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1 Introduction

In this chapter, S = Sg,b is a connected compact orientable surface of genus
g ≥ 0 with b ≥ 0 boundary components and ∂S denotes the boundary of S.
The mapping class group of S, Γ = Γg,b = Γ(S), is the group of isotopy classes
of orientation-preserving self-homeomorphisms of S. The extended mapping
class group of S, Γ∗ = Γ∗

g,b = Γ∗(S), is the group of isotopy classes of self-
homeomorphisms of S. Note that Γ is a normal subgroup of index 2 in Γ∗. The
study of these groups has used their action on various abstract simplicial com-
plexes, each of which encodes combinatorial information about the relationship
which certain subspaces of S (curves, arcs, cut systems, ideal triangulations,
etc.) bear to one another. The aim of this chapter is to review some of these
actions, and to study in detail some actions on recently defined complexes,
namely, the complex of domains and the truncated complex of domains.

The first action of the (extended) mapping class group on a complex ap-
pears in the work of A. Hatcher and W. P. Thurston, published in [19]. In this
work, there are two actions on complexes that are described, namely, the cut
system complex and the pants decomposition complex. We note that these
complexes are not simplicial complexes, but CW complexes. If we want to
consider only simplicial action, then we could stick to the actions of the map-
ping class groups on the one-dimensional skeleta of these complexes, and the
actions on these graphs are already extremely interesting.
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The actions on the cut system and the pants decomposition complexes
were used by Hatcher and Thurston to obtain an explicit finite presentation
of the mapping class group. Both complexes are defined in the paper [19]
for closed surfaces of genus g ≥ 2. The vertices of the cut system graph are
systems of g closed curves that cut the surface into a sphere with 2g holes.
The vertices of the pants decompositon graph are systems of 3g − 3 closed
curves that cut the surface into 2g − 2 pairs of pants, or spheres with three
holes. In both cases, two vertices are joined by an edge if and only if these
vertices are represented by systems of curves on the surface that are related
by an elementary move. (There are two different notions of elementary moves,
one for each setting.) In each case, an elementary move consists of replacing
a curve in a cut system (respectively a pants decomposition) by a new curve
which has minimal intersection number with the old curve, and such that the
new curve system is a cut system (respectively pants decomposition). The
elementary moves between pants decompositions are represented in Figure 8
below. The cut system complex and the pants decomposition complex, which
we denote respectively HT (S) and P (S), and as well as their 1-skeleta, which
we denote respectively HT1(S) and P1(S) and which are called the cut system
graph and the pants decomposition graph respectively, are both rigid in the
sense that the natural image of the mapping class group in the simplicial
automorphism group of these complexes is an isomorphism, except for a few
number of elementary surfaces. We shall elaborate on this rigidity phenomenon
below.

The curve complex, C(S), is a flag complex that was introduced shortly
after the work of Hatcher and Thurston by W. Harvey. This complex captures
the combinatorics of disjointness vs. intersection of the set of isotopy classes
of essential unoriented simple closed curves on S. For n ≥ 0, an n-simplex of
C(S) is a set of n + 1 distinct isotopy classes of essential closed curves on S
which can be represented by disjoint curves on the surface.

The curve complex was then studied by various people, from different points
of view, namely, by Ivanov, Korkmaz, Luo, Masur, Minsky, Bowditch, Klar-
reich, Hamenstädt, and others. For instance, Ivanov proved his famous result
(completed by Korkmaz and Luo) stating that the simplicial automorphism
group of the curve complex coincides with the natural image of the extended
mapping class group in that group. Ivanov then used the action on the curve
complex to give a new and geometric proof of the famous theorem by Royden
(completed by Earle and Kra) saying that the automorphism group of the Te-
ichmüller metric (except for a few speclal surfaces) is the extended mapping
class group. Ivanov’s proof of that result made a relation between the curve
complex and some boundary structure, a relation that was initially suspected
by Harvey. Masur and Minsky studied the curve complex, endowed with its
natural simplicial metric, from the point of view of large-scale geometry; they
showed that this complex is Gromov hyperbolic. Klarreich identified the Gro-
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mov boundary of the curve complex with the subspace of minimal laminations,
in the quotient space of measured lamination space obtained by forgetting the
transverse measure (see Chapter 10 by Hamenstädt in Volume I of this Hand-
book [14]).

The arc complex, A(S), is defined in analogy with the curve complex, with
essential closed curves replaced by essential properly embedded arcs in S. A
rigidity theorem for the arc complex, analogous to the theorem by Ivanov-
Korkmaz-Luo, was obtained quite recently by Irmak and McCarthy (see The-
orem 4.7 below). The analogous rigidity theorems for the cut system complex
and for the pants decomposition complex were obtained in the meantime by
Margalit and by Irmak and Korkmaz respectively (see Theorems 4.13 and
4.21).

A recurrent theme in the theory of simplicial complexes associated to sur-
faces is that in general, these actions are rigid in the sense tmentione above,
that is, there are no simplicial actions on these complexes other than those
arising from the homeomorphisms of surfaces. The fact that the natural homo-
morphism from the extended mapping class group to the simplicial automor-
phism group is onto is usually expressed by saying that all the automorphisms
of the complex are geometric (that is, they are induced by a homeomorphism
of the surface). We shall give several examples of rigid actions. Athough the
statements of these rigidity results are similar, the proofs are in general differ-
ent, and they use the properties of the specific complexes that are involved.

The aim of this chapteris to review the actions of the mapping class group
on these complexes and on several others. Besides the cut system graph,
the pants decomposition graph and the curve complex, we shall consider the
arc complex, the ideal triangulation graph, the arc and curve complex, the
Schmutz graph of nonseparating curves, the complex of nonseparating curves,
the complex of separating curves, the Torelli complex, and a new complex
D(S) on which Γ∗ acts simplicially, the complex of domains of S. A domain
on S is a nonempty connected compact embedded surface in S which is not
equal to S and each of whose boundary components is either contained in ∂S
or is essential on S. The vertex set D0(S) of D(S) is the set of isotopy classes
of domains on S. An n-simplex of D(S) is a set of n + 1 distinct vertices of
D(S) that can be represented by disjoint domains of S.

Another important theme in the study of these complexes is that simplicial
information at the vertices of these complexes recognizes the topological data
on the surface that these vertices represent. This is well illustrated in the de-
tailed study of the complex of domains and the truncated complex of domains
that we make in what follows.

One principle guiding our study of D(S) is that its vertices are essentially
copies of the curve complex of the subsurfaces they represent, together with the
boundary components of these subsurfaces which are contained in the interior
of S.
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There are several reasons for which we study the actions of mapping class
group on the complex of domains.

First of all, this complex is the complex which is naturally associated to
the Thurston theory of surface diffeomorphisms. Indeed, the various pieces of
the Thurston decomposition of a surface diffeomorphism, thick domains and
annular or thin domains, appear as the vertices of this flag complex.

Secondly, this complex contains, as subcomplexes, a certain number of flag
complexes, each of which is induced from a particular subset of the 0-skeleton
D0(S) of D(S). We mention some of these subcomplexes:

• The truncated complex of domains, D2(S), whose vertices are the isotopy
classes of domains that are not pairs of pants with two boundary components
contained in ∂S.

• The complex of elementary domains, E(S), the induced subcomplex of
D(S) whose vertices are represented by domains that are either annuli or pairs
of pants.

• The complex of annular domains, R(S), the induced subcomplex of D(S)
whose vertices are represented by domains that are annuli. This complex is
naturally isomorphic to the curve complex C(S)

• The complex of pairs of pants, P (S), which is the induced subcomplex
of D(S) whose vertices are represented by domains that are pairs of pants.

• The complex of peripheral pairs of pants, P∂(S), which is the induced
subcomplex of D(S)whose vertices are represented by pairs of pants with at
least one boundary component contained in ∂S.

• The complex of thick domains, TD(S), which is the induced subcomplex
of D(S) whose vertices are represented by domains on S that are not annuli.

• The complex of boundary graphs, B(S), whose vertices are isotopy classes
of graphs on S that are the union of an essential arc on S together with the
boundary components of S which contain at least one endpoint of this arc.
B(S) is naturally identified with P∂(S). We shall see that it is also naturally
identified with a certain subcomplex of A(S) with the same vertex set as A(S)
but with, in general, fewer simplices.

Each of these complexes and sub-complexes has some special combinatorial
features, and there are interesting questions that are particular to each of
them. Furthermore, besides the study of the individual complexes, there are
intreseting questions about natural maps between them.

Except for a small number of exceptional surfaces (which in general belong
to the followig classes: spheres with at most four holes, tori with at most
two holes and the closed surface of genus 2), the natural homomorphism of
the extended mapping class group in the automorphism group of any one of
the complexes that we study is an isomorphism, except for the case of the
complex of domains, for a surface with at least two boundary components.
Indeed, a special feature of the complex of domains of of such a surface is that
its automorphism group is uncountable. This group includes automorphisms
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that send biperipheral pairs of pants (that is, pairs of pants with two of their
boundary components being boundary components of S) to the corresponding
biperipheral annuli (that is, annuli homotopic to the boundary component of
a biperipheral pair of pants which is not a boundary component of S) and
that fix all the other vertices of D(S). Such automorphisms are not geometric,
since a homeomorphism of the surface cannot send an annulus to a pair of
pants. This phenomenon disappears if instead of the complex of domains we
consider the truncated complex of domains, and we shall see that the natural
homomorphism of the extended mapping class group in the automorphism
group of the truncated complex of domains is an isomorphism (except, as
usual, for a small number of exceptional surfaces).

We note that all the simplicial complexes that we consider can be seen
as induced subcomplexes of a “universal” simplicial complex UC(S) whose
simplices are finite collections of isotopy classes of a class C of closed sub-
spaces of S which is invariant under the action of the group Homeo(S) of
self-homeomorphisms of S on closed subspaces of S. This ensures that there
is a natural action Γ∗(S) × UC(S) → UC(S) of Γ∗(S) on UC(S). Note that
the induced subcomplex UD(S) of UC(S) corresponding to any subcollection
D of C which is also invariant under this action affords a similar simplicial
representation ρ : Γ∗(S) → Aut(UD(S)) of Γ∗(S).

The plan of this chapter is the following.
Section 2 contains some basic principles on surfaces, subsurfaces, curves,

and geometric intersection numbers that will be used in later sections. We have
included proofs of a few facts that are used later on in the text. Of course, a
reader who is an expert in the theory of surfaces will skip these proofs.

Section 3 contains a short introduction to abstract simplicial complexes.
In this section, we define some basic simplicial notions that we use later in the
chapter. Some of the notions are standard notions, and others are new. In
particular, we introduce the notion of an exchangeable pair of vertices and of
an exchange automorphism of a simplicial complex K. We give necessary and
sufficient conditions for a pair of vertices to be exchangeable. We define certain
special subgroups of the automorphism group of K, which we call Boolean
subgroups. Such a group is isomorphic to the Boolean algebra of a collection
of subsets of K consisting of exchangeable pairs of vertices. The exchange
automorphisms and the Boolean subgroups will be used in an essential way in
the section on the automorphism group of the complex of domains, 8. We also
develop the theory of quotient complexes.

Section 4 is a survey on several simplicial complexes associated to a sur-
face S: the curve complex C(S), the arc complex A(S), the arc and curve
complex AC(S), the pants decomposition graph P1(S), the ideal triangulation
graph T (S), the Schmutz graph of nonseparating curves G(S), the complex
of nonseparating curves N(S), the cut system graph HT1(S), the complex of
separating curves CS(S), and the Torelli complex TC(S). We state the rigid-
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ity results without proofs, and we sometimes elaborate on some special cases
of surfaces that are excluded by the hypotheses of the theorems. It is usually
pleasant and instructive to work out the details of the special cases.

In Section 5, we introduce the complex of domains, D(S), and several of
its complexes, in particular the truncated complex of domains, D2(S), the
complex of boundary graphs B(S) and the complex of peripheral pairs of
pants P∂(S). There are natural inclusion maps among these complexes and
the complexes introduced in the preceding sections, and there is a natural
projection map D(S) → D2(S).

In Section 6, we show on a series of examples that combinatorial information
at rhe vertices of the simplicial complexes D(S) and D2(S) can be used to
characterize the subsurfaces that are represented by these vertices. To be
specific, we show for instance that a vertex x of D(S) is elementary (that
is, it represents either an annulus or a pair of pants) if and only if we have
Lk(Lk(x)) = {x}. Some of the characterizations of vertices of D(S) and of
D2(S) that are obtained in this section will be used in the following sections,
where the rigidity results are proved.

In Section 7, we prove that if S is not a sphere with four holes, a torus
with at most two holes, or a closed surface of genus two, then the natural
homomorphism ρ : Γ∗(S) → Aut(D2(S)) corresponding to the action of Γ∗(S)
on D2(S) is an isomorphism. In other words, every automorphism of D2(S) is
induced by a homeomorphism S → S which is uniquely defined up to isotopy
on S.

In Section 8, we prove the rigidity result for the complex of domains. This
involves the notion of an exchange automorphism. We prove thatif S is not
a sphere with at most four holes, a torus with at most two holes, or a closed
surface of genus two, then every automorphism of D(S) is a composition of an
exchange automorphism of D(S) with a geometric automorphism of D(S).
Acknowledgements.— The authors thank the Max Planck Institute for
Mathematics (Bonn), for the excellent conditions provided, during which part
of this work was done.

2 Surfaces

Let S = Sg,b be a connected compact orientable surface of genus g with b
boundary components. We say that S is a surface of genus g with b holes.
Note that Sg,b is a closed surface of genus g if and only if b = 0. Some surfces
have special names; for instance, S0,1 is a disc, S0,2 is an annulus, S0,3 is a
pair of pants, S0,b is a sphere with b holes and S1,b is a torus with b holes.
When talking about a torus (respectively sphere) with no holes, we shall use
the term closed torus (respectively sphere) in order to avoid ambiguity.
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Let ∂S denote the boundary of S. We shall sometimes index the b boundary
components of S by ∂i, 1 ≤ i ≤ b.

For each collection C of subsets of S, the support of C on S is the union
in S of the subsets of S in the collection C. We denote the support of C on S
by |C|.

Throughout this chapter, all isotopies between subspaces of S will be am-
bient isotopies. More precisely, if X and Y are subspaces of S, an isotopy from
X to Y is a map ϕ : S × [0, 1] → S such that the maps ϕt : S → S, 0 ≤ t ≤ 1,
are homeomorphisms of S, ϕ0 = idS : S → S, and ϕ1(X) = Y .

2.1 Curves

A curve on S is an embedded connected closed one-dimensional submanifold
of the interior of S. (Thus, a curve is homeomorphic to a circle.)

Let α be a curve on S. We say that α is k-peripheral if there exists a
sphere with k + 1 holes X on S such that α is a boundary component of X
and every other boundary component of X is a boundary component of S. We
say that α is essential if it is neither 0-peripheral nor 1-peripheral on S. In
other words, α is essential on S if and only if there does not exist a disc on S
whose boundary is equal to α or an annulus A on S whose boundary is equal
to the union of α with a boundary component of S.

If S is a sphere with at most three holes, then there are no essential curves
on S. Otherwise, there are infinitely many pairwise nonisotopic essential curves
on S.

Suppose that α and β are disjoint essential curves on S. Then α is isotopic
to β on S if and only if there exists an annulus A on S such that the boundary
of A is equal to α ∪ β. This is a classical result, see e.g. [10].

A collection of pairwise disjoint essential curves on S is called a system of
curves if the curves in the collection are pairwise nonisotopic. Note that every
subcollection of a system of curves on S is also a system of curves.

In the rest of this chapter, unless otherwise indicated, all simple closed
curves will be assumed to be essential, and we shall denote them by the name
curve.

If C is a finite collection of curves on S then SC will denote the compact
surface obtained from S by cutting S along |C|.

A pants decomposition of S is a collection of curves C on S such that each
component of SC is a pair of pants. Note that every pants decomposition of
S is a system of curves on S.

The surface S has a pants decomposition if and only if S is not a sphere
with at most two holes nor a closed torus. Moreover, on such a surface S, if C
is a system of curves, then there exists a pants decomposition on S containing
C.
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A nonempty system of curves C on S is a maximal system of curves on S
if and only if one of the following two situations occurs:

(1) S is a closed torus and C consists of exactly one nonseparating curve on
S.

(2) S is not a closed torus and C is a pants decomposition of S. In this case,
the cardinality of C is equal to 3g − 3 + b.

Suppose that C is a pants decomposition of S. Let R be a regular neigh-
borhood of |C|. The closure of the complement of R on S is a disjoint union
of pairs of pants on S. These pairs of pants are called pairs of pants of C.
Note that the pairs of pants of a pants decomposition are defined only up to
isotopy relative to C.

Suppose that P is a pair of pants of a pants decomposition C of S. Then
P is contained in a unique component Q of SC . We say that P is an embedded
pair of pants of C if the natural quotient map π : SC → S embeds the pair of
pants Q in S.

Let C be a pants decomposition of S. We say that C is an embedded pants
decomposition of S if every pair of pants of C is embedded. For example, if S
is a closed surface of genus two and C is a disjoint union of three nonisotopic
nonseparating curves on S, then C is an embedded pants decomposition of S.

2.2 Arcs

An arc α on S is a subspace of S which is homeomorphic to the interval [0, 1].
The endpoints of α are the images of 0 and 1 under a homeomorphism from
[0, 1] to α. We say that an arc α is properly embedded if α intersects the
boundary of S precisely at its endpoints. Unless otherwise indicated, all arcs
on S will be assumed to be properly embedded.

Let α be an arc on S. Suppose that one endpoint of α lies on ∂i and the
other endpoint of α lies on ∂j . Then we say that α joins ∂i to ∂j , and that α
is an arc of type {i, j}.

Let α be an arc on S of type {i, j} and β be an arc on S of type {k, l}.
Note that if α is isotopic to β, then {i, j} = {k, l}.

An arc α on S is essential if there does not exist an embedded closed disk
on S whose boundary is equal to the union of α with an arc contained in the
boundary of S.

Any arc on S joining two distinct boundary components of S is essential.
Likewise, if g > 0, b = 1, then any arc on S that intersects a simple closed
curve on S transversely and at exactly one point is essential.
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2.3 Boundary graphs

Let α be an arc on S joining ∂i to ∂j . The boundary graph of α, Gα, is
the union ∂i ∪ α ∪ ∂j (see Figure 1). We refer to ∂i and ∂j as the boundary
components of Gα. Note that Gα has one boundary component if α joins a
boundary component of S to itself (i.e. if i = j) and two boundary components
if α joins distinct boundary components of S (i.e. if i 6= j). Since arcs are,
by definition, properly embedded, ∂i ∪ ∂j = Gα ∩ ∂S. A boundary graph is
a boundary graph of an arc and an essential boundary graph is a boundary
graph of an essential arc.

(1) (2) (3)

Figure 1. The three types of boundary graphs: (1) a boundary graph of an arc
joining two distinct boundary components of S; (2) a boundary graph of an
arc joining a boundary component of S to itself with at least one of the two
boundary components of a regular neighborhood of the boundary graph being
a boundary component of S; (3) a boundary graph of an arc joining a boundary
component of S to itself with a regular neighborhood of the boundary graph
having two essential curves on S on its boundary.

In the rest of this chapter, unless otherwise indicated, all boundary graphs
will be assumed to be essential.

2.4 Geometric intersection number

Definition 2.1. Let α and β be curves on S. The geometric intersection
number of α and β on S is the minimum number i(α, β) = iS(α, β) of points
in α′ ∩ β′ where α′ and β′ are curves on S that are isotopic to α and β
respectively.

Definition 2.2. Let {α1, . . . , αn} be a collection of curves on S. We say
that {α1, . . . , αn} is in minimal position on S if for all 1 ≤ i < j ≤ n, the
geometric intersection number of αi and αj on S is equal to the number of
points in αi ∩ αj .

We recall that if {α1, . . . , αn} is a finite collection of curves on S, then there
exists a collection {β1, . . . , βn} of curves on S such that αi is isotopic to βi on
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S, 1 ≤ i ≤ n and {β1, . . . , βn} is in minimal intersection position on S. This
fact is often useful. For a proof, we can assume without loss of generality that
the curves {α1, . . . , αn} intersect transversely, and then apply an innermost
disk elimination argument, to eliminate non-essential intersection points. For
the existence of such diks, see e.g. [10]. Alternatively, we can prove this fact
by equipping S with a hyperbolic structure and replacing each curve αi by the
unique closed geodesic βi which is homotopic to it, see [13].

The following proposition will also be useful.

Proposition 2.3. Let C be a collection of disjoint essential curves on S and
let α ∈ C. Then there exists a curve γ on S such that for each β ∈ C,
i(γ, β) 6= 0 if and only if β is isotopic to α on S.

Proof. Since S contains an essential curve, S is not a sphere with at most three
holes.

Suppose, on the one hand, that S is a closed torus. Then any two disjoint
essential curves on S are isotopic, β is isotopic to α for each β in C. Since any
essential curve on S is nonseparating on S, α is nonseparating. Hence, Sα is an
annulus and there exists a curve γ on S that intersects α transversely and has
exactly one point of intersection with α. It follows that i(γ, β) = i(γ, α) = 1
for each β in C.

If S is not a sphere with at most three holes or a closed torus, we can find
a pants decomposition C1 of S such that each curve in C1 is homotopic to a
curve in C and each curve in C is homotopic to a curve in C1.

If α1 is a curve of the pants decomposition C1 of S, there exists a curve γ
on S such that i(γ, α1) 6= 0 and i(γ, δ) = 0 for each curve δ in C1 \ {α1} [13].

It follows that for each β in C, i(γ, β) = i(γ, β1) 6= 0 if and only if β is
isotopic to α on S (i.e. if and only if β1 = α1).

Geometric intersection number is an effective obstruction for isotoping
curves to one another. We shall use this obstruction repeatedly throughout
this work. More precisely, we shall use the following two propositions.

Proposition 2.4. Let α and β be essential curves on S. Then α is not
isotopic to β if and only if there exists a curve γ on S such that i(α, γ) = 0
and i(β, γ) 6= 0.

Proof. Suppose, on the one hand, that α is isotopic to β on S. Then i(α, γ) =
i(β, γ) for every curve γ on S. Hence, there does not exist a curve γ on S such
that i(α, γ) = 0 and i(β, γ) 6= 0.

Suppose, on the other hand, that α is not isotopic to β on S.
First, suppose that i(β, α) 6= 0. Then, α is a curve on S such that i(α, α) =

0 and i(β, α) 6= 0.
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Now, suppose that i(β, α) = 0. Then there exists a curve β1 on S which is
isotopic to β and disjoint from α. Therefore, α and β1 are disjoint nonisotopic
essential curves on S. Let C = {α, β1}. It follows from Proposition 2.3 that
there exists a curve γ on S such that i(α, γ) = 0 and i(β, γ) 6= 0.

Hence, in any case, there exists a curve γ on S such that i(α, γ) = 0 and
i(β, γ) 6= 0.

Proposition 2.5. Suppose that S is not a sphere with four holes or a torus
with at most one hole. Let α and β be nonisotopic essential curves on S. Then
there exists a curve γ on S such that γ is not isotopic to α, i(γ, α) = 0 and
i(γ, β) 6= 0.

Proof. Since S contains an essential curve, S is not a sphere with at most
three holes. Since S is also not a closed torus, we can extend α to a pants
decomposition F of S. For each curve δ in F \ {α} choose a curve δ′ on S
such that δ′ is disjoint from every curve in F \ {δ} and has nonzero geometric
intersection with δ [13]. Let F′ be the union of F \ {α} with {δ′ | δ ∈ F \ {α}}.

Suppose that i(τ, β) = 0 for each curve τ of F′.
Without loss of generality, we may assume that F′ ∪ {β} is in minimal

position.
Since S is not a sphere with four holes or a torus with one hole, then each

component of the surface obtained from S by cutting S along F′ is either a
disk or an annulus on S containing a boundary component of S, or an annulus
on S containing α, or a pair of pants on S containing α such that two of its
boundary components are boundary components of S.

Since i(τ, β) = 0 for each curve τ of F′ and F′ ∪{β} is in minimal position,
β is contained in the interior of one of the components M of the cut surface.
Since β is an essential curve on S contained in M , M cannot be a disk on S or
an annulus on S containing a boundary component of S. Hence, M is either
an annulus on S containing α, or a pair of pants on S containing α such that
two of its boundary components are boundary components of S. Since α and
β are essential curves on S contained in M , it follows that β is isotopic to α.
This is a contradiction.

Hence, i(γ, β) 6= 0 for some curve γ of F′. Note that each curve τ of F′ is
disjoint from α and not isotopic to α on S. Hence, γ is not isotopic to α on
S, i(γ, α) = 0, and i(γ, β) 6= 0.
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2.5 Orientation

Proposition 2.6. Suppose that S is not a sphere with at most three holes and
let H : S → S be a homeomorphism of S. If H preserves the isotopy class of
every essential curve on S, then H is orientation-preserving.

Proof. First, consider the case where the genus of S is zero. Since S is not a
sphere with at most three holes, there exists a sphere with four holesX embed-
ded in S such that three of the four boundary components of X are boundary
components C1, C2, and C3 of S and the remaining boundary component C0

of X is either a boundary component of S or an essential curve on S.
As in Section 4.2 of [31], we recall the lantern relation discovered by M.

Dehn [9] and rediscovered and popularized by D. Johnson [32]. To do this, we
choose an orientation on S and we let αij = αji, 1 ≤ i < j ≤ 3 be an arc on
S joining Ci to Cj . We can suppose that α12, α23, and α31 are disjoint. The
surface obtained from X by cutting along α12 ∪ α23 ∪ α31 contains a unique
component D which is a disc. Suppose that D is on the left of α12 as we
travel along α12 from C1 to C2, as in Figure 2. Let Cij = Cji be the unique
essential boundary component of a regular neighborhood Pij = Pji in X of
Ci ∪ αij ∪ Cj . Let Ti : S → S and Tjk = Tkj : S → S denote right Dehn
twist maps supported on regular neighborhoods on S of Ci and Cjk. Let ti
and tjk = tkj be the isotopy classes of Ti and Tjk = Tkj . Then, we have the
following relation, usually called the lantern relation:

t0 · t1 · t2 · t3 = t12 · t23 · t31 = t23 · t31 · t12 = t31 · t12 · t23.

Since C1, C2, and C3 are boundary components of S, it follows that for i =
1, 2, 3, ti is equal to the identity element of Γ∗(S). Hence:

t0 = t12 · t23 · t31 = t23 · t31 · t12 = t31 · t12 · t23.

Let h ∈ Γ∗(S) be the isotopy class of H : S → S. Suppose for contradiction
that H : S → S is orientation-reversing. The mapping class h ·tij ·h−1 is equal
to sij where sij is a left Dehn twist about H(Cij). On the other hand, since
H preserves the isotopy class of every essential curve on S, H(Cij) is isotopic
on S to Cij . It follows that sij = t−1

ij . Likewise, if C0 is essential on S, then

h · t0 · h−1 = t−1
0 . On the other hand, if C0 is a boundary component of S,

then t0 is equal to the identity element of Γ∗(S) and, hence, h · t0 · h−1 = t−1
0 .

In any case, h · t0 · h−1 = t−1
0 . We conclude that

t−1
0 = h · t0 · h

−1 = h · (t12 · t23 · t31) · h
−1 = t−1

12 · t−1
23 · t−1

31 .

This implies:
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t0 = t31 · t23 · t12.

It follows from the above equations that:

t31 · t12 · t23 = t31 · t23 · t12

which implies:

t12 · t23 = t23 · t12.

Hence, the right Dehn twists t12 and t23 about the essential curves C12 and
C23 on S commute. It follows from Lemma 4.3 of [45] that the geometric
intersection i(C12, C23) = 0. Since this geometric intersection number is equal
to two, this is a contradiction. Hence, H is orientation-preserving.

Now the case where the genus of S is positive is handled similarly, by using
a torus with one hole on S instead of a sphere with four holes on S.

Suppose that S has positive genus. Then there exist transverse essential
curves α and β on S such that α and β have exactly one point of intersection.
Let Tα : S → S be a homeomorphism representing tα and γ be the image of β
under Tα. Then, since Tα is orientation-preserving:

tα · tβ · t−1
α = tγ .

C0

C1

C3 C2

C12

C23

C31

α12

α23

α31

Figure 2. The lantern relation: t0 · t1 · t2 · t3 = t12 · t23 · t31, where ti (tjk) is
the isotopy class of a twist map about Ci (Cjk).
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Since β is essential on S and Tα : S → S is a homeomorphism, γ is essential on
S. Assume that H is orientation-reversing. Then, as before, by conjugating
by h, we conclude that

t−1
α · t−1

β · tα = t−1
γ .

This implies:

t−1
α · tβ · tα = tγ .

It follows from the above equations that:

tα · tβ · t−1
α = t−1

α · tβ · tα

which implies:

t2α · tβ = tβ · t2α.

As before, it follows from Lemma 4.3 of [45] that the geometric intersection
i(α, β) = 0. Since this geometric intersection number is equal to one, this is a
contradiction. Hence, H is orientation-preserving.

In any case, H is orientation-preserving.

2.6 Domains

A subsurface of S is a surface with boundary X contained in S such that every
boundary component of X is either a boundary component of S or disjoint
from the boundary of S.

A domain on S is a connected compact subsurface X of S which is not
equal to S and each of whose boundary components is either contained in ∂S
or is essential on S. The peripheral boundary components of X are those which
are contained in ∂S.

α

β

γ

Figure 3. A conjugation relation: tα · tβ · t−1

α = tγ .
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The following properties of domains follow easily from the definitions:

Proposition 2.7. Let X be a domain on S. Then:

• X is not a disk;

• no boundary component of X bounds a disk on S;

• there does not exist an annulus on S whose boundary is equal to the
union of a boundary component of X with a boundary component of S;

• X has at least one essential boundary component on S.

Let C be a curve on S. A regular neighborhood of C on S is an annulus R
in the interior of S such that C is a curve on R which is essential on R.

A regular neighborhood of a curve on S is a domain on S if and only if the
curve is an essential curve on S.

We say that a domain on S is peripheral if it has at least one peripheral
boundary component. We say that a domain on S is monoperipheral if it
has exactly one peripheral boundary component, and biperipheral if it has
exactly two peripheral boundary components. More generally, for k ≥ 0, we
say that a domain on S is k-peripheral if it has exactly k peripheral boundary
components.

Let X be a domain on S. The inside of X , denoted by X∗, is the comple-
ment in X of the union of the essential boundary components of X .

Let {∂i | 1 ≤ i ≤ n} be the collection of all essential boundary components
of X on S. Let A = {Ai | 1 ≤ i ≤ n} be a collection of disjoint annuli on X
such that Ai ∩∂X = ∂i, 1 ≤ i ≤ n. Let Y be the closure of the complement of
|A| in X . We say that Y is obtained from X by shrinking X on S. Note that
Y is a domain on S which is contained in the inside X∗ of X on S and that
Y is isotopic to X on S.

Proposition 2.8. Let X be a domain on S and Y be a subsurface of X. If
Y is a domain on X, then Y is a domain on S.

Proof. By Proposition 2.7, S is not a disk and no boundary component of X
bounds a disk on S.

Clearly Y is a compact, connected, orientable subsurface of S which is not
equal to S. Let ∂ be a boundary component of Y . Since Y is a domain on X ,
∂ is either a boundary component of X or an essential curve on X .

Suppose, on the one hand, that ∂ is a boundary component of X . Since X
is a domain on S, it follows that ∂ is either a boundary component of S or an
essential curve on S.

Suppose, on the other hand, that ∂ is an essential curve onX . In particular,
∂ is in the interior of X . Hence, ∂ is in the interior of S.
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Suppose that ∂ is not an essential curve on S. Then ∂ either bounds a disk
D on S or cobounds an annulus A on S with a boundary component ǫ of S.

Suppose that ∂ bounds a disk D on S. Since no boundary component of
X bounds a disk on S, no boundary component of X can be contained in D.
Hence, D is disjoint from the boundary of X but intersects the interior of X ,
since it contains ∂. Since D is connected, this implies that D is contained in
X . Since ∂ is an essential curve on X , this is a contradiction. Hence, ∂ does
not bound a disk on S.

Hence, ∂ cobounds an annulus A on S with a boundary component ǫ of
S. Since no boundary component of X can bound a disk on S or cobound
an annulus with the boundary component ǫ of S, no boundary component of
X can be contained in the interior of A. Hence, A \ ǫ is disjoint from the
boundary of X but intersects the interior of X , since it contains ∂. Since A \ ǫ
is connected and X is compact, this implies that A is contained in X . As
before, this is a contradiction, and, hence, ∂ is an essential curve on S.

This shows that each boundary component of Y is either a boundary com-
ponent of S or an essential curve on S, completing the proof that Y is a domain
on S.

Proposition 2.9. Let X be a domain on S. Let α and β be curves on X. Then
the geometric intersection number of α and β in X is equal to the geometric
intersection number of α and β in S.

Proof. Let m be equal to the geometric intersection number of α and β in X
and n be equal to the geometric intersection number of α and β in S. Without
loss of generality, we may assume that α and β are transverse with exactly m
points of intersection. Then there does not exist a disk on X whose boundary
is the union of an arc of α and an arc of β. Since α and β meet transversely
at m points, we havem ≥ n. Suppose that m > n. Then there exists a disk D
on S whose boundary ∂D is the union of an arc of α and an arc of β.

Let C be a component of ∂X . Since C is connected and disjoint from ∂D,
C is either contained in the interior of D or the complement of D in S. Since
C does not bound a disk on S, it follows that C is in the complement of D.
It follows that D is disjoint from ∂X . Since D is connected and disjoint from
∂X , D is either contained in the interior of X or the complement of X on S.
Since ∂D is contained in the interior of X , it follows that D is contained in
the interior of X . Hence, D is a disk on X whose boundary ∂D is the union of
an arc of α and an arc of β. This is a contradiction. Thus, m ≤ n and, hence,
m = n.

Note that one can also prove Proposition 2.9, using hyperbolic geometry.
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Proposition 2.10. Let X be a domain on S and α be an essential curve
on X. Then there exists an essential curve β on X such that the geometric
intersection number of α and β on S is not equal to zero.

Proof. Since α is an essential curve on X , then X is not a sphere with at most
three holes. Then, there exists a domain X ′ on X which is a sphere with four
holes or a torus with one hole and such that α is an essential curve on X .
We can find on X ′ a curve with the required properties, and use Proposition
2.9.

Proposition 2.11. Let X and Y be domains on S. Suppose that X is isotopic
on S to a domain on Y . Then Y is not isotopic on S to a domain on X.

Proof. Let X1 be a domain on Y such that X is isotopic to X1 on S. Suppose
that Y is isotopic on S to a domain Y1 on X . It follows that X is isotopic to
a domain X2 on S such that Y is a domain on X2.

Since X1 is a domain on Y and Y is a domain on X2, it follows from
Proposition 2.8 thatX1 is a domain onX2. Thus,X1 has an essential boundary
component α on X2. Since α is an essential curve on X2, it follows from
Proposition 2.10 that there exists an essential curve β on X2 such that the
geometric intersection number of α and β on S is not equal to zero.

Since X1 is isotopic to X2 on S, the essential boundary component α of
X1 on S is isotopic to an essential boundary component of X2 on S. Hence,
α is isotopic to a curve α1 on S which is disjoint from X2. It follows that
i(α, β) = i(α1, β). Since α1 is disjoint from X2 and β is contained in X2, α1

is disjoint from β and, hence, i(α1, β) = 0. Hence, i(α, β) = 0, which is a
contradiction.

Hence, Y is not isotopic on S to a domain on X .

Proposition 2.12. Let X be a domain on S. Let Y be the complement of the
interior of X in S. Then:

(1) if α is an essential curve on X, then α is an essential curve on S;

(2) if α is an essential curve on X, then α is not isotopic to any curve on
S contained in Y ;

(3) if U and V are distinct components of Y and α is an essential curve on
U , then α is not isotopic to any curve on V ;

(4) if U is a component of Y and U is isotopic to X, then U and X are
annuli meeting along their common boundary, Y = U , and S is a closed
torus;

(5) if U is a component of Y and U is isotopic to X, then U and X are
annuli meeting along their common boundary, Y = U , and S is a closed
torus.
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The proof is easy.
The following is a weak converse for Proposition 2.8.

Proposition 2.13. Let X be a domain on S and Y be a subsurface of X. If
Y is a domain on S, then Y is isotopic on S to either X, or a domain on X,
or a regular neighborhood of an essential boundary component of X.

Proof. Assume that Y is not isotopic on S to either X or a regular neighbor-
hood of an essential boundary component of X .

Let ∂ be a boundary component of Y . We may assume that ∂ is not a
boundary component of X . Hence, ∂ is not a boundary component of S.
Since Y is a domain on S, it follows that ∂ is an essential curve on S.

Suppose that ∂ is not an essential curve on X .
Since ∂ is an essential curve on S it cannot bound a disk on S. Hence, it

cannot bound a disk on X . Hence, ∂ must cobound an annulus A on X with
a boundary component ǫ of X .

Since ∂ is essential on S and A is an annulus on S, ǫ is not a boundary
component of S. Hence, since X is a domain on S, ǫ is an essential boundary
component of X on S.

Since Y is contained in X and the interior of Y is disjoint from the com-
plement of ∂ ∪ ǫ in A, the interior of Y is contained in either the interior of A
or the complement of A in X . Hence, Y is contained in either A or the closure
of the complement of A in X .

Suppose that Y is contained in A. Since Y is a domain on S and A is
contained in the interior of S, it follows that Y is isotopic on S to A. Since Y
is not isotopic to a regular neighborhood of an essential boundary component
of X on S, this is a contradiction.

Hence, Y is contained in the closure of the complement of A in X .
Let Y ′ = Y ∪ A. Note that Y ′ is a domain on S which is isotopic to Y

on S, is contained in X , and has one less boundary component in the interior
of X than Y . It follows, by induction, that Y is isotopic to a domain on S
which is contained in X and which has all of its boundary components in the
boundary of X . In other words, Y is isotopic on S to X .

The converse of Proposition 2.13 follows immediately from Propositions 2.8
and 2.13. Hence, we have the following equivalence.

Proposition 2.14. Let X be a domain on S and Y be a subsurface of X.
Then, Y is a domain on S if and only if Y is isotopic on S to either X, or a
domain on X, or a regular neighborhood of an essential boundary component
of X.

Definition 2.15. Let X , J , and Y be domains on S. We say that X is tied
to Y by J if X and J have exactly one common boundary component, J and
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Y have exactly one boundary component, and the interior of J is disjoint from
X ∪ Y .

As an example, suppose that S is a closed torus. Then every domain on S
is an annulus and any two disjoint domains on S, X and Y , are tied to one
another by exactly two annuli on S, J and K. Moreover, S = X ∪ J ∪ Y ∪K.

Proposition 2.16. Let X and Y be disjoint domains on S. Then X is isotopic
to Y on S if and only if X and Y are annuli and X is tied to Y by an annulus
on S.

Definition 2.17. Let X be a domain on S. We say that X is elementary if
it is either an annulus or a pair of pants on S. Otherwise, we say that X is
nonelementary.

Proposition 2.18. Let X be a domain on S. Then X is a nonelementary
domain on S if and only if there exist curves α and β on S such that i(α, β) 6= 0
and α and β are contained in the interior of X.

Proof. Suppose, on the one hand, that X is elementary and α and β are curves
on S contained in the interior of X . Then α is sotopic on S to a boundary
components ∂ of X . Since β is in the interior of X , ∂ and β are disjoint.
Hence, i(α, β) = i(∂, β) = 0.

Suppose, on the other hand, that X is nonelementary. Since X is a domain
on S, X has at least one essential boundary component on S.

Suppose that the genus of X is positive. Then there exists an embedded
torus with one hole Y in X which is either equal to X or is a domain on X . Let
α and β be curves on Y which intersect transversely and have exactly one point
of intersection. Then, by Proposition 2.9, iS(α, β) = iX(α, β) = iY (α, β) = 1.

Suppose now that the genus of X is zero. Since X is a domain on S, X has
at least one essential boundary component on S. In particular, X is not a disc.
Since X is nonelementary, X is not an annulus or a pair of pants. Hence, X
has at least four boundary components. Thus there exists an embedded sphere
with four holes Y in X which is either equal to X or is a domain on X . Let
α and β be curves on Y which intersect transversely, have exactly two points
of intersection, and are such that the complement of α ∪ β in Y has exactly
four components, each of which contains exactly one boundary component of
Y . Then, by Proposition 2.9, iS(α, β) = iX(α, β) = iY (α, β) = 2.

Definition 2.19. Let F be a collection of pairwise disjoint domains on S.
Let Y be the closure of the complement of |F| in S. A codomain of F is a
components of Y .
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Note that the codomains of a collection of pairwise disjoint domains on S
are themselves domains on S.

Proposition 2.20. Let X be a domain on S and Y be a codomain of X on S.
If Y is an annulus, then Y is a nonseparating annulus on S and both boundary
components of Y are essential boundary components of X.

Proof. Since Y is a codomain of X , every essential boundary component of
Y on S is a boundary component of X , and Y has at least one boundary
component which is also a boundary component of X . Let ∂1 be such a
boundary component of Y and let ∂2 be the other boundary component of Y .
Since ∂1 is a boundary component of X , it is essential on S, which implies that
∂2 is not a boundary component of S. Thus, ∂2 is also a boundary component
of X , and therefore both ∂1 and ∂2 are essential boundary components of X .
Since X is a connected subset of S and Y is a codomain of X on S, there is a
path in S connecting the two boundary components of Y and whose image is in
the complement of the interior of Y in S. This shows that Y is nonseparating
on S.

Corollary 2.21. Suppose that X is a domain on S and X is an annulus.
Then X has a codomain which is an annulus if and only if S is a closed torus.

Proof. Suppose that X is a domain on S, that X is an annulus, and that X
has a codomain Z which is an annulus. By Proposition 2.20, X and Z have
their two boundary components in common. Since S is orientable, the union
of X and Z is a closed torus. Since S is connected, S is equal to that torus.

The converse is clear.

A nonempty collection of pairwise disjoint domains on S is called a system
of domains on S if the domains in the collection are pairwise disjoint.

The following is an immediate corollary of Proposition 2.16.

Corollary 2.22. Let F be a collection of pairwise disjoint domains on S.
Then the following are equivalent:

(1) F is a system of domains on S;

(2) no two distinct annuli in F are isotopic on S;

(3) no two distinct annuli in F are tied to one another by an annulus on S.

The collection of codomains of a system of domains on S is a collection of
pairwise disjoint domains. However, the collection of codomains of a system of
domains on S is not necessarily a system of domains, since two distinct such
codomains may be isotopic.
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Proposition 2.23. Suppose that F is a collection of disjoint domains on S.
Then F is a system of domains on S if and only if there does not exist two
distinct annular domains of |F| which are joined by an annular codomain of
|F|.

3 Simplicial complexes

3.1 Abstract simplicial complexes

In this section, we introduce some standard terminology from the theory of ab-
stract simplicial complexes, and we complement it for later use in this chapter.
A reference for this classical material is Munkres [48].

Definition 3.1. Let V be a set. An abstract simplicial complex K with vertex
set V is a collection of finite subsets of V such that:

(1) if v ∈ V , then {v} ∈ K;

(2) if σ is an element of K and τ is a subset of σ, then τ is an element of K.

In this chapter, the term simplicial complex shall refer to an abstract simplicial
complex, unless otherwise specified.

Let K be a simplicial complex with vertex set V . If x is an element of V ,
then we say that x is a vertex of K. If σ is an element of K and x is an element
of σ, then we say that σ is a simplex of K and x is a vertex of σ. Note that
each vertex of each simplex of K is a vertex of K. If σ has k+1 vertices, then
we say that σ is a k-simplex of K. If x is an element of V , then we also say
that the corresponding 0-simplex {x} of K is a vertex of K. If e is a 1-simplex
of K, then we say that e is an edge of K. If ∆ is a 2-simplex of K, then we
say that ∆ is a triangle of K.

Figure 4. A system of domains (the non-shaded pieces) and their
codomains(shaded). Two distinct codomains of a system of domains might
be isotopic, as in this figure.



23

Definition 3.2. Let K be a simplicial complex and let F be a subcollection
of K. We say that F is a subcomplex of K if each subset τ of an element of
F is an element of F .

If F is a subcomplex of an abstract simplicial complex K, then F is itself
an abstract simplicial complex, and the vertex set of F is a subset of the vertex
set of K.

Proposition 3.3. Let K be a simplicial complex with vertex set V and W be
a subset of V . Let KW be the set of all simplices of K that have all of their
vertices in W . Then KW is a subcomplex of K with vertex set W .

Definition 3.4. Let K, W , and KW be as in Proposition 3.3. We say that
KW is the subcomplex of K induced by the subset W of the set of vertices V
of K.

Note that the subcomplex of a simplicial complex induced by a subset of its
vertices is itself a simplicial complex. Moreover, it is completely determined
by the simplicial complex K and its vertex set W .

Let K be a simplicial complex. For each nonnegative integer n, the n-
skeleton Kn of K is the subcomplex of K consisting of all k-simplices of K
with k ≤ n. Note that V is equal to the support |Kn| of Kn (i.e. the union of
all the k-simplices of K with k ≤ n).

The 1-skeleton of a simplicial complex K is a graph, sometimes called the
underlying graph of K.

Note that if F is a subcomplex of an abstract simplicial complex K and n
is any nonnegative integer, then the n-skeleton Fn of F is a subcomplex of the
n-skeleton Kn of K.

If τ ⊂ σ ∈ K, then we say that τ is a face of σ. A maximal simplex of a
simplicial complex K is a simplex which is not a proper face of any simplex of
K.

The simplicial complex K is finite-dimensional if there exists an integer N
such that every simplex of K is a k-simplex for some k ≤ N . If K is finite-
dimensional, then the dimension of K is the minimum such integer N . If the
dimension of K is N , then a top-dimensional simplex of K is an N -simplex of
K.

A simplicial complex of dimension one is a simplicial graph, or, more briefly,
a graph .

Definition 3.5. A simplicial complex K is a flag complex if the following
holds:

If {x0, . . . , xn} is a subset of K0 such that {xi, xj} is an edge of K
for all 0 ≤ i < j ≤ n, then {x0, . . . , xn} is a simplex of K.
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Definition 3.6. Let α, β, and δ be simplices of a simplicial complex K. We
say that α is joined to β by δ if δ = α ∪ β.

Note that if α is joined to β by simplices δ and ǫ of K, then δ = ǫ.
Note also that two simplices of a simplicial complex are joined by a vertex

of that simplicial complex if and only if they are both equal to that vertex.

Definition 3.7. Let α and β be simplices of a simplicial complex K which
are joined in K by a simplex δ of K. Then we say that δ is the join of α and
β in K.

Definition 3.8 (The star of a simplex). Let α be a simplex of a simplicial
complex K. The star of α in K is the subcomplex St(α) = St(α,K) of K
whose simplices are the simplices of K which contain the simplex α together
with all the faces of such simplices of K.

In particular, if x is a vertex of a simplicial complex K, then the star of x
in K is the subcomplex St(x,K) of K whose simplices are the simplices of K
which contain the vertex x together with all the faces of such simplices of K.

Let K be a simplicial complex and α be a simplex of K. Note that the
0-skeleton St0(α,K) of St(α,K) is the set of all vertices w of K such that
α ∪ {w} is a simplex of K.

Proposition 3.9. Let K be a flag complex. Let α and β be simplices of K.
Then the following are equivalent:

(1) St(α,K) = St(β,K).

(2) St0(α,K) = St0(β,K).

Proof. Clearly (1) implies (2). We shall now show that (2) implies (1). To
this end, suppose that (2) holds and let τ be a simplex of St(α,K). We need
to show that τ is a simplex of St(β,K). In other words, we need to show that
β ∪ τ is a simplex of K.

Since K is a flag complex, it suffices to show that any two distinct vertices
of β∪τ are joined by an edge of K. To this end, let x and y be distinct vertices
of β ∪ τ . If x and y are both vertices of the simplex β of K, then {x, y} is an
edge of the simplex β of K and, hence, an edge of K. Likewise, if x and y are
both vertices of the simplex τ of K, then {x, y} is an edge of the simplex τ of
K and, hence, an edge of K.

Suppose that x is a vertex of β and y is a vertex of τ . Since τ is a simplex of
St(α,K), y is a vertex of St(α,K) and, hence, of St(β,K). Since y is a vertex
of St(β,K), β ∪ {y} is a simplex of K. Since x is a vertex of β, it follows that
{x, y} ⊂ β ∪ {y}. Since {x, y} is a face of the simplex β ∪ {y} of K, it follows
that {x, y} is a simplex of K.
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Hence, every two distinct vertices of β∪τ are joined by an edge of K. Since
K is a flag complex, this implies that β ∪ τ is a simplex of K. In other words,
τ is a simplex of St(β,K).

This proves that St(α,K) is a subcomplex of St(β,K). By a symmetric
argument, it follows that St(β,K) is a subcomplex of St(α,K).

This proves that St(α,K) = St(β,K).

Definition 3.10 (The link of a simplex). Let σ be a simplex of a simplicial
complex K. The link of σ in K is the subcomplex Lk(σ) = Lk(σ,K) of K
whose simplices are the simplices of St(σ,K) which have empty intersection
with σ.

The following proposition is proved by an argument similar to that given
in the proof of Proposition 3.9.

Proposition 3.11. Let K be a flag complex. Let α and β be simplices of K.
Then the following are equivalent:

(1) Lk(α,K) = Lk(β,K).

(2) For each vertex x of K, x is a vertex of Lk(α,K) if and only if x is a
vertex of Lk(β,K).

Note that if σ = ∅, then Lk(σ,K) = St(σ,K) = K.
Suppose that σ is a simplex of a simplicial complexK. Note that σ is joined

to each of the simplices of Lk(σ); and the simplices of St(σ) are precisely the
faces of the joins of σ with the simplices of Lk(σ).

In particular, if x is a vertex of a simplicial complex K, then the link of
x in K is the subcomplex Lk(x,K) of K whose simplices are the simplices of
St(x,K) that do not have x as a vertex.

Suppose that x is a vertex of a simplicial complex K. Note that {x} is
joined to each of the simplices of Lk(x,K), and the simplices of St(x,K) are
precisely the faces of the joins of {x} with the simplices of Lk(x,K).

Definition 3.12 (The link of a subcomplex). Let F be a subcomplex of a
simplicial complex K. The link of F in K, denoted by Lk(F,K), is equal to
∩{Lk(σ,K) | σ ∈ F}.

Remark 3.13. Suppose that σ is a simplex ofK. Let F (σ) be the subcomplex
of K consisting of σ and all the faces of σ. Note that Lk(F (σ),K) ⊂ Lk(σ,K).
In general, this inclusion is strict, since a simplex which is joined to a face of
σ in K is not necessarily joined to σ in K.

Note that if σ is the empty simplex of K, then F (σ) is the empty subcom-
plex of K and Lk(σ,K) = K = Lk(F (σ),K). Hence, there is no ambiguity
regarding the “link of the empty set”.
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Remark 3.14. Let F be a subcomplex of K and σ be a simplex of F . Then
Lk(F,K) ⊂ Lk(σ,K).

Remark 3.15. Let F and G be subcomplexes of a simplicial complex K. If
F ⊂ G, then Lk(G,K) ⊂ Lk(F,K).

Proposition 3.16. Let x be a vertex of a simplicial complex K. If there exists
a simplex ∆ in K such that Lk(∆) = {x}, then Lk(Lk(x)) = {x}.

Proof. Suppose that there exists a simplex ∆ in K such that Lk(∆) = {x}.
Then, in particular, x ∈ Lk(∆). Hence, ∆ is a simplex of Lk(x). This implies
that Lk(Lk(x)) ⊂ Lk(∆). Hence, Lk(Lk(x)) ⊂ {x}. On the other hand,
x ∈ Lk(Lk(x)). Thus, Lk(Lk(x)) = {x}.

Definition 3.17. Let K be a simplicial complex with vertex set V and L be
a simplicial complex with vertex set W . A simplicial map from K to L is a
map ϕ : V →W such that, for each simplex σ of K, ϕ(σ) is a simplex of L.

Let ϕ : V → W be a simplicial map from a simplicial complex K with vertex
set V to a simplicial complex L with vertex set W . The rule σ 7→ ϕ(σ)
determines a map from K to L. We denote this map by ϕ : K → L and we
say that ϕ : K → L is a simplicial map from K to L. If we need to distinguish
between ϕ : V →W and ϕ : K → L, then we shall say that ϕ : V →W is the
vertex correspondence associated to ϕ : K → L.

Note that the map ϕ : K → L is both determined by and determines the
map ϕ : V → W . The map ϕ : K → L is injective if and only if ϕ : V → W
is injective. If ϕ : K → L is surjective, then ϕ : V → W is surjective. The
converse, however, is not necessarily true. For instance, if L has at least one
edge e and K is equal to the zero skeleton L0 of L, then the vertex set V of K
is equal to the vertex set W of L, the identity map ϕ : V → W is surjective,
but the corresponding map ϕ : K → L is not surjective, since the edge e of L
is not in the image of ϕ : K → L.

If ϕ : K → L is a simplicial map, then ϕ(K) is a subcomplex of L.

Definition 3.18. Let K and L be abstract simplicial complexes. A simplicial
isomorphism ϕ : K → L is a simplicial map ϕ : K → L for which there
exists a simplicial map ψ : L → K such that ϕ : K → L and ψ : L → K are
inverse functions. In the case where K = L, we call a simplicial isomorphism
ϕ : K → L a simplicial automorphism of K.

Note that a simplicial map ϕ : K → L is a simplicial isomorphism if and
only if ϕ : K → L is bijective. By the previous observations, if ϕ : K → L is
bijective, then ϕ : V →W is also bijective. The converse need not be true.

The following naturality peoperty follows easily from the definitions:
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Proposition 3.19. Let K be a simplicial complex, ϕ ∈ Aut(K), and x be a
vertex of K. Then ϕ(St(x,K)) = St(ϕ(x),K) and ϕ(Lk(x,K)) = Lk(ϕ(x),K).

3.2 Exchange automorphisms

We shall use the following notion of exchange automorphisms of abstract sim-
plicial complexes, and the related results.

Definition 3.20. Let K be a simplicial complex, {x, y} be a pair of vertices
of K, and ϕ : K → K be an automorphism of K. We say that ϕ is a simple
exchange of K exchanging the vertices x and y of K if ϕ(x) = y, ϕ(y) = x,
and ϕ(z) = z for every vertex z of K which is neither equal to x nor equal to
y.

Let ϕ : K → K be a simple exchange of a simplicial complex K exchanging
the vertices x and y of K. Note that ϕ : K → K is equal to the identity map
idK : K → K of K if and only if x = y. In this case, we say that ϕ is a trivial
simple exchange. Otherwise, ϕ is said to be a nontrivial simple exchange.

Let K be a simplicial complex, ϕ : K → K be a simple exchange of K
exchanging the vertices x and y of K, and ψ : K → K be a simple exchange
of K exchanging the vertices u and v of K. Then ϕ = ψ if and only if either
x = y and u = v or {x, y} = {u, v}. In particular, a nontrivial simple exchange
of K exchanges a unique pair of distinct vertices of K.

Example 3.21. Let K(n) denote the simplicial complex of all subsets of the
set {1, . . . , n}. Then, for every pair of distinct vertices i and j of K(n), the
standard transposition (i, j) in the group of permutations of {1, . . . , n} extends
to a simple exchange ofK(n) which exchanges i and j. These simple exchanges
generate the group of simplicial automorphisms of K(n), which is naturally
isomorphic to the symmetric group Σn, the group of permutations of the vertex
set {1, . . . , n} of K(n).

Definition 3.22 (Exchangeable vertices). Let K be a simplicial complex and
let x and y be two vertices of K. We say that x and y are exchangeable in K
if there exists a simple exchange of K exchanging x and y.

Example 3.23. Let V = Z×{−1, 0, 1} and K be the one-dimensional simpli-
cial complex on V , illustrated in Figure 6, whose edges are the pairs {(m, 0), (m+
1, 0)} and {(m, 0), (m, ǫ)} with m ∈ Z and ǫ ∈ {−1, 1}. Then two distinct ver-
tices x and y of K are exchangeable if and only if {x, y} = {(m,−1), (m, 1)}
for some m ∈ Z.
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Note that for any subset W of Z there is a unique automorphism ϕW :
K → K such that ϕW (m, t) is equal to (m,−t) if m ∈W and (m, t) otherwise.
In particular, ϕ∅ = idK : K → K. If U and V are subsets of Z, then ϕU ◦ϕV =
ϕU△V . In particular, ϕW ◦ ϕW = idK : K → K. It follows that the collection
{ϕW |W ⊂ Z} of automorphisms of K is a subgroup BK of the group of
automorphisms of K, Aut(K), naturally isomorphic to the Boolean algebra
B(Z) of all subsets of Z.

Let DK be the group of automorphisms of K generated by the translation
(m,n) 7→ (m + 1, n) and the involution (m,n) 7→ (1 −m,n). Note that this
involution has no fixed vertices in K. The subgroupDK of Aut(K) is naturally
isomorphic to the infinite dihedral group D∞ of isometries of Z equipped with
its standard metric.

The group of automorphism of K, Aut(K), is a split extension of its sub-
groupDK by its normal subgroup BK , and we have the following commutative
diagram.

1 −→ B(Z) −→ B(Z) ⋊D∞ −→ D∞ = Isom(Z) −→ 1
≃

y ≃
y ≃

y
1 −→ BK −→ Aut(K) −→ DK −→ 1

Figure 5. Three complexes: The one to the left has all its vertices exchange-
able. The one in the middle has exactly one pair of distinct vertices that are
exchangeable. The one to the right has no distince vertices exchangeable.

Figure 6. The complex used in example3.23: a line of edges.
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On the set of vertices of any simplicial complex, we define a relation, ∼,
called the exchange relation, in which x ∼ y if and only if x and y are ex-
changeable.

Proposition 3.24. Let K be a simplicial complex. Then the exchange relation
∼ on K is an equivalence relation on K0.

Proof. Let x ∈ K0. Then the identity map idK : K → K is a simplicial
automorphism of K exchanging x and x. Hence, x ∼ x.

Suppose that x, y ∈ K0 and x ∼ y. Let ϕ : K → K be a simplicial
automorphism of K which exchanges x and y. Then the same automorphism
ϕ : K → K is a simplicial automorphism of K which exchanges y and x.
Hence, y ∼ x.

Suppose that x, y, z ∈ K0, x ∼ y, and y ∼ z. Let ϕ : K → K be a
simplicial automorphism of K which exchanges x and y and ψ : K → K be a
simplicial automorphism of K which exchanges y and z. Then the conjugate
ϕ ◦ ψ ◦ ϕ : K → K of ψ : K → K by ϕ : K → K is a simplicial automorphism
of K which exchanges x and z. Hence, x ∼ z.

The following result gives a basic necessary and sufficient condition for two
vertices of a simplicial complex to be exchangeable.

Proposition 3.25. Let K be a simplicial complex and x and y be vertices of
K. Let F be the subcomplex of K consisting of all simplices of K that have
neither x nor y as a vertex. Then the following are equivalent:

(1) x and y are exchangeable in K.

(2) St(x,K) ∩ F = St(y,K) ∩ F .

Proof. First, we prove that (1) implies (2). To this end, suppose that x and
y are exchangeable in K. Then, there is a unique automorphism ϕ : K → K
such that ϕ(x) = y, ϕ(y) = x, and ϕ(z) = z for every vertex z of F .

Suppose that σ is a simplex of St(x,K) ∩ F . In other words, suppose
that {x} ∪ σ is a simplex of K and σ is a simplex of F . Then ϕ({x} ∪ σ) =
{ϕ(x)}∪ϕ(σ) = {y}∪σ is a simplex of K. Since {y}∪σ is a simplex of K and
σ is a simplex of F , it follows that σ is a simplex of St(y,K)∩F . This proves
that St(x,K)∩F ⊂ St(y,K)∩F . Likewise, St(y,K)∩F ) ⊂ St(x,K)∩F and,
hence, St(x,K) ∩ F = St(y,K) ∩ F . This proves that (1) implies (2).

Now we prove that (2) implies (1). To this end, suppose that St(x,K)∩F =
St(y,K) ∩ F .

Consider the bijection ϕ : K0 → K0 defined by the rule ϕ(x) = y, ϕ(y) = x,
and ϕ(z) = z for every vertex z of F . Since ϕ : K0 → K0 is an involution of
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K0, it suffices to prove that ϕ extends to a simplicial map ϕ : K → K. In
other words, it suffices to prove that ϕ(τ) is a simplex of K for every simplex
τ of K.

To this end, suppose that τ is a simplex of K. If x and y are both vertices
of τ , then ϕ(τ) is equal to the simplex τ of K. Likewise, if neither x nor y is
a vertex of τ , then ϕ(τ) is equal to the simplex τ of K.

Suppose that x is a vertex of τ and y is not a vertex of τ . Let σ = τ \ {x}.
Since x is a vertex of τ and σ = τ \ {x}, it follows that τ = {x} ∪ σ. Since τ
is a simplex of K, this implies that σ is a simplex of St(x,K). Since y is not
a vertex of τ and σ = τ \ {x}, σ is a simplex of F . This implies that σ is a
simplex of St(x,K) ∩ F and, hence, of St(y,K) ∩ F . Since σ is a simplex of
St(y,K), {y} ∪ σ is a simplex of K.

Since σ is a simplex of F and τ = {x} ∪ σ, it follows that ϕ(τ) = {ϕ(x)} ∪
ϕ(σ) = {y} ∪ σ. Hence, ϕ(τ) is a simplex of K.

This shows that if x is a vertex of τ and y is not a vertex of τ , then ϕ(τ) is
a simplex of K. Likewise, if y is a vertex of τ and x is not a vertex of τ , then
ϕ(τ) is a simplex of K.

In any case, ϕ(τ) is a simplex of K.
This proves that ϕ : K0 → K0 extends to a simplicial map ϕ : K → K.

Since ϕ : K0 → K0 is an involution, its extension ϕ : K → K is an involution.
Hence, this extension ϕ : K → K is a simplicial automorphism exchanging x
and y.

This proves that (2) implies (1).

Remark 3.26. Note that St(x,K) joins x to the subcomplex F ∩Lk(x,K) of
F and, in the case where {x, y} is an edge of K, also to y. Likewise, St(y,K)
joins y to the subcomplex F ∩Lk(y,K) of F and, in the case where {x, y} is an
edge of K, also to x. Roughly speaking, the above exchangeability condition,
Condition (2) in Proposition 3.25, states that F is a sort of hyperplane of
reflection across which the vertices x and y of K are able to be reflected since
they have been symmetrically joined to F along a subcomplex G of F (i.e.
along F ∩ Lk(x,K) = F ∩ Lk(y,K)) and, in the case where {x, y} is an edge
of K, to one another.

The following propositions are refinements of Proposition 3.25 correspond-
ing to the situations where {x, y} is or is not an edge of K.

Proposition 3.27. Let K be a simplicial complex and x and y be distinct
vertices of K that are not connected by an edge of K. Then the following are
equivalent:

(1) x and y are exchangeable in K.

(2) Lk(x,K) = Lk(y,K).
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Proof. Let F be the subcomplex of K consisting of all simplices of K which
have neither x nor y as a vertex. Since x and y are not joined by an edge of
K, it follows that Lk(x,K) = St(x,K) ∩ F and Lk(y,K) = St(y,K) ∩ F .

Proposition 3.28. Let K be a simplicial complex and x and y be vertices of
K which are connected by an edge of K. Suppose that K is a flag complex.
Then the following are equivalent:

(1) x and y are exchangeable in K.

(2) St(x,K) = St(y,K).

Proof. Let F be the subcomplex of K consisting of all simplices of K which
have neither x nor y as a vertex. Suppose that St(x,K) = St(y,K). Then
St(x,K) ∩ F = St(y,K) ∩ F . It follows from Proposition 3.25 that x and y
are exchangeable. This proves that (2) implies (1).

We shall now show that (1) implies (2). Suppose that x and y are exchange-
able in K. It follows from Proposition 3.25 that St(x,K) ∩ F = St(y,K) ∩ F .
We must show that St(x,K) = St(y,K). To this end, suppose that τ is a
simplex of St(x,K). Let σ = τ ∪ {x}. Since τ is a simplex of St(x,K), t σ is
also a simplex of K.

Let ρ = σ ∪ {y}. We shall show that ρ is a simplex of K. Since K is a flag
complex, it suffices to show that any two distinct vertices of ρ are joined by
an edge of K. To this end, let w and z be vertices of ρ. If neither w nor z is
equal to y, then w and z are vertices of the simplex σ of K and, hence, are
joined by an edge of K. Hence, we may assume that z = y. This implies that
w is not equal to y. It follows that x and w are both vertices of the simplex σ
of K. Hence, w is a vertex of St(x,K). If w = x, then w and z are vertices of
the simplex {x, y} of K. Hence, we may assume that w is not equal to x.

Since w is a vertex of St(x,K) and w is not equal to x or y, it follows that
w is a vertex of St(x,K) ∩ F and, hence, of St(y,K) ∩ F . It follows that w is
a vertex of St(y,K). Since w is not equal to y, this implies that w and y are
joined by an edge of K. In other words, w and z are joined by an edge of K.

In any case, w and z are joined by an edge of K.
This shows that ρ is a simplex of K. Since τ is a face of the simplex ρ of

K and y is a vertex of ρ, it follows that τ is a simplex of St(y,K).
This shows that St(x,K) ⊂ St(y,K). Likewise, St(y,K) ⊂ St(x,K).

Hence, St(x,K) = St(y,K).
This proves that (1) implies (2).

Proposition 3.29. Let K be a simplicial complex. Let E be a collection of ex-
changeable pairs of distinct vertices of K with the property that no two distinct
pairs in E have a common vertex. Then there exists a unique automorphism
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ϕE : K → K such that (i) for each pair {x, y} in E, ϕE(x) = y and ϕE(y) = x
and (ii) ϕE(z) = z for every vertex z of K which is not an element of some
pair in E.

Proof. Let ϕ : K0 → K0 be the unique involution which exchanges the two
vertices in each pair in E and fixes every other vertex of K. Let τ be a simplex
of K. We shall now show that ϕ(τ) is a simplex of K. Let τ0 be the set of
all vertices x of τ such that there does not exist a vertex y of K such that
{x, y} ∈ E, let τ1 be the set of all vertices x of τ such that there exists a vertex
y of K such that {x, y} ∈ E and {x, y} ∩ τ = {x} and let τ2 be the set of all
vertices x of τ such that there exists a vertex y of K such that {x, y} ∈ E

and {x, y} ∩ τ = {x, y}. Note that τ = τ0 ∪ τ1 ∪ τ2. From the definition of ϕ,
ϕ(τi) = τi, i = 0, 1, 2.

Let n be the number of elements of τ1.
Suppose, on the one hand, that n = 0. Then, τ1 = ∅ and, hence, ϕ(τ) =

ϕ(τ0 ∪ τ2) = ϕ(τ0) ∪ ϕ(τ2) = τ0 ∪ τ2 = τ . Hence, ϕ(τ) is equal to the simplex
τ of K.

Suppose, on the other hand, that n > 0. Let τ1 = {xj |1 ≤ j ≤ n}. For
each integer j with 1 ≤ j ≤ n, let yj be the unique vertex of K such that
{xj , yj} ∈ E. From the definition of ϕ, ϕ(τ1) = {yj|1 ≤ j ≤ n}. It follows that
ϕ(τ) = τ0 ∪ τ2 ∪ {yj |1 ≤ j ≤ n}.

Let j be an integer with 1 ≤ j ≤ n. Since {xj , yj} ∈ E, {xj , yj} is an
exchangeable pair of vertices of K. Hence, there exists a simple exchange
ϕj : K → K of K exchanging xj and yj . Since the distinct pairs {xj, yj},
1 ≤ j ≤ n, are in E, they are disjoint. It follows that the composition ϕ1 ◦ . . .◦
ϕn : K → K is an automorphism ψ of K such that ψ(τ0) = τ0, ψ(τ2) = τ2 and
ψ(xj) = yj , 1 ≤ j ≤ n. This implies that ϕ(τ) = ψ(τ). Since ψ : K → K is an
automorphism of K and τ is a simplex of K, it follows that ψ(τ) is a simplex
of K; that is to say, ϕ(τ) is a simplex of K.

This shows that the involution ϕ : K0 → K0 extends to a simplicial map
ϕ : K → K. Since ϕ : K0 → K0 is an involution, its simplicial extension
ϕ : K → K is also an involution and, hence, a simplicial automorphism of
K. Hence, ϕ : K → K is a simplicial automorphism of K such that (i) for
each pair {x, y} in E, ϕE(x) = y and ϕE(y) = x and (ii) ϕE(z) = z for every
vertex z of K which is not an element of some pair in E. Since the stated
conditions on ϕ : K → K determine the restriction ϕ : K0 → K0, and since
any two simplicial maps which agree on the vertices of their common domain
are equal, it follows that ϕ : K → K is the unique such automorphism of K.

Definition 3.30 (Generalized exchange). Let K, E, and ϕE : K → K be as in
Proposition 3.29. We call the automorphism ϕE : K → K of K the generalized
exchange of K associated to E.
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If F and G are subsets of E, then ϕF ◦ ϕG = ϕF△G, where F△G denotes
symmetric difference. Hence, by Proposition 3.29, we have the following result.

Proposition 3.31. Let K be a simplicial complex. Let E be a collection
of exchangeable pairs of distinct vertices of K with the property that no two
distinct pairs in E have a common vertex. Then there exists a monomorphism
Φ from the Boolean algebra B(E) of all subsets of E to Aut(K) such that
Φ(F) = ϕF for every subset F of E.

Definition 3.32 (Boolean subgroup). Let K be a simplicial complex. Let E

be a collection of exchangeable pairs of distinct vertices of K with the property
that no two distinct pairs in E have a common vertex. The Boolean subgroup
of Aut(K) corresponding to E, denoted by BE, is the image Φ(B(E)) of the
Boolean algebra B(E) under the monomorphism Φ of Proposition 3.31. In
particular, the Boolean subgroup BE is naturally isomorphic to the Boolean
algebra B(E).

Proposition 3.33. Let K be a simplicial complex. Let E be a collection
of exchangeable pairs of distinct vertices of K with the property that no two
distinct pairs in E have a common vertex. Let ϕ ∈ Aut(K), F ⊂ E and
G = ϕ(F). Then G is a collection of exchangeable pairs of distinct vertices of
K with the property that no two distinct pairs in G have a common vertex.
Moreover, ϕ ◦ ΦF ◦ ϕ−1 = ΦG.

3.3 Quotient complexes

In this section, we develop a notion of quotient complex which will be used in
our study of some simplicial complexes.

Proposition 3.34. Let K be a simplicial complex on the vertex set V , W be
a set, and ρ : V → W be a map of V onto W . Let L be the collection of all
subsets τ of W for which there exists a simplex σ of K such that τ = ρ(σ).
Then L is a simplicial complex with vertex set W and ρ : V →W is a simplicial
map from K to L

Proof. First, we show that L is a simplicial complex. For this, we must show
that each singleton subset of W is an element of the collection L and every
subset of an element of L is an element of L. Since ρ : V → W is surjective,
each element w of W is the image under ρ of a vertex v of K. Thus, {w} =
ρ({v}). Since K is a simplicial complex and v is a vertex of K, {v} is a simplex
of K. Hence, by the definition of L, {w} is an element of L.

Suppose that τ is an element of L and ǫ is a subset of τ . By the definition of
L, there exists a simplex σ of K such that τ = ρ(σ). Let δ = ρ−1(ǫ)∩σ. Since
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δ is contained in the simplex σ of the simplicial complex K, δ is a simplex of
K. Since τ = ρ(σ) and ǫ is contained in τ , it follows that ǫ = ρ(δ). Hence, by
the definition of L, ǫ is an element of L.

This shows that L is a simplicial complex.
Next, we show that ρ : V → W is a simplicial map from K to L. To this

end, let σ be a simplex of K and τ = ρ(σ). By the definition of L, τ is a
simplex of L. This proves that ρ : V → W is a simplicial map from K to
L.

Definition 3.35 (Quotient complex). Let K, V , W , ρ : V →W , and L be as
in Proposition 3.34. We say that L is the quotient complex of K and ρ : K → L
is the natural projection associated to the vertex correspondence ρ : V →W .

Definition 3.36 (Simplicial quotient map). Let K be a simplicial complex
with vertex set V , L be a simplicial complex with vertex set W , and ρ : K → L
be a simplicial map. We say that ρ : K → L is a simplicial quotient map if for
every subset τ of W , τ is a simplex of L if and only if there exists a simplex
σ of K for which ρ(σ) = τ .

Proposition 3.37. Let ρ : V → W be a simplicial quotient map from a
simplicial complex K to a simplicial complex L. Then ρ : V → W maps V
onto W .

Proof. Let w be an element ofW . Then {w} is a simplex of L. Since ρ : K → L
is a simplicial quotient map, it follows that there exists a simplex σ of K such
that {w} = ρ(σ); that is to say, {w} = {ρ(x) | x ∈ σ}. Thus, there exists a
vertex x of σ such that w = ρ(x). Since x ∈ σ ⊂ V , x ∈ V . Hence, there
exists an element x of V such that w = ρ(x). This proves that ρ : V → W
maps V onto W .

Proposition 3.38. Let ρ : V → W be a simplicial quotient map from a
simplicial complex K to a simplicial complex L and α : V → Z be a simplicial
map from K to a simplicial complex M respectively. Suppose that α : V → Z
is constant on each fiber ρ−1(w), w ∈W , of ρ : V →W (i.e. that α(x) = α(y)
whenever ρ(x) = ρ(y), x, y ∈ V ). Then there exists a unique simplicial map
β : V → Z from K to M such that α = β ◦ ρ : V → Z.

Proof. By Proposition 3.37, ρ : V → W maps V onto W . Since ρ : V →W is
surjective and α : V → Z is constant on the fibers of ρ : V → W , there exists
a unique map β : W → Z such that α = β ◦ ρ : V → Z.

It remains only to show that β : W → Z is a simplicial map from L to
M . To this end, suppose that τ is a simplex of L. Since ρ : K → L is a
simplicial quotient map, there exists a simplex σ of K such that τ = ρ(σ).
Thus β(τ) = β(ρ(σ)) = (β ◦ ρ)(σ) = α(σ). Since α : K → M is a simplicial
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map and σ is a simplex of K, it follows that α(σ) is a simplex of M ; that is to
say, β(τ) is a simplex of M . This proves that β : W → Z is a simplicial map
from L to M , which completes the proof.

Proposition 3.39. Let ρ : V → W and α : V → Z be simplicial quotient
maps from a simplicial complex K to a simplicial complex L and a simplicial
complex M . Suppose that ρ : V → W and α : V → Z have the same fibers
(i.e. for each pair of elements, x and y, of V , ρ(x) = ρ(y) if and only if
α(x) = α(y)). Then there exists a unique simplicial isomorphism β : W → Z
from L to M such that α = β ◦ ρ : V → Z.

Proof. By Proposition 3.37, ρ : V →W and α : V → Z are surjective.
By Proposition 3.38, there exist unique simplicial maps β : W → Z from

L to M and γ : Z → W from M to L such that α = β ◦ ρ and ρ = γ ◦ α.
It remains only to show that β : W → Z and γ : Z →W are inverse maps.

To this end, let δ = γ ◦ β : W →W and ǫ = β ◦ γ : Z → Z.
Note that δ ◦ ρ = (γ ◦ β) ◦ ρ = γ ◦ (β ◦ ρ) = γ ◦ α = ρ : V → W . Since

ρ : V → W is surjective and δ ◦ ρ = ρ : V →W , it follows that δ : W → W is
equal to the identity map of W . Likewise, ǫ : Z → Z is equal to the identity
map of Z.

This proves that β : W → Z and γ : Z →W are inverse maps, completing
the proof.

Proposition 3.39 shows that any two quotient complexes of a given simpli-
cial complex corresponding to simplicial quotient maps with the same fibers
are canonically isomorphic. We now construct a canonical model for the iso-
morphism class of any such quotient complex.

Definition 3.40. Let ∼ be an equivalence relation on the vertex set V of an
abstract simplicial complex K. Let Ṽ be the set of equivalence classes of ∼
on V and ρ : V → W be the associated natural projection which maps each
vertex x of K to its equivalence class [x] = {y ∈ V | y ∼ x}. Let K̃ be the
quotient complex of K and ρ : K → K̃ be the natural projection associated
to the vertex correspondence ρ : V → Ṽ . We say that K̃ is the quotient of K
by ∼ and ρ : K → K̃ is the natural projection from K to K̃.

We have the following immediate corollary of Proposition 3.39.

Proposition 3.41. Let α : V → Z be a simplicial quotient map from a
simplicial complex K to a simplicial complex M . Let ∼ be the equivalence
relation on V defined by the rule x ∼ y if and only if α(x) = α(y). Let K̃ be
the quotient of K by ∼ and ρ : K → K̃ be the natural projection from K to
K̃. Then there exists a unique simplicial isomorphism β : Ṽ → Z from K̃ to
M such that α = β ◦ ρ : V → Z.
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Definition 3.42 (Derived complex). Let ∼ be the exchange relation on the
vertex set V of an abstract simplicial complex K. We denote K̃ by K ′ and
say that K ′ is the derived complex of K.

Proposition 3.43. Let K be a simplicial complex and ρ : K → K ′ be the
natural projection from K to the derived complex K ′ of K. Let ϕ : K → K be
an automorphism of K. Then there exists a unique automorphism ϕ′ : K ′ →
K ′ such that ρ ◦ ϕ = ϕ′ ◦ ρ : K → K ′.

Definition 3.44 (Derived automorphism). Let K, ρ : K → K ′, ϕ : K → K,
and ϕ′ : K ′ → K ′ be as in Proposition 3.43. We say that the automorphism
ϕ′ : K ′ → K ′ of K ′ is the automorphism of K ′ derived from ϕ : K → K.

Proposition 3.45. Let K be a simplicial complex and K ′ be its derived com-
plex. Then there is a homomorphism ρ : Aut(K) → Aut(K ′) defined by the
following rule: for each automorphism ϕ : K → K of K, ρ(ϕ) is equal to the
automorphism of K ′ derived from ϕ : K → K.

Definition 3.46 (Derivation homomorphism). Let ρ : Aut(K) → Aut(K ′) be
as in Proposition 3.45. We say that ρ : Aut(K) → Aut(K ′) is the derivation
homomorphism from Aut(K) to Aut(K ′).

Definition 3.47 (Exchange automorphisms group). Let K be a simplicial
complex, ρ : Aut(K) → Aut(K ′) be the derivation homomorphism from
Aut(K) to Aut(K ′), and Aut(K) be the kernel of ρ : Aut(K) → Aut(K ′).
We call Aut(K) the group of exchange automorphisms of K and any element
ϕ of Aut(K) an exchange automorphism of K.

Example 3.48. If x and y are exchangeable vertices of E, then the simple
exchange of K exchanging the vertices x and y of K is an exchange automor-
phism. More generally, let E be a collection of exchangeable pairs of distinct
vertices of K with the property that no two distinct pairs in E have a common
vertex. Then the generalized exchange ϕE : K → K of K associated to E is an
exchange automorphism, and the Boolean subgroup of Aut(K) corresponding
to E, BE, is a subgroup of the group of exchange automorphisms Aut(K) of
K.

Definition 3.49 (Generalized exchange automorphism). Let K, E, and ϕE :
K → K be as in Proposition 3.29. We call the automorphism ϕE : K → K of
K the generalized exchange of K associated to E.

Proposition 3.50. Let K be a simplicial complex. Let E be a collection of
exchangeable pairs of distinct vertices of K with the property that each pair of
distinct vertices of K in E is an edge of K and no two distinct edges in E have
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a common vertex. Let ∼ be the equivalence relation on the vertex set V of K
defined by the rule x ∼ y if and only if either x = y or {x, y} ∈ E. Let K̃ be
the quotient of K by the equivalence relation ∼ on V and ρ : K → K̃ be the
associated natural projection. Let τ be a subset of the vertex set Ṽ of K̃. Then
τ is a simplex of K̃ if and only if ρ−1(τ) is a simplex of K.

Proof. Suppose, on the one hand, that ρ−1(τ) is a simplex of K. Since ρ :
V → Ṽ is surjective, ρ(ρ−1(τ)) = τ . Since ρ−1(τ) is a simplex of K and
ρ(ρ−1(τ)) = τ , it follows from the definition of K̃ that τ is a simplex of K̃.

Suppose, on the other hand, that τ is a simplex of K̃. It follows from the
definition of K/ ∼ that there exists a simplex σ of K such that ρ(σ) = τ .

Since σ is a simplex of K, there exists a nonnegative integer k and k + 1
distinct vertices, xi, 0 ≤ i ≤ k, of K such that σ = {xi | 0 ≤ i ≤ k}.

Let i be an integer with 0 ≤ i ≤ k. Let yi = xi if xi is not a vertex
of some pair of distinct vertices of K in the collection E. Otherwise, let yi

be the unique vertex of K such that {xi, yi} is one of the edges of K in the
collection E. If xi = yi, then St(xi,K) = St(yi,K). Otherwise, {xi, yi} is an
edge of K with an exchangeable pair of vertices and, hence, by Proposition
3.28, St(xi,K) = St(yi,K). Thus, in any case, St(xi,K) = St(yi,K).

By our choices of yi, 0 ≤ i ≤ k, it follows from the definition of ∼ that
ρ−1(τ) = {xi, yi | 0 ≤ i ≤ k}.

Let i be an integer with 0 ≤ i ≤ k. Let σi = σ ∪ {yj | 0 ≤ j ≤ i}. We shall
prove, by induction on i, that σi is a simplex of K.

First, consider the case where i = 0. Since x0 ∈ σ, σ is a simplex of
St(x0,K) and, hence, of St(y0,K). Since σ is a simplex of St(y0,K), σ ∪ {y0}
is a simplex of K. Hence, we may let σ0 = σ ∪ y0}.

Now suppose that 0 ≤ i < k. Assume, by induction, that σi is a simplex
of K. Since 0 < i + 1 ≤ k, xi+1 is a vertex of σ and, hence, of σi. Thus, σi

is a simplex of St(xi+1,K) and, hence, of St(yi+1,K). Since σi is a simplex of
St(yi+1,K), σi ∪ {yi+1} is a simplex of K. Since σi+1 = σi ∪ {yi+1}, it follows
that σi+1 is a simplex of K.

This proves, by induction, that σk is a simplex ofK. Since σk = σ∪{yj | 0 ≤
j ≤ k} and σ = {xi | 0 ≤ i ≤ k}, it follows that σk = {xi, yi | 0 ≤ i ≤ k}.
In other words, σk = ρ−1(τ). It follows that ρ−1(τ) is a simplex of K, which
completes the proof.

The following propositions will be useful below for our computations of the
automorphism groups of the complex of domains which we study below.

Proposition 3.51. Let K,E,∼, K̃, ρ be as in Proposition 3.50. Let AutE(K)
be the stabilizer of E in Aut(K). If ϕ ∈ AutE(K), then there exists a unique
simplicial automorphism ϕ∗ : K̃ → K̃ such that ϕ∗ ◦ ρ = ρ ◦ ϕ : K → K̃.
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Proof. Let ϕ ∈ AutE(K); that is to say, suppose that ϕ(E) = {ϕ(e) | e ∈
E} = E. It follows that the fibers of both simplicial maps ρ : V → Ṽ and
ρ ◦ ϕ : V → Ṽ from K to K̃ are the equivalence classes of the equivalence
relation ∼ on the vertex set V of K.

Since the simplicial maps ρ : V → Ṽ and ρ ◦ϕ : V → Ṽ from K to K̃ have
the same fibers and ρ : K → K̃ is a simplicial quotient map, it follows from
Proposition 3.38 that there exists a unique simplicial map ϕ∗ : K̃ → K̃ such
that ϕ∗ ◦ ρ = ρ ◦ ϕ : K → K̃.

It remains only to show that ϕ∗ : K̃ → K̃ is a simplicial automorphism of
K̃.

To this end, let ψ = ϕ−1 : K → K. Since ϕ(E) = E, it follows that
ψ(E) = E. Hence, by the argument above, there exists a unique simplicial
map ψ∗ : K̃ → K̃ such that ψ∗ ◦ ρ = ρ ◦ ψ : K → K̃.

Note that (ψ∗ ◦ ϕ∗) ◦ ρ = ψ∗ ◦ (ϕ∗ ◦ ρ) = ψ∗ ◦ (ρ ◦ ϕ) = (ψ∗ ◦ ρ) ◦ ϕ =
(ρ ◦ ψ) ◦ ϕ = ρ ◦ (ψ ◦ ϕ) = ρ ◦ idV = ρ : V → Ṽ . Since ρ : V → Ṽ is surjective
and (ψ∗ ◦ ϕ∗) ◦ ρ = ρ : V → Ṽ , it follows that ψ∗ ◦ ϕ∗ : Ṽ → Ṽ is the identity
map of Ṽ . Likewise, ϕ∗ ◦ ψ∗ : Ṽ → Ṽ is the identity map of Ṽ .

This proves that ϕ∗ : Ṽ → Ṽ and ψ∗ : Ṽ → Ṽ are inverse simplicial maps
from K̃ to K̃. It follows that ϕ∗ : Ṽ → Ṽ is a simplicial automorphism of K̃,
completing the proof.

Proposition 3.52. Let K,E,∼, K̃, ρ be as in Proposition 3.50 and Proposition
3.50. Let AutE(K) be the stabilizer of E in Aut(K) and Autρ(E)(K̃) be the

stabilizer of ρ(E) in Aut(K̃). Then there exists a unique homomorphism η :
AutE(K) → Autρ(E)(K̃) such that for each automorphism ϕ ∈ AutE(K), η(ϕ)

is the unique simplicial automorphism ϕ∗ : K̃ → K̃ such that ϕ∗ ◦ ρ = ρ ◦ ϕ :
K → K̃. Moreover, there exists a natural short exact sequence:

1 → BE → AutE(K) → Autρ(E)(K̃) → 1

corresponding to inducing automorphisms of K̃ from automorphisms of K
which preserve E.

Proof. The existence and uniqueness of such a homomorphism η : AutE(K) →
Autρ(E)(K̃) follows from Proposition 3.51. Since BE is by definition a subgroup
of AutE(K), the homomorphism BE → AutE(K) is injective. That the kernel
of the natural homomorphism η : AutE(K) → Autρ(E)(K̃) is equal to the image
of the natural homomorphism BE → AutE(K) follows from the definition of
the natural projection ρ : K → K̃ and the definition of η : AutE(K) →
Autρ(E)(K̃).
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3.4 Topology

One can associate to any abstract simplicial complex K a topological space
called the geometric realization of K, and, usually, the topological properties
of K refer to those of K. However, there are certain topological properties of
K that have a simple definition in terms of K, and we shall use this approach.
Thus, we use the following terminology:

We shall say that K is connected if for any any two vertices v and w in K,
there exists a finite sequence of vertices v0 = v, v1, . . . , vn = w such that for
all k = 0, 1, n− 1, {vk, vk+1} is an edge of k. We shall say that the sequence
v0 = v, v1, vn = w is an edge-path of length n joining v and w.

Note that a simplicial complex is connected if and only if its 1-skeleton is
connected.

We shall say that K is bounded if there exists an integer n such that any
two vertices of K are connected by an edge-path of length ≤ n.

We shall say that K is unbounded if it is not bounded.
We shall say that K is locally finite if for any vertex v of K, there are only

finitely many edges containing it.

4 Some complexes associated to S

In this section, we shall discuss some abstract simplicial complexes associated
to S and on which the extended mapping class group Γ∗(S) acts naturally. All
of these complexes are finite-dimensional flag complexes.

The simplices of each of the complexes are finite collections of isotopy
classes of subspaces of S of a certain type, which can be represented by disjoint
subspaces of this type. The extended mapping class group Γ∗(S) of S acts
naturally on each of these complexes via the natural action of the group of
homeomorphisms of S on the relevant subspaces.

For each of these complexes we say that an automorphism of the complex
is geometric if it is induced by a homeomorphism of S. A question that has
been addressed about such complexes is whether every automorphism of such
a complex is geometric. The affirmative answer to this question is known to
hold for a number of complexes associated to S, see [1], [7], ([12], [20], [22], [21],
[24], [25], [35],[38], [40], [47], [?], [36] and [37]. The complex of domains plays
a special role in this theory, because the answer for that complex is negative,
as we shall see later in this chapter (see Theorem 8.8).
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4.1 The curve complex C(S)

Definition 4.1. The curve complex of S, C(S), is the simplicial complex
whose n-simplices, for every n ≥ 2, are collections of n + 1 distinct isotopy
classes of essential disjoint curves on S.

The curve complex was introduced by Harvey in 1978, with the idea that
this complex encodes some boundary structure of Teichmüller space, in analogy
to Tits buildings which encode a boundary structure of symmetric spaces.
This complex turned out to be an extremely interesting object, and it has
been studied for itself by Ivanov, Masur, Minsky, Hammenstaedt, Bowditch
and others.

Note that a finite collection of vertices of C(S) forms a simplex of C(S) if
and only if each pair of vertices in this collection can be represented by disjoint
curves on S. In other words, C(S) is a flag complex.

In the case where S is a sphere with at most three holes, C(S) is empty.
In the case where S is a sphere with four holes or a torus with at most one

hole, there are infinitely many isotopy classes of curves on S, but no two such
curves are disjoint and nonisotopic. Hence, in these cases, C(S) is an infinite
set of vertices.

If S is not a sphere with at most four holes or a torus with at most one
hole, then C(S) is connected. This result was stated by Harvey in [15], and
proofs were given by Harer in [16] and by Masur and Minsky in [41], §2.2.
The proof that Masur and Minsky gave in [41] (Lemma 2.1) uses induction on
the number of intersection points between curves. In fact, Masur and Minsky
gave an upper bound of the distance between two vertices in terms of the
intersection number of the curves that represent these vertices. Ivanov gave in
[30] another proof of the same fact using Cerf theory.

A maximal simplex in the curve complex C(S) is represented by a family C

of disjoint essential curves on S such that the surface SC obtained by cutting
S along C is a disjoint union of pairs of pants. Thus, a maximal simplex in
A(S) is naturally a pants decomposition.

Proposition 4.2 (The dimension of the curve complex C(S)). If S is a sphere
with at most three holes, then C(S) is empty. If S is a closed torus, then C(S)
is an infinite set of vertices. Otherwise, all maximal simplices of C(S) have
the same number of vertices, which is 3g+ b− 3, and dim(C(S)) = 3g+ b− 4.

Proof. This follows by a standard Euler characteristic argument similar to that
employed in the proof of Proposition 4.6.

The extended mapping class group acts simplicially on C(S) in a natural
manner: if γ ∈ Γ∗(S) is the class of a homeomorphism f of S and if σ is a
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simplex of C(S) which is represented by a collection of curves C1, . . . , Ck, then
γ(σ) is the simplex represented by the collection of curves f(C1), . . . , f(Ck).

For any surface S, the complex C(S) is finite-dimensional. Indeed, there is
an upper bound for the number of pairwise disjoint and pairwise non-isotopic
essential curves on S. For g ≥ 2, or n ≥ 3, the maximal number of non-isotopic
essential curves on S is 3g − 3 + b (which is equal to the number of essential
curves in a pants decomposition of S). Therefore, the dimension of C(S) is
equal to 3g−4+ b. Note that this dimension is ≥ 1 provided S is not a sphere
with at most four holes or a torus with at most one hole.

The complex C(S) is not locally finite, provided it is connected. The
reason is that as soon as a surface contains an essential curve, it contains
infinitely many such curves. Thus, if α is an essential curve on S and if C(S)
is connected, then there are infinitely many distinct essential curves on the
surface Sα obtained from S by cutting it along α, and therefore the vertex
representing α in C(S) belongs to infinitely many edges.

From the natural action of the extended mapping class group Γ∗(S) on
C(S), we obtain a natural homomorphism from Γ∗(S) into the group Aut(C(S))
of simplicial automorphisms of C(S).

The basic result on the automorphism group of C(S) is due to N. Ivanov,
who proved that for any g ≥ 2, the natural homomorphism Γ∗(S) → Aut(C(S))
is an isomorphism provided S is not the closed surface of genus 2. In the case
of genus 2, Ivanov proved that S the homomorphism is surjective and its kernel
is Z2, generated by the hyperelliptic involution (see [25]).

Korkmaz continued the analysis made by Ivanov and he studied the case
of surfaces of genus 0 and 1. He proved in [35] that for such surfaces, any
automorphism of C(S) is induced by an element of Γ∗(S) if S is not a sphere
with ≤ 4 holes or a torus with ≤ 2 holes.

In the cases where S is a torus with one hole or a sphere with four holes,
there are automorphisms of C(S) that are not geometric since in each of these
cases the curve complex is an infinite countable set of vertices, and therefore
its automorphism group is uncountable.

Luo in [38] analyzed a delicate remaining case, which is the case where
the surface S is a torus with two holes. He proved that in that case the map
Γ∗(S) → Aut(C(S)) is not surjective.

Let us say a few words about that case.
Luo noticed that there is an isomorphism C(S1,2) → C(S0,5) induced by

the projection map π : S1,2 → S1,2/ι, where ι is a hyperelliptic involution
of S1,2, and where S0,5 is identified with the complement of the singular lo-
cus of π in S1,2/ι. Thus, the automorphism group of C(S1,2) is isomorphic
to the automorphism group of C(S0,5). Now it is known that the extended
mapping class groups Γ∗(S1,2) and Γ∗(S0,5) are not isomorphic. More pre-
cisely, Γ∗(S1,2) is an order-two extension of a subgroup of index 5 in Γ∗(S0,5).
Thus, we have Γ∗(S1,2) 6≃ Aut(C(S1,2)). One can understand the situation as
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follows. Consider a hyperelliptic involution of the torus with two punctures
which exchanges the two punctures. The quotient surface is a sphere with one
puncture, and the quotient map is ramified over four points. In this way, the
mapping classes of the torus with two punctures correspond to the mapping
classes of the sphere with five punctures that preserve one of the punctures and
that permute the four others. This gives rise to a subgroup of index five. The
extended mapping class group of the torus with two punctures is an extension
of that group by the hyperelliptic involution.

The homomorphism Γ∗(S1,2) → Aut(C(S1,2)) is also not injective, since the
hyperelliptic involution ι acts trivially on C(S1,2). (This was already known,
from works of Birman and of Viro, cf. [4] and [51].)

The following theorem summarizes the results on the automorphism group
of the complex C(S).

Theorem 4.3 (Ivanov-Korkmaz-Luo). Consider a surface Sg,n whose curve
complex C(S) has positive dimension. (Equivalently, the curve complex of
C(S) is connected; equivalently, S is not a sphere with at most four holes or
a torus with at most one hole). Then, we have the following:

(1) For (g, n) 6∈ {(1, 2), (2, 0)}, the natural homomorphism

Γ∗(Sg,n) → Aut(C(Sg,n))

is an isomorphism.

(2) The homomorphism Γ∗(S2,0) → Aut(C(S2,0)) is surjective and its kernel
is of order two, generated by the hyperelliptic involution.

(3) The homomorphism Γ∗(S1,2) → Aut(C(S1,2)) is neither surjective nor
injective. The kernel of this homomorphism is of order two, generated
by the hyperelliptic involution, and its image is a subgroup of index 5
in Aut(C(S1,2)). The image consists in the simplicial automorphisms
of C(S1,2) that preserve the set of vertices represented by nonseparating
curves.

Luo, in his paper [38], gave a proof of Thorem 4.3 that includes all the
cases and which is different from the proofs by Ivanov and by Korkmaz. Luo’s
proof uses induction, and it is in the spirit of Grothendieck’s reconstruction
principle (see Chapter 17 of Volume II of this Handbook [39]).

We note finally that for any domain X on S, we have a natural simplicial
embedding

C(X) →֒ C(S).
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4.2 The arc complex A(S)

Definition 4.4. The arc complex of S, A(S), is the simplicial complex whose
n-simplices are collections of n+ 1 pairwise distinct isotopy classes of disjoint
essential arcs on S.

Since homeomorphisms and isotopies of S take homotopic arcs to homo-
topic arcs and disjoint arcs to disjoint arcs, the extended mapping class group
of S acts simplicially on A(S).

Let us first consider a few cases of surfaces of low genus and small number
of components.

It is easy to see that A(S) is empty if either b = 0 or g = 0, b = 1, and that
it is reduced to a single vertex if g = 0, b = 2

For g = 0, b = 3, A(S) is a finite 2-dimensional simplicial complex having
six vertices, nine edges and four 2-cells, see Figure 7.

In all the other cases, A(S) is a locally infinite connected complex with
infinitely many vertices.

A maximal simplex in the arc complex A(S) is represented by a family A

of disjoint essential arcs on S such that the surface SA obtained by cutting S
along A is a disjoint union of hexagons. In other words, a maximal simplex in
A(S) is naturally an ideal triangulation in the following sense:

Definition 4.5 (Ideal triangulation). An ideal triangulation of S is a system
of disjoint and pairwise non-isotopic arcs in S that is maximal with respect to
inclusion.

The complement on S of an ideal triangulation is a collection of hexagons,
where a hexagon is a disk with six distinct points on its boundary, dividing this
boundary into six arcs called the distinguished edges. Three non-consecutive
edges arise from three arcs on the surface, and the other edges are segments in
the boundary of S. We shall call such a hexagon an ideal hexagon. The names
ideal triangulation and ideal hexagon stem from the fact that if we pinch each
boundary component of S to a point, obtaining, as a quotient, a closed surface
with distinguished points arising from the boundary components of S, then
each ideal hexagon becomes, in the quotient surface, a triangle whose vertices
are at the set of distinguished points, and the ideal triangulation of S becomes
a decomposition into triangles having all of their vertices at the distinguished
points; that is, an ideal triangulation in the usual sense.

We shall study a graph called the ideal triangulation graph in Section
4.8below.

Proposition 4.6 (The dimension of the arc complex A(S)). If S is a closed
surface or a sphere with one hole, then A(S) is empty. If S is a sphere with two
holes, then A(S) is a singleton. In all the other cases, all maximal simplices of
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A(S) have the same number of vertices, which is 6g+3b−6, and dim(A(S)) =
6g + 3b− 7.

Proof. This follows by a standard standard Euler characteristic argument.

Figure 7. The finite simplicial complex on the left-hand side represents the arc
complex of the sphere with three holes. The six vertices of this complex are
the isotopy classes of the arcs represented in the right-hand side.

Irmak and McCarthy gave a complete description of the automorphism
group of the arc complex. They proved the following:

Theorem 4.7 (Irmak-McCarthy [23]). Let Sg,n be a surface with nonempty
boundary and with negative Euler characteristic. Then, the natural homomor-
phism

ρ : Γ∗(S) → Aut(A(S))

is surjective and it is an isomorphism provided (g, n) 6∈ {(1, 1), (0, 3)}. In the
excluded cases, the kernel of ρ is the centre of Γ∗(S). In other words, we have
the following:

(1) if S is a pair of pants, the kernel of ρ is Z2, generated by the isotopy class
of any orientation-reversing involution of S that preserves each boundary
component of S;

(2) if S is a torus with one hole, the kernel of ρ is Z2, generated by the
hyperelliptic involution of S.

We note that the proof of this result, given in [23], does not make use of
the corresponding result for the curve complex (Theorem 4.3 above). We also
note that in the same paper, Irmak and McCarthy obtained a stronger result,
namely, they proved that any injective simplicial self-map of A(S) is induced
by a homeomorphism of S.
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We end this section by mentioning a few natural maps between arc com-
plexes and curve complexes of surfaces.

There is an operation of doubling a surface S = Sg,b with nonempty bound-
ary along one or several of its boundary components. It is defined as follows.
We choose a subset ∂0 of the boundary ∂S of S, and we assume δ0 is a union
of k boundary components. The double of S along ∂0 is a surface Sd

∂0
of genus

2g+ k− 1 having b− k boundary components, equipped with a system ∂′0 of k
curves, having the property that the surface Sd

∂0
cut along ∂0 consists of two

copies of S, such that the image of the union of boundary curves ∂0 by the two
natural inclusions of S in Sd

∂0
is the union of curves ∂′0, and such that there is

an orientation-reversing involution of Sd
∂0

that fixes pointwise the set |∂′0| and

exchanges the two copies of S in Sd
∂0

.
Now given a surface S with nonempty boundary ∂ = ∂S, and given a col-

lection ∂0 ⊂ ∂ of k components of ∂, we denote by A(S, ∂0) the subcomplex of
A(S) induced by the vertices represented by arcs on S having its two endpoints
on ∂0. The union of any arc in S whose two endpoints are on ∂0 with its image
in the double Sd

∂0
by the natural involution is a curve in Sd

∂0
of of S along ∂0.

This gives a natural simplicial embedding

A(Sg,b, ∂0) →֒ C(S2g+k−1,b−k).

In particular, if we take ∂0 to be the union of all the boundary components
of S = Sg,b, then the resulting surface Sd

∂ = S2g+b−1,0 is called the double
of S = Sg,b. The union of any arc on Sg,b with its image by the natural
involution of Sd is a curve on Sg+b,0, and this association defines a natual
simplicial embedding

A(Sg,b) →֒ C(S2g+b−1,0).

If X is a domain on S such that a nonempty set of boundary components of
X are boundary components of S, then we have a natural simplicial embedding

A(X, ∂X ∩ ∂S) →֒ A(S).

This map can be useful for studying arc complexes of surfaces of infinite type.
Let S∞ be a surface with boundary which has infinite type, and suppose that
S∞ admits an exhaustion by subsurfaces of finite type with boundary,

S0 ⊂ S1 ⊂ S2 ⊂ . . . ,

such that a nonempty subset of the boundary components of S0 are boundary
components of S∞, such that for every i ≥ 0, Si is a domain on Si+1 and
S∞ = ∪∞

i=1Si. Then, we have a sequence of natural embeddings

A(S0, ∂S0 ∩ ∂S1) →֒ A(S1, ∂S1 ∩ ∂S2) →֒ A(S2, ∂S2 ∩ ∂S3) . . .
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4.3 The arc and curve complex AC(S)

We now introduce an abstract simplicial complex in which the curve complex
and the arc complex naturally embed.

Definition 4.8 (The arc and curve complex). The arc and curve complex,
AC(S), of S is the simplicial complex whose k-simplices, for each k ≥ 0, are
collections of k + 1 distinct isotopy classes of one-dimensional submanifolds
which can be either essential simple closed curves or essential arcs in S, and
such that this collection can be represented by disjoint curves or arcs on the
surface.

This complex was studied by Hatcher in [18], who proved that this complex
is contractible.

Note that if b = 0, then there are no arcs on S = Sg,b, and in that case
AC(Sg,0) = C(Sg,0). When talking about the arc and curve complex, we shall
assume that b ≥ 1.

Proposition 4.9 (Maximal simplices in the arc and curve complex [36]). A
maximal simplex of AC(S) that has maximal dimension consists of arcs, i.e. it
is an ideal triangulation of S. The dimension of such a simplex is 6g+3n−7.
The dimension of a maximal simplex ∆ in AC(S) that has minimal dimension
is 3g + 2n − 4. There exist maximal simplices in AC(S) of all dimensions
between 3g + 2n− 4 and 6g + 3n− 7.

This proposition immediately gives the following rigidity result:

Theorem 4.10. Let S = Sg,n and S′ = Sh,p be two surfaces of types (g, n)
and (h, p) respectively, and assume that the two corresponding arc and curve
complexes AC(S) and AC(S′) are homeomorphic. Then, S is homeomorphic
to S′.

Proof. From Proposition 4.9, if AC(S) and AC(S′) are homeomorphic, we
have 6g + 3n − 7 = 6h + 3p − 7 and 3g + 2n − 4 = 3g + 2n − 4. The two
equations imply g = h and n = p; that is, the surfaces are homeomorphic.

Each element of the extended mapping class group Mod∗(S) naturally acts
in a simplicial way on the complex AC(S), and its is clear that the result-
ing map from Mod∗(S) to the simplicial automorphism group Aut(AC(S)) of
AC(S) is a homomorphism.

There are natural simplicial maps from the curve complex C(S) and from
the arc complex A(S) into the arc and curve complex, which extend the nat-
ural inclusions at the level of the vertices. These maps are injectve, and the
acomplexes C(S) and A(S) are naturally subcomplexes of the arc and curve
complex.
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We have the following:

Theorem 4.11 (Korkmaz-Papadopoulos [36]). If the surface Sg,n is not a
sphere with one, two or three punctures nor a torus with one puncture, then
the natural homomorphism Mod∗(Sg,b) → Aut(AC(Sg,b)) is an isomorphism.

This result says in particular that there are no automorphisms of the arc
and curve complex that sends a vertex represented by an arc (respectively
a curve) to a vertex represented by a curve (respectively an arc). In fact,
this can be seen directly by counting the dimensions of maximal simplices
containing vertices, and this is used in the proof of Theorem 4.11 given [36].
Two different proofs of 4.11 are given in [36]; one proof uses the induced action
of an automorphism of AC(S) on the arc complex, and another one uses the
induced action on the curve complex.

Let us say a few words on the cases that are excluded by the hypothesis of
Theorem 4.11.

If S is a sphere with one puncture, then AC(S) is empty.
If S is a sphere with two punctures, AC(S) = A(S) is a single point, and

if S is a sphere with three punctures, AC(S) = A(S) is a finite complex (see
Figure 7 above). In both cases, by Theorem 4.7, the natural homomorphism
from Mod∗(Sg,n) to Aut(AC(Sg,n)) is surjective and its kernel is Z2 = Z/2Z,
which is the center of Mod∗(Sg,n).

Finally, in the case where S is a torus with one puncture, the natural homo-
morphism Aut(AC(Sg,n)) → Aut(A(Sg,n)) is an isomorphism, which implies
that we have an isomorphism Mod∗(Sg,n)/Z2 ≃ Aut(AC(S)).

Similar to the simplicial map A(Sg,b) → C(S2g+b−1,0) defined in §4.2, there
is a natural injective simplicial map AC(Sg,b) → C(S2g+b−1,0) obtained by
doubling. In fact, taking doubles along subsets of the set of boundary com-
ponents (see the definition in §4.2), gives a sequence of simplicial injections
AC(Sg,b) → AC(S2g+k−1,b−k), defined for 1 ≤ k ≤ b.

4.4 The pants decomposition graph P1(S)

A elementary move between two pants decompositions on S is a transformation
in which a single curve C is modified (that is to say, the two pants decompo-
sitions involved in that move contain the same set of curves except for that
curve C), such that C and the curve C′ obtained from C by the move have
the smallest possible intersection number. Thus, i(C,C′) = 1 or 2, depending
on whether C is on the boundary of one or of two pairs of pants (and the
same situation holds at the same time in the two pants decompositions that
are involved in the move). The two types of elementary moves are represented
in Figure 8.
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We regard a elementary move as an operation which is well defined up to
isotopy, so we can talk of two isotopy classes of pants decompositions that are
obtained from each other by a elementary move.

We shall say that the elementary move is performed on the curve that is
transformed in the pair of pants decomposition. Note that the number of
possible elementary moves performed on a given curve is always infinite.

Definition 4.12 (Pants decomposition graph). The pants decomposition graph
P1(S) is the one-dimensional simplicial complex whose vertices are isotopy
classes of pants decompositions and where two vertices are joined by an edge if
and only if the two pants decompositions that represent them (up to homotopy)
differ by an elementary move.

If S is a sphere with at most two punctures or a closed torus, P1(S) is
empty. If S is a pair of pants, then P1(S) consists of one vertex. In all the
other cases, P1(S) is locally infinite: each vertex is contained in infinitely many
edges.

The pants decomposition graph was introduced by Hatcher and Thurston
in the appendix to their paper [19]. Hatcher and Thurston proved that P1(S) is
connected, that is, any two isotopy classes of pants decompositions on a given
surface can be obtained from each other by a finite sequence of elementary
moves.

D. Margalit proved the following rigidity result:

Figure 8. The two types of elementary moves between pants decompositions.
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Theorem 4.13 (cf. [40]). Let Sg,n be a surface of negative Euler characteris-
tic. If (g, n) 6∈ {(0, 3), (1, 1), (1, 2), (2, 0), (0, 4)}, then the homomorphism

Γ∗(Sg,n) → Aut(P1(Sg,n))

is an isomorphism.
Furthermore, in the excluded cases, we have the following:

(1) The homomorphism Γ∗(S0,3) → Aut(P1(S0,3)) is not injective. (This
is because P1(S0,3) is reduced to a point, and therefore Aut(P1(S)) is
trivial, whereas Γ∗(S0,3) is not trivial: it is an order-two extension of
the permutation group on three elements.)

(2) The homomorphism Γ∗(S0,4) → Aut(P1(S0,4)) is surjective, and its ker-
nel kernel is Z2 ⊕ Z2, generated by two hyperelliptic involutions.

(3) In the case where (g, n) = (1, 1), (1, 2) or (2, 0), the homomorphism
Γ∗(Sg,n) → Aut(P1(Sg,n)) is surjective, and its kernel is Z2, generated
by a hyperelliptic involution.

Note that a pants decomposition of Sg,n can be regarded as a maximal
simplex in the curve complex C(Sg,n) of Sg,n. The graph P1(Sg,n) can be
regarded as a subcomplex of the dual complex to the curve complex C(Sg,n).
The proof by Margalit of Theorem 4.13 does not use this fact but nevertheless
it uses the result of Ivanov, Korkmaz and Luo on the automorphisms of the
curve complex (Theorem 4.3 above).

The pants graph has other important features. In the paper [8], J. Brock
proved that this graph, endowed with its natural simplicial metric, is quasi-
isometric to the Teichmüller space of S endowed with its Weil-Petersson metric.

4.5 The ideal triangulation graph T (S)

In this section, S is a surface with nonempty boundary. The ideal triangula-
tion graph of S, T (S), is the simplicial graph whose vertices are the isotopy
classes of ideal triangulations of S and in which an edge connects two vertices
whenever these vertices differ by an elementary move. The elementary moves
are described in Figure 9. Thus, in an elementary move, we replace some (ho-
motopy class of) edge of a triangulation by a different one and we keep the
other (homotopy classes of) edges unchanged. The (homotopy class of) edge
that is transformed by the move is said to be exchanged by the move, and the
move is said to be performed on that edge.

The ideal triangulation graph has been studied by several authors, in par-
ticular Harer [16] and Hatcher [18]. The rigidity result for the automorphism
group of this graph was obtained by Korkmaz and Papadopoulos in [37] (see
Theorem 4.15 below).
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Let ∆ be an ideal triangulation on S. An arc on S which is an element
of the system of arcs defining ∆ will be called an edge of ∆. There is an
important distinction between exchangeable and non-exchangeable edges of
∆. This notion is defined as follows.

An edge e of ∆ is said to be exchangeable if an elementary move can be
performed on e, giving rise to a new ideal triangulation. The edge e is said
to be non-exchangeable if no elementary move can be performed on e. Non-
exchangeable edges on S are those that are on the boundary of a unique
hexagon in the dual triangulation. The configuration is represented in Figure
10.

The proof of the following rigidity result follows easily from the distinction
made between exchangeable and non-exchangeable edges.

Theorem 4.14 ([37]). Let T (Sg,n) and T (Sh,m) be the two ideal triangulation
graphs associated of two surfaces Sg,n and Sh,m respectively. Then, T (Sg,n)
and T (Sh,m) are homeomorphic if and only if the surfaces Sg,n and Sh,m are
homeomorphic.

Proof. The non-trivial direction is the “only if” direction, and it follows easily
from the following valency considerations in the ideal trianguation graph.

The valency of a vertex in T (Sg,n) is the number of edges abutting (locally)
at that point. An ideal triangulation that represents a vertex of maximal
valency in the ideal triangulation graph is an ideal triangulation that does
not contain any non-exchangeable edge. There exist such triangulations on
any surface. It is also easy to see that an ideal triangulation representing a
vertex of minimal valency contains a configuration of the form represented
in Figure 11, in which all the boundary curves of S are involved. Such a
triangulation also exists on any surface, provided the surface has at least two
boundary components. From this, it easily follows by an Euler characteristic

Figure 9. An elementary move on an ideal triangulation: A pair of adjacent
hexagons is replaced by a different pair of adjacent hexagons. The segments in
bold lines represent the arcs that are edges of the triangulation, an the other
segments are contained in the boundary of the surface.
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argument that for any g and n, the maximum valency at a vertex of T (Sg,n)
is 6g+ 3n− 6 and the minimal valency is 6g+ 3n− 6− (n− 1) = 6g+ 2n− 5.
Thus, if the two graphs T (Sg,n) and T (Sh,m) are homeomorphic, we have
6g+3n−6 = 6h+3m−6 and 6g+2n−5 = 6h+2m−5. The two equations imply
that g = h and n = m; that is, the surfaces are homeomorphic. (A special
easy argument is needed in case one of the surfaces has only one boundary
component.)

The extended mapping class group Γ∗(S) acts naturally on T (S) by sim-
plicial automorphisms, and we have the following.

Theorem 4.15 (Korkmaz-Papadopoulos [37]). Let S be a connected ori-
entable surface with at least one puncture. If S is not a sphere with at most
three punctures or a torus with one puncture, then the natural homomorphism
Γ∗(S) → Aut(T (S)) is an isomorphism.

The proof of Theorem 4.15 given in [37] is based on the analogous theorem
for the arc complex obtained by Irmak and McCarthy (Theorem 4.7). It is
shown that any automorphism of the ideal triangulation graph induces an
automorphism of the arc complex, and this is used in the proof of 4.15.

We note that the graph T (S) is the one-skeleton of the simplicial complex
dual to the arc complexA(S), and therefore any automorphism ofA(S) induces
an automorphism of the graph T (S). This fact is not used in the proof of
Theorem 4.15. We also note that T (S) is a strict subcomplex of the dual
complex of A(S), and a priori its automorphism group could be larger than
the automorphism group of A(S). Theorem 4.15 shows that this is not the
case.

The surfaces that admit ideal triangulations and that are excluded by the
hypothesis of Theorem 4.15 are the sphere with two or three punctures and
the torus with one puncture. These cases are also analyzed in the paper [37],
and the results are as follows:

In the case where S = S0,2 is the sphere with two punctures, T (S0,2)
consists of a single vertex, hence its automorphism group is trivial, and the
natural homomorphism Γ∗(S0,2) → Aut(T (S0,2) is surjective and not injective.

e

Figure 10. The edge e is a non-exchangeable edge in an ideal triangulation: it
is on the boundary of a unique ideal hexagon.
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In the case where S = S0,3 is a sphere with three punctures, the graph
T (S0,3) is finite, and it is homeomorphic to a tripod, whose central vertex is
represented by the unique (up to isotopy) ideal triangulation of S0,3 in which
every edge is exchangeable. The automorphism group Aut(T (S0,3)) is isomor-
phic to the permutation group on three elements, the mapping class group of
Γ(S0,3) is also isomorphic to the permutation group on three elements (the
punctures of S0,3), and the natural homomorphism Γ(S0,3) → Aut(T (S0,3)) is
an isomorphism. Hence, the natural homomorphism Γ∗(S0,3) → Aut(T (S0,3))
is surjective and its kernel is the center of Γ∗(S0,3), a cyclic group of order
two.

In the case where S = S1,1 is a torus with one puncture, then its the ideal
triangulation graph is a regular infinite tree in which every vertex has valency
three. The automorphism group of such a tree is uncountable. Thus, the
natural homomorphism Γ∗(S1,1) → Aut(T (S1,1)) is highly non-surjective.

As we did in the preceding sections, we can double the surface S = Sg,b

along its boundary components and obtain a closed surface Sg+b,0. There is a
natural simplicial embedding

T (Sg,b) →֒ P1(Sg+b,0)

obtained by taking the doubles of ideal triangulations on Sg,b, an operation
that gives pairs of pants decompositions on Sg+b,0, and noting that the double
of an elementary move between ideal triangulations on Sg,b is an elementary
move between the two corresponding pairs of pants decompositions of Sg+b,0.

4.6 The Schmutz graph of nonseparating curves G(S)

In [50], Paul Schmutz Schaller introduced and studied a new one-dimensional
simplicial complex G(S) associated to S. There are two different definitions,
depending on whether the genus of S is 0 or ≥ 1.

Definition 4.16 (The Schmutz graph). Let S = Sg,n be a surface of negative
Euler characteristic which is not a pair of pants. Then:

(1) If g ≥ 1, the vertex set of G(S) is the set of isotopy classes of nonsepa-
rating simple closed curves on S, and two vertices are related by an edge
whenever their geometric intersection number is 1.

(2) If g = 0, the vertex set of G(S) is the set of isotopy classes of simple
closed curves on S which separate S into two components one of which
is a pair of pants. (Note that two of the boundary components of this
pair of pants are boundary components of S, and therefore such a vertex
does not exist if b ≤ 1.) In this case, two vertices are related by an edge
whenever their geometric intersection is equal to two.
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Schmutz Schaller proved that G(S) is connected and that the automor-
phism group of this complex is equal to the mapping class group modulo its
centre. More precisely, he proved the following:

Theorem 4.17 (Schmutz Schaller [50]). Let S = Sg,n be a surface of neg-
ative Euler characteristic which is not a pair of pants. Then, if (g, n) 6∈
{(0, 4), (1, 1), (1, 2), (2, 0)}, the natural homomorphism

Γ∗(S) → G((S))

is an isomorphism.
Furthermore, in the exceptional cases, the situation is as follows:

(1) for (g, n) ∈ {(1, 1), (1, 2), (2, 0)}, the homomorphism is surjective, and
its kernel is Z2, generated by the hyperelliptic involution of S;

(2) for (g, n) = (0, 4), the homomorphism is surjective, and its kernel is
Z2 ⊕ Z2, generated by two hyperelliptic involutions.

4.7 The complex of nonseparating curves N(S)

In this section, S is a compact, connected, orientable surface of genus g ≥ 2
with p ≥ 0 boundary components.

Definition 4.18 (The complex of nonseparating curves). The complex N(S)
of nonseparating curves of S is the simplicial complex whose k-simplices, for
every k ≥ 0, are the collections of k+1 isotopy classes of nonseparating curves
that can be represented by disjoint and pairwise non-isotopic curves.

Note that N(S) admits a canonical simplicial injection as the subcomplex
of the curve complex C(S) induced by the set of vertices that are isotopy
classes of nonseparating simple closed curves.

E. Irmak proved the following:

Theorem 4.19 (Irmak [22]). If S is not the closed surface of genus 2, then
the natural homomorphism

Γ∗(S) → Aut(N(S))

is an isomorphism. In the case where S is the closed surface of genus 2,
the automorphism group of N(S) is Γ∗(S)/Z2, where Z2 is generated by the
hyperelliptic involution of S.

Notice that although the vertex set of the complex N(S) of nonseparating
curves is the same as the vertex set of the Schmutz graph G(S), the one-
skeleton of N(S) is not simplicially equivalent to the Schmutz graph. How-
ever, the proof of Theorem 4.19 by Irmak uses the corresponding theorem by
Schmutz Schaller (Theorem 4.17).
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4.8 The cut system graph HT1(S)

A cut system on the surface S is (the isotopy class of) a system of curves
such that S cut along this system is a sphere with holes. Note that each of
the curves defining a cut system is necessarily nonseparating, and that the
cardinality of such a system is equal to the genus of the surface S (by one of
the definitions of the genus). In particular, if the genus of S is 0, then there
is no cut system on S. Thus, for the rest of this section, we suppose that the
genus of S is ≥ 1.

To simplify notation, we shall often identify a cut system and the set of
homotopy classes of curves in that system.

Hatcher and Thurston introduced the following notion of elementary move
between cut systems.

A elementary move is the operation of replacing the (homotopy class of)
a curve in a cut system by a new (homotopy class of) curve such that the
result is again a cut system, and such that the geometric intersection number
between the old and the new (homotopy classes of) curve is equal to one.

Definition 4.20 (The cut-system graph). The cut-system graph, HT1(S), of
S is the simplicial graph whose vertex set is the set of cut systems on S and
whose edges are the pairs of cut systems that are related by an elementary
move.

The cut system graph is also called the Hatcher-Thurston graph, hence the
notation HT1(S). Note that the index 1 refers to the fact that the Hatcher-
Thurston graph is the one-skeleton of a thicker CW-complex called the cut-
system complex (or the Hatcher-Thurston complex) and denoted by HT (S),
and which we shall not deal with here.

In the case where the genus of S is 1, a cut system on S is reduced to
a single nonseparating curve, and the cut-system graph coincides with the
Schmutz graph G(S) defined in §4.6 above.

The automorphism group of the cut system graph was studied by E. Irmak
and M. Korkmaz, who proved in [24] that the group Aut(HT1(S)) of simplicial
automorphisms of HT1(S) is the extended mapping class group modulo its
centre. More precisely, they obtained the following.

Theorem 4.21 (Irmak and Korkmaz [24]). Let S = Sg,b be a compact surface
of genus g ≥ 1 with b ≥ 0 boundary components. If S is not a torus with at
most two holes or a closed surface of genus 2, then the natural map

Γ∗(S) → Aut(HT1(S))

is an isomorphism. In the excluded cases, this map is surjective and its kernel
is Z/2, the centre of Γ∗(S).
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Irmak and Korkmaz proved Theorem 4.21 by passing through the Schmutz
complex. A beautiful ingredient in their proof is the encoding of nonseparating
simple closed curves in S by vertices and edges in the cut system graph. More
precisely, a pair (v, e), where v is a vertex of HT1(S) and e an edge containing
v, determines in a natural way a homotopy class of a nonseparating curve,
namely, the homotopy class of curves in a cut system representing v that is
transformed by the elementary move representing the edge e. (Recall that
every curve in a cut-system is nonseparating.) Irmak and Korkmaz use this

fact to associate to each automorphism f of HT1(S) an automorphism f̃ of
the Schmutz graph. More precisely, they proceed as follows. Start with an
automorphism f of HT1(S). Take an (isotopy class of) nonseparating curve C1

on S. Complete it into a cut system C = {C1, . . . , Cg}. Perform an elementary
move on C1 in the cut system C, replacing C1 by some curve D. Then, the
collection C′ = {D, . . . , Cg} (that is, the system obtained from C by replacing
C withD) is also a cut system on S, and, as a vertex ofHT1(S), this cut system
is connected to the vertex C by an edge. Now since f : HT1(S) → HT1(S) is
simplicial, the vertices f(C) and f(C′) are also connected by an edge. Irmak

and Korkmaz define f̃(C1) as the unique (homotopy class of) nonseparating
curve that is in f(C) and that is not in f(C′). They then prove that the

resulting map f̃ is independent of all the choices involved. The map f̃ is
then showed to be an automorphism of HT1(S) that sends any pair of isotopy
classes of nonseparating curves whose geometric intersection number is equal
to one to a pair satisfying the same property. From this, Irmak and Korkmaz
obtain a homomorphism from Aut(HT1(S)) to the Schmutz complex G(S),
and they finally prove that this map is an isomorphism.

Irmak states in her paper [22] p. 84, that the Isomorphism Theorem 4.21
can also be deduced from her result on the automorphism group of the complex
of nonseparating curves (Theorem 4.19 above), using the same methods of
proof.

We note that the automorphism rigidity theorem stated in the paper [24]
concerns the Hatcher-Thurston CW complex, and not the graph, but the proof
given in that paper works equally for the Hatcher-Thurston graph.

4.9 The complex of separating curves CS(S)

In this section S = Sg,n is a compact, connected, orientable surface of negative
Euler characteristic, of genus g with n boundary components.

Definition 4.22 (The complex of separating curves). The complex CS(S)
of separating curves of S is the flag simplicial complex whose k-simplices, for
every k ≥ 0, are the collections of k + 1 isotopy classes of curves that can be
represented by disjoint and pairwise non-isotopic separating curves.
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Note that E is canonically isomorphic to the full subcomplex of the curve
complex C(S) spanned by all vertices that are isotopy classes of separating
curves.

Theorem 4.23 (Brendle & Margalit [7], Kida [34]). Suppose that the genus
of S is ≥ 1, and that S is not a torus with at most two holes or a surface of
genus two with at most one hole. Then, the natural homomorphism

Γ∗(S) → Aut(CS(S))

is an isomorphism.

Theorem 4.23 was obtained by Brendle and Margalit [7] for closed surfaces.
The generalization as stated is due to Kida [34].

4.10 The Torelli complex TC(S)

In this section S = Sg,n is a compact, connected, orientable surface of negative
Euler characteristic, of genus g with n boundary components.

A bounding pair in S is a pair of nonseparating curves whose union separates
S (see Figure 12).

There is a notion of a Dehn twist along a bounding pair. This is defined
as the product of a positive Dehn twist along one of the two curves in the
bounding pair, and a negative Dehn twist along the other curve.

Dehn twists along bounding pairs play an important role in the study of
the Torelli group, in particular because of a theorem of D. Johnson asserting
that the Torelli group of any closed surface of genus ≥ 3 is generated by a
finite collection of Dehn twists along bounding pairs, see [33]. Before Johnson
obtained that result, Birman and Powell had proved that the Torelli group is
generated by the infinite collection of all Dehn twists along separating curves
and bounding pairs, cf. [3] and [49]

Definition 4.24 (The Torelli complex). The Torelli complex of S, denoted
by TC(S), is the flag simplicial complex whose vertices can be of the following
types:

(1) an isotopy class of a separating curve on S;

(2) an isotopy class of a bounding pair on S.

For k ≥ 2, a collection of k vertices is a (k − 1)-simplex of TC(S) if and
only if these vertices can be represented by curves or bounding pairs that are
mutually non-isotopic and disjoint.

In the case of surfaces of genus zero, the Torelli complex coincides with the
curve complex, since any closed curve on such a surface is separating.
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Brendle and Margalit obtained in [7] the following theorem which was con-
jectured by Farb:

Theorem 4.25 (Brendle-Margalit [7]). For any closed surface S of genus
g ≥ 4 the natural homomorphism

Γ∗(S) → Aut(TC(S))

is an isomorphism.

In their paper [12], Farb and Ivanov had given an outline of the proof of
the same result, but with an additional structure on the vertices and on the
two-simplices of that complex, and for the case where the genus of S is ≥ 5.

Kida obtained a more general version of that theorem, and we finally have
the following:

Theorem 4.26 (Brendle & Margalit [7], Kida [34]). Let S = Sg,n be a con-
nected compact surface of genus g ≥ 1 with n ≥ 0 boundary components, such
that S is not a torus with at most two punctures or a surface of genus two with
at most one puncture. Then, the natural homomorphism

Γ∗(S) → Aut(TC(S))

is an isomorphism.

5 The complex of domains and its subcomplexes

5.1 The complex of domains D(S)

Definition 5.1. The complex of domains of S, D(S), is the simplicial complex
whose k-simplices, for all k ≥ 0, are the collections of k + 1 distinct isotopy
classes of disjoint domains on S.

Clearly, there is a natural simplicial embedding C(S) → D(S) obtained via
the association to each curve on S a regular neighborhood of that curve, and
considering that regular neighborhood as a domain on S. We shall describe
below injections of other simplicial complexes into D(S). There is no natural
injection from the arc complex into the complex of domains, but we shall
describe a subcomplex of the arc complex, namely, the complex of boundary
graphs, which is naturally injected in the complex of domains (see §5.3 below).

From Proposition 2.8, for every domainX on S, we have a natural simplicial
embedding

D(X) →֒ D(S).
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We shall study in detail the complex of domains. In particular, we shall
describe its automorphism group in §8 below.

Let us first briefly discuss the complex of domains associated to some sur-
faces of low genus and small nomber of boundary components.

If S = S0,3 is a sphere with at most three holes, then S has no essential
curves. Since a domain on a surface has at least an essential curve, D(S0,3) is
empty.

Proposition 5.2. If S is a sphere with four holes, then D(S) ≃ C(S) × ∆2

where ∆2 is a triangle.

Proof. Suppose that S = S0,4 is a spheres with four holes. We recall that in
that case C(S) is an infinite vertex set. Let X be a domain on S. Then X
must have at least one essential boundary component on S.

Suppose, on the one hand, that X has at least two essential boundary com-
ponents C and D on S. Then, since any two non-homotopic essential curves
on S0,4 have a nonempty intersection, there exists an annular domain A on S
such that C and D are the two boundary components of A. Moreover, there
are exactly two codomains, P and Q, of A on S, both of which are biperiph-
eral pairs of pants on S. We may assume that P has C as its unique essential
boundary component on S and Q has D as its unique essential boundary com-
ponent on S. Since C and D are both boundary components of X it follows
that X is equal to A.

Suppose, on the other hand, that X has exactly one essential boundary
component C on S. Then X must be one of the two biperipheral pairs of
pants on S which have C as their unique essential boundary components on
S. It follows that every domain on S is represented by either an annulus on S
or a biperipheral pair of pants on S.

This description of D(S) exhibits this simplicial complex as a bundle over
the infinite vertex set C(S) with fiber a triangle ∆2. There is a natural section
of D(S) corresponding to the biperipheral annuli on S.

Proposition 5.3. If S is a closed torus, then D(S) ≃ C(S) is an infinite set
of vertices.

Proof. Suppose that S = S1,0 is a closed torus. Then each domain on S is an
annulus, and the natural map η : C(S) → D(S) is an isomorphism.

Proposition 5.4. If S is a torus with one hole, then D(S) ≃ C(S)×∆1 where
∆1 is an edge.
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Proof. Suppose that S = S1,1 is a torus with one hole. In this case, each
domain on S is either an annulus or a monoperipheral pair of pants, and two
domains on S are disjoint and nonisotopic if and only if one is a monoperipheral
pair of pants and the other is an annulus in its complement. Thus, we have
the following

In the case where S is a torus with one hole, the component of D(S) corre-
sponding to the component {[α]}×∆1 of C(S)×∆1 is the edge of D(S) whose
vertices correspond to a regular neighborhood of α on S and to a monoperiph-
eral pair of pants in its complement. This description of D(S) exhibits D(S)
as a bundle over C(S) with fiber an edge ∆1. There are two natural sections
of D(S), one corresponding to the annuli on S, the other corresponding to the
monoperipheral pairs of pants on S. This bundle is therefore trivializable with
a natural trivialization.

Proposition 5.5. If S is not a sphere with at most four holes or a torus with
at most one hole , then D(S) is connected.

Proof. Let v be a vertex representing a domain C on S. Then, C has at least
one essential boundary component. Let A be an annular domain representing
this boundary component, and let w be the vertex in D(S) represented by A.
Since C and A are isotopic to disjoint surfaces, the vertices v and w are joined
by an edge. Thus, any vertex in D(S) can be joined by an edge to a vertex
in the natural image of C(S) in D(S). Since C(S) is connected, this implies
that D(S) is connected.

We now study maximal simplices in the complex of domains.
One difference between the complex D(S) and complexes such as A(S) or

C(S) is that in A(S) and D(S), the maximal simplices are the top-dimensional
simplices, whereas not all of the maximal simplices ofD(S) are top-dimensional
simplices. In fact, in D(S), there are maximal simplices of all dimensions
between 1 and the dimension of the top-dimensional simplices.

We shall describe maximal simplices in D(S).
For these descriptions, it is helpful to distinguish between various types of

vertices of D(S), corresponding to some special domains. Domains of partic-
ular interest include annuli, nonannular domains, pairs of pants, peripheral
pairs of pants, monoperipheral pairs of pants and biperipheral pairs of pants.

The following proposition gives a relation between pants decompositions
and maximal simplices.

Proposition 5.6. Suppose that S is not a sphere with at most three holes or
a closed torus. Let C = {Ci | 1 ≤ i ≤ n} be a maximal system of curves on
S. Let X = {Xi | 1 ≤ i ≤ n} be a collection of disjoint annuli on S such that
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Xi is a regular neighborhood of Ci on S, 1 ≤ i ≤ n. Let Y = {Yj , 1 ≤ j ≤ k}
be the collection of components of the closure of the complement of X in S.
Then:

(1) n = 3g − 3 + b;

(2) k = 2g − 2 + b;

(3) the subsurfaces Xi, 1 ≤ i ≤ n are annular domains on S;

(4) the subsurfaces Yj, 1 ≤ j ≤ k, are pairs of pants on S;

(5) the vertices xi, 1 ≤ i ≤ n and yj, 1 ≤ j ≤ k represented by, respectively,
Xi, 1 ≤ i ≤ n and Yj, 1 ≤ j ≤ k are the vertices of a simplex of D(S)
which has exactly 5g − 5 + 2b vertices and which is top-dimensional.

It is easy to construct maximal simplices inD(S) that are not top-dimensional.
To describe the general maximal simplices in D(S), we introduce the notion
of tiling of a surface.

A tiling F of S is a system of domains on S which is maximal with respect
to inclusion. An element of such a tiling F is called a tile of F. The maximal
simplices of D(S) are the unions of vertices representing a tiling of F.

A tie of a tiling of S is a codomain of a tiling of S.
Suppose first that S is a closed torus. If F is a tiling of S, then F has a

unique tile and a unique tie, which are both annuli and which are glued along
their two boundary components.

If F is a collection of disjoint domains on a closed torus S, then the following
are equivalent:

(1) F is a tiling of S;

(2) F is a system of domains on S;

(3) |F| has exactly one codomain.

Most of the propositions in the rest of this section are easy to prove, and
the proofs are left to the reader.

Proposition 5.7. Suppose now that S is not a closed torus, let F be a tiling of
S and let T be a tie of F. Then T is an annulus on S with essential boundary
components C and D such that there exists a unique pair of domains of F, N
and A, such that C is an essential boundary component of N , D is an essential
boundary component of A, N is not an annulus, A is an annulus, and A is
isotopic to T .

Proposition 5.8. Suppose that S is not a closed torus. Let F be a tiling of
S, let X be a tile of F and C be an essential boundary component of X. Then
there exists a unique tie T of F such that C is an essential boundary component
of T .
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Proposition 5.9. Suppose that S is not a closed torus and let F be a collec-
tion of disjoint domains on S. Then F is a tiling of S if and only if every
codomain of |F| is an annulus joining an annular domain of |F| to a nonan-
nular codomain of F.

Proposition 5.10 (Tilings and maximal simplices of D(S)). Suppose that S
is not a sphere with at most three holes or a closed torus and let C = {Ci | 1 ≤
i ≤ n} be a system of curves on S. Let X = {Xi | 1 ≤ i ≤ n} be a collection of
disjoint annuli on S such that for all 1 ≤ i ≤ n-, Xi is a regular neighborhood
of Ci on S. Let Y = {Yj , 1 ≤ j ≤ k} be the collection of components of the
closure of the complement of X in S. Let F = {Xi, Yj | 1 ≤ i ≤ n, 1 ≤ j ≤ k}.
Then:

(1) the subsurfaces Xi, 1 ≤ i ≤ n are annular domains on S;

(2) the subsurfaces Yj, 1 ≤ j ≤ k, are thick domains on S;

(3) the collection F is a tiling of S;

(4) the components of the closure of Ri \Xi, 1 ≤ i ≤ n, are the ties of F;

(5) for 1 ≤ i ≤ n and 1 ≤ j ≤ k, the vertices xi, and yj represented by,
respectively, Xi and Yj, are the vertices of a simplex of D(S)which has
∆C has exactly n+ k verticesand which is a maximal simplex of D(S).

Definition 5.11 (The canonical maximal simplex of D(S) associated to a
system of curves). Suppose that S is not a sphere with at most three holes or
a closed torus and let C be a system of curves on S. The simplex ∆C provided
by Proposition 5.10 is called the canonical maximal simplex of D(S) associated
to C.

Proposition 5.12. Suppose that S is not a sphere with at most three holes
or a closed torus and let ∆ be a maximal simplex of D(S). Then there exists
a system of curves C on S such that ∆ = ∆C , where ∆C is the canonical
maximal simplex of D(S) associated to C.

Proof. Each maximal simplex ∆ contains a nonempty set of vertices which are
represented by annular domains. We take C to be the system of curves that
represent the homotopy classes the union of these annular domains.

Proposition 5.13. Suppose that S is not a sphere with at most three holes
or a closed torus, let ∆ be a simplex of D(S) and let C be a system of curves
on S such that ∆ = ∆C is the canonical maximal simplex of D(S) associated
to C. Then the following are equivalent:

(1) ∆ is a top-dimensional simplex of D(S);

(2) C is a pants decomposition of S.
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Proposition 5.14 (The dimension of the complex of domains D(S)). If S is
a sphere with at most three holes, then D(S) is empty. If S is a closed torus,
then D(S) is an infinite set of vertices. Otherwise, dim(D(S)) = 5g+2b− 6.

Proof. A sphere with at most three holes has no essential curves and, hence,
no domains. Therefore, if S is a sphere with at most three holes, D(S) is
empty.

If S is a closed torus, then the natural map η : C(S) → D(S) is an isomor-
phism and, hence, D(S) is an infinite set of vertices.

Assume that S is not a sphere with at most three holes or a closed torus.
Then, it follows from Proposition 5.6 that a top-dimensional simplex of D(S)
has 5g + 2b− 5 vertices. Hence, dim(D(S)) = 5g + 2b− 6.

We shall now construct a natural tiling of S associated to any system of
domains on S. We assume that S is not a closed torus.

Let F be a system of domains on S.
Let A be the collection of annular domains in F.
Let P be the collection of nonannular domains in F.
Let D be the collection of annular codomains of F

Let R be the collection of nonannular codomains of F

Let D ∈ D. Since D is an annular domain on S and annular domains do
not have any peripheral boundary components, there exists a unique subset
{F,G} of F such that D joins F to G.

Suppose, on the one hand, that F = G. In this case, we say that D is a
coannulus of F attached to the domain F in F.

Suppose that D is a coannulus of F attached to the domain F in F. Then
F∪D is a domain on S with genus one greater than that of F , the same number
of peripheral boundary components as F , and two less essential boundary
components than F . In particular, if F is an annulus, then F ∪D is a closed
torus and, hence, S is a closed torus.

Since S is not a closed torus, it follows that each such coannulus of F joins
a nonannular domain F in F to itself (i.e. a domain F in P to itself).

Suppose, on the other hand, that F 6= G. In this case, we say that D is a
coannulus of F attached to the distinct domains F and G in F. Note that in
this case, it is possible that either F or G is an annular domain on S.

Suppose that D is a coannulus of F attached to the distinct domains F and
G in F. Then F ∪D ∪G is a domain on S with genus equal to the sum of the
genera of F and G, with the same peripheral boundary components as F ∪G,
and two less essential boundary components than F ∪G.

Let Q be a collection of domains on S which is obtained from R by replacing
each domain R in R by a domain Q which is obtained from R by shrinking R
on S. In particular, Q is contained in the interior of R and Q is isotopic to R
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on S. Hence, Q and R represent the same vertex of D(S). Moreover, since R
is not an annulus on S, Q is not an annulus on S.

Note that Q has the same number of elements as R, that F and Q are
disjoint collections of domains on S, and that F ∪ Q is a collection of disjoint
domains on S.

Let E be the collection of codomains of F ∪ Q.
Suppose that E ∈ E. Note that there exists a unique pair of distinct

domains on S, {F,Q}, such that F ∈ F and Q ∈ Q such that E joins F to Q
on S. Hence, E joins a domain F in F∪Q to a nonannular domain Q in F∪Q.
Note that it is possible that F is also a nonannular domain on S.

It follows from Proposition 2.23 that F ∪ Q is a system of domains on S.
Note that D and E are disjoint sets, D∪ E is a collection of disjoint annuli

on S, and D∪E is the collection of codomains of the system of domains, F∪Q.
Let Dnonann be the subcollection of D consisting of all annuli D in D which

join a nonannular domain F in F to a nonannular domain G in F.
Let B be a collection of domains on S which is obtained from Dnonann by

replacing each domain D in Dnonann by a domain B which is obtained from
D by shrinking D on S. In particular, B is contained in the interior of D and
B is isotopic to D on S. Hence, B and D represent the same vertex of D(S).
Moreover, since D is an annulus on S, B is an annulus on S.

Let Enonann be the subcollection of E consisting of all annuli E in E which
join a nonannular domain F in F to a nonannular domain Q in Q.

Let C be a collection of domains on S which is obtained from Enonann by
replacing each domain E in Enonann by a domain C which is obtained from E
by shrinking E on S. In particular, C is contained in the interior of E and
C is isotopic to E on S. Hence, C and E represent the same vertex of D(S).
Moreover, since E is an annulus on S, C is an annulus on S.

Note that F, Q, B, and C are disjoint collections of domains on S, and
F ∪ B ∪ C is a collection of disjoint domains on S.

Let G = F ∪ B ∪ C. Note that G contains F and G = P ∪ Q ∪ A ∪ B ∪ C.
Let T be the collection of codomains of G on S.
Suppose that T ∈ T. Then, T is an annulus joining a nonannular domain

X in G (i.e. a domain X in P ∪ Q) to an annulus Y in G (i.e. a domain Y in
A ∪ B ∪ C).

Hence, from the above construction, we have the following result.

Proposition 5.15. Let F be a system of domains on S. Let A be the collection
of annular domains in F, let P be the collection of nonannular domains in F, let
D be the collection of annular codomains of F on S and let R be the collection
of nonannular codomains of F on S. Finally, let Q, B, and C be the collections
of domains that are constructed as above and let G = P∪Q∪A∪B∪C. Then:

(1) G is a tiling of S containing F;
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(2) G is well-defined up to isotopies on S which fix the support |F| of F

pointwise;

(3) for each domain G ∈ A ∪ B ∪ C, there exists a domain F ∈ F and an
essential boundary component ∂ of F on S such that G is isotopic to a
regular neighborhood of ∂ on S;

(4) for each domain F ∈ Q and each essential boundary component ∂ of F
on S, there exists a unique domain G ∈ A∪B∪C such that G is isotopic
to a regular neighborhood of ∂ on S;

(5) the number of elements of A ∪ B ∪ C is equal to the number of isotopy
classes of essential boundary components of domains of S in F;

(6) for each domain Q ∈ Q, there exists a unique domain R ∈ R such that
Q is contained in the interior of R and Q is isotopic to R on S;

(7) for each domain R ∈ R, there exists a unique domain Q ∈ Q such that
Q is contained in the interior of R and Q is isotopic to R on S;

(8) the number of elements of G is equal to the sum of the number of nonan-
nular domains in F, the number of nonannular codomains of F on S,
and the number of isotopy classes of essential boundary components of
domains of S in F.

Proposition 5.16. Let σ be a simplex of D(S), let F be a system of domains
on S whose elements represent the vertices of σ and let G be the tiling of S
that is associated to F given by Proposition 5.15. Then, the simplex τ of D(S)
whose vertices are represented by the domains in G is the unique maximal
simplex of D(S) which contains the simplex σ and which has the least number
of vertices among all maximal simplices of D(S) containing σ.

Definition 5.17. Let σ be a simplex of D(S). The simplex τ of D(S) that is
provided by Proposition 5.16 is called the canonical maximal simplex of D(S)
containing σ.

Proposition 5.18. Suppose that S is not a closed torus. Let X be a domain
on S. Let Y1, . . . , Yk be the k codomains of X on S. Let x, y1, . . . , yk be
the vertices of D(S) represented by X,Y1, . . . , Yk. Then {x, y1, . . . , yk} is a
k-simplex of D(S).

Proof. Let {∂j | 1 ≤ j ≤ n} be the collection of all essential boundary compo-
nents of X on S. Let {Aj | 1 ≤ j ≤ n} be a collection of disjoint annuli on X
such that Aj ∩ ∂X = ∂j , 1 ≤ j ≤ n. Let Z be the closure of the complement
of |A| in X . Note that Z is a domain on S which is isotopic to X on S. In
particular, Z represents the vertex x of D(S).
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Note that {Z, Yi | 1 ≤ i ≤ k} is a collection of disjoint domains on S and
that {Ai | 1 ≤ i ≤ n} is the collection of codomains of {Z, Yi | 1 ≤ i ≤ k}.

Suppose that {Z, Yj | 1 ≤ j ≤ k} is not a system of domains on S. It
follows from Proposition 2.23 that there exists an annular codomain Ai of
{Z, Yi | 1 ≤ i ≤ k} which joins the annulus Z to an annular codomain Yj of
X on S, where 1 ≤ i ≤ n and 1 ≤ j ≤ k.

Since X is a domain on S which is isotopic to the annular domain Z on S,
it follows that X is an annular domain on S. Hence, Yj is an annular codomain
of the annular domain X on S. It follows that S is a closed torus. This is a
contradiction.

Suppose that {Z, Yi | 1 ≤ i ≤ k} is a system of domains on S.
It follows that {[Z], [Yi] | 1 ≤ i ≤ k} is a k-simplex of D(S); that is to say,

{x, y1, . . . , yk} is a k-simplex of D(S).

In the next subsections, we describe several subcomplexes of the complex of
domains. For all these complexes, a finite collection of vertices forms a simplex
if and only if each pair of vertices in this collection can be represented by
disjoint domains on S. In other words, all these complexes are flag complexes.

5.2 The truncated complex of domains D2(S)

Definition 5.19. The truncated complex of domains of S, D2(S), is the
induced subcomplex of D(S) corresponding to those vertices of D(S) that are
not represented by biperipheral pairs of pants.

Note that D2(S) = D(S) when b ≤ 1. In particular, D2(S) = D(S) for
any closed surface S.

A biperipheral curve on S is a curve on S which is a boundary component
of a biperipheral pair of pants.

There is a unique projection

π : D(S) → D2(S)

which sends each vertex of D2(S) to itself and sends each remaining vertex
of D(S) to the vertex of D2(S) represented by a regular neighborhood of
the unique essential boundary component of any biperipheral pair of pants
representing this vertex.

For each vertex x of D2(S) which is not represented by a regular neigh-
borhood of a biperipheral curve on S, the fiber π−1(x) of π : D(S) → D2(S)
above x is equal to {x}.

Suppose that x is a vertex of D2(S) which is represented by a regular
neighborhood of a biperipheral curve γ on S.

In the case where S is a sphere with four holes, the fiber π−1(x) of π :
D(S) → D2(S) above x is the triangle of D(S) induced by the vertices of D(S)
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corresponding to a regular neighborhood of γ on S and the two biperipheral
pairs of pants on S of which γ is a boundary component.

Suppose that S is not a sphere with four holes. Then the fiber π−1(x) of
π : D(S) → D2(S) above x is the edge of D(S) induced by the vertices of D(S)
corresponding to a regular neighborhood of γ on S and the unique biperipheral
pair of pants on S of which γ is a boundary component. For most of what
concerns us here (in particular, for the rigidity result we prove in §8.2), these
edge fibers “duplicate information”. Passing from D(S) to D2(S) or, what
is essentially the same, applying the natural projection, amounts to removing
this “duplication of information”.

In the same way as for the case of the complex of domains D(S), there is
a natural inclusion

C(S) →֒ D2(S)

which maps the vertex of C(S) represented by a curve α on S to the vertex of
D2(S) represented by a regular neighborhood of α on S.

We now briefly discuss the truncated complex of domains of a few surfaces
of low genus and small number of boundary components.

If S is a sphere with at most three holes, then D2(S) is empty.
If S is a spheres with four holes, then, from Proposition 5.2 and the dis-

cussion that precedes it, D2(S) ≃ C(S) and, hence, D2(S) is an infinite set of
vertices.

If S is a closed torus, then, since S has no holes, the natural map η :
C(S) → D2(S) is an isomorphism and D(S) ≃ D2(S) is an infinite set of
vertices.

If S is a torus with one hole, then, D2(S) = D(S) ≃ C(S) × ∆1 where ∆1

is an edge.

Proposition 5.20. If S is a surface of positive genus, then dim(D2(S)) =
dim(D(S)) = 5g + 2b− 6.

Proof. If b ≤ 1, then D2(S) = D(S). Suppose b ≥ 2. If g = 1, then, S is a
torus with b holes, and we can find a pair of pants decomposition of S with
no biperipheral curves by using the decomposition pictured in Figure 13. If
g ≥ 2, then there exists a torus with b + 1 holes embedded in S, and we can
find a pair of pants decomposition of S with no biperipheral curves by using
again the decomposition pictured in Figure 13. The tiling associated to such
a pants decomposition defines at the same time a top-dimensional simplex of
S and a top-dimensional simplex of D2(S). This proves the result.

Proposition 5.21. If S is a sphere with at least four holes, then dim(D2(S)) =
dim(D(S)) − 2 = 5g + 2b− 8.



67

Figure 11. On a surface Sg,n with n ≥ 2, an ideal triangulation containing
such a configuration involving all the boundary components of Sg,n represents
a vertex of T (Sg,n) that has minimal valency.

Figure 12. A bounding pair.

Figure 13. The case where S has genus g ≥ 1 and b ≥ 2 boundary components.
Either S is a torus with b holes, or there is a torus with b + 1 holes which
is embedded in S. We can complete the system of curves represented in this
picture to a pants decomposition of S in which no curve is biperipheral.
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Proof. Suppose S is a sphere with at least four holes and let F be a tiling
defining a top-dimensional simplex of D2(S). Let C be a boundary curve
of a tile which is essential in S. Then, C is a separating curve on S. Let
S1 and S2 be the two components of S \ C. Each of these components is a
sphere with at least two holes. Since the tiling F defines a top-dimensional
simplex of D2(S), each of the components S1 and S2 contains a tile which is a
biperipheral annulus. The tiling F can be extended to a tiling F′ of S defining
a top-dimensional simplex of D(S), by adding two biperipheral pants to the
elements of F. This gives dim(D2(S)) = dim(D(S)) − 2.

Figure 14. In any pants decomposition of a sphere with b ≥ 4 holes, there are
necessarily two biperipheral pairs of pants.

Proposition 5.22. The natural projection ρ : D(S) → D2(S) is a simplicial
quotient map.

Proof. The map ρ, from the vertex set of D(S) to the vertex set of D2(S), is
surjective, and all what is needed is to show that a set of vertices of D2(S) is
a simplex if and only if there exists a simplex σ of D(S) such that τ = ρ(σ).

If S is a sphere with four holes, then the simplicial complex D2(S) is
reduced to its set of vertices, which are all annular vertices. Any simplex τ of
D2(S) is a vertex of D2(S), and its inverse image σ = ρ−1(τ) is a triangle of
D(S), whose elements are that annular vertex together with the two associated
biperipheral pairs of pants. We have τ = ρ(σ).

If S is not a sphere with four holes, then for any simplex τ of D2(S), its
inverse image σ = ρ−1(τ) consists of the union of the vertices of τ considered
as vertices in D(S) together with a unique biperipheral pair of pants for each
biperipheral vertex of τ . Consider a system of domains F on S representing
the simplex τ of D2(S). We can complete F to a system of domains F′ by
adding to each biperipheral annulus in F a corresponding biperipheral pair of
pants. The system of domains F′ represents the vertex set σ, and therefore, σ
is a simplex of D(S). We have τ = ρ(σ). This completes the proof.
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We end this section by describing some maximal simplices in D2(S).

Proposition 5.23 (Pants decompositions). Suppose that S is not a sphere
with at most three holes or a closed torus. Let C = {Ci | 1 ≤ i ≤ n} be a
maximal system of curves on S. Let X = {Xi | 1 ≤ i ≤ n} be a collection
of disjoint annuli on S such that Xi is a regular neighborhood of Ci on S,
1 ≤ i ≤ n. Let Y = {Yj | 1 ≤ j ≤ p} be the collection of components of the
closure of the complement of X in S which are not biperipheral pairs of pants
on S. Then:

(1) n = 3g − 3 + b;

(2) p = 2g − 2 + b;

(3) the subsurfaces Xi, 1 ≤ i ≤ n are annular domains on S;

(4) the subsurfaces Yj, 1 ≤ j ≤ k, are pairs of pants on S;

(5) the vertices xi, 1 ≤ i ≤ n and yj, 1 ≤ j ≤ k represented by, respectively,
Xi, 1 ≤ i ≤ n and Yj, 1 ≤ j ≤ k are the vertices of a simplex, ∆′

C , of
D(S);

(6) ∆′
C has exactly n+ p vertices;

(7) if g = 0, then ∆′
C has exactly 5g − 7 + 2b vertices;

(8) if g > 0, then ∆′
C has exactly 5g − 5 + 2b vertices;

(9) ∆′
C is a top-dimensional simplex;

Definition 5.24 (The canonical maximal simplex of D2(S) associated to C).
Let C be a system of curves on S, let ∆C be the canonical maximal simplex of
D(S) associated to C and let ∆′

C be the simplex of D2(S) whose vertices are
the vertices of ∆C which are not represented by biperipheral pairs of pants on
S. Then, ∆′

C is called the canonical maximal simplex of D2(S) associated to
C.

5.3 The complex of boundary graphs B(S)

Definition 5.25. The complex of boundary graphs of S, B(S), is the simplicial
complex whose n-simplices are collections of n + 1 distinct isotopy classes of
disjoint essential boundary graphs on S.

Note that B(S) is empty if b = 0. If S is either a disk (i.e. a sphere with
one hole), then B(S) is also empty. Note also that B(S) is a nonempty finite
set of vertices if g = 0, 2 ≤ b ≤ 3.

If S is an annulus, then S has a unique isotopy class of an essential arc,
hence B(S) has a unique vertex and no higher dimensional simplices.
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If S is a torus with one hole, then B(S) is, like A(S), an infinite vertex set.
If S is a surface of positive genus with two holes, then B(S) is disconnected

and has higher dimensional simplices. Indeed, B(S) contains infinitely many
components with exactly one vertex corresponding to essential arcs on S which
are contained in biperipheral pairs of pants on S. The boundary graph of any
such arc necessarily intersects any other boundary graph. These are the only
“isolated” vertices of B(S). All other vertices correspond to arcs which are
contained in domains on S which are monoperipheral pairs of pants on S.
Since any such domain on S is disjoint from at least one other such domain
on S, these vertices are contained in at least one edge of B(S).

When S is a pair of pants, thenB(S) has exactly six vertices, represented by
the boundary graphs that are asssociated to the six isotopy classes of essential
arcs in S (see Figure 7), and no higher dimensional simplices.

Note that the boundary graph of an arc α is not only determined by that
arc but, in turn, it determines the arc. Indeed, α is the closure in S of the
complement of Gα ∩ ∂S in Gα.

Let α and β be arcs on S. Let ϕ : S × [0, 1] → S be an isotopy from Gα

to Gβ . Note that the boundary components of the boundary graphs ϕt(Gα)
remain constant throughout the isotopy. Hence, isotopic boundary graphs
have the same boundary components. Since ∂S is invariant under any isotopy,
it follows that α is isotopic to β if and only if Gα is isotopic to Gβ . Hence,
there exists a natural bijection B0(S) → A0(S). If Gα is disjoint from Gβ ,
then α is disjoint from β. Hence, this bijection extends to a natural simplicial
inclusion

i : B(S) → A(S).

This identifies B(S) with a subcomplex of A(S) having the same vertex set as
A(S). Note, however, that the boundary graphs Gα and Gβ of disjoint arcs α
and β are disjoint only when the boundary components of S joined by α are
distinct from those joined by β. Hence, in general, the image subcomplex of
A(S) has fewer simplices than A(S). More precisely, the image subcomplex
of A(S) is the subcomplex consisting of those simplices σ of A(S) which have
the property that each pair of distinct vertices of σ are represented by disjoint
arcs α and β on S such that the boundary components of S joined by α are
distinct from those joined by β.

Assume now that b > 0 and either g > 0 or b > 3. We already noted that
A(S) is connected with infinitely many vertices. Since B0(S) ≃ A0(S), B(S)
has infinitely many vertices.

Suppose that S has exactly one boundary component. It follows that g > 0.
Note that the boundary graphs of any two arcs on X must intersect, since they
both contain the nonempty boundary of S. Hence, no two vertices of B(S)
are joined by an edge of B(S). Thus, B(S), unlike A(S), is an infinite set of
vertices and in particular it is disconnected.
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Suppose that S has exactly two boundary components. Again, it follows
that g > 0. Let α be an arc on S joining the two boundary components ∂1 and
∂2 of S. Note that the boundary graph Gβ of any arc β on S must intersect
Gα. After all, at least one of the two boundary components of S is contained
in both Gα and Gβ . It follows that the vertex of B(S) represented by α is
not connected by an edge of B(S) to any other vertex of B(S). It follows that
B(S), unlike A(S) has at least two connected components. Actually, since
g > 0, it can be shown that there are infinitely many distinct vertices of B(S)
joining the two boundary components of S. It follows that B(S), unlike A(S),
has infinitely many connected components. This shows, in particular, that the
natural inclusion map B(S) → A(S) need not be a homotopy equivalence.

Proposition 5.26. If g ≥ 1 and b ≥ 3, or if g = 0 and b ≥ 4, then B(S) is
connected.

The dimension of the complex of boundary graphs is given below (Propo-
sition 5.35).

If S is a surface with nonempty boundary and if ∂0 ⊂ ∂S is a union of
components of ∂, then we denote by B(S, ∂0) the subcomplex of B(S) induced
by the vertices represented by boundary graphs S that are associated to arcs
whose endpoints are on ∂0. We have a natural simplicial embedding

B(S, ∂0) →֒ B(S).

In particular, for any domainX on S having a nonmpty collection of bound-
ary components that are boundary components of S, we have a natural sim-
plicial embedding

B(X, ∂X ∩ ∂S) →֒ B(S).

5.4 The complex of peripheral pairs of pants P∂(S)

Definition 5.27. The complex of peripheral pairs of pants on S, P∂(S) is the
subcomplex ofD(S) induced by the set of vertices of D(S) that are represented
by peripheral pairs of pants on S.

If S is a sphere with at most three holes ora torus with at most one hole,
then P∂(S) is empty.

If S is a sphere with four holes, then, each peripheral pair of pants P
on S is a biperipheral pair of pants, and we have a simplicial isomorphism
P∂(S) ≃ C(S) × ∆1, where ∆1 is an edge.

Now we describe a natural map

η : B(S) → P∂(S).
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Suppose that S is not a sphere with at most three holes.
Let α be an arc on S. Let Pα be a regular neighborhood on S of the

boundary graph Gα of α such that Pα is an essential surface on S. Since
either g ≥ 1 or b ≥ 4, Pα is an essential peripheral pair of pants on S. It
follows that there is a natural map from the vertex set of B(S) to the vertex
set of P∂(S) which maps the vertex of B(S) represented by Gα to the vertex
of P∂(S) represented by Pα.

Note that the vertices of any simplex of B(S) can be represented by arcs
with disjoint boundary graphs. Furthermore, we may choose disjoint essential
regular neighborhoods of these disjoint boundary graphs. It follows that the
natural map B0(S) → P0(S) extends to a natural simplicial map η : B(S) →
P∂(S).

Proposition 5.28. Suppose that S is not a sphere with at most three holes.
Then the natural simplicial map η : B(S) → P∂(S) is surjective.

We cannot always identify B(S) with the complex of peripheral pairs of
pants P∂(S) on S as the natural map η : B(S) → P∂(S) need not be injective.
Indeed, η : B(S) → P∂(S) is injective precisely when b = 1; in which case,
B(S) is either empty, when g = 0, or an infinite vertex set, when g ≥ 1.

The following proposition describes precisely the failure of η : B(S) →
P∂(S) to be, in general, injective.

Proposition 5.29. Suppose that S is not a sphere with at most three holes.
Let α be an essential arc on S, Pα be an essential regular neighborhood of the
boundary graph Gα of α on S, u be the vertex of B(S) represented by Gα, z
be the vertex of P∂(S) represented by Pα, and η−1(z) be the fiber of η over the
vertex z of P∂(S). Then:

(1) if Pα has exactly one boundary component on ∂S, then η−1(w) is the
single vertex, u, of B(S);

Figure 15. A component of P∂(S0,4) and domains representing its two vertices



73

(2) if Pα has exactly two boundary components on ∂S, then η−1(w) is a set
of diameter 2 in B(S) consisting of three distinct vertices, u, v, and w,
of B(S), corresponding to arcs of S contained in Pα.

Proof. This follows easily from the classification of isotopy classes of arcs in
pairs of pants. See Figure 7.

Corollary 5.30. Suppose that S is not a sphere with at most three holes. Let
η : B(S) → P∂(S) be the natural simplicial map. If σ is a k-simplex of B(S),
then η(σ) is a k-simplex of P∂(S).

Proof. Since η : B(S) → P∂(S) is simplicial, η(σ) is an l-simplex of B(S) for
some nonnegative integer l ≤ k. Suppose that l < k and, hence, that there
exists a pair of distinct vertices u and v of σ such that η(u) = η(v). Let
z = η(u). Since S is not a sphere with two or three holes and the distinct
vertices u and v of B(S) are both in the fiber of η over z, it follows from
Proposition 5.29 that z is represented by a biperipheral pair of pants P on S
and u and v are represented by the boundary graphs of arcs α and β on S
contained in P . Note that each endpoint of α and β lies on one of the two
peripheral boundary component of P .

Since P is a domain on S and Gα and Gβ represent distinct vertices of the
simplex σ of B(S), we may assume that Gα and Gβ are disjoint. It follows
that α joins one of the two peripheral boundary components of P to itself, and
β joins the other of these two peripheral boundary components of S to itself.
It follows from the classification of isotopy classes of arcs in pairs of pants that
α and β intersect. This is a contradiction. Hence, l = k; that is to say, η(σ) is
a k-simplex of P∂(S).

Proposition 5.31. Let ∂i be a boundary component of S and σ be an essential
curve on S. Then there exists an arc α of type {i, i} on S such that σ is an
essential boundary component of a regular neighborhood Pα of Gα on S.

Proof. Since S is connected, there exists an embedded path J in S such that
J ∩ ∂i is one endpoint of J and J ∩ σ is the other endpoint of J . Let G =
∂i ∪ J ∪ σ. Let N be an essential regular neighborhood of the graph G on S.
Then N is an essential peripheral pair of pants on S with one of its essential
boundary components isotopic to σ on S. By isotoping N on S, we may
assume that σ is an essential boundary component of N . Let α be an essential
arc in N joining ∂i to itself. Then N is a regular neighborhood of Gα.

Suppose now that S is a sphere with four holes.
The structure of B(S) can be obtained from studying the natural map

η : B(S) → P∂(S). Let e be an edge of P∂(S) and P and Q be disjoint
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biperipheral pairs of pants representing the vertices x and y of e. Since S is
not a sphere with two or three holes and x is represented by the biperipheral
pair of pants P on S, it follows from Propositions 5.28 and 5.29 that η−1(x)
is equal to the set of three vertices of B(S) corresponding to the boundary
graphs on S contained in P . Note that no two of these three vertices of B(S)
are joined by an edge of B(S). Likewise, η−1(y) is equal to the set of three
vertices of B(S) corresponding to the boundary graphs on S contained in Q
and no two of these three vertices of B(S) are joined by an edge of B(S).

Note, furthermore, that all the vertices of η−1(x) are joined by edges to all
the vertices of η−1(y).

Let G(X,Y ) be a simplicial graph whose vertex set is the disjoint union of
two nonempty sets, X and Y , and whose edges are the pairs {u, v}, u ∈ X, v ∈
Y . We say that G(X,Y ) is the complete bipartite graph on X and Y .

It follows that η−1(e) is the complete bipartite graph G(η−1(x), η−1(y)) on
η−1(x) and η−1(y). Moreover, each edge of G(η−1(x), η−1(y)) is mapped by
η : B(S) → P∂(S) onto the edge e = {x, y} of P∂(S).

Let γ be an essential curve on S and A be a regular neighborhood of γ on S.
Let P and Q be the two codomains of A on S, both of which are biperipheral
pairs of pants on S. Let x and y be the vertices of P∂(S) represented by P
and Q, and Gγ = G(η−1(x), η−1(y)).

From these considerations, we deduce the following description of B(S).

Proposition 5.32. Let G(3, 3) be a complete bipartite graph on two sets of
cardinality 3. C(S) is an infinite set of vertices and B(S) ≃ G(3, 3) × C(S),
where the component of B(S) corresponding to the component G(3, 3)×{γ} of
G(3, 3) × C(S) is equal to Gγ .

Let P be a peripheral pair of pants on S. If P is monoperipheral and ∂i is
the unique boundary component of S which is a boundary component of P ,
then there exists an essential arc α on P joining ∂i to itself. If P is biperipheral
and ∂i and ∂j are the unique boundary components of S which are boundary
components of P , then there exists an essential arc α on P joining ∂i to ∂j .

There is a natural inclusion

i : P∂(S) → B(S)

which maps the vertex of P∂(S) corresponding to a peripheral pair of pants
P on S to the vertex of B(S) corresponding to the boundary graph Gα of
an essential arc α on P joining the peripheral boundary components of P as
above.

Proposition 5.33. The composition η ◦ i : P∂(S) → P∂(S) of the natural
inclusion i : P∂(S) → B(S) with the natural map η : B(S) → P∂(S) is equal
to the identity of P∂(S).
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Figure 16. A component of B(S0,4) and boundary graphs representing its six
vertices
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Proposition 5.34 (The dimension of the complex of peripheral pairs of
pants). If S is a sphere with at most three holes or a closed surface, then
P∂(S) is empty. If S is not a sphere with at most three holes or a closed sur-
face and if g = 0, then dim(P∂(S)) = b−3. If g ≥ 1, then dim(P∂(S)) = b−1.

Proof. We shall give the argument in the cases where S is not a sphere with at
most three holes or a surface with at most one hole. In all of these cases, the
calculation of dim(P∂(S)) follows from the calculation of dim(D2(S)). In genus
zero, this calculation shows, on the one hand, that each maximal collection of
disjoint peripheral pairs of pants on S exhausts the boundary of S and has
at least two biperipheral pairs of pants and, on the other hand, that there
exists a maximal collection of disjoint peripheral pairs of pants on S with
only two biperipheral pairs of pants. In positive genus, this calculation shows,
on the one hand, that each maximal collection of disjoint peripheral pairs of
pants on S exhausts the boundary of S and, on the other hand, that there
exists a maximal collection of disjoint peripheral pairs of pants on S with no
biperipheral pairs of pants. The calculation follows.

Proposition 5.35 (The dimension of the complex of boundary graphs). If
S is a closed surface or a sphere with one hole, then B(S) is empty. If S is
a sphere with two holes, then B(S) is a singleton set. If S is a sphere with
three holes, then B(S) is a set of six vertices. If S is not a closed surface or
a sphere with at most three holes, then dim(B(S)) = dim(P∂(S)). Hence, if
g = 0, then dim(B(S)) = b− 3; and, if g ≥ 1, then dim(B(S)) = b− 1.

Proof. We shall give the argument when S is not a closed surface or a sphere
with at most three holes. Since S is not a sphere with two or three holes, it
follows from Proposition 5.28 that dim(P∂(S)) ≤ dim(B(S)). Likewise, it fol-
lows from Corollary 5.30 that dim(B(S)) ≤ dim(P∂(S)). Hence, dim(B(S)) =
dim(P∂(S)). The result follows then from Proposition prop:dimPpartial.

5.5 Other subcomplexes of D(S)

The complex of elementary domains E(S) of S is the subcomplex of D(S)
induced by the set of vertices of D(S) which are represented by essential annuli
and pairs of pants on S.

Proposition 5.36 (The dimension of the complex of elementary domains
E(S)). If S is a sphere with at most three holes, then E(S) is empty. If
S is a closed torus, then the natural map η : C(S) → E(S) is an isomor-
phism and, hence, E(S) is an infinite set of vertices. Otherwise, dim(E(S)) =
dim(D(S)) = 5g + 2b− 6.
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Proof. SinceE(S) is a subcomplex ofD(S), we have dim(E(S)) ≤ dim(D(S)) =
5g+2b− 6. If S is neither a sphere with at most three hole nor a closed torus,
we let C be a pants decomposition of S, and ∆C the canonical maximal sim-
plex of D(S) associaed to C. The vertices of ∆C are in E(S), hence, ∆C is also
a simplex of E(S). Its dimension is 5g + 2b− 6. It follows that dim(E(S)) ≥
5g + 2b− 6. This shows that dim(E(S)) = dim(D(S)) = 5g + 2b− 6.

Definition 5.37. The complex of annular domains R(S) of S is the subcom-
plex of D(S) induced by the set of vertices of D(S) which are represented by
essential annuli on S.

There is a natural simplicial isomorphism

C(S) ≃ R(S)

which maps the vertex of C(S) represented by a curve α on S to the vertex of
R(S) represented bya regular neighborhood of α on S.

We shall identify C(S) with the complex of annuli R(S) on S via this
natural isomorphism.

Definition 5.38. The complex of pairs of pants on S, R(S) is the subcomplex
of D(S) induced by the set of vertices of D(S) which are represented by pairs
of pants on S.

Proposition 5.39 (The dimension of the complex of pairs of pants). If S
is a sphere with at most three holes or a closed torus, then P (S) is empty.
Otherwise, dim(P (S)) = 2g + b− 3.

Definition 5.40. The complex of thick domains TD(S) of S is the induced
subcomplex of D(S) corresponding to those vertices of D(S) which are repre-
sented by domains on S which are not annuli (i.e. which have negative Euler
characteristic).

Proposition 5.41 (The complex of thick domains TD(S)). If S is a sphere
with at most three holes or a closed torus, then TD(S) is empty. Otherwise,
dim(TD(S)) = 2g + b− 3.

6 Topology of S recognized by D(S) and D
2(S)

The aim of this section is to show on a series of specific cases how topological
information on the surface S can be recognized by combinatorial information
in the simplicial complexes D(S) and D2(S).
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The results of §6.4 and §6.5 below, entitled Recognizing annular vertices in
D2(S) and Recognizing biperipheral edges in D(S), will be used in the proofs
of the rigidity results on the automorphisms od D2(S) and D(S) that we give
in §7 and 8.

We start with the following:

6.1 Recognizing elementary vertices in D(S)

We say that a vertex of D(S) is elementary if it is represented by elementary
domains on S.

The significance of this notion appears in the following characterizations
of elementary vertices of D(S) and various subtypes of elementary vertices
of D(S). In particular, these characterizations imply that any automorphism
of D(S) preserves the subcomplex of D(S) induced by the set of elementary
vertices of D(S).

Proposition 6.1. Let x be a vertex of D(S). If Lk(Lk(x)) = {x}, then x is
elementary.

Proof. Let X be a domain on S representing x. Suppose that Lk(Lk(x)) = {x}
and x is not elementary. By Proposition 2.18, there exists a pair of curves α
and β on S such that i(α, β) 6= 0 and α and β are contained in the interior
of X . Let W be a regular neighborhood of α in the interior of X and w be
the vertex of D(S) represented by W . Since i(α, β) 6= 0, W is not isotopic to
any domain disjoint from X . Hence, w /∈ Lk(x). On the other hand, since
W ⊂ X , w ∈ St(Lk(x)). Since w /∈ Lk(x) and w ∈ St(Lk(x)), w ∈ Lk(Lk(x)).
Hence, w = x; that is to say, the annulus W is isotopic to X on S. Since X
is not an annulus, this is a contradiction. Hence, x is elementary. This proves
the proposition.

Proposition 6.2 (Recognizing elementary vertices in D(S)). Suppose that S
is not a closed torus and let x be a vertex of D(S). Then the following are
equivalent:

(1) x is elementary.

(2) There exists a simplex ∆ in D(S) such that Lk(∆) = {x}.

(3) Lk(Lk(x)) = {x}.

Proof. Proposition 6.1 shows that (3) implies (1) (without the hypothesis that
is not a closed torus).

Proposition 3.16 gives (2) ⇒ (3).
It remains only to prove that (1) implies (2).
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Suppose that x is elementary and let X be a domain on S representing x.
Since x is elementary, X is either an annulus or a pair of pants.

If X is an annulus, let ∆ be the simplex of D(S) whose vertices are the
vertices of D(S) which are represented by codomains of X on S.

If X is a pair of pants, let ∆ be the simplex of D(S) whose vertices are
the vertices of D(S) which are represented by codomains of X on S together
with the vertices of D(S) which are represented by regular neighborhoods of
essential boundary components of X on S.

SinceX is isotopic to a domain on S which is disjoint from all the codomains
of X on S and regular neighborhoods of all the essential boundary components
of X on S, it follows that x ∈ St(∆).

On the other hand, by Proposition 5.18, x /∈ ∆, hence, x ∈ Lk(∆).
Suppose, conversely, that w ∈ Lk(∆) and let W be a domain on S repre-

senting w. Since w ∈ Lk(∆), W is isotopic to a domain on S which is disjoint
from all the codomains of X on S. Hence, without loss of generality, W is
contained in X .

Suppose that X is an annulus. Then W is isotopic to X on S.
Suppose that X is a pair of pants. Suppose that W is not isotopic to X

on S. Then W is isotopic to a regular neighborhood of an essential boundary
component of X on S. This implies that w ∈ ∆. Since w ∈ Lk(∆), this is a
contradiction. Hence, W is isotopic to X on S.

In any case, therefore, W is isotopic to X on S; that is to say, w = x and,
hence, Lk(∆) ⊂ {x}.

The following is an immediate corollary of Proposition 6.2.

Corollary 6.3. Every simplicial automorphism of D(S) preserves the sub-
complex of D(S) induced by the set of elementary vertices of D(S).

6.2 Recognizing nonseparating annuli in D(S)

Proposition 6.4 (Recognizing nonseparating annuli in D(S)). Suppose that
S is not a torus with at most one hole and let x ∈ D(S). Then the following
are equivalent:

(1) There exists a nonseparating curve α whose essential regular neighbor-
hoods on S represent x.

(2) There exists a vertex y of D(S) such that Lk(y) = {x}.

Proposition 6.4 is vacuously true when S is a sphere with at most three
holes and false when S is a torus with at most one hole.
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Proof. Suppose that x is represented by an essential regular neighborhood X
of a nonseparating curve α on S. Since α is nonseparating, the complement
Y of the interior of X in S is a domain on S. Let y be the vertex of D(S)
represented by Y . Since α is nonseparating and S is not a torus, Y is not
isotopic to X on S; that is to say, x 6= y.

Let M be a regular neighborhood of α contained in the interior of X . Since
M is isotopic to X on S, M also represents x. On the other hand, since M is
disjoint from Y , {x, y} is a simplex of D(S) (and x and y are distinct vertices).
Since x is in this simplex but not equal to y, x ∈ Lk(y).

Suppose that z ∈ Lk(y). Then we may choose an essential surface Z in
S representing z and disjoint from Y . Since Z is disjoint from Y , Z is an
essential surface contained in the interior of the annulus X . It follows that Z
is isotopic to X on S; that is to say, z = x.

This proves that (1) implies (2).
Suppose that y is a vertex of D(S) such that Lk(y) = {x}. Then x 6= y

and St(y) = {x, y}.
Since x ∈ Lk(y), we may choose disjoint nonisotopic domains, X and Y ,

on S representing, respectively, x and y.
Let C be an essential boundary component of X . Since X is disjoint from

Y , there exists a regular neighborhood Z of C such that Z is disjoint from Y .
Note that Z is a domain on S. Let z be the vertex of D(S) represented by
Z. Since Y and Z are disjoint, it follows that z ∈ St(y); that is to say, either
z = x or z = y.

Suppose that z = y. In this case, it follows that Y is the regular neighbor-
hood of some essential curve E on S. Let M be a regular neighborhood of E
contained in the interior of Y . Note that M is isotopic to Y on S. Hence, M
also represents the vertex y of D(S).

Suppose that E is separating. Then the complement of the interior of Y
in S has exactly two components, U and V . Then U , V , and M are disjoint
nonisotopic domains on S. It follows that Lk(y) has at least two elements.
Indeed the vertices of D(S) represented by U and V are distinct elements of
Lk(y). Since Lk(y) = {x}, this is a contradiction.

It follows that E is nonseparating. In particular, g ≥ 1. Hence, there exists
a one-holed torus T on S with E contained in its interior. Since Y is a regular
neighborhood of E on S, we may assume that Y is contained in the interior
of T .

Let G be the boundary of T . Since (g, n) 6= (1, 0), (1, 1), it follows that G
is an essential curve on S. Note that there exists a regular neighborhood H of
G disjoint from Y .

Note furthermore that the complement of the interior of Y in T is a pair
of pants P on S.

Now H and P are nonisotopic domains in the complement of M . Moreover,
neither H nor P is isotopic to M . Again, it follows that Lk(y) has at least two
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elements. Indeed the vertices of D(S) represented by H and P are distinct
elements of Lk(y). Since Lk(y) = {x}, this is a contradiction.

It follows that z 6= y and, hence, z = x. Then X is isotopic to the regular
neighborhood Z of the essential curve C on S. This implies that X is the
regular neighborhood of some essential curve α on S. Let M be a regular
neighborhood of α contained in the interior of X . Note that M is isotopic to
X on S. Hence, M also represents the vertex x of D(S).

Suppose that α is separating. Then the complement of the interior of X in
S has exactly two components. Since Y is connected and disjoint from X , Y
is contained in the interior of one of these components, U . Let V be the other
component and v be the vertex of D(S) represented by V .

Since Y and V are disjoint domains on S, v ∈ St(y).
Since V and M are nonisotopic domains on S, v 6= x. Hence, v = y. In

other words, Y is isotopic to V on S. Hence, there exists a homeomorphism
h : S → S such that h is isotopic to the identity map of S and h(Y ) = V .

Let β be an essential boundary component of the domain Y on S. Since Y
is contained in the complement of α, α and β are disjoint essential curves on
S.

Suppose that β is not isotopic to α. Then there exists an essential curve γ
such that i(γ, α) = 0 and i(γ, β) 6= 0. This implies that γ is isotopic to a curve
in U . Since h is isotopic to the identity map of S, γ is isotopic to h(γ). Hence,
i(α, h(γ)) = i(α, γ) 6= 0. On the other hand, since α ⊂ Y and h(γ) ⊂ V and
Y ∩ V = ∅, i(α, h(γ)) = 0. This is a contradiction. Hence, β is isotopic to α.

Suppose that Y is an annulus. Then X and Y are regular neighborhoods
of isotopic curves α and β on S. Hence, X and Y are isotopic; that is to say,
x = y. This is a contradiction. Hence, Y is not an annulus.

Since Y is a domain on S and Y is not an annulus, there exists an essential
pair of pants P contained in Y having β as one of its boundary components.

Suppose that the remaining two boundary components of P are peripheral
on S, then no isotopy can carry Y into the complement of U . This is a
contradiction. Hence, there exists an essential boundary component ǫ of P on
S distinct from β.

Note that ǫ and α are disjoint.
Suppose that ǫ is isotopic to α. Then ǫ is isotopic to β. Hence, ǫ and β

are isotopic boundary components of an essential pair of pants P on S. This
implies that β is nonseparating. This is contradiction. Hence, ǫ is not isotopic
to α.

Replacing β with ǫ and repeating the above argument, we arrive, again, at
a contradiction.

Hence, α is nonseparating.
This proves that (2) implies (1).
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Corollary 6.5. Suppose that S is not a torus with at most one hole. Then ev-
ery simplicial automorphism of D(S) preserves the subcomplex of D(S) induced
by the set of vertices of D(S) which are represented by regular neighborhoods
of nonseparating curves on S.

6.3 Recognizing elementary vertices in D2(S)

The proof of the following proposition is the same as that given for Proposition
6.1 and therefore we omit it.

Proposition 6.6. Let x ∈ D2(S). If Lk(Lk(x)) = {x}, then x is elementary.

Proposition 6.7 (Recognizing elementary vertices in D2(S)). Let x ∈ D2(S).
Suppose that S is neither a sphere with four holes nor a closed torus. Then
the following are equivalent:

(1) x is elementary.

(2) There exists a simplex ∆ in D2(S) such that Lk(∆) = {x}.

(3) Lk(Lk(x)) = {x}.

Proof. Form Proposition 3.16, (2) implies (3). From Proposition 6.6, (3) im-
plies (1). It remains only to prove that (1) implies (2).

Suppose that x is elementary. Let X be a domain on S representing x.
Since x is elementary, X is either an annulus or a pair of pants.

If X is an annulus, let ∆ be the simplex of D2(S) whose vertices are the
vertices of D2(S) that are represented by codomains of X on S that are not
biperipheral pairs of pants on S.

If X is a pair of pants, let ∆ be the simplex of D2(S) whose vertices are
the vertices of D2(S) that are represented by codomains of X on S that are
not biperipheral pairs of pants on S together with the vertices of D2(S) that
are represented by regular neighborhoods of essential boundary components
of X on S.

SinceX is isotopic to a domain on S which is disjoint from all the codomains
of X on S and regular neighborhoods of all the essential boundary components
of X on S, it follows that x ∈ St(∆).

On the other hand, by Proposition 5.18, x /∈ ∆. Hence, x ∈ Lk(∆).
Suppose, conversely, that w ∈ Lk(∆). LetW be a domain on S representing

w.
Suppose that X is an annulus.
Since w ∈ Lk(∆), W is isotopic to a domain on S which is disjoint from all

the codomains of X on S which are not biperipheral pairs of pants on S.
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Hence, without loss of generality, W is contained in the union U of X with
all the codomains of X on S which are biperipheral pairs of pants on S.

Suppose, on the one hand, that no codomain of X on S is a biperipheral
pair of pants on S. It follows that U = X and, hence, W ⊂ X . Since X is an
annular domain on S and W is a domain on S contained in X , it follows that
W is isotopic to X on S. Thus, w = x.

Suppose, on the other hand, that X has a codomain Y on S which is a
biperipheral pair of pants on S. It follows that X is a separating annulus on
S and hence, has exactly one codomain Z other than Y .

Since S is not a sphere with four holes, Z is not a biperipheral pair of pants.
It follows that U = X ∪ Y . Since X is an annular domain on S and X ∩ Y

is one of the essential boundary components of X , it follows that U is isotopic
to Y on S. Hence, W is isotopic to a domain on S contained in Y . Since W
represents a vertex of D2(S) and Y is a biperipheral pair of pants on S, it
follows that W is not isotopic on S to Y . Since Y is a pair of pants and W is
a domain on S contained in Y , it follows that W is isotopic on S to a regular
neighborhood of the unique essential boundary component of Y . This implies
that W is isotopic to X on S. Thus, w = x.

This shows that w = x, if X is an annulus.
Suppose that X is a nonbiperipheral pair of pants.
Let B be the union of all the essential boundary components of X on S

that are boundary components of codomains of X on S which are biperipheral
pairs of pants. Since w ∈ Lk(∆), W is isotopic to a domain on S which is
disjoint from B and all the codomains of X on S which are not biperipheral
pairs of pants on S. It follows that W is contained in either X \ B or Y \ B
for some biperipheral codomain Y of X on S.

Suppose that W is contained in Y \B. Then W is a domain on S contained
in Y . Since W represents a vertex of D2(S) and Y is a biperipheral pair of
pants on S, it follows that W is not isotopic on S to Y . Since Y is a pair of
pants and W is a domain on S contained in Y , it follows that W is isotopic
on S to a regular neighborhood of the unique essential boundary component
of Y . Since w ∈ Lk(∆) and hence, w is not in ∆, this is a contradiction.

It follows thatW is contained inX\B. Then W is a domain on S contained
in X .

Suppose that W is not isotopic to X on S. Since X is a pair of pants and
W is a domain on S contained in X , it follows that W is isotopic on S to a
regular neighborhood of an essential boundary component of X . Since w is
not in ∆, this is a contradiction.

Hence, W is isotopic to X on S. Thus, w = x.

Proposition 6.8 (Distinguishing nonseparating annuli from regular neighbor-
hoods of biperipheral curves in D2(S)). Suppose that the genus of S is positive
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and S is not a torus with at most one hole. Let α be an essential curve on S
which is either nonseparating or biperipheral and let x be the vertex of D(S)
represented by an essential regular neighborhood of α on S. Then the following
are equivalent:

(1) α is nonseparating.

(2) There exists a top-dimensional simplex of D2(S) having x as one of its
vertices.

Proof. Suppose that α is nonseparating. There exists a pants decomposition
C of S with no biperipheral pairs of pants and such that α is one of the
curves in C. By Proposition 5.6, the corresponding simplex ∆C of D(S) is
a top dimensional simplex of D(S). On the other hand, having no vertices
corresponding to biperipheral pairs of pants, ∆C is a simplex of D2(S). Hence,
it certainly is a top-dimensional simplex of D2(S).

This proves that (1) implies (2).
Suppose that there exists a top-dimensional simplex ∆ of D2(S) having x

as one of its vertices.
By Proposition 5.20, dim(D2(S)) = dim(D(S)). Hence, ∆ is a top-dimensional

simplex of D(S). It follows that ∆ is a maximal simplex of D(S).
By Proposition 5.12, there exists a system of curves C of S such that

∆ = ∆C .
By Proposition 5.13, C is a pants decomposition. Since x is a vertex of ∆C ,

x corresponds to either a component of C or to a pair of pants of C. Since x
corresponds to α, we may assume, by isotoping α, that α is a component of
C.

Suppose that α is biperipheral. Then the biperipheral pair of pants, Y ,
corresponding to α must be a pair of pants of C. Hence, the corresponding
vertex y of D(S) is an element of ∆C . Since ∆C is a simplex of D2(C), it
follows that y is a vertex of D2(C). Since no vertex of D2(C) corresponds to a
biperipheral pair of pants, this is a contradiction. Hence, α is nonseparating.

This proves that (2) implies (1).

Proposition 6.9. Suppose that S is neither a sphere with at most three holes
nor a torus with at most one hole and let [X ] be a vertex of D2(S). Suppose
that X is not a regular neighborhood of a nonseparating curve on S nor a
regular neighborhood of a biperipheral curve on S. Then the following are
equivalent:

(1) Either X is a regular neighborhood of a nonbiperipheral separating curve,
or S is a torus with two holes and X is a nonperipheral pair of pants
on S, or S is a sphere with five holes and X is a monoperipheral pair of
pants on S.
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(2) There exists an edge e of D2(S) such that Lk(e) = {[X ]}.

Proof. Suppose that X is a regular neighborhood of a nonbiperipheral sepa-
rating curve. Let e be {[Y ], [Z]} where Y and Z are the distinct codomains
of X . Since X is nonbiperipheral, neither Y nor Z are biperipheral pairs of
pants. Hence, e is an edge of D2(S). Since Y and Z are the codomains of X ,
it follows that Lk(e) = {x}.

Suppose that S is a torus with two holes and X is a nonperipheral pair of
pants on S. Note that X has exactly two codomains, U and Z, where U is a
biperipheral pair of pants and Z is a regular neighborhood of a nonseparating
curve on S. Let Y be a regular neighborhood of the unique essential boundary
component of U such that Y and Z are disjoint.

Let e be {[Y ], [Z]}. Since Y and Z are not biperipheral pairs of pants on
S, e ⊂ D2(S). Since Y is a regular neighborhood of a biperipheral curve on
S and Z is a regular neighborhood of a nonseparating curve on S, Y and Z
are nonisotopic on S. Hence, since Y and Z are disjoint domains on S, e is an
edge of D2(S).

Since X is a pair of pants, X is isotopic to neither Y nor Z. Note that X
is isotopic to a domain on S which is disjoint from Y ∪Z. Hence, [X ] ∈ Lk(e).

Let w ∈ Lk(e). Then there exists a domain W representing w which is
disjoint from Y and Z and not isotopic to either Y or Z. Since W is disjoint
from Y and Z, W is contained in either U or X .

Suppose that W is contained in U . Since W is a domain on S and U is
a biperipheral pair of pants on S, it follows that either W is isotopic to U
or W is isotopic to a regular neighborhood of the unique essential boundary
component of U . Since W represents a vertex of D2(S), W is not isotopic
to U . Hence, W is isotopic to a regular neighborhood of the unique essential
boundary component of U . It follows that W is isotopic to either Y or Z.
This is a contradiction. Hence, W is not contained in U .

It follows that W is contained in X . Since W is a domain on S and X is a
pair of pants on S, then W is isotopic to either X or a regular neighborhood
of an essential boundary component of X .

Suppose thatW is isotopic to a regular neighborhood of an essential bound-
ary component of X . Then W is isotopic to either Y or Z. This is a con-
tradiction. Hence, W is isotopic to X on S; that is to say, w = [X ]. Hence,
Lk(e) = {[X ]}.

Suppose that S is a sphere with five holes and X is a monoperipheral pair
of pants. Let e be {[Y ], [Z]} where Y and Z are disjoint regular neighborhoods
of the two essential boundary components of X . Since S is not a torus with
one hole, Y and Z are nonisotopic. Hence, e is an edge of D2(S).

Note that X ∪ Y ∪ Z is a domain on S isotopic to X with exactly two
codomains, U and V , both of which are biperipheral pairs of pants on S.
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Moreover, the essential boundary components of U and V are isotopic to the
essential boundary components of X .

Since Y and Z are disjoint regular neighborhoods of essential boundary
components of X , X is isotopic to a surface disjoint from Y and Z. Since X
is a pair of pants and Y and Z are annuli, X is not isotopic to either Y or Z.
Hence, [X ] ∈ Lk(e).

Let w ∈ Lk(e). Then there exists a domain W representing w which is
disjoint from Y and Z and not isotopic to either Y or Z. Since W is disjoint
from Y and Z, W is contained in either X , U , or V . Since W represents a
vertex of D2(S), W is not a biperipheral pair of pants. Suppose that W is
contained in U . Then, since W is not a biperipheral pair of pants, W must be
isotopic to a regular neighborhood of the essential boundary component of U .
Hence, W is isotopic to either Y or Z. This is a contradiction. Hence, W is
not contained in U . Likewise, W is not contained in V . It follows that W is
contained in X . Since X is a monoperipheral pair of pants on S, W is isotopic
to either X or a regular neighborhood of an essential boundary component of
X . The latter possibility would imply that W is isotopic to either Y or Z,
leading to a contradiction. Hence, W is isotopic to X ; that is to say, w = [X ].

Hence, Lk(e) = {x}.
This establishes, in any case, that (1) implies (2).
Suppose that there exists an edge e of D2(S) such that Lk(e) = {[X ]}.

Let e = {y, z} and x = [X ]. Note that {x, y, z} is a triangle of D2(S). Since
Lk(e) = {x}, {x, y, z} is a maximal simplex of D2(S).

Suppose that {y, z} is an edge of D2(S) such that Lk(e) = {[X ]}.
Since [X ] is the link of a simplex of D2(S), it follows by Proposition 6.6,

that X is elementary.
Since e is an edge of D2(S), S is neither a sphere with four holes nor a

closed torus.
Let ∆ = {x, y, z}. Then ∆ is a triangle of D2(S) and a maximal simplex of

D2(S). Since D(S) is finite dimensional, there exists a maximal simplex ∆ of
D(S) containing ∆. It follows by Proposition 5.12 that there exists a system
of curves C on S such that ∆ = ∆C .

Let F = {Yi | 1 ≤ i ≤ m} be a tiling representing ∆C and {Aj | 1 ≤ j ≤ n}
be the set of ties of F.

Let B be the set of vertices of ∆ which are not vertices of ∆.
Since ∆ is a maximal simplex of D2(S), the vertices in B are represented

by biperipheral pairs of pants on S. It follows that the vertices of B are
nonannular vertices of the tiling {Yi | 1 ≤ i ≤ m}. Hence, there exists a
map f : B → ∆0 defined by the rule [Yi] 7→ [Yk], where Yk is the unique
annular tile tied to the nonannular tile Yi by an annular codomain of the tiling
{Yi | 1 ≤ i ≤ m}.

Suppose that the map B → ∆0 is not injective. Then there exist two
disjoint biperipheral pairs of pants Yi and Yj and an annular tile Yk such that
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Yi is tied by an annular codomain Ap of {Yi | 1 ≤ i ≤ m} to Yk and YK is
tied by an annular codomain Aq of {Yi | 1 ≤ i ≤ m} to Yj . It follows that
S = Yi ∪Ap ∪ Yk ∪Aq ∪ Yj and hence, S is a sphere with four holes. This is a
contradiction. Hence, the map B → ∆0 is injective.

Let r be the number of elements of B. Since ∆ is a triangle and the map
B → ∆0 is injective, it follows that r ≤ 3.

Let X , Y , and Z be the tiles of {Yi | 1 ≤ i ≤ m} which represent the
vertices x, y, and z of ∆

Suppose that r = 3. In other words, suppose that the map B → ∆ is
bijective. Since x, y, and z are vertices of ∆ and the map B → ∆ is bijective,
there exist distinct tiles U , V , and W of {Yi | 1 ≤ i ≤ m} and distinct annular
codomains, A, B, and C of {Yi | 1 ≤ i ≤ m} such that A joins U to X . B joins
V to Y , and C joins W to Z. Let R = U∪A∪X∪V ∪B∪Y ∪W ∪C∪Z and T
be the closure of the complement of R in S. Note that T is a domain on S with
at least three essential boundary components. Hence, T is neither an annulus
nor a biperipheral pair of pants. Since T is not a biperipheral pair of pants on
S, T represents a vertex t of D2(S). Note that T is isotopic to a domain on S
which is disjoint from X ∪ Y ∪Z. Since T is not an annulus, T is not isotopic
on S to X , Y , or Z. Hence, it follows that t 6= x and t ∈ Lk({y, z}) = {x}.
This is a contradiction. Hence, r < 3.

Suppose that r = 0. In other words, suppose that ∆ = ∆. Then ∆
is a maximal simplex of D(S). Hence, F = {X,Y, Z}. It follows that x ∈
Lk({y, z}, D(S)).

Suppose, conversely, that w ∈ Lk({y, z}, D(S))). It follows that W is
represented by a domain contained in the complement of Y ∪ Z in S.

Since {X,Y, Z} is a tiling of S with three tiles, the complement of Y ∪ Z
in S is equal to the union of X with the ties of F. By Proposition 5.7, each
tie of F either joins X to Y , X to Z, or Y to Z. The unique codomain X ′ of
Y ∪ Z on S which contains X is equal to the union of X with those ties of F

which join X to either Y or Z. Any remaining codomains of Y ∪ Z on S are
ties of F joining Y to Z.

Note that X ′ is isotopic to X on S.
Since W is a domain on S contained in the complement of Y ∪Z in S, either

W is contained in X or W is contained in an annular codomain of X ∪ Y ∪Z
joining Y to Z.

Suppose that W is contained in a tie A of F joining Y to Z. By Proposition
5.7, since F = {X,Y, Z} and A is a tie of F joining Y to Z, either Y or Z is
an annulus isotopic to A on S. Since W is a domain on S contained in the
annulus A on S, W is isotopic to A on S. It follows that W is isotopic to either
Y or Z on S. Since w ∈ Lk({y, z}, D(S))), this is a contradiction. Hence, W
is not contained in a tie of F joining Y to Z.

It follows that W is contained in X ′. SinceX ′ is isotopic on S to X , we may
assume that W is contained in X . Since X is elementary and W is a domain
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on S contained in X , W is isotopic to either X or a regular neighborhood of
an essential boundary component of X on S.

Suppose thatW is isotopic to a regular neighborhood of an essential bound-
ary component C of X on S. There exists a unique tie A of F having C as
an essential boundary component. Note that A is an annulus joining X to
either Y or Z. We may assume that A joins X to Y . By Proposition 5.7, since
F = {X,Y, Z} and A is a tile of F joining X to Y , either X or Y is an annulus
isotopic to A. Since C is an essential curve on S contained in the annulus A
and W is a regular neighborhood of C on S, A is isotopic to W on S. Hence,
W is isotopic to either X or Y on S.

Suppose thatW is isotopic to Y on S. Then w = y. Since w ∈ Lk({y, z}, D(S))),
this is a contradiction.

Hence, W is isotopic to X ; that is to say, w = x.
Suppose that r = 1. In other words, suppose that ∆ = {x, y, z, p} where p

is represented by a biperipheral pair of pants on S.
Let P be the tile of F representing p. Then F = {X,Y, Z, P}.
Let C be the unique essential boundary component of P . Let A be the

unique tie of F containing C. Note that A is an annulus on S joining the
nonannular tile P to an annular tile Q of F which is isotopic to A on S. It
follows that Q is a regular neighborhood of a biperipheral curve on S. Since
X is not a regular neighborhood of a biperipheral curve on S, it follows that
Q is equal to either Y or Z. We may assume that Q is equal to Y .

It follows that Y is an annular tile of F and P ∪A ∪ Y is a domain P ′ on
S which is isotopic to P on S.

Let D be the unique essential boundary component of P ′ on S and let B
be the unique tie of F containing D.

Note that B is an annulus on S joining the annular tile Y to a nonannular
tile R and that R is equal to either X or Z.

Suppose that R is equal to Z. Then Z is not an annulus.
Since X is a domain on S, X has an essential boundary component E on

S. Let F be the unique tie of F containing E. Note that F is an annulus on
S joining X to either Y or Z or P . On the other hand, no such tie can join X
to either P or Y . Hence, F joins X to Z. Since Z is not an annulus and R is
a tie of F joining Z to X , it follows that X is an annulus isotopic to F on S.

Since X is an annular domain on S and E is an essential boundary com-
ponent of X on S, there exists an essential boundary component G of X on S
which is not equal to E.

Let H be the unique tie of F containing G. As for the codomain F , it
follows that H joins X to Z.

Since F ∪X ∪H is an annulus on S joining two distinct boundary compo-
nents of the domain Z of S and the interior of F ∪X ∪H is disjoint from Z, it
follows that X is a regular neighborhood of a nonseparating curve on S. This
is a contradiction.
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Hence, R is equal to X . Then X is not an annulus.
Since Z is a domain on S, Z has an essential boundary component E on

S. Let F be the unique tie of F containing E. Note that F is an annulus on
S joining Z to either X or Y or P . On the other hand, no such tie can join Z
to either P or Y . Hence, F joins Z to X . Since X is not an annulus and R is
a tie of F joining X to Z, it follows that Z is an annulus isotopic to F on S.

Since Z is an annular domain on S and E is an essential boundary com-
ponent of Z on S, there exists an essential boundary component G of Z on S
which is not equal to E.

Let H be the unique tie of F containing G. As for the tie F , it follows that
H joins Z to X .

It follows that S = P ∪A∪ Y ∪B ∪X ∪F ∪Z ∪H . Since X is elementary
with at least 3 boundary components, one on each of the ties B, F , and H of
F, it follows that X is a pair of pants. Hence, S is a torus with two holes and
X is a nonperipheral pair of pants on S.

Suppose that r = 2. In other words, suppose that ∆ = {x, y, z, p, q} where
p and q are represented by disjoint biperipheral pairs of pants on S.

Let P and Q be the tiles of {Yi | 1 ≤ i ≤ m} representing p and q.
Then F = {X,Y, Z, P,Q}.
Let C and D be the unique essential boundary components of P and Q

and let A be the unique tie of F containing C.
Note that A is an annulus on S joining the nonannular tile P to an annular

tile R of F which is isotopic to A on S.
It follows that R is a regular neighborhood of a biperipheral curve on S.
Since X is not a regular neighborhood of a biperipheral curve on S, it

follows that R is equal to either Y or Z. We may assume that R is equal to
Y .

Let B be the unique tie of F containing D. Then B is an annulus on S
joining the nonannular tile Q to an annular tile T of F which is isotopic to B
on S. It follows that T is a regular neighborhood of a biperipheral curve on S.

Since X is not a regular neighborhood of a biperipheral curve on S, it
follows that T is equal to either Y or Z.

Suppose that T is equal to Y .
Then S = P ∪A ∪ Y ∪B ∪Q. Since {X,Y, Z, P,Q} is a tiling of S, this is

a contradiction. Hence, T is equal to Z.
By arguments used in the proof for the case where r = 1, it follows that

there exist distinct ties F and G of F joining Y to X and Z to X and, hence,
S = P ∪A ∪ Y ∪ F ∪X ∪G ∪ Z ∪B ∪Q.

Since Y is an annulus and F is a tie of F joining Y to X , X is not an
annulus.

Since X is elementary it follows that X is a pair of pants.
Since S = P ∪ A ∪ Y ∪ F ∪ X ∪ G ∪ Z ∪ B ∪ Q, this implies that S is a

sphere with five holes and X is a monoperipheral pair of pants on S.
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6.4 Recognizing annular vertices in D2(S)

Proposition 6.10. Suppose that S is not a torus with one hole and let x ∈
D2

0(S). Then the following are equivalent:

(1) x is an annular vertex of D2(S).

(2) For each vertex y of D2(S) which is not equal to x, St(x) is not contained
in St(y).

Proof. Since D2(S) is a flag complex, requiring property (2) of a vertex x of
D2(S) is equivalent to requiring that for each vertex y of D2(S) which is not
equal to x, there exists a vertex z of D2(S) such that {x, z} is a simplex of
D2(S) and {y, z} is not a simplex of D2(S).

We begin by proving that (1) implies (2). To this end, let x be an annular
vertex of D2(S) and y be a vertex of D2(S) such that y 6= x.

We shall deduce (2) by contradiction. To this end, suppose that:

(*) For every vertex z of D2(S) such that {x, z} is a simplex of
D2(S), {y, z} is a simplex of D2(S).

Since x is an annular vertex of D2(S), there exists an essential curve α on S
such that x is represented by a regular neighborhood of α on S.

Choose a maximal system C of curves on S containing α.
Let R be a regular neighborhood of the support |C| of C on S. For each

curve β in the system C, let Rβ be the unique component of R which contains
β and xβ = [Rβ ] ∈ D2(S).

Let β ∈ C. Since xα = x, it follows that {x, xβ} is a simplex of D2(S) and,
hence, by condition (*), {y, xβ} is a simplex of D2(S).

In particular, {y, x} = {y, xα} is a simplex of D2(S). Since y 6= x, this
implies that {y, x} is an edge of D2(S). Hence, S is neither a sphere with at
most four holes nor a closed torus.

In particular, the Euler characteristic of S is negative. Hence, the maximal
system C of curves on S is a pants decomposition of S. Let P be the collection
of pairs of pants of C.

Let Y be a domain on S representing y.
Since {y, xβ} is a simplex of D2(S) for every curve β in the pants decom-

position C of S, it follows that Y is a domain on S which is isotopic on S either
to Rβ for some β in C or to P for some pair of pants P in P.

Suppose that Y is isotopic on S to Rβ for some β in C. Then xβ = y 6=
x = xα and, hence, β 6= α.

Since α and β are disjoint nonisotopic essential curves on S, it follows from
Proposition 2.3 that there exists a curve γ on S such that i(α, γ) = 0 and
i(β, γ) 6= 0.

Let Z be a regular neighborhood of γ on S and z = [Z] ∈ D2(S). Since
i(α, γ) = 0, {x, z} is a simplex of D2(S). Hence, by condition (*), {y, z} is a
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simplex of D2(S). Since {y, z} is a simplex of D(S) and z is an annular vertex,
it follows that Y is isotopic on S to a domain which is disjoint from Z. Hence,
i(β, γ) = 0, which is a contradiction.

Thus, Y is isotopic on S to some pair of pants P in P.
Since P represents the vertex y of D2(S), P is not a biperipheral pair of

pants on S. Since S is not a torus with one hole and P is a domain on S which
is a nonbiperipheral pair of pants on S, it follows that there exists a pair of
distinct nonisotopic essential boundary components, ǫ and η, of P .

Since each essential boundary component of a pair of pants of a pants
decomposition of S is isotopic to one of the curves of the pants decomposition,
there exist distinct curves, β and δ of C such that ǫ and η are isotopic on S to
β and δ.

Since β 6= δ, we may assume that α 6= β. As before, it follows from
Proposition 2.3 that there exists a curve γ on S such that i(α, γ) = 0 and
i(β, γ) 6= 0.

Let Z be a regular neighborhood of γ on S and z = [Z] ∈ D2(S). Since
i(α, γ) = 0, {x, z} is a simplex of D2(S). Hence, by condition (*), {y, z} is a
simplex of D2(S). Since {y, z} is a simplex of D(S) and z is an annular vertex,
it follows that Y is isotopic on S to a domain which is disjoint from Z. Since
β is isotopic on S to ǫ and ǫ ⊂ Y , it follows that i(β, γ) = i(ǫ, γ) = 0, which is
a contradiction.

This shows that (1) implies (2).
We shall now show that (2) implies (1). To this end, suppose that the

vertex x of D2(S) is not an annular vertex of D2(S).
Let X be a domain on S representing x. Since x is not an annular vertex

of D2(S), X is not an annulus.
Since X is a domain on S, X has an essential boundary component on S.

Let Y be a regular neighborhood of an essential boundary component of X
on S and y = [Y ] ∈ D2(S). Then Y is isotopic on S to a domain on S which
is disjoint from X . Since X is not an annulus and Y is an annulus, Y is not
isotopic to X on S. It follows that y is not equal to x and {x, y} is an edge of
D2(S).

Suppose that z is a vertex of D2(S) such that {x, z} is a simplex of D2(S);
that is to say, suppose that either x = z or {x, z} is an edge of D2(S).

Suppose, on the one hand, that z = x. Then {y, z} is equal to the simplex
{x, y} of D2(S).

Suppose, on the other hand, that {x, z} is an edge of D2(S). Then z is
represented by a domain Z on S which is disjoint from the domain X on S.
Since Y is a regular neighborhood of an essential boundary component of X ,
it follows that Y is isotopic to a domain on S which is disjoint from Z. This
implies that if Z is isotopic to Y , then {y, z} is equal to the simplex {y} of
D2(S), whereas, if Z is not isotopic to Y on S, then {y, z} is an edge of D2(S).
In any case, {y, z} is a simplex of D2(S).
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This shows that (2) implies (1).

Corollary 6.11. Suppose that S is not a torus with one hole. Then every
simplicial automorphism of D2(S) restricts to a simplicial automorphism of
the subcomplex ι(C(S)) of D2(S) induced from the set of annular vertices of
D2(S).

Proof. Let ϕ ∈ Aut(D2(S)).
Suppose that x is an annular vertex of D2(S) (i.e. a vertex of ι(C(S))).

By Proposition 6.10, for each vertex y of D2(S) which is not equal to x, there
exists a vertex z of D2(S) such that {x, z} is a simplex of D2(S) and {y, z} is
not a simplex of D2(S).

Let u = ϕ(x). Since ϕ ∈ Aut(D2(S)), it follows that for each vertex v of
D2(S) which is not equal to u, there exists a vertex w of D2(S) such that
{u,w} is a simplex of D2(S) and {v, w} is not a simplex of D2(S). Hence, by
Proposition 6.10, u is a vertex of ι(C(S)). This shows that ϕ maps the zero
skeleton of ι(C(S)) into the zero skeleton of ι(C(S)).

Note that a simplex σ of D2(S) is a simplex of ι(C(S)) if and only if
each of its vertices is a vertex of ι(C(S)). It follows that ϕ restricts to a
simplicial map µ : ι(C(S)) → ι(C(S)). Likewise, the simplicial automorphism
ϕ−1 : D2(S) → D2(S) restricts to a simplicial map λ : ι(C(S)) → ι(C(S)).

Note that the restrictions µ : ι(C(S)) → ι(C(S)) and λ : ι(C(S)) →
ι(C(S)) of ϕ : D2(S) → D2(S) and ϕ−1 : D2(S) → D2(S) are inverse simpicial
maps. Hence, µ : ι(C(S)) → ι(C(S)) is a simplicial isomorphism. This proves
that ϕ : D2(S) → D2(S) restricts to a simplicial automorphism ϕ : ι(C(S)) →
ι(C(S)).

6.5 Recognizing biperipheral edges in D(S)

In this section, we give a characterization biperipheral edges of D(S) . This
will be used in the proof of the rigidity result on the automorphism group of
the complex of domains, proved in 8 below.

Each biperipheral pair of pants on S has a unique biperipheral boundary
component. It follows that there is a natural map from the set of vertices of
D(S) corresponding to biperipheral pairs of pants on S to the set of vertices
of D(S) corresponding to biperipheral curves on S. This map is a bijection if
and only if S is not a sphere with four holes.

Definition 6.12. Suppose that X and Y are domains on S such that X is a
biperipheral pair of pants on S and Y is isotopic to a regular neighborhood
of the unique essential boundary component of X on S. Then we say that
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{X,Y } is a biperipheral pair of domains on S and sometimes, a biperipheral
pair , and the edge {[X ], [Y ]} of D(S) is a biperipheral edge of D(S).

Suppose that {X,Y } is a biperipheral pair of domains on S. We may
assume that X is a biperiphal pair of pants on S. Since Y is isotopic to a
regular neighborhood of an essential boundary component of X on S, Y is
isotopic to a domain Y1 on S which is disjoint from X . Since X is not an
annulus and Y1 is an annulus, X and Y1 are not isotopic on S. It follows that
{X,Y1} is a system of domains on S and, hence, {[X ], [Y ]} = {[X ], [Y1]} is,
indeed, an edge of D(S). Since {X,Y1} is both a biperipheral pair of domains
on S and a system of domains on S, we say that {X,Y1} is a biperipheral
system of domains on S.

Proposition 6.13 (vertices with nested stars in D(S)). Let x and y be distinct
vertices of D(S). Then the following are equivalent:

(1) St(x,D(S)) ⊂ St(y,D(S)).

(2) There exist disjoint domains, X and Y , on S representing x and y which
belong to one of the following cases:

((a) X is not an annulus and Y is an annulus on S which is joined to
X by exactly one annular codomain of X ∪ Y on S.

((b) X is not an annulus and Y is an annulus on S which is joined to
X by exactly two annular codomains of X ∪ Y on S.

((c) Y is a biperipheral pair of pants on S which is joined to X by exactly
one annular codomain of X ∪ Y on S.

((d) Y is a monoperipheral pair of pants on S which is joined to X by
exactly two annular codomains of X ∪ Y on S.

((e) Y is a nonperipheral pair of pants on S which is joined to X by
exactly three annular codomains of X ∪ Y on S.

Proof. Suppose that St(x,D(S)) ⊂ St(y,D(S)).
Since x ∈ St(x,D(S)), it follows that x ∈ St(y,D(S)). Since x 6= y, this

implies that {x, y} is an edge of D(S); that is to say, x and y are represented
by disjoint nonisotopic domains X and Y on S.

Suppose that Y is not elementary. By Proposition 2.18, there exist curves
α and β on S such that i(α, β) 6= 0 and α and β are contained in the interior
of Y . Let W be a regular neighborhood of α on S such that W is contained
in the interior of Y . Since W is contained in Y and X is disjoint from Y , X is
disjoint from W . This implies that {x,w} is a simplex of D(S), where w is the
vertex of D(S) represented by W . It follows that w is a vertex of St(x,D(S))
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Figure 17. Ordered pairs of disjoint domains (X, Y ) representing ordered pairs
of vertices (x, y) that satisfy the equation St(x,D(S)) ⊂ St(y, D(S)) with x 6=
y. See Proposition 6.13.
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and, hence, w is a vertex of St(y,D(S)); that is to say, {y, w} is a simplex of
D(S). Since {y, w} is a simplex of D(S), either y = w or {y, w} is an edge of
D(S). Since Y is not an annulus on S and W is an annulus on S, Y is not
isotopic to W on S; that is to say, y 6= w. Hence, {y, w} is an edge of D(S).
It follows that W is isotopic on S to a domain on S which is disjoint from
Y . Since α is contained in W , it follows that α is isotopic on S to a curve α1

which is disjoint from Y and, hence, from β. Since α is isotopic on S to α1

and α1 and β are disjoint, it follows that i(α, β) = i(α1, β) = 0, which is a
contradiciton. Hence, Y is elementary.

Suppose that there exists an essential boundary component α of Y which
is not isotopic to any essential boundary component of X . Since X and Y
are disjoint, it follows from Proposition 2.3 that there exists an essential curve
γ on S such that i(α, γ) 6= 0 and i(β, γ) = 0 for every essential boundary
component β of X .

We may assume that the collection C of curves on S consisting of α, γ,
and the essential boundary components of X on S is in minimal position. It
follows from the above constraints on geometric intersection numbers, that γ
is disjoint from X .

Hence, there exists a regular neighborhood Z of γ on S such that Z is dis-
joint fromX . Since Z is disjoint fromX , Z represents a vertex z of St(x,D(S))
and, hence, of St(y,D(S)). Thus, {y, z} is a simplex of D(S).

Since {y, z} is a simplex of D(S), either y = z or {y, z} is an edge of D(S).
Suppose that y = z; that is to say, suppose that Y is isotopic to Z on S.

Since Z is an annulus on S, it follows that Y is an annulus on S. Thus Y
is isotopic to a regular neighborhood of its essential boundary component α.
Since Z is a regular neighborhood of γ and Y is isotopic to Z, it follows that
α is isotopic to γ. Hence, i(α, γ) = i(α, α) = 0 which is a contradiction.

Proposition 6.14 (vertices with the same star in D(S)). Let x and y be
distinct vertices of D(S). Then the following are equivalent:

(1) St(x,D(S)) = St(y,D(S)).

(2) There exist disjoint domains, X and Y , on S representing x and y which
belong to one of the following cases:

((a) X is a biperipheral pair of pants on S, Y is an annulus on S, and
X∪Y has exactly two codomains, exactly one of which is an annulus
joining X to Y .

((b) Case (2a) with the roles of X and Y interchanged.

((c) S is a sphere with four holes, X and Y are biperipheral pairs of pants
on S, and X ∪ Y has exactly one codomain, an annulus joining X
to Y .
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((d) S is a torus with two holes, X and Y are monoperipheral pairs of
pants on S, and X ∪ Y has exactly two codomains, both of which
are annuli joining X to Y .

((e) S is a closed surface of genus two, X and Y are pairs of pants on
S, and X ∪ Y has exactly three codomains, all of which are annuli
joining X to Y .

((f) S is a torus with one hole, X is a monoperipheral pair of pants on
S, Y is an annulus on S, and X ∪ Y has exactly two codomains,
both of which are annuli joining X to Y .

((g) Case (2f) with the roles of X and Y interchanged.

X

XX

X

X
Y

YY

Y

Y

(X) (Y )

(Y ) (Y )

Figure 18. The seven topological types of ordered pairs of disjoint domains
(X, Y ) representing ordered pairs of vertices (x, y) that satisfy the equation
St(x,D(S)) = St(y, D(S)) with x 6= y. See Proposition 6.14.

Proof. We begin by proving that (1) implies (2). To this end, suppose that
St(x,D(S)) = St(y,D(S)). Since x 6= y and St(x,D(S)) ⊂ St(y,D(S)), it
follows from Proposition 6.13 that x and y are represented by disjoint noniso-
topic domains X and Y satisfying one of the five cases, (2a), (2b), (2c), (2d),
or (2e), of Proposition 6.13.

Note that for such domains, X and Y , the ordered triple (S,X, Y ) is
uniquely determined up to isotopies on S. Since x 6= y and St(y,D(S)) ⊂
St(x,D(S)), it follows that (Y,X) satisfies one of the five cases obtained by
interchanging the roles of X and Y in Proposition 6.13.
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Hence, X and Y are each either an annulus or a pair of pants. Moreover, if
either is a pair of pants, all of its essential boundary components are joined to
essential boundary components of the other by annular codomains of X ∪ Y
and if either is an annulus, one or both of its essential boundary components
is joined to the other by annular codomains of X ∪ Y . Since X is not isotopic
to Y on S and X and Y are joined by at least one annular codomain of X ∪Y
on S, it follows that either X is a pair of pants on S or Y is a pair of pants
on S.

If X and Y are both pairs of pants, it follows that they have the same
number n of essential boundary components, with 1 ≤ n ≤ 3. Hence, X and
Y satisfy Case (2c), when n = 1; Case (2d), when n = 2; and Case (2e), when
n = 3.

If X is a pair of pants and Y is an annulus, it follows that X is either
biperipheral when X is joined to Y by exactly one annular codomain of X ∪
Y on S or monoperipheral when X is joined to Y by exactly two annular
codomains of X ∪ Y on S. Hence, X and Y satisfy Case (2a), when X is
biperipheral; and Case (2f), when X is monoperipheral.

Likewise, if X is an annulus and Y is a pair of pants, then X and Y satisfy
Case (2b) or Case (2g), according as Y is either biperipheral or monoperiph-
eral.

This proves that (1) implies (2).
We now prove that (2) implies (1).
To this end, suppose that X and Y are disjoint domains as in (2). We must

prove that St(x,D(S)) = St(y,D(S)). Since D(S) is a flag complex, it follows
from Proposition 3.9 that it suffices to prove that St0(x,D(S)) = St0(y,D(S)).

We shall give the arguments for Cases (2a) and (2c). The argument for
Case (2b) is similar to that for Case (2a). The argument for each of Cases
(2d), (2e), (2f), and (2g) is similar to that for Case (2c).

First, consider Case (2a). Let X and Y be as in this case.
Suppose, on the one hand, that w is a vertex of St(x,D(S)). In other words,

suppose that {x,w} is a simplex of D(S). Then either w = x or {x,w} is an
edge of D(S). If w = x, then {y, w} is the simplex {x, y} of D(S). Suppose
that {x,w} is an edge of D(S). Then w is represented by a domain W on S
which is disjoint from X . Since W is a domain on S disjoint from X and Y
is an annulus on S which is joined to X along the unique essential boundary
component of X by the unique annular codomain of X ∪ Y on S, it follows
that Y is isotopic on S to a domain which is disjoint from W . It follows, in
any case, that {y, w} is a simplex of D(S); that is to say, w is a vertex of
St(y,D(S)).

Suppose, on the other hand, that w is a vertex of St(x,D(S)). In other
words, suppose that {y, w} is a simplex of D(S). Then either w = y or {y, w}
is an edge of D(S). If w = y, then {x,w} is the simplex {x, y} of D(S).
Suppose that {y, w} is an edge of D(S). Then w is represented by a domain
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W on S which is disjoint from Y . Since W is a domain on S disjoint from
Y and Y is an annulus on S which is joined to X along the unique essential
boundary component of X by the unique annular codomain of X ∪ Y on S, it
follows that W is isotopic on S to a domain on S which is contained in either
X or the complement of X . If W is contained in the complement of X , then
{x,w} is a simplex of D(S). Suppose that W is contained in X . Since W is
a domain on S which is contained in the biperipheral pair of pants X on S,
either W is isotopic to X on S or W is isotopic to a regular neighborhood of
the unique essential boundary component of X on S and, hence, to Y . Hence,
{x,w} is equal to either the simplex {x} of D(S) or the simplex {x, y} of D(S).
It follows, in any case, that {x,w} is a simplex of D(S); that is to say, w is a
vertex of St(x,D(S)).

This proves that St0(x,D(S)) = St0(y,D(S)). This completes the argu-
ment for Case (2a).

Now consider Case (2c). Let X and Y be as in this case. Let Z be the
unique codomain of X ∪ Y on S. Note that Z is an annulus on S joining
the unique essential boundary component of X on S to the unique essential
boundary component of Y on S. Hence, S = X ∪ Z ∪ Y .

Since X and Y are biperipheral pairs of pants on S, it follows that X ∪ Z
and Y ∪ Z are biperipheral pairs of pants on S which are isotopic to X and
Y on S and Z is isotopic on S to regular neighborhoods on S of the unique
essential boundary components of each of X and Y .

Suppose, on the one hand, that w is a vertex of St(x,D(S)). In other words,
suppose that {x,w} is a simplex of D(S). Then either w = x or {x,w} is an
edge of D(S). If w = x, then {y, w} is the simplex {x, y} of D(S). Suppose
that {x,w} is an edge of D(S). Then w is represented by a domain W on S
which is disjoint from X . Since W is a domain on S disjoint from X , it follows
that W is a domain on S contained in Y ∪Z. Since Y ∪ Z is isotopic on S to
Y , we may assume that W is contained in Y . Since Y is a biperipheral pair
of pants on S, it follows that W is isotopic on S to either Y or the unique
essential boundary component of Y on S and, hence, to Z. In other words,
either w = y or w = z. Hence, {y, w} is equal to either the simplex {y} of
D(S) or the simplex {y, x} of D(S). This shows, in any case, that {y, w} is a
simplex of D(S); that is to say, w is a vertex of St(y,D(S)).

This proves that St0(x,D(S)) ⊂ St0(y,D(S)). By interchanging the roles of
X and Y , it follows that St0(y,D(S)) ⊂ St0(x,D(S)). Hence, St0(x,D(S)) =
St0(y,D(S)). This completes the argument for Case (2c).

Since, as indicated above, the remaining cases follow by similar arguments,
it follows that (2) implies (1).
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Proposition 6.15. Suppose that S is not a sphere with four holes. Let {x, y}
be a pair of distinct vertices of D(S). Let ϕ ∈ Aut(D(S)). Then {x, y} is a
biperipheral edge if and only if {ϕ(x), ϕ(y)} is a biperipheral edge.

Proof. Suppose, on the one hand, that {x, y} is a biperipheral edge of D(S).
(Note that since {x, y} is a biperipheral edge of D(S), S has at least two
boundary components.)

We may assume that x and y are represented by disjoint domains X and Y
on S satisfying case (2a) of Proposition 6.14. Let A be the unique codomain
of X ∪ Y which joins X to Y . Then X ∪A ∪ Y is a biperipheral pair of pants
P on S which is isotopic on S to X . Since S is not a sphere with four holes,
the unique codomain Q of P on S is nonelementary. Since P represents the
vertex x of D(S), it follows that Lk(x,D(S)) has infinitely many vertices.

By Proposition 6.14, St(x,D(S)) = St(y,D(S)). Since ϕ : D(S) → D(S)
is an automorphism of D(S), it follows that {ϕ(x), ϕ(y)} is an edge of D(S),
Lk(ϕ(x), D(S)) has infinitely many vertices, and St(ϕ(x), D(S)) = St(ϕ(y), D(S)).

Since ϕ(x) 6= ϕ(y) and St(ϕ(x), D(S)) = St(ϕ(y), D(S)), it follows from
Proposition 6.14 that x and y are represented by disjoint domains X ′ and Y ′

satisfying one of the seven cases of Proposition 6.14.
Suppose that {ϕ(x), ϕ(y)} is not a biperipheral edge of D(S). Then X ′

and Y ′ satisfy one of cases (2c), (2d), (2e), (2f), or (2g) of Proposition 6.14.
Note that in any case, since X ′ represents the vertex ϕ(x) of D(S), it follows
that Lk(ϕ(x), D(S)) has at most four vertices, which is a contradiction. (In
fact, Lk(ϕ(x), D(S)) has at most three vertices.) Hence, {ϕ(x), ϕ(y)} is a
biperipheral edge of D(S).

Suppose, on the other hand, that {ϕ(x), ϕ(y)} is a biperipheral edge of
D(S). Then, since ϕ−1 : D(S) → D(S) is an automorphism of D(S), it
follows from the above argument, that {x, y} is a biperipheral edge of D(S).

This completes the proof.

Remark 6.16. If S is a sphere with at most three holes, then D(S), D2(S),
and C(S) are empty. Hence, Proposition 7.3 is vacuously true.

Proposition 6.17. Suppose that S is a sphere with four holes. Let x and y
be vertices of D(S) and Ann(x) and Ann(y) be their annular links in D(S).
Then Ann(x) = Ann(y) if and only if one of the following holds:

(1) x = y

(2) x and y are annular vertices of D(S)

(3) x and y are represented by the two pairs of pants of some pants decom-
position of S.
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Proof. Note that there are two types of vertices of D(S); those which are rep-
resented by a biperipheral pair of pants on S, and those which are represented
by a regular neighborhood of a biperipheral curve on S. Let x ∈ D0(S) and
X be a domain on S representing x. If X is a biperipheral pair of pants on S,
then Ann(x) is the vertex of D(S) represented by a regular neighborhood of
the unique essential boundary component of X . If X is an annulus on S, then
Ann(x) = ∅. This implies that Ann(x) = Ann(y) in each of the three cases:
(1), (2), and (3).

Conversely, suppose that Ann(x) = Ann(y). Let X and Y be domains
on S representing x and y. We may assume that X is a biperipheral pair of
pants on S. It follows that Ann(y) = Ann(x) = {w}, where w is represented
by a regular neighborhood of the unique essential boundary component ∂ of
X . Since Ann(y) is nonempty, it follows that Y is also a biperipheral pair of
pants on S. Since Ann(y) = {w}, it follows that the unique essential boundary
component ǫ of Y is isotopic to ∂. Hence, we may assume that X and Y are
joined on S by an annulus A on S with boundary components ∂ and ǫ. SInce
X and Y are biperipheral pairs of pants on S, it follows that S = X ∪A ∪ Y .
Hence, X and Y are pairs of pants of a pants decomposition of S.

Remark 6.18. If S is a closed torus, then C(S) is a countably infinite set
of vertices. Each vertex of D(S) is an annular vertex of D(S) and, hence,
D2(S) is equal to the image of C(S) in D(S) under the natural inclusion
η : C(S) →֒ D(S), and D(S) = D2(S). Moreover, each vertex of D(S) has
empty annular link. Hence, Proposition 7.3 is false.

Proposition 6.19. Suppose that S is a torus with one hole. Let x and y be
vertices of D(S) and Ann(x) and Ann(y) be their annular links in D(S). Then
Ann(x) = Ann(y) if and only if one of the following holds:

(1) x = y

(2) x and y are annular vertices of D(S)

Proof. The proof follows along the same lines as the proof of Proposition 6.17.
In this case the two types of vertices ofD(S) are those which are represented by
monoperipheral pairs of pants on S and those which are represented by annuli
on S. Each monoperipheral pair of pants on S has two essential boundary
components joined by an annulus on S. The corresponding vertex of D(S)
has the vertex of D(S) represented by this annulus as its annular link. The
annular vertices of D(S) have empty annular links.

Proposition 6.20. Suppose that S is a torus with two holes. Let x and y
be vertices of D(S) and Ann(x) and Ann(y) be their annular links in D(S).
Then Ann(x) = Ann(y) if and only if one of the following holds:
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(1) x = y

(2) x and y are represented by the two pairs of pants of an embedded pants
decomposition of S.

Proof. Again, the proof follows along the same lines as the proof of Proposition
6.17. In this case, there are four types of vertices of D(S): those which are
represented by annuli on S; those which are represented by monoperipheral
pairs of pants on S; those which are represented by biperipheral pairs of pants
on S; and those which are represented by tori with one hole on S.

Suppose that X is an annulus. Then Ann(x) is an infinite discrete set of
vertices, corresponding to the complex of curves of a four holed sphere if X
is a regular neighborhood of a nonseparating curve on S and to the complex
of curves of a one-holed torus if X is a regular neighborhood of an essential
separating curve on S.

Suppose that X is a monoperipheral pair of pants on S. Then X has
a unique pair of essential boundary component α and β on S and a unique
codomain Y on S. Moreover, Y is a monoperipheral pair of pants on S. Let u
and v be the annular vertices of D(S) corresponding to regular neighborhoods
of α and β on S. Then Ann(x) and Ann(y) are both equal to the edge {u, v}
of D(S).

Suppose that X is a biperipheral pair of pants on S. Then X has a unique
essential boundary component ∂ and a unique codomain Y on S. Moreover Y
is a one-holed torus on S. Let w be the annular vertex of D(S) corresponding
to a regular neighborhood of ∂ on S. Then Ann(x) is the join of w to the
infinitely many annular vertices of D(S) corresponding to C(Y ). In particular,
Ann(x) is an infinite connected subcomplex of D(S).

Suppose that X is a torus with one hole. Then X has a unique essential
boundary component ∂ and a unique codomain Y on S. Moreover, Y is a
biperipheral pair of pants on S. Let y be the nonannular vertex of D(S)
corresponding to Y and w be the annular vertex of D(S) corresponding to a
regular neighborhood W of ∂ on S. Then Ann(x) = {w} and Lk(x) = {y, w}.

The result now follows by using the above descriptions of the annular links
of the four types of vertices of D(S) to compare Ann(x) with Ann(y).

Proposition 6.21. Suppose that S is a closed surface of genus two. Let x
and y be vertices of D(S) and Ann(x) and Ann(y) be their annular links in
D(S). Then Ann(x) = Ann(y) if and only if one of the following holds:

(1) x = y

(2) x and y are represented by the two pairs of pants of some embedded pants
decomposition of S.
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Proof. Again, the proof follows along the same lines as the proof of Proposition
6.17.

7 Automorphisms of the truncated complex of domains

7.1 Distinguishing vertices of D(S) via their annular
links

Definition 7.1. Let x be a vertex of D(S). The annular link of x in D(S) is
the subcomplex Ann(x) of D(S) consisting of those simplices of Lk(x,D(S))
all of whose vertices are annular.

Proposition 7.2. Suppose that S is neither a sphere with four holes nor a
torus with at most one hole. Let x and y be vertices of D(S). Suppose that x
is annular. Then the following are equivalent:

(1) Ann(x) ⊂ Ann(y)

(2) x = y or there exist disjoint domains X and Y on S representing x and
y such that X is an annulus on S, Y is a biperipheral pair of pants on S,
and X∪Y has exactly two codomains, exactly one of which is an annulus
joining X to Y .

Proof. We begin by proving that (1) implies (2). Suppose that Ann(x) ⊂
Ann(y).

Since x is annular, x is represented by a regular neighborhood X of an
essential curve α on X .

Since S has an essential curve α, S is not a sphere with at most three holes.
Since S is also not a closed torus, there exists a pants decomposition C of S
containing α. Let R be a regular neighborhood of the support |C| of C on S
and P be the collection of codomains of R on S. We may assume that X is
the unique component of R which contains the element α of C.

Note that each element of P is a pair of pants on S.
Let β be an element of C which is not equal to α. Then a regular neigh-

borhood Z of β on S represents a vertex z of Ann(x) and, hence, of Ann(y).
It follows that y is represented by a domain Y on S which is disjoint from and
not isotopic to each of the components of a regular neighborhood W of the
union of all the elements of C which are not equal to α. Since Y is connected,
Y is contained in a codomain of W on S.

Note that the unique codomain V of W on S which contains X is equal
to the union of X with those elements of P which share at least one common
essential boundary component with X . If there is exactly one such element
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of P, then W is a torus with one hole. Otherwise, there are exactly two such
elements of P and W is a sphere with four holes.

Every other codomain U of W on S is a pair of pants on S all of whose
essential boundary components are isotopic to elements of C which are not
equal to α.

Suppose that Y is contained in one of these other codomains U of W on
S. Since U is a pair of pants and Y is a domain on S contained in U , Y is
isotopic on S to a domain Y1 on S such that Y1 is equal to U or Y1 is a regular
neighborhood of an essential boundary component of U on S. Note, in any
case, that an essential boundary component δ of U is contained in Y1.

By assumption, δ is isotopic to an element β of C which is not equal to α.
Since α and β are distinct elements of the pants decomposition C, α and β are
disjoint nonisotopic essential curves on S. It follows from Proposition 2.3 that
there exists a curve γ on S such that i(γ, α) = 0 and i(γ, β) 6= 0. Since δ is
isotopic to β, i(γ, δ) = i(γ, β). Hence, i(γ, δ) 6= 0.

It follows that a regular neighborhood Z of γ on S represents a vertex z of
Ann(x) and, hence, of Ann(y). Since Y1 represents the vertex y of D(S) and Z
represents the vertex z of D(S), it follows that Z is isotopic on S to a domain
Z1 on S which is disjoint from Y1. Thus, γ is isotopic on S to a curve γ1 on S
which is disjoint from δ. Thus, i(γ, δ) = i(γ1, δ) = 0, which is a contradiction.

Hence, Y is not contained in one of these other codomains U of W on S.
It follows that Y is not isotopic on S to a domain which is contained in one of
the other codomains U of W on S.

It follows that Y is contained in the unique codomain V of W on S which
contains X .

Since S is not a sphere with four holes nor a torus with one hole, V has
an essential boundary component δ on S. Note that δ is isotopic on S to an
element β of C which is not equal to α.

As before, it follows from Proposition 2.3 that there exists a curve γ on S
such that i(γ, α) = 0 and i(γ, β) 6= 0. Since i(γ, α) = 0, we may assume that γ
is disjoint from α. Since δ is isotopic to β, i(γ, δ) = i(γ, β). Hence, i(γ, δ) 6= 0.

It follows that a regular neighborhood Z of γ on S represents a vertex z of
Ann(x) and, hence, of Ann(y). Hence, Y is isotopic on X to a domain Y1 on
X which is disjoint from Z and, hence, from γ. Note that X and Y1 are both
domains on S which are contained in V and are disjoint from γ.

We may assume that the number of points of intersection of γ with each
essential boundary component ǫ of V is equal i(γ, ǫ). Since i(γ, δ) 6= 0, it
follows that γ∩V is a nonempty disjoint union of properly embedded essential
arcs on V .

Suppose, on the one hand, that V is a torus with one hole. Then, since X
and Y1 are both domains on S contained in V and disjoint from a properly
embedded essential arc on V , it follows that X and Y1 are isotopic annuli on
S and, hence, x = y.
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Suppose, on the other hand, that V is a sphere with four holes. Then, since
X and Y1 are both domains on S contained in V and disjoint from a properly
embedded essential arc on V , it follows that Y1 is isotopic to a domain Y2 on S
which is contained in one of the two elements P of P which share an essential
boundary component with the annulus X .

Suppose that Y2 is isotopic to a regular neighborhood of an essential bound-
ary component σ of P . Note that σ is isotopic to an element β of P. Since
Y2 is not isotopic to a regular neighborhood of any element of C which is not
equal to α, it follows that β is equal to α. This implies that X is isotopic to
Y2 on S and, hence, x = y.

Hence, we may assume that Y2 is not isotopic to a regular neighborhood of
any essential boundary component of P . Since Y2 is a domain on S contained
in the pair of pants P , it follows that Y2 is isotopic to P on S.

Suppose that there exists an essential boundary component τ of P such
that τ is not isotopic to α on S. Then τ is isotopic to an element β of C which
is not equal to α.

As before, it follows from Proposition 2.3 that there exists a curve γ on S
such that i(γ, α) = 0 and i(γ, β) 6= 0.

It follows that a regular neighborhood Z of γ on S represents a vertex z of
Ann(x) and, hence, of Ann(y).

Since P represents y, it follows that Z is isotopic to a domain on S which
is disjoint from P . Hence, γ is isotopic to a curve γ1 on S which is disjoint
from τ .

This implies that i(γ, β) = i(γ1, τ) = 0, which is a contradiction.
Hence, each essential boundary component of P is isotopic to α on S.
It follows that P is either a monoperiperipheral pair of pants sharing both

of its essential boundary components with X or a biperipheral pair of pants
sharing its unique essential boundary component with X . In the former case,
it follows that S is a torus with one hole, which is a contradiction. Hence, the
latter case holds.

Since Y2 is a nonannular domain on S contained in the biperipheral pair
of pants P on S, it follows that Y2 is a biperipheral pair of pants on S whose
unique codomain on P is an annulus on S joining X to Y2.

This completes the proof that (1) implies (2). It remains to prove that (2)
implies (1).

If x = y, then Ann(x) = Ann(y) and, hence, Ann(x) ⊂ Ann(y).
Suppose that x and y are represented by disjoint domains X and Y on S

such that X is an annulus on S, Y is a biperipheral pair of pants on S, and
X ∪ Y has exactly two codomains, exactly one of which is an annulus joining
X to Y .

Let P be the unique codomain of X on S such that Y is contained in P .
Note that P is a biperipheral pair of pants on S.
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Suppose that z is an element of Ann(x). Then z is represented by an
annulus Z on S which is disjoint from and not isotopic to X .

Since Z is connected and disjoint from X , Z is contained in a codomain Q
of X on S.

Suppose that Q is equal to P . Then since Z is an annular domain on S and
P is a biperipheral pair of pants on S, it follows that Z is isotopic to a regular
neighborhood of the unique essential boundary component of P on S. Since
every essential boundary component of a codomain of X on S is an essential
boundary component of the annulus X , it follows that Z is isotopic to X on
S, which is a contradiction. Hence, Q is not equal to P .

Since any two distinct codomains of X on S are disjoint, it follows that Z
is disjoint from P and, hence, from Y . Note that the annulus Z is not isotopic
on S to the pair of pants Y . Hence, the vertex z of D(S) represented by the
annulus Z is an element of Ann(y).

This proves that (2) implies (1), completing the proof.

Proposition 7.3. Suppose that S is neither a sphere with four holes nor a
torus with at most one hole. Let x and y be vertices of D(S). Suppose that x
is annular. Then Ann(x) = Ann(y) if and only if x = y.

Proof. It suffices to prove that Ann(x) = Ann(y) implies x = y.
To this end, suppose that Ann(x) = Ann(y). Then x is annular and

Ann(x) ⊂ Ann(y). It follows from Proposition 7.2 that either (i) x = y or
(ii) x and y are represented by an annulus X on S and a biperipheral pair
of pants Y on S such that X ∪ Y has exactly two codomains, exactly one of
which is an annulus joining X to Y .

Suppose that (ii) holds. Then x is a vertex of Ann(y); that is to say, since
Ann(x) = Ann(y), x is a vertex of Ann(x). Since Ann(x) is a subcomplex of
Lk(x,D(S)), it follows that x is a vertex of Lk(x,D(S)), which is a contradic-
tion. Hence, (ii) does not hold.

It follows that (i) holds; that is to say, it follows that x = y, completing
the proof.

Proposition 7.4. Let x and y be vertices of D(S). Suppose that {x, y} is a
simplex of D(S). Then Ann(x) ⊂ Ann(y) if and only if either x = y or x and
y are represented by disjoint domains X and Y on S such that Y is a pair
of pants with each of its essential boundary components on S joined to X by
annuli.

Proof. Suppose, on the one hand, that Ann(x) ⊂ Ann(y).



106

We may assume that x is not equal to y. Then, since {x, y} is a simplex
of D(S), {x, y} is an edge of D(S). It follows that x and y are represented by
disjoint domains X and Y on S which are not isotopic to one another on S.

Suppose that Y is a nonelementary domain on S. It follows from Propo-
sition 2.18 that there exist curves α and β on S such that i(α, β) 6= 0 and α
and β are contained in the interior of Y .

Let U and V be regular neighborhoods of α and β in the interior of Y .
Suppose that V is isotopic to X on S. Then β is isotopic on S to a curve β1

which is contained in the interior of X and, hence, is disjoint from Y . Since β
is isotopic to β1 on S, i(α, β) = i(α, β1). Since α is contained in Y and β1 is
disjoint from Y , it follows that α and β1 are disjoint and, hence, i(α, β1) = 0.
We conclude that i(α, β) = 0 which is a contradiction.

ence, V is not isotopic to X on S. Since V is contained in Y and X and Y
are disjoint, X and V are disjoint domains on S. It follows that V represents
an annular vertex v of Lk(x,D(S)). This implies that v is a vertex of Ann(x)
and, hence, of Ann(y).

Since V represents v and Y represents y, it follows that V is isotopic on
S to a domain on S which is disjoint from Y . Since β is contained in V , it
follows that β is isotopic on S to a curve β2 which is disjoint from Y . Again,
this implies that i(α, β) = i(α, β2) = 0, which is a contradiction.

It follows that Y is an elementary domain on S.
Suppose that Y is an annulus. Since X and Y are disjoint nonisotopic

domains on S, it follows that the annular vertex y of D(S) represented by
Y is a vertex of Ann(x) and, hence of Ann(y). Since Ann(y) is a subcom-
plex of Lk(y,D(S)), it follows that y is a vertex of Lk(y,D(S)), which is a
contradiction.

Hence, Y is not an annulus. Since Y is an elementary domain on S, it
follows that Y is a pair of pants.

Let β be an essential boundary component of Y on S. Suppose that β
is not isotopic to any essential boundary component of X on S. Then, by
Proposition 2.3, there exists an essential curve γ on S such that i(γ, α) = 0
for every essential boundary component α of X on S and i(γ, β) 6= 0.

Since Y is disjoint from X , it follows that a regular neighborhood W of γ
on S represents a vertex w of Ann(x) and, hence, of Ann(y). It follows that
γ is isotopic on S to a curve γ1 on S which is disjoint from Y . It follows that
i(γ, β) = i(γ1, β) = 0, which is a contradiction.

Hence, the essential boundary component β of Y on S is isotopic on S to
some essential boundary component α of X on S. Since X and Y are disjoint,
it follows that there is an annulus A on S whose boundary components are α
and β.

Since Y is a pair of pants, it follows that A ∩ Y = β. Moreover, either
A ∩X = α or X ⊂ A. In the former case, A is an annulus joining β to X .
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Suppose X ⊂ A. Then X is an annulus contained in A. It follows that
A = X ∪B, where B is an annulus joining β to X .

In any case, β is joined to X by an annulus.
This proves the “only if” direction. It remains to prove the “if” direction.
If x = y, then Ann(x) = Ann(y) and, hence, Ann(x) ⊂ Ann(y).
Suppose that x and y are represented by disjoint domains X and Y on S

such that Y is a pair of pants with each of its essential boundary components
on S joined to X by annuli.

Since Y is disjoint from X on S and each of the essential boundary com-
ponents of Y on S is joined to X by an annulus, it follows that Y is isotopic
on S to the unique codomain Y1 of X on S which contains Y .

Let z be an element of Ann(x). Then z is represented by an annulus Z on
S which is disjoint from X and, hence, is contained in a codomain W of X on
S.

Suppose that W is not equal to Y1. Then Z is disjoint from Y1 and, hence,
from Y . Since Y is a pair of pants, it follows that the annulus Z is not isotopic
to Y on S. Hence, the annular vertex z of D(S) represented by Z is a vertex
of Ann(y).

Suppose that W is equal to Y1.
Since Z is an annular domain on S contained in the pair of pants Y1 on S,

it follows that Z is isotopic on S to an annulus Z1 on S which is disjoint from
Y1 and, hence, from Y . Note that the annulus Z1 is not isotopic to the pair of
pants Y on S. Hence, the vertex z of D(S) represented by Z1 is a vertex of
Ann(y).

In any case, z is an element of Ann(y).
Again, we conclude that Ann(x) ⊂ Ann(y).
In any case, Ann(x) ⊂ Ann(y).
This proves the “if” direction, completing the proof.

Proposition 7.5. Suppose that S is neither a sphere with four holes nor a
torus with at most one hole. Let x and y be vertices of D(S). Suppose that
{x, y} is not a simplex of D(S). Then Ann(x) ⊂ Ann(y) if and only if x and
y are represented by domains X and Y on S such that Y is a domain on X.

Proof. Since {x, y} is not a simplex of D(S), x 6= y.
Suppose that Ann(x) ⊂ Ann(y).
Suppose that x is an annular vertex of D(S). Since S is neither a sphere

with four holes nor a torus with at most one hole and x 6= y, it follows from
Proposition 7.2 that x and y are represented by disjoint domains X and Y on
S. Hence, {x, y} is a simplex of D(S), which is a contradiction. Therefore, x
is not an annular vertex of D(S).

It follows that a regular neighborhood Z of any essential boundary com-
ponent α of X represents a vertex z of Ann(x) and, hence, of Ann(y). It
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follows that y is represented by a domain Y on S which is not isotopic to a
regular neighborhood of any essential boundary component of X on S and is
disjoint from a regular neighborhood of the union of the essential boundary
components of X on S.

Since Y is disjoint from a regular neighborhood of the union of the essential
boundary components of X on S, either Y is disjoint from X or Y is contained
in X . Since {x, y} is not a simplex of D(S), Y is not disjoint from X . Hence,
Y is contained in X .

Since Y is a domain on S contained in the domain X on S, it follows from
Proposition 2.13, that Y is isotopic on S to either X , or a domain on X , or a
regular neighborhood of an essential boundary component of X .

Since x 6= y, Y is not isotopic on S to X . Since Y is not isotopic on S to
a regular neighborhood of any essential boundary component of X on S, we
conclude that Y is isotopic to a domain Y1 on X .

Hence, x and y are represented by domains X and Y1 on S such that Y1 is
a domain on X .

This proves the “only if” direction. It remains to prove the “if” direction.
Suppose that x and y are represented by domains X and Y on S such that

Y is a domain on X .
Let z be a vertex of Ann(x). Then z is represented by an annulus Z on

S which is disjoint from X . Since Y is contained in X , it follows that Z is
disjoint from Y .

Suppose that Y is isotopic to Z on S. Then Y is an annulus on S. Hence,
Y is a regular neighborhood of an essential curve α on S. Since Y is a domain
on X , α is an essential curve on X .

It follows from Proposition 2.10, that there exists an essential curve β on
X such that the geometric intersection number of α and β on S is not equal
to zero.

Since Z is an annular domain on S, Z is a regular neighborhood of an
essential curve γ on S. Since β is contained in X and Z is disjoint from X ,
it follows that β is disjoint from γ and, hence, i(γ, β) = 0. Since i(α, β) 6= 0,
it follows that α is not isotopic to γ on S. This implies that Y is not isotopic
to Z. Since Z is an annulus disjoint from Y and not isotopic to Y on S, it
follows that the vertex z of D(S) represented by Z is a vertex of Ann(y).

This proves the “if” direction, completing the proof.

Proposition 7.6. Suppose that S is neither a sphere with four holes nor a
torus with at most one hole. Let x and y be vertices of D(S). Then the
following are equivalent:

(1) Ann(x) = Ann(y)

(2) x = y or there exist disjoint domains X and Y on S, representing x and
y, which belong to one of the following cases:
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((a) S is a torus with two holes, X and Y are monoperipheral pairs of
pants on S, and X ∪ Y has exactly two codomains, both of which
are annuli joining X to Y .

((b) S is a closed surface of genus two, X and Y are pairs of pants on
S, and X ∪ Y has exactly three codomains, all of which are annuli
joining X to Y .

Proof. We begin by proving the “only if” direction. Suppose that Ann(x) =
Ann(y).

If x is annular, then, since Ann(x) = Ann(y), it follows from Proposition
7.3 that x = y. Likewise, if y is annular, then, since Ann(y) = Ann(x), it
follows from Proposition 7.3 that y = x. Hence, if either x or y is annular,
then x = y.

Thus, we may assume that neither x nor y is annular.
We may assume that x 6= y.
Suppose that {x, y} is not a simplex. Then, since Ann(x) ⊂ Ann(y), it

follows from Proposition 7.5, that x and y are represented by domains X and
Y on S such that Y is a domain on X . Likewise, since Ann(y) ⊂ Ann(x), it
follows from Proposition 7.5, that y and x are represented by domains Y1 and
X1 on S such that Y1 is a domain on X1. Thus X is isotopic to a domain on
Y and Y is isotopic to a domain on X , which contradicts Proposition 2.11.

Hence, {x, y} is a simplex of D(S). Since Ann(x) ⊂ Ann(y) and x 6= y, it
follows from Proposition 7.4 that x and y are represented by disjoint domains
X and Y on S such that Y is a pair of pants with each of its essential boundary
components on S joined to X by annuli. This implies that the number of
essential boundary components of Y on S is less than or equal to the number
of essential boundary components of X on S.

Likewise, since Ann(y) ⊂ Ann(x) and y 6= x, it follows from Proposition
7.4 that y and x are represented by disjoint domains Y1 and X1 on S such
that X1 is a pair of pants with each of its essential boundary components on
S joined to Y1 by annuli. Again, this implies that the number of essential
boundary components of X1 on S is less than or equal to the number of
essential boundary components of Y1 on S.

Since X and X1 both represent x, X is isotopic to the pair of pants X1

on S. This implies that X is a pair of pants on S with the same number of
essential boundary components on S as X1. Likwise, Y1 is a pair of pants on S
with the same number of essential boundary components on S as Y . Since the
number of essential boundary components of X1 on S is less than or equal to
the number of essential boundary components of Y1 on S, it follows that the
number of essential boundary components of X on S is less than or equal to
the number of essential boundary components of Y on S. Since the number of
essential boundary components of Y on S is less than or equal to the number
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of essential boundary components of X on S, we conclude that X is a pair of
pants on S with the same number of essential boundary components on S as
the pair of pants Y on S.

Thus, X and Y are disjoint pairs of pants on S with the same number n of
essential boundary components on S and the n essential boundary components
of X on S are joined by disjoint annuli to the n essential boundary components
of Y on S.

Since X is a pair of pants domain on S, 1 ≤ n ≤ 3. If n = 1, then S is a
sphere with four holes, which is a contradiction. Hence, 2 ≤ n ≤ 3. If n = 2,
then X and Y satisfy case (2a). If n = 3, then X and Y satisfy case (2b).

This completes the proof of the “only if” direction. It remains to prove the
“if” direction.

If x = y, then Ann(x) = Ann(y).
Suppose that X and Y are as in case (2a). Note that the two codomains

of X ∪ Y on S are annuli which are disjoint from and not isotopic on S to the
pairs of pants X and Y on S. Hence, they represent vertices of Ann(x) and
Ann(y).

Suppose that z is a vertex of Ann(x). Then z is represented by an annulus
on S which is contained in the unique codomain Y1 of X on S. Note that Y1 is
a pair of pants on S which is isotopic to Y on S. It follows that Z is isotopic
to a regular neighorhood of an essential boundary component α of Y1 on S.
Since Y1 is a codomain of X on S, α is an essential boundary component of X
on S. It follows that Z is isotopic to one of the two codomains of X ∪Y on S.
This proves that Ann(x) is the edge of D(S) whose vertices are represented
by the two codomains of X ∪ Y on S. Likewise, Ann(y) is equal to this edge
and, hence, Ann(x) = Ann(y).

Similarly, if X and Y are as in case (2b), then Ann(x) = Ann(y).
In any case, Ann(x) = Ann(y).
This proves the “if” direction, completing the proof.

7.2 Automorphisms of D2(S) are geometric

In this section, we prove that if S is not a sphere with at most four holes,
a torus with at most two holes, or a closed surface of genus two, then each
automorphism of D2(S) is induced by a self-homeomorphism of S which is
uniquely defined up to isotopy on S. This will imply that, under the same
hypothesis on S, Aut(D2(S)) ≃ Γ∗(S) and, if b ≤ 1, Aut(D(S)) ≃ Γ∗(S).

Lemma 7.7. Suppose that S is not a torus with one hole. Let i : C(S) →
D2(S) be the natural inclusion corresponding to forming regular neighborhoods
of essential curves on S. Let ϕ : D2(S) → D2(S) be an automorphism of
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D2(S). Then there exists an automorphism τ : C(S) → C(S) such that ϕ◦ i =
i ◦ τ .

Proof. Let a be a vertex of C(S), x = i(a), and u = ϕ(x). Note that x is
an annular vertex of D2(S). Since ϕ ∈ Aut(D2(S)), it follows by Corollary
6.11, that u is an annular vertex of D2(S). Hence, there exists a vertex b of
C(S) such that i(b) = u. Since i : C(S) → D(S) is injective, such a vertex
is unique. It follows that the correspondence a 7→ b yields a well-defined
function τ : C0(S) → C0(S) such that ϕ(i(a)) = i(τ(a)) for every vertex a of
C(S). Since curves on S are disjoint if and only if they have disjoint regular
neighborhoods, it follows that τ : C0(S) → C0(S) extends to a simplicial map
τ : C(S) → C(S). Since ϕ(i(a)) = i(τ(a)) for every vertex a of C(S), it follows
that ϕ◦i = i◦τ : C(S) → D2(S). This shows that there exists a simplicial map
τ : C(S) → C(S) such that ϕ◦i = i◦τ : C(S) → D2(S). Likewise, there exists
a simplicial map σ : C(S) → C(S) such that ϕ−1 ◦ i = i ◦ σ : C(S) → D2(S).
Since i is injective, it follows that σ is an inverse for τ . Hence, τ : C(S) → C(S)
is an automorphism of C(S).

Theorem 7.8. Suppose that S is not a sphere with four holes, a torus with
at most two holes, or a closed surface of genus two. Then the natural homo-
morphism ρ : Γ∗(S) → Aut(D2(S)) corresponding to the action of Γ∗(S) on
D2(S) is an isomorphism.

Proof. We begin by showing that ρ is surjective. To this end, we let ϕ ∈
Aut(D2(S)) and show that there exists a homeomorphism H : S → S such
that ϕ = H∗ : D2(S) → D2(S).

To simplify the exposition, we identify C(S), via i : C(S) → D(S), with its
image in D2(S) under i : C(S) → D(S). Since S is not a torus with one hole,
using this identification, we may restate Lemma 7.7 as saying that ϕ restricts
to an element τ of Aut(C(S)).

Since S is neither a sphere with at most four holes nor a torus with at most
two holes, it follows from Theorem 1 of Ivanov [25] and Theorem 1 of Korkmaz
[35] (see Luo [38] for a different proof) that there exists a homeomorphism H :
S → S such that τ = H∗ : C(S) → C(S). Let ψ = H−1

∗ ◦ ϕ : D2(S) → D2(S).
Note that ψ fixes every vertex of C(S).

We shall now show that ψ is equal to the identity map of D2(S); that is to
say, we shall show that ϕ = H∗ : D2(S) → D2(S).

Let v ∈ D2(S). Since ψ is an automorphism of D2(S) preserving C(S),
ψ(Ann(v)) = Ann(ψ(v)). On the other hand, since Ann(v) is a subcom-
plex of C(S) and ψ fixes each vertex of C(S), ψ(Ann(v)) = Ann(v). Hence,
Ann(ψ(v)) = Ann(v). Since S is not a sphere with four holes, a torus with at
most two holes, or a closed surface of genus two, it follows from Proposition
7.6 that ψ(v) = v. This proves that ϕ = H∗ : D2(S) → D2(S) and, hence, the
natural homomorphism ρ : Γ∗(S) → D2(S) is surjective.
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It remains to show that ρ : Γ∗(S) → D2(S) is injective. To this end, sup-
pose that h is an element of the kernel of ρ. Let H : S → S be a homeomor-
phism representing h. Since h ∈ ker(ρ), H induces the trivial automorphism
of D2(S).

Let α be an essential curve on S and X be a regular neighborhood of α
on S. It follows that [X ] = H∗[X ] = [H(X)] and, hence, H(X) is isotopic
to X on S. This implies that H(α) is isotopic to α on S. Thus H : S → S
preserves the isotopy class of every essential curve on S. In other words, h is
in the kernel of the action of Γ∗(S) on D2(S).

Since S is not a sphere with at most three holes, it follows from Proposition
2.6 that H : S → S is orientation-preserving. This implies that h is in the
kernel of the action of Γ(S) on D2(S). Since S is not a sphere with at most
four holes, a torus with at most two holes, or a closed surface of genus two, it
follows from [31], Lemma 5.1 and Theorem 5.3, that h is equal to the identity
element of Γ∗(S).

This proves that ρ : Γ∗(S) → D2(S) is injective, completing the proof.

8 Automorphisms of the complex of domains

8.1 Exchange automorphisms of D(S)

Throughout the rest of this chapter, let E denote the set of biperipheral edges
of D(S).

Proposition 8.1. Suppose that S is not a sphere with four holes. Then there
exists a monomorphism Φ : B(E) → Aut(D(S)) from the Boolean algebra B(E)
of all subsets of E to Aut(D(S)) such that for each collection F of biperipheral
edges of D(S), Φ(F) = ϕF exchanges the two vertices of each biperipheral edge
in F and fixes every vertex of D(S) which is not a vertex of some biperipheral
edge in F.

Proof. It follows from Propositions 6.14 and 3.28 that E is a collection of
exchangeable edges of D(S). Since S is not a sphere with four holes, no two
distinct edges in E have a common vertex. Hence, the result follows from
Proposition 3.31.

Following the language of Definition 3.32, we call the image of the Boolean
algebra B(E) under the monomorphism Φ of Proposition 8.1 the Boolean sub-
group BE of D(S). In particular, the Boolean subgroup BE is naturally iso-
morphic to the Boolean algebra B(E).
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Proposition 8.2. Let ϕ ∈ Aut(D(S)), F ⊂ E and G = ϕ(F). Then G ⊂ E

and ϕ ◦ ΦF ◦ ϕ−1 = ΦG.

Proof. This is an immediate consequence of Propositions 6.15 and 3.33.

Proposition 8.3. BE is a normal subgroup of Aut(D(S)).

Proof. This is an immediate consequence of Proposition 8.2.

Proposition 8.4. The monomorphism Φ : B(E) → Aut(D(S)) is natural
with respect to the action of the extended mapping class group Γ∗(S) on D(S).
More precisely, if h ∈ Γ∗(S) and F ⊂ E, then Φ(h∗(F)) = h∗ ◦ Φ(F) ◦ h−1

∗ .

Proof. This is an immediate consequence of Propositions 8.2 and 8.3.

Proposition 8.5. There is a natural monomorphism:

ρ : B(E) ⋊ Γ∗(S) −→ Aut(D(S))

corresponding to the action of Γ∗(S) on D(S) and the induced action on the
set E of biperipheral edges of D(S).

Proof. Since, by Proposition 8.4, the monomorphism Φ : B(E) → BE is nat-
ural, there exists a natural homomorphism ρ : B(E) ⋊ Γ∗(S) −→ Aut(D(S)).
Since a pair of pants is not homeomorphic to an annulus, a geometric auto-
morphism of D(S) cannot exchange the vertices of any biperipheral edge of
D(S). It follows that the image of the extended mapping class group Γ∗(S)
in Aut(D(S)) under the natural homomorphism ρ : Γ∗(S) → Aut(D(S)) cor-
responding to the action of Γ∗(S) on D(S) has trivial intersection with the
Boolean subgroup BE of Aut(D(S)). Since the natural homomorphism Φ :
B(E) → BE is injective, it remains only to show that ρ : Γ∗(S) → Aut(D(S))
is injective. To this end, suppose that h ∈ Γ∗(S) is in the kernel of ρ. Since
D2(S) is a subcomplex of D(S), it follows that h induces the trivial auto-
morphism of D2(S). Since S is not a sphere with four holes, a torus with
at most two holes, or a closed surface of genus two, it follows from Theo-
rem 7.8 that h is equal to the identity element of Γ∗(S). This proves that
ρ : Γ∗(S) → Aut(D(S)) is injective, completing the proof.

8.2 Automorphisms of D(S)

Throughout this section, let E denote the set of biperipheral edges of D(S).

Proposition 8.6. Suppose that S is not a sphere with four holes. Let π :
D(S) → D2(S) be the natural projection from D(S) to D2(S) sending each
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vertex of D(S) corresponding to a biperipheral pair of pants on S to the annular
vertex of D(S) corresponding to its unique essential boundary component on
S. If ϕ ∈ Aut(D(S)), then there exists a unique simplicial automorphism
ϕ∗ : D2(S) → D2(S) such that ϕ∗ ◦ π = π ◦ ϕ : D(S) → D2(S) .

Proof. Let i : D2(S) → D2(S) denote the inclusion map of the subcomplex
D2(S) of D(S) into D(S) and ϕ∗ = π ◦ ϕ ◦ i : D2(S) → D2(S). Note that
ϕ∗ : D2(S) → D2(S) is a simplicial map from D2(S) to D2(S).

We shall prove that ϕ∗ ◦ π = π ◦ ϕ : D(S) → D2(S). To this end, let x be
a vertex of D(S).

Suppose, on the one hand, that x ∈ D2(S). Then, by the definition of
π : D(S) → D2(S), π(x) = x and, hence, (ϕ∗ ◦ π)(x) = ϕ∗(π(x)) = ϕ∗(x) =
(π ◦ ϕ ◦ i)(x) = π(ϕ(i(x))) = π(ϕ(x)) = (π ◦ ϕ)(x).

Suppose, on the other hand, that x is not in D2(S). Since x ∈ D(S) and x
is not in D2(S), x is represented by a biperipheral pair of pants X on S. Let Y
be a regular neighborhood of the unique essential boundary component ofX on
S and y be the vertex of D(S) represented by Y . Then {x, y} is a biperipheral
edge of D(S). It follows from the definition of π : D(S) → D(S), that π(x) =
y = π(y). Moreover, it follows from Proposition 6.15 that {ϕ(x), ϕ(y)} is a
biperipheral edge of D(S). Hence, either ϕ(x) is represented by a biperipheral
pair of pants on S or ϕ(y) is represented by a biperipheral pair of pants on
S. In the former case,it follows from the definition of π : D(S) → D2(S), that
π(ϕ(x)) = ϕ(y) = π(ϕ(y)). In the latter case,it follows from the definition
of π : D(S) → D2(S), that π(ϕ(x)) = ϕ(x) = π(ϕ(y)). Hence, in any case,
π(ϕ(x)) = π(ϕ(y)). It follows that (ϕ∗ ◦ π)(x) = ϕ∗(π(x)) = π(ϕ(i(π(x))) =
π(ϕ(π(x)) = π(ϕ(y)) = π(ϕ(x)) = (π ◦ ϕ)(x).

This shows, in any case, that (ϕ∗ ◦ π)(x) = (π ◦ϕ)(x) and, hence, ϕ∗ ◦ π =
π ◦ ϕ : D(S) → D2(S).

Suppose that β : D2(S) → D2(S) is a simplicial map such that β ◦ π =
π ◦ ϕ : D(S) → D2(S). Then β ◦ π = ϕ∗ ◦ π : D(S) → D2(S). Since
π : D(S) → D2(S) is surjective, it follows that β = ϕ∗ : D(S) → D2(S). This
proves that there exists a unique simplicial map ϕ∗ : D2(S) → D2(S) such
that ϕ∗ ◦ π = π ◦ ϕ : D(S) → D2(S).

It remains only to prove that ϕ∗ : D2(S) → D2(S) is a simplicial au-
tomorphism of D2(S). To this end, consider the simplicial automorphism
ψ = ϕ−1 : D(S) → D(S). of D(S). Repeating the above argument, we con-
clude that there exists a unique simplicial map ψ∗ : D2(S) → D2(S) such that
ψ∗ ◦ π = π ◦ ψ : D(S) → D2(S).

It follows that (ϕ∗ ◦ ψ∗) ◦ π = ϕ∗ ◦ (ψ∗ ◦ π) = ϕ∗ ◦ (π ◦ ψ) = (ϕ∗ ◦ π) ◦ ψ =
(π ◦ ϕ) ◦ ψ = π ◦ (ϕ ◦ ψ) = π : D(S) → D2(S). Since π : D(S) → D2(S)
is surjective, it follows that ϕ∗ ◦ ψ∗ : D2(S) → D2(S) is the identity map of
D2(S). Likewise, we conclude that ψ∗ ◦ ϕ∗ : D2(S) → D2(S) is the identity
map of D2(S). Hence, ϕ∗ : D2(S) → D2(S) and ψ∗ : D2(S) → D2(S) are
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inverse simplicial maps. This shows that ϕ∗ : D2(S) → D2(S) is a simplicial
automorphism of D2(S), completing the proof.

Proposition 8.7. Suppose that S is not a sphere with four holes. Let π :
D(S) → D2(S) be the natural projection from D(S) to D2(S) sending each
vertex of D(S) corresponding to a biperipheral pair of pants on S to the annular
vertex of D(S) corresponding to its unique essential boundary component on
S. Then there exists a unique homomorphism ρ : Aut(D(S)) → Aut(D2(S))
such that for each automorphism ϕ ∈ Aut(D(S)), ρ(ϕ) is the unique simplicial
automorphism ϕ∗ : D2(S) → D2(S) such that ϕ∗ ◦ π = π ◦ϕ : D(S) → D2(S).
Moreover, there exists a natural exact sequence:

1 −→ BE −→ Aut(D(S)) −→ Aut(D2(S)).

Proof. By Proposition 8.6, there is a map ρ : Aut(D(S)) → Aut(D2(S)) such
that for each automorphism ϕ ∈ Aut(D(S)), ρ(ϕ) is the unique simplicial
automorphism ϕ∗ : D2(S) → D2(S) such that ϕ∗ ◦ π = π ◦ ϕ : D(S) →
D2(S). Suppose that ϕ : D(S) → D(S) and ψ : D(S) → D(S) are elements
of Aut(D(S)). Since ϕ∗ : D2(S) → D2(S) and ψ∗ : D2(S) → D2(S) are
automorphisms of D2(S), (ϕ∗ ◦ ψ∗) ◦ π = ϕ∗ ◦ (ψ∗ ◦ π) = ϕ∗ ◦ (π ◦ ψ) =
(ϕ∗ ◦ π) ◦ ψ = (π ◦ ϕ) ◦ ψ = π ◦ (ϕ ◦ ψ). It follows from the uniqueness clause
of Proposition 8.6 that (varphi ◦ ψ)∗ = ϕ∗ ◦ ψ∗ : D2(S) → D2(S) and, hence,
ρ : Aut(D(S)) → Aut(D2(S)) is a homomorphism. This proves the existence
and uniqueness of such a homomorphism ρ : Aut(D(S)) → Aut(D2(S)).

Since BE is by definition a subgroup of Aut(D(S)), the natural homomor-
phism BE → Aut(D(S)) is injective.

Suppose that ϕ ∈ BE. By the definition of BE, there exists a unique subset
F of the collection E such that ϕ exchanges the two vertices of each pair of
distinct vertices of D(S) in the collection F and fixes every vertex of D(S)
which is not one of the two vertices of some pair of distinct vertices of D(S)
in the collection F.

Suppose that z is a vertex of D2(S). Since π : D(S) → D2(S) is a surjective
simplicial map, there exists a vertex x of D(S) such that π(x) = z.

Suppose, on the one hand, that x is one of the two vertices of some distinct
pair of vertices {x, y} of D(S) in the collection F. Since {x, y} is in F, ϕ
interchanges x and y and, hence, ϕ(x) = y. Since F is a subset of E, it
follows from the definition of π : D(S) → D2(S) that π(y) = π(x). Hence,
ϕ∗(z) = ϕ∗(π(x)) = π(ϕ(x)) = π(y) = π(x) = z.

Suppose, on the other hand, that x is not one of the two vertices of any
distinct pair of vertices of D(S) in the collection F. Then, ϕ(x) = x. Hence,
ϕ∗(z) = ϕ∗(π(x)) = π(ϕ(x)) = π(x) = z.
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In any case, it follows that the simplicial automorphism ϕ∗ : D2(S) →
D2(S) of D2(S) fixes every vertex of D2(S) and is, hence, the identity map
of D2(S). This proves that the image of the natural homomorphism BE →
Aut(D(S)) is in the kernel of ρ : Aut(D(S)) → Aut(D2(S)).

Conversely, suppose that ϕ : D(S) → D(S) is in the kernel of ρ : Aut(D(S)) →
Aut(D2(S)). Then ϕ∗ : D2(S) → D2(S) is the identity map of D2(S). Let x
be a vertex of D(S), y = ϕ(x), and z = π(x). Since z is a vertex of D2(S), it
follows that z = ϕ∗(z) = ϕ∗(π(x)) = π(ϕ(x)) = π(y).

Hence, x and y are in the same fiber of π : D(S) → D2(S). It follows from
the definition of π : D(S) → D2(S) that either y = x or {x, y} is a pair of
distinct vertices of D(S) in the collection E.

Suppose that y is not equal to x. Then {x, y} is a pair of distinct vertices
of D(S) in the collection E. Let w = ϕ(y). Repeating the previous argument,
with (y, w, z) rather than (x, y, z). we conclude that either w = y or {y, w} is a
pair of distinct vertices of D(S) in the collection E. Suppose that w = y. Then
ϕ(y) = w = y = ϕ(x). Since ϕ : D(S) → D(S) is a simplicial automorphism
and, hence, injective, it follows that y = x, which is a contradiction. It follows
that w is not equal to y and, hence, {y, w} is a pair of distinct vertices of D(S)
in the collection E. Since {x, y} and {y, w} are both pairs of distinct vertices
of D(S) in the collection E having at least one common vertex y and no two
distinct pairs of vertices in the collection E have a common vertex, it follows
that {x, y} = {y, w}. Since w is not equal to y, it follows that w = x; that is
to say, ϕ(y) = x.

This proves that for each vertex x of D(S), either ϕ(x) = x or x is one
of the two vertices of a pair {x, y} of distinct vertices of D(S) in E and ϕ
exchanges x and y.

Let F be the subset of E consisting of all pairs of distinct vertices of D(S)
in E which are exchanged by ϕ. It follows that ϕ : D(S) → D(S) is equal to
the generalized exchange ϕF : D(S) → D(S) of D(S) associated to F. By the
definition of BE, ϕ is an element of BE. Hence, the kernel of ρ : Aut(D(S)) →
Aut(D2(S)) is in the image of the natural homomorphism BE → Aut(D(S)).
This proves that the image of the natural homomorphism BE → Aut(D(S))
is equal to the kernel of ρ : Aut(D(S)) → Aut(D2(S)).

Theorem 8.8. Suppose that S is not a sphere with at most four holes, a
torus with at most two holes, or a closed surface of genus two. Every auto-
morphism of D(S) is a composition of an exchange automorphism of D(S)
with a geometric automorphism of D(S).

More precisely, let E be the collection of biperipheral edges of D(S). Let
ϕ ∈ Aut(D(S)). Then there exists a unique subset F of E and a unique
element h of Γ∗(S) such that ϕ is equal to the composition ϕF ◦ h∗ of the
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exchange automorphism ϕF of D(S) corresponding to F and the geometric
automorphism h∗ of D(S) induced by h.

Proof. Let ϕ ∈ Aut(D(S)). We begin by proving the existence of such a factor-
ization of ϕ. Since S is not a sphere with four holes, it follows from Proposition
8.6 that there exists a unique simplicial automorphism ψ : D2(S) → D2(S)
such that ψ ◦ π = π ◦ ϕ : D(S) → D2(S).

Since S is not a sphere with at most four holes, a torus with at most two
holes, or a closed surface of genus two, it follows from Theorem 7.8 that there
exists a homeomorphism H : S → S such that ψ([X ]) = [H(X)] for every
domain X on S which is not a biperipheral pair of pants.

Let G = H−1 : S → S and G∗ : D(S) → D(S) be the geometric automor-
phism of D(S) defined by the rule G∗([X ]) = [G(X)] for every domain X on
S.

Note that G∗ ◦ ϕ : D(S) → D(S) is an automorphism of D(S). We shall
now show that G∗ ◦ ϕ is an exchange automorphism.

Since S is not a sphere with four holes and ϕ ∈ Aut(D(S)), it follows from
Proposition 6.15 that ϕ(E) = E).

Suppose that X is a domain on S which is not a biperipheral pair of pants
or a regular neighborhood of a biperipheral curve. Note that [X ] is not a
vertex of an edge in E. Since ϕ is an automorphism of D(S) and ϕ(E) = E,
it follows that ϕ([X ]) is not a vertex of an edge in E. Hence, ϕ([X ]) = [Y ]
where Y is a domain on S which is not a biperipheral pair of pants or a regular
neighborhood of a biperipheral curve.

By the definition of the natural projection π : D(S) → D2(S), π([X ]) = [X ]
and π([Y ]) = [Y ]. Hence, π(ϕ([X ]) = ϕ([X ]).

Hence, ϕ([X ]) = π(ϕ([X ])) = ψ(π([X ]) = ψ([X ]) = [H(X)].
It follows that (ϕ ◦G∗)([X ]) = ϕ[G(X)] = [H(G(X))] = [X ].
This shows that ϕ ◦G∗ fixes every vertex of D(S) which is not a vertex of

an edge in E.
By a similar argument, it follows that if X is a domain on S which is a

biperipheral pair of pants and Y is a regular neighborhood of the corresponding
biperipheral curve, then either (i) (ϕ◦G∗)([X ]) = [X ] and (ϕ◦G∗)([Y ]) = [Y ]
or (ii) (ϕ ◦G∗)([X ]) = [Y ] and (ϕ ◦G∗)([Y ]) = [X ].

Let i = ϕ ◦G∗. It follows that i is an exchange automorphism of D(S).
Since i = ϕ◦G∗, we conclude that ϕ = ϕF ◦h∗ where F is the subcollection

of E consisting of all biperipheral edges of D(S) whose vertices are exchanged
by i, and h is the isotopy class of H : S → S.

This proves the existence of such a factorization of ϕ.
Suppose that ΦF ◦ h∗ = ΦP ◦ q∗. Then ΦP△F = (g · h−1)∗.
Since an automorphism of D(S) which is induced by a homeomorphism of

S cannot exchange an annular vertex with a nonannular vertex of D(S), it
follows that P△F = ∅. In other words, F = P.
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Since ΦP△F = (g · h−1)∗ and F = P, it follows that (g · h−1)∗ is the trivial
automorphism id : D(S) → D(S) of D(S). In other words, g ·h−1 acts trivially
on D(S).

Since D2(S) is a subcomplex of D(S), it follows that g · h−1 acts trivially
on D2(S). Since S is not a sphere with four holes, a torus with at most two
holes, or a closed surface of genus two, it follows from Theorem 7.8 that g ·h−1

is equal to the identity element of Γ∗(S). In other words, g is equal to h.
This proves the uniqueness of such a factorization of ϕ, completing the

proof.

We can summarize the preceding results as follows.

Theorem 8.9. Suppose that S is not a sphere with at most four holes, a
torus with at most two holes, or a closed surface of genus two. Then we have
a natural commutative diagram of exact sequences:

1 −→ B(E) −→ B(E) ⋊ Γ∗(S) −→ Γ∗(S) −→ 1
≃

y ≃
y ≃

y
1 −→ BE −→ Aut(D(S)) −→ Aut(D2(S)) −→ 1

Proof. The exactness of the first row of the above diagram follows immediately
from the definition of a semi-direct product.

The commutativity of the left-hand square follows from Propositions 8.1
and 8.5.

The commutativity of the right-hand square follows from Propositions 8.5
and 8.6.

The isomorphism B(E)
≃
→ BE follows from Proposition 8.1 and the defini-

tion of the Boolean subgroup BE of Aut(D(S)).
Since S is not a sphere with at most four holes, a torus with at most two

holes, or a closed surface of genus two, it follows from Theorem 7.8 that the

natural homomorphism Γ∗(S)
≃
→ Aut(D2(S)) is an isomorphism.

Since the natural homomorphisms B(E) ⋊ Γ∗(S) −→ Γ∗(S) and Γ∗(S) →
Aut(D2(S)) are both surjective, it follows from the commutativity of the right-
hand square that the natural homomorphisms Aut(D(S)) → Aut(D2(S)) is
also surjective. Hence, since S is not a sphere with four holes, the exactness
of the second row of the above diagram follows from Proposition 8.7.

This shows that the diagram is a commutative diagram of exact sequences.
Since the vertical arrows on the left and right are both isomorphisms, it fol-
lows from standard results that the natural monomorphism B(E) ⋊ Γ∗(S) →
Aut(D(S)) of Proposition 8.5 is an isomorphism, completing the proof.
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simplicial, 33

regular neighborhood, 16
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