [G-H]
(see the paragraph before Theorem 17 in Chapter 8 of [G-H]). That
this is equivalent to the definition of a parabolic isometry in [C-D-P]
follows from the equivalence of the definitions of elliptic and hyperbolic
isometries in [C-D-P] and [G-H], Theorem 2.1 of Chapter 9 of [C-D-P]
and the mutual exclusivity, as explained in Remark 2.4, of the three
types of isometries, as defined in [C-D-P].

3. Isometries of Teichmüller space

In this section, we prove the theorem of Masur and Wolf that Te-
ichmüller space is not Gromov hyperbolic.

Lemma 3.1. Suppose that (X, d) is a proper, geodesic, Gromov hyper-
bolic space on which Γg acts properly discontinuously by isometries. Let
α be an isotopy class of a nonseparating simple closed curve a on M .
Let Dα ∈ Γg denote the Dehn twist about a. Then Dα is a parabolic
isometry of (X, d).

Proof. Suppose that φ ∈ Γg is of infinite order and x ∈ X. Since Γg

acts properly discontinuously by isometries on X and closed balls in
(X, d) are compact, the orbit {φn(x)|n ∈ Z} is unbounded. Hence, φ is
not elliptic. Thus, by Gromov’s classification of isometries of proper,
geodesic, Gromov hyperbolic spaces discussed in (2.2), φ is either par-
abolic or hyperbolic.
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In particular, since Dα has infinite order, Dα is either parabolic or
hyperbolic. Suppose that Dα is hyperbolic. Suppose that β is an iso-
topy class of nonseparating simple closed curves on M . Since any two
nonseparating circles on M are topologically equivalent, Dβ is conju-
gate to Dα in Γg. Since Dα is hyperbolic, Dβ is hyperbolic.

Now suppose that α and β have disjoint representative simple closed
curves a and b. Then Dα commutes with Dβ. By the usual argument,
Dβ preserves the fixed point set {x1, x2} of the hyperbolic isometry Dα

of X. We may assume that x1 is the repelling fixed point of Dα. Then
Dβ(x1) is the repelling fixed point of Dβ◦Dα◦D−1

β . Since Dβ commutes
with Dα, we conclude that Dβ(x1) is the repelling fixed point x1 of Dα.
Likewise, Dβ(x2) = x2. Thus the fixed point set of the hyperbolic
isometry Dβ of X is equal to {x1, x2}. (Observe, however, that x1 need
not be the repelling fixed point of Dβ. Consider the fact that D−1

α

also commutes with Dα, whereas the repelling fixed point of D−1
α is the

attracting fixed point of Dα.)
We recall the Lickorish-Humphries generators for Γg. Choose a

collection of pairwise transitive nonseparating simple closed curves
a1, ..., a2g+1 on M such that ai meets ai+1 at exactly 1 point for 1 ≤ i ≤
2g and ai is disjoint from aj if 2 ≤ |i− j|. In other words, a1, ..., a2g+1

is a maximal chain of simple closed curves on M . (It is well-known
that any two maximal chains on M are topologically equivalent [Mc].)
Let d be a simple closed curve such that d is transverse to a4, d meets
a4 in exactly one point and d is disjoint from ai if i 6= 4. Let τi de-
note the Dehn twist about ai and τ denote the Dehn twist about d.
The Lickorish-Humphries generators for Γg are the mapping classes
τ1, ..., τ2g, τ .

Let {x1, x2} denote the fixed point set of the hyperbolic isometry τ1

of X. Since a1 is disjoint from ai for 3 ≤ i, we conclude that the fixed
point set of the hyperbolic isometry τi is equal to {x1, x2} for 3 ≤ i.
Likewise, the fixed point set of the hyperbolic isometry τ is equal to
{x1, x2}. Finally, since a2 is disjoint from d, the fixed point set of
the hyperbolic isometry τ2 is equal to the fixed point set {x1, x2} of
the hyperbolic isometry τ . We conclude that the Lickorish-Humphries
generators for Γg are hyperbolic isometries with a common fixed point
set {x1, x2}. Since these generators generate Γg, we conclude that each
element of Γg fixes x1 and x2.

Consider a pair a, b of disjoint nonseparating nonisotopic simple
closed curves on S (e.g. a1 and a3). There exists an homeomorphism
h : S → S which interchanges a and b. Let σ ∈ Γg denote the isotopy
class of h, α denote the isotopy class of a and β denote the isotopy class
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of b. Then, as is well known, σ ◦Dα ◦σ−1 = Dβ and σ ◦Dβ ◦σ−1 = Dα.
Let η denote the mapping class Dα ◦D−1

β . By the previous identities,

σ ◦ η ◦ σ−1 = η−1.
The class η has infinite order. Hence, η is either parabolic or hy-

perbolic. On the other hand, since η ∈ Γg, η has at least two fixed
points on ∂X, x1 and x2. Hence, η is not parabolic. We conclude that
η is hyperbolic and, hence, the fixed point set of η is equal to {x1, x2}.
Since σ conjugates η to its inverse, σ must map the repelling fixed
point of η to the repelling fixed point of η−1. In other words, σ must
map the repelling fixed point of η to the attracting fixed point of η.
Likewise, σ must map the attracting fixed point of η to the repelling
fixed point of η. We conclude that σ interchanges x1 and x2. On the
other hand, since σ ∈ Γg, σ fixes x1 and x2. This is impossible. Hence,
Dα is parabolic.

This completes the proof. �

Theorem 3.2. Suppose that (X, d) is a proper, geodesic metric space
on which Γg acts properly discontinuously by isometries. Suppose that
pseudo-Anosov mapping classes act hyperbolically on X. Then (X, d)
is not Gromov hyperbolic.

Proof. Suppose that (X, d) is Gromov hyperbolic. By Gromov’s clas-
sification of isometries of a proper, geodesic, Gromov hyperbolic space
discussed in (2.2), it follows that each isometry of (X, d) is either ellip-
tic, hyperbolic or parabolic.

Suppose that φ ∈ Γg is of infinite order. As in the proof of Lemma
3.1, we conclude that φ is either parabolic or hyperbolic.

Let α be an isotopy class of a nonseparating simple closed curve a
on S. Let Dα ∈ Γg denote the Dehn twist about a. By Lemma 3.1, Dα

is a parabolic isometry of (X, d).
Now suppose that α and β have disjoint representative simple closed

curves a and b. Then Dα commutes with Dβ. By the usual argument,
Dβ preserves the fixed point set {x} of the parabolic isometry Dα of
X. Thus the fixed point set of the parabolic isometry Dβ of X is equal
to {x}.

Consider again the Lickorish-Humphries generators τ1, ..., τ2g, τ for
Γg as described in Lemma 3.1. Following the corresponding argument
in the proof of Lemma 3.1, we conclude that the Lickorish-Humphries
generators for Γg are parabolic isometries with a common fixed point
set {x}. Since these generators generate Γg, we conclude that each
element of Γg fixes x.

Now, by Theorem 2 (iii) of [M-P1] and the following section on
remarks and examples, there exists a pair of involutions σ and φ in Γg
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such that σ ◦ φ is a pseudo-Anosov element η of Γg. Since σ and φ are
involutions, σησ−1 = η−1.

Since the class η is pseudo-Anosov, η is hyperbolic. On the other
hand, since η ∈ Γg, η fixes x. Hence, the fixed point set on ∂X of the
hyperbolic isometry η of X consists of x and another point y. Following
the corresponding argument in the proof of Lemma 3.1, we conclude
that σ interchanges x and y. On the other hand, since σ ∈ Γg, σ fixes
x. This is impossible. Hence, (X, d) is not Gromov hyperbolic.

This completes the proof. �

Remark 3.3. Masur and Minsky have shown that the complex of
curves C(M) is Gromov-hyperbolic with respect to the natural simpli-
cial metric [M-M]. Since C(M) is equipped with the natural simplicial
metric, C(M) is geodesic. The mapping class group Γg acts in a natural
way on the simplicial complex C(M). Hence, the mapping class group
acts by isometries on the geodesic Gromov-hyperbolic space C(M), in
contrast to Theorem 3.2. On the other hand, although C(M) is geo-
desic, C(M) is not proper. Let v be a vertex of C(M) corresponding
to the isotopy class of a nontrivial simple closed curve a on M . The
vertices w in the unit ball of C(M) centered at v correspond to the
isotopy classes of nontrivial simple closed curves b on M which are dis-
joint from a. There are infinitely many such isotopy classes. Hence,
the unit ball of C(M) centered at v contains infinitely many vertices of
C(M). These vertices form a discrete closed infinite subset of the unit
ball. Hence, the unit ball of C(M) centered at v is not compact.

The Dehn twist about a simple closed curve a on M fixes the vertex
of C(M) corresponding to the isotopy class of a. Since Dehn twists are
of infinite order, we see that Γg does not act properly discontinuously
on C(M). Also, since Dehn twists fix a point in C(M), they act el-
liptically on C(M), in contrast to Lemma 3.1. In fact, every reducible
element fixes some point in C(M), (e.g. the barycenter of a simplex
corresponding to a reduction family for the element). Hence, every
reducible element acts elliptically on C(M).

Interestingly, at least some pseudo-Anosov elements act hyperboli-
cally on C(M). Suppose that h : M → M is a pseudo-Anosov home-
omorphism with stable lamination µ and unstable lamination ν, such
that the complementary regions of µ are ideal triangles. Let φ be the
isotopy class of h in Γg. The proof of Proposition 3.6 of [M-M] implies
that φm acts hyperbolically on C(M) for large enough m. In other
words, the map f : Z → X defined by f(n) = φmn(x) is a quasisom-
etry. It follows that the map φ∗ : Z → X defined by f(n) = φn(x) is
also a quasisometry. Hence, φ acts hyperbolically on C(M).
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Lemma 3.4. Let τ be a pseudo-Anosov mapping class in Γg. Then τ
is an hyperbolic isometry of (Tg, d).

Proof. We recall that, by definition, τ is represented by an homeomor-
phism h : M → M which preserves the projective classes of a pair of
transverse measured foliations F1 and F2 on M . The pair of measured
foliations F1 and F2 defines a metric g on M which is locally Euclidean
away from the (common) singularities of F1 and F2. g determines a
Riemmann surface structure S on M . There is a unique quadratic dif-
ferential q on S such that F1 is the horizontal measured foliation of q
and F2 is the vertical measured foliation of q. Let x denote the point in
Teichmüller space represented by S. The Teichmüller geodesic γ thru
x in the direction of q is invariant under τ [B]. Indeed, τ acts on γ by
a translation of some positive distance d. Hence, the orbit of x under
τ is quasi-isometric to the integers Z. In other words, by definition, τ
is an hyperbolic isometry. �

Remark 3.5. The Teichmüller geodesic γ consists of the points xt ∈ Tg

represented by the Riemann surface structures St on M determined by
the measured foliations t−1/2F1 and t1/2F2 where t > 0. (Note that the
transverse measure on the horizontal (resp. vertical) measured foliation
determines vertical (resp. horizontal) coordinates.) Note that x = x1.
We may assume that F1 and F2 are ordered so that h(F1) = λ−1F1 and
h(F2) = λF2, where λ > 1. Then τ · x = xλ2 and the identity map
is the Teichmuller map from S to Sλ2 . It follows that the Teichmüller
distance from x to τ · x is equal to log(λ).

Remark 3.6. Pseudo-Anosov elements are hyperbolic isometries of
(Tg, d) in the sense of Bers as well as in the sense of Gromov ([B]).

Corollary 3.7. (Masur-Wolf [M-W]) Teichmüller space with the Te-
ichmüller metric is not Gromov hyperbolic.

Proof. As mentioned above, (Tg, d) is proper and geodesic, and Γg acts
properly discontinuously by isometries on (Tg, d). The result follows
immediately from Theorem 3.2 and Lemma 3.4. �
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