SYMPLECTIC NORMAL CONNECT SUM

JOHN D. MCCARTHY AND JON G. WOLFSON

0 . Introduction

Since the publication in 1985 of Gromov's paper [G1] on pseudo-holomorphic curves in symplectic manifolds there has been an increased interest in symplectic manifolds and symplectic topology. In particular, compact symplectic manifolds have become a focus of much study. In 1977 Thurston [T] gave an example of a compact symplectic manifold with first Betti number three, showing that not all compact symplectic manifolds admit a Kähler structure. However, the difference between the family of compact symplectic manifolds and compact Kähler manifolds remains unclear. In fact there are essentially only two general procedures for constructing compact symplectic manifolds: the symplectic fibration construction, originally due to Thurston, and blowing up along symplectic submanifolds, introduced by Gromov [G2]. Recently R. Gompf has introduced a new construction. He considers two symplectic 4-manifolds each containing the compact surface Σ symplectically embedded with trivial normal bundle. By the symplectic neighborhood theorem a tubular neighborhood of Σ in each 4 -manifold is symplectomorphic to $\Sigma \times D^{2}$ equipped with the product symplectic structure. It follows then that the complements of the tubular neighborhoods of Σ in the symplectic 4-manifolds can be symplectically glued together along tubular shell neighborhoods of Σ by the map $I d \times \phi$ where ϕ is an area preserving map of the annulus which interchanges the boundaries. Gompf proceeded by using this construction to show that a compact simply-connected 4-manifold not admitting any complex structure, which he constructed with T. Mrowka [G$\mathrm{M}]$, admits a symplectic structure. He thus produced the first example of a compact simply-connected symplectic 4-manifold not admitting any Kähler structure.

In this paper we introduce a construction of four dimensional symplectic manifolds, that we call symplectic normal connect sum which generalizes Gompf's construction. Our procedure constructs a new symplectic 4manifold $X=X_{-1} \#_{\Psi} X_{1}$ from pairs $\left(X_{i}, \Sigma_{i}\right), i=-1,1$, where the X_{i} are symplectic 4 -manifolds and the Σ_{i} are compact embedded symplectic surfaces of genus g and of self-intersection n (for $i=1$) and $-n$ (for $i=-1$), $n \geq 0$. We symplectically glue the complements of tubular neighborhoods of Σ_{-1} in X_{-1} and Σ_{1} in X_{1} along tubular shell neighborhoods of Σ_{-1} and

[^0]Σ_{1}. Changing the gluing map Ψ in general produces different symplectic manifolds X. The details of this construction are given in section 1 .

We were led to our construction by the announcement of R. Gompf described above. In fact Gompf's construction is the symplectic normal connect sum for $n=0$. However, Gompf's procedure relies on the product structure of a neighborhood of Σ to construct the gluing map $I d \times \phi$. Thus, a priori, it is not clear that there is a more general version of his construction and, if there is, what form it should take. Moreover to prove the non-zero self-intersection symplectic gluing we use ideas from symplectic reduction, in particular, a result of Duistermaat-Heckman [D-H]. The symplectic normal connect sum when $n \neq 0$ cannot be obtained from the symplectic neighborhood theorem alone. Our aim in this paper is both to describe the symplectic normal connect sum and to provide examples illustrating the full range of the theorem. In particular we give examples of symplectic manifolds which can only be obtained by the symplectic normal connect sum along surfaces of non-zero self-intersection.

Independently Gompf has generalized his original result and developed his own version of the symplectic normal connect sum. His result is a symplectic normal connect sum along codimension 2 symplectic submanifolds of $2 m$-dimensional symplectic manifolds for $m \geq 2$. His proof does not use symplectic reduction. In the appendix we have given a short and simple proof of this result using our technique. At this time we know of no applications of this generalization when $m>2$ and the normal bundles of the submanifolds are non-trivial.

The sections of the paper following section 1 are devoted to using the symplectic normal connect sum to construct new examples of compact symplectic four manifolds. The basic building blocks we use are pairs $\left(X_{i}, \Sigma_{i}\right)$, $i=-1,1$, where the X_{i} are Kähler surfaces and the Σ_{i} are nonsingular complex curves which satisfy the conditions necessary to build the symplectic normal connect sum. While it is probably the case that, in general, the symplectic form ω that we construct on $X=X_{-1} \#_{\Psi} X_{1}$ is not itself Kähler, it is difficult to rule out this possibility. If this occurs then the symplectic form ω cannot be considered new. Consequently we construct examples of symplectic manifolds which cannot admit Kähler structures. We use two different invariants to ensure this, namely, b_{1}, the first betti number and π_{1}, the fundamental group.

It is well known that, by Hodge theory, the first betti number of a compact Kähler manifold is even. We exploit this by constructing compact symplectic manifolds with odd betti number as follows: Let $\jmath_{i}: \Sigma_{i} \hookrightarrow X_{i}$ be the inclusions and let $\left(J_{i}\right)_{*}: H_{1}\left(\Sigma_{i}\right) \rightarrow H_{1}\left(X_{i}\right)$ be the induced maps in homology. We show that if the kernels of both homomorphisms $\left(J_{i}\right)_{*}, i=-1,1$, are proper then the gluing map Ψ can be chosen so that $b_{1}\left(X_{-1} \#_{\Psi} X_{1}\right)$ is odd. We then use this result and the fibered product construction of algebraic geometry to build infinite families of compact symplectic manifolds with odd betti numbers. These examples can only be constructed by the symplectic
normal connect sum along surfaces of non-zero self-intersection. Among these examples we have an infinite family built from pairs, $X_{i}, i=1,-1$ of minimal Kähler ruled surfaces. In particular, we have
Theorem . There are pairs $\left(X_{i}, \Sigma_{i}\right), i=1,-1$, where the X_{i} are minimal ruled surfaces and the Σ_{i} are embedded holomorphic curves of genus g and self-intersection numbers $4+4 a,(i=1)$, $-(4+4 a),(i=-1), a \geq 0$ and gluing maps Φ so that the symplectic normal connect sum $X=X_{-1} \#_{\Psi} X_{1}$ along the Σ_{i} satisfies:

$$
\begin{gathered}
b_{1}(X) \text { odd } \\
\text { signature }(X)=0 \\
c_{2}(X)=\chi(X)=4+12 a+8 a^{2} \\
c_{1}^{2}(X)=8+24 a+16 a^{2} .
\end{gathered}
$$

The symplectic manifolds X of this theorem cannot be constructed using the self-intersection zero symplectic connect sum. The theorem requires the symplectic normal connect sum for non-zero self-intersection surfaces. Taking $a=0$ in the theorem we have constructed a compact symplectic manifold with Chern numbers $c_{1}^{2}=8$ and $c_{2}=4$ and with $b_{1}=1$. For more details see Example 5.3 below.

Next we use the fundamental group as an invariant. Gompf [Go] has shown that any finitely presented group can be realized as the fundamental group of a compact symplectic manifold. However there are still many basic questions about the fundamental group of a compact symplectic manifold. Consider the class of compact Kähler surfaces with fixed Chern numbers $c_{1}^{2}>0$ and $c_{2}>0$. From the work of Gieseker it follows that there are only finitely many homeomorphism types of such manifolds and, hence, only finitely many fundamental groups. Does this remain true if we consider, instead, the class of compact symplectic manifolds? We show that it is false by proving:
Theorem . There exists an infinite family $\left\{Y_{\alpha}: \alpha \in \mathbf{N}\right\}$ of symplectic normal connect sums all with the same Chern numbers, $c_{1}^{2}>0$ and $c_{2}>0$, but each with different fundamental group.

Moreover, using Gieseker's result, at most only finitely many of these manifolds can be Kähler. In fact, using results of Arapura, Bressler, Ramachandran $[\mathrm{A}-\mathrm{B}-\mathrm{R}]$ and Johnson, Rees $[\mathrm{J}-\mathrm{R}]$ we show that none of the Y_{α} are Kähler. For more details see Example 6.2 below.

We are indebted to Dusa McDuff for a simple construction of an S^{1} invariant symplectic form on a ruled surface and for pointing out the reference [A].

1. Symplectic Normal Connect Sum

Let $X_{i}, \quad i=-1,1$, be smooth oriented four manifolds and suppose $\Sigma_{i} \hookrightarrow$ X_{i} are embedded oriented surfaces both of genus g with normal bundles ν_{i}.

Suppose the euler numbers $\chi\left(\nu_{i}\right)$ satisfy:

$$
\begin{equation*}
\chi\left(\nu_{1}\right)=+n, \quad \chi\left(\nu_{-1}\right)=-n . \tag{1.1}
\end{equation*}
$$

where $n \geq 0$. Let $N\left(\Sigma_{i}\right)$ and $\mathcal{N}\left(\Sigma_{i}\right)$ denote tubular neighborhoods of Σ_{i} such that the closure $\overline{\mathcal{N}\left(\Sigma_{i}\right)}$ of $\mathcal{N}\left(\Sigma_{i}\right)$ is contained in $N\left(\Sigma_{i}\right)$. Let W_{i} denote the corresponding tubular shell neighborhood $N\left(\Sigma_{i}\right) \backslash \overline{\mathcal{N}\left(\Sigma_{i}\right)}$ of Σ_{i} in X_{i}. Suppose that $\Psi: W_{-1} \rightarrow W_{1}$ is an orientation preserving diffeomorphism taking the inside end of the tubular shell neighborhood W_{-1} to the outside end of W_{1}. We define the normal connect sum of X_{-1} and X_{1} along Σ_{-1} and Σ_{1} via Ψ to be the smooth oriented 4 -manifold X obtained by gluing $X_{-1} \backslash \overline{\mathcal{N}\left(\Sigma_{-1}\right)}$ and $X_{1} \backslash \overline{\mathcal{N}\left(\Sigma_{1}\right)}$ along the tubular shell neighborhoods W_{-1} and W_{1} using Ψ. We will denote X by $X_{-1} \#_{\Psi} X_{1}$. Of course the importance of (1.1) in this operation is to insure that the gluing can be done to equip X with the orientation induced from both X_{-1} and X_{1}.

Suppose now that $\left(X_{i}, \omega_{i}\right), i=-1,1$ are smooth symplectic four manifolds (compact or not compact, with or without boundary). We have:

Theorem 1.1 (Symplectic normal connect sum). Suppose that $\Sigma_{i} \hookrightarrow X_{i}$ are symplectically imbedded compact surfaces of genus g and that $\chi\left(\nu_{-1}\right)=$ $-\chi\left(\nu_{1}\right)$ where ν_{i} is the normal bundle of Σ_{i} in X_{i}. Then after rescaling ω_{1} or ω_{-1} there exists a symplectomorphism Ψ of tubular shell neighborhoods of Σ_{-1} and Σ_{1} so that the normal connect sum $X=X_{-1} \#_{\Psi} X_{1}$ has a symplectic structure ω which agrees with the rescaled ω_{i} off a neighborhood of Σ_{i}.

Remark 1.1. (1) The symplectic form ω can be constructed so that $\omega=\omega_{1}$ on $X_{1} \backslash \overline{\mathcal{N}\left(\Sigma_{1}\right)}$ and $\omega=a \omega_{-1}$ on $X_{-1} \backslash \overline{\mathcal{N}\left(\Sigma_{-1}\right)}$, where $a \in \mathbf{R}_{+}$. There is some freedom in the choice of a. However, when $n \neq 0$, it is subject to the following conditions: Let

$$
\alpha=\frac{\omega_{1}\left[\Sigma_{1}\right]}{\omega_{-1}\left[\Sigma_{-1}\right]}
$$

be the ratio of the symplectic areas of Σ_{1} and Σ_{-1}. If $\alpha \leq 1$ then a must be close to α and can be chosen to be arbitrarily close to, but not equal to, α. If $\alpha \geq 1$ then a must be close to $\frac{1}{\alpha}$ and can be chosen to be arbitrarily close to, but not equal to, $\frac{1}{\alpha}$. Here close cannot be made precise because it depends on the size of neighborhoods determined by the symplectic neighborhood theorem. Note that even if $\omega_{1}\left[\Sigma_{1}\right]=\omega_{-1}\left[\Sigma_{-1}\right]$ scaling by $a \neq 1$ is still required.
(2) The case $n=0$, where the normal bundles $\nu_{i}, i=-1,1$, are trivial can also be proved directly from the symplectic neighborhood theorem. Using either that technique or the proof below it follows that, in this case, the scaling factor a is exactly α so that if $\omega_{1}\left[\Sigma_{1}\right]=\omega_{-1}\left[\Sigma_{-1}\right]$ then no scaling is necessary.

The proof of Theorem 1.1 uses various normal form results in symplectic geometry to model the shells W_{i}. From these models it is easy to find a symplectic diffeomorphism to define the necessary symplectic gluing.

Let Σ be a compact surface of genus g. A ruled surface is an S^{2}-bundle over Σ. Topologically there are two such bundles, the trivial bundle $S^{2} \times \Sigma$ and the twisted bundle $S^{2} \tilde{\times} \Sigma$. However for our purpose it is more instructive to construct the ruled surfaces from line bundles. Let L_{n} be the complex line bundle over Σ with Chern class $c_{1}\left(L_{n}\right)=n$. Denote the trivial bundle by \mathbf{C} and consider the complex two-plane bundle $L_{n} \oplus \mathbf{C}$. Projectivize each fiber and denote the resulting S^{2}-bundle over Σ by $S_{n}=\mathbf{P}\left(\mathbf{L}_{\mathbf{n}} \oplus \mathbf{C}\right)$. S_{n} has a natural S^{1} action induced by multiplication by $e^{2 \pi i t}$ on each fiber of \mathbf{C}. The image of the section $(0,1)$ in $L_{n} \oplus \mathbf{C}$ determines an embedded surface Z_{0} in S_{n}, called the zero section. If σ is any section of L_{n}, with isolated zeros, then away from the zeros of $\sigma,(\sigma, 0)$ determines a surface in S_{n}. Let Z_{∞} denote the closure of this surface. (Z_{∞} is clearly independent of the choice of σ.) Z_{∞} is called the infinity section. It is easy to verify that $Z_{0} \cdot Z_{0}=n$ so the euler class of the normal bundle of Z_{0} is n and that $Z_{\infty} \cdot Z_{\infty}=-n$ so the euler class of the normal bundle of Z_{∞} is $-n$. We remark that if n is even, S_{n} is, topologically, $S^{2} \times \Sigma$ and if n is odd, S_{n} is, topologically, $S^{2} \tilde{\times} \Sigma$. The above construction can be done in the holomorphic category so that S_{n} is a complex surface, Z_{0} and Z_{∞} are holomorphic curves and S_{n} is fibered by holomorphic lines (see [G-H,p.517]). More generally, if M is a smooth manifold of dimension k and L is a complex line bundle over M with Chern class c then the above construction determines an S^{2}-bundle over M that we will denote S_{c} and call a ruled manifold. S_{c} has a zero section, Z_{0}, and an infinity section, Z_{∞}. The Chern classes of the normal bundles of Z_{0} and Z_{∞} are, respectively, c and $-c$. Exactly as above S_{c} admits a natural S^{1} action.

For the proof of Theorem 1.1 we will need to contruct on S_{n} an S^{1} invariant symplectic form τ_{n} such that Z_{0}, Z_{∞} and the fibers F are symplectic submanifolds. The easiest way to motivate this construction is to assume that such a form exists and to analyse its structure. To this end it is equally easy to work on the ruled manifold S_{c}. We suppose that S_{c} admits a symplectic form τ_{c} and that the S^{1} action is hamiltonian. Let $H: S_{c} \rightarrow \mathbf{R}$ be the hamiltonian function (well-defined up to addition of a constant). In this context H is also known as the moment map. Without loss of generality we can suppose that the critical values of H are 0 and 1 , corresponding to the critical submanifolds Z_{0} and Z_{∞}, respectively. All other values are regular. Let I be an interval of regular values of H. For each $\lambda \in I$ the level set $H^{-1}(\lambda)$ is a compact $k+1$-dimensional manifold with the structure of a circle bundle $\pi_{\lambda}: H^{-1}(\lambda) \rightarrow M$ over M. The Chern class of this circle bundle is independent of λ and equals c. The restriction of τ_{c} to $H^{-1}(\lambda)$ is a 2 -form invariant under the circle action and so descends to a symplectic form σ_{λ} on $M .\left(M, \sigma_{\lambda}\right)$ is called the symplectic reduction of $\left(S_{c}, \tau_{c}\right)$ at $\lambda \in I$. This gives a family $\sigma_{\lambda}, \lambda \in I$, of symplectic forms on the reduced space M. The work of Duistermaat and Heckman [D-H] shows
that for $\lambda, \eta \in I$:

$$
\begin{equation*}
\left[\sigma_{\lambda}\right]=\left[\sigma_{\eta}\right]+(\lambda-\eta) c \tag{1.2}
\end{equation*}
$$

where $\left[\sigma_{\lambda}\right]$ denotes the cohomology class of σ_{λ}. From (1.2) it is easy to see that $\left[\frac{d}{d \lambda} \sigma_{\lambda}\right]=c$. For each λ choose a connection 1-form β_{λ} on $\pi_{\lambda}: H^{-1}(\lambda) \rightarrow$ M so that $d \beta_{\lambda}=\pi_{\lambda}^{*}\left(\frac{d}{d \lambda} \sigma_{\lambda}\right)$. Now define on $H^{-1}(I)$ the 2 -form:

$$
\begin{equation*}
\omega=\pi_{\lambda}^{*}\left(\sigma_{\lambda}\right)+d \lambda \wedge \beta_{\lambda} \tag{1.3}
\end{equation*}
$$

ω is non-degenerate and closed. In fact any S^{1} invariant symplectic form on $H^{-1}(I)$ is equivalent to ω up to an S^{1}-equivariant diffeomorphism preserving the level sets of H (see [McD1]).

Given a principal circle bundle $P \rightarrow M$ with Chern class c and a family of symplectic forms $\sigma_{\lambda}, \lambda \in I$ on M satisfying (1.2) it is now easy to construct an S^{1}-invariant symplectic form on S_{c}. Let S^{1} act on $P \times S^{2}$ by

$$
t \cdot(p, z)=\left(p \cdot t^{-1}, t \cdot z\right), t \in S^{1},
$$

where S^{1} acts on S^{2} by rotation about the north-south axis. The quotient of $P \times S^{2}$ by this action is S_{c}. An S^{1}-invariant height function $h: S^{2} \rightarrow[0,1]$ taking the south pole to $\{0\}$ and the north pole to $\{1\}$ induces a map $H: S_{c} \rightarrow[0,1]$ such that the level sets $H^{-1}(\lambda), \lambda \neq 0,1$ are diffeomorphic to P and $Z_{0}=H^{-1}(0), Z_{\infty}=H^{-1}(1)$. Using the family σ_{λ} of symplectic forms we can construct an S^{1}-invariant symplectic form ω on $S_{c} \backslash\left(Z_{0} \cup Z_{\infty}\right)=$ $H^{-1}(0,1)$ using (1.3). Then ω may be smoothly extended over all of S_{c} so that ω restricts to σ_{0} on Z_{0} and σ_{1} on Z_{∞}. For more details see [McDS,Chap.4].

The proof of Theorem 1.1 will also require the following well known theorem whose proof can be found in [W]:
Symplectic Neighborhood Theorem . Let $\left(Y_{j}, \eta_{j}\right), j=1,2$ be symplectic manifolds with symplectic submanifolds Γ_{j}. Suppose that there is an isomorphism of the symplectic normal bundles of Γ_{1} and $\Gamma_{2}, \hat{f}: \nu\left(\Gamma_{1}\right) \rightarrow \nu\left(\Gamma_{2}\right)$, which covers a symplectic diffeomorphism $f:\left(\Gamma_{1}, \omega_{1}\right) \rightarrow\left(\Gamma_{2}, \omega_{2}\right)$. Then f may be extended to a symplectic diffeomorphism $F:\left(N\left(\Gamma_{1}\right), \omega_{1}\right) \rightarrow\left(N\left(\Gamma_{2}\right), \omega_{2}\right)$ such that $d F=\hat{f}: \nu\left(\Gamma_{1}\right) \rightarrow \nu\left(\Gamma_{2}\right)$.

We are now ready to establish the existence of the operation of symplectic normal connect sum.
Proof of Theorem 1.1. Let S_{n} denote the ruled surface that is an S^{2}-bundle over Σ. To construct an S^{1}-invariant symplectic form on S_{n} we need only specify a family $\left\{\sigma_{\lambda}\right\}$ of symplectic forms on Σ subject to (1.2). By Moser's theorem, these symplectic forms are determined by their areas $\sigma_{\lambda}(\Sigma)=$ $\int_{\Sigma} \sigma_{\lambda}$, up to a family $\left\{g_{\lambda}\right\}$ of diffeomorphisms of Σ. Thus, an S^{1}-invariant symplectic form τ_{n} on S_{n} is determined up to an S^{1} equivariant diffeomorphism by the scalars $\left\{\left[\sigma_{\lambda}\right](\Sigma)\right\}$ subject to (1.2). By constructing τ_{n} to satisfy $\int_{Z_{0}} \tau_{n}=\int_{\Sigma_{1}} \omega_{1}$, we can suppose that there is a symplectic diffeomorphism $f:\left(\Sigma_{1}, \omega_{1}\right) \rightarrow\left(Z_{0}, \tau_{n}\right)$. The normal bundles $\nu\left(\Sigma_{1}\right)$ and
$\nu\left(Z_{0}\right)$ both have euler number n and so are isomorphic as symplectic vector bundles. Choose an isomorphism $\hat{f}: \nu\left(\Sigma_{1}\right) \rightarrow \nu\left(Z_{0}\right)$ covering f. Then the symplectic neighborhood theorem gives a symplectic diffeomorphism $F:\left(N\left(\Sigma_{1}\right), \omega_{1}\right) \rightarrow\left(N\left(Z_{0}\right), \tau_{n}\right)$ with $d F=\hat{f}$. Note that the construction of F involves a choice of a symplectic vector bundle isomorphism. Similarly we can construct a symplectic diffeomorphism \tilde{F} from $\left(N\left(\Sigma_{-1}\right), \omega_{-1}\right)$ to $\left(N\left(\tilde{Z}_{\infty}\right), \tilde{\tau}_{n}\right)$ where $N\left(\tilde{Z}_{\infty}\right)$ is a tubular neighborhood of the infinity section \tilde{Z}_{∞} in the ruled surface \tilde{S}_{n}. $\left(\tilde{S}_{n}, \tilde{\tau}_{n}\right)$ will not, in general, be the same as $\left(S_{n}, \tau_{n}\right)$ since we must insure that $\int_{\Sigma_{-1}} \omega_{-1}=\int_{\tilde{Z}_{\infty}} \tilde{\tau}_{n}$.

On the ruled surface $\left(S_{n}, \tau_{n}\right)$ there is a moment map $H: S_{n} \rightarrow[0,1]$, where 0 and 1 are the critical values corresponding to Z_{0} and Z_{∞}, respectively. Similarly on the ruled surface $\left(\tilde{S}_{n}, \tilde{\tau}_{n}\right)$ there is a moment map $\tilde{H}: S_{n} \rightarrow[0,1]$, where 0 and 1 are the critical values corresponding to \tilde{Z}_{0} and \tilde{Z}_{∞}, respectively. Choose intervals I and \tilde{I} such that $|I|=|\tilde{I}|$ and so that $H^{-1}(I) \subseteq F\left(N\left(\Sigma_{1}\right)\right)$ and $\tilde{H}^{-1}(\tilde{I}) \subseteq \tilde{F}\left(N\left(\Sigma_{-1}\right)\right)$. Since τ_{n} and $\tilde{\tau}_{n}$ are determined on $H^{-1}(I)$ and $\tilde{H}^{-1}(\tilde{I})$ by a family of scalars satisfying (1.2) we can rescale $\tilde{\tau}_{n}$ (and consequently, rescale ω_{-1}) so that there is a symplectic diffeomorphism $\varphi:\left(\tilde{H}^{-1}(\tilde{I}), \tilde{\tau}_{n}\right) \rightarrow\left(H^{-1}(I), \tau_{n}\right) . \varphi$ takes the inside boundary of $\tilde{H}^{-1}(\tilde{I})$ to the outside boundary of $H^{-1}(I)$ and takes the level sets of \tilde{H} to the level sets of H. The diffeomorphism:

$$
\Psi=F^{-1} \circ \varphi \circ \tilde{F}:\left(\tilde{F}^{-1}\left(\tilde{H}^{-1}(\tilde{I})\right), a \omega_{-1}\right) \rightarrow\left(F^{-1}\left(H^{-1}(I)\right), \omega_{1}\right)
$$

determines the required symplectic gluing map between ($X_{-1}, a \omega_{-1}$) and (X_{1}, ω_{1}) where $a \in \mathbf{R}_{+}$is the scaling factor. Theorem 1.1 is proved.

2. Invariants of Symplectic Normal Connect Sums

Let X be a symplectic normal connect sum $X_{-1} \#_{\Psi} X_{1}$ as in Theorem 1.1 where X_{-1} and X_{1} are both closed. In this section, we shall compute various topological and geometric invariants of X in terms of those of X_{-1} and X_{1}. These computations will be used in the following sections to discuss a number of examples of symplectic normal connect sums.

Our computations will require various decompositions of X. Let U_{i} be the complement of $\overline{\mathcal{N}\left(\Sigma_{i}\right)}$ in X_{i}. Then $\left(U_{i}, N\left(\Sigma_{i}\right)\right)$ is an open cover of X_{i}. Note that $U_{i} \cap N\left(\Sigma_{i}\right)$ is equal to the tubular shell neighborhood W_{i} of Σ_{i} along which the normal connect sum X is obtained by gluing with the map Ψ. Thus, we may consider $\left(U_{-1}, U_{1}\right)$ as an open cover of X with $U_{-1} \cap U_{1}=W_{-1}$. With this identification, the inclusion of $U_{-1} \cap U_{1}$ into U_{-1} is just the inclusion of W_{-1} into U_{-1}. The inclusion of $U_{-1} \cap U_{1}$ into U_{1}, on the other hand, has been identified with the composition $\jmath \circ \Psi$ of the inclusion map $\jmath: W_{1} \rightarrow U_{1}$ and the gluing diffeomorphism $\Psi: W_{-1} \rightarrow W_{1}$. (In the subsequent discussion, we shall encounter a number of inclusion maps. We shall denote all of these maps by \jmath.)

The first invariant which we shall discuss is the fundamental group of $X, \pi_{1}(X)$. By Van Kampen's Theorem, $\pi_{1}(X)$ is the quotient of the free
product of $\pi_{1}\left(U_{-1}\right)$ and $\pi_{1}\left(U_{1}\right)$ by relations arising from $\pi_{1}\left(U_{-1} \cap U_{1}\right)$. More precisely, from the previous identifications, we see that $\pi_{1}(X)$ is the universal solution of the following commutative diagram $[\mathrm{M}]$:

$$
\begin{array}{rlr}
\pi_{1}\left(W_{-1}\right) \xrightarrow{(\jmath)_{*}} & \pi_{1}\left(U_{-1}\right) \\
\quad \downarrow(\jmath \circ \Psi)_{*} & & \downarrow(\jmath)_{*} \\
\pi_{1}\left(U_{1}\right) & \xrightarrow{(\jmath)_{*}} & \pi_{1}(X) .
\end{array}
$$

The tubular shell neighborhood W_{i} of Σ_{i} is an oriented annulus bundle over Σ_{i}. This annulus bundle retracts onto an oriented circle bundle P_{i} over Σ_{i}. Hence, from the discussion in $[\mathrm{F}]$, we may construct a presentation for $\pi_{1}\left(W_{i}\right)$ of the following form:

$$
\begin{gather*}
\text { Generators: } \quad a_{i, 1}, b_{i, 1}, \ldots ., a_{i, g}, b_{i, g}, z_{i} \tag{2.1}\\
\text { Relations: } \quad \prod_{j=1}^{g}\left[a_{i, j}, b_{i, j}\right]=z_{i}^{i n}, \quad a_{i, j} z_{i}=z_{i} a_{i, j}, \quad b_{i, j} z_{i}=z_{i} b_{i, j} .
\end{gather*}
$$

Note that this presentation is not natural. The "base" classes $a_{i, j}, b_{i, j}$ correspond to arbitrarily chosen lifts to the annulus bundle W_{i} of loops representing the standard generators of $\pi_{1}\left(\Sigma_{i}\right)$. The fiber class z_{i} corresponds to the fiber of the associated circle bundle P_{i} with the appropriate orientation. Note that unlike the "base" classes, $a_{i, j}, b_{i, j}$, the fiber class z_{i} is natural.

The relations arising from $\pi_{1}\left(U_{-1} \cap U_{1}\right)$, after making the above identifications, are the following:

$$
\begin{gather*}
\jmath_{*}\left(a_{-1, j}\right)=(\jmath \circ \Psi)_{*}\left(a_{-1, j}\right), \quad \jmath_{*}\left(b_{-1, j}\right)=(\jmath \circ \Psi)_{*}\left(b_{-1, j}\right), \tag{2.2}\\
\jmath_{*}\left(z_{-1}\right)=(\jmath \circ \Psi)_{*}\left(z_{-1}\right)
\end{gather*}
$$

Henceforth, we assume, without loss of generality, the following constraints on Ψ_{*} :

$$
\begin{equation*}
\Psi_{*}\left(z_{-1}\right)=z_{1}^{-1}, \quad \Psi_{*}\left(\prod_{j=1}^{g}\left[a_{-1, j}, b_{-1, j}\right]\right)=\prod_{j=1}^{g}\left[a_{1, j}, b_{1, j}\right] . \tag{2.3}
\end{equation*}
$$

These constraints arise from the fact that Ψ is an orientation preserving, end reversing diffeomorphism from W_{-1} to W_{1} preserving the annuli of these annulus bundles up to isotopy. It can be shown that we can prescribe Ψ to induce any isomorphism from $\pi_{1}\left(W_{-1}\right)$ to $\pi_{1}\left(W_{1}\right)$ which satisfies these two constraints.

Next we wish to discuss the basic homological invariants of X. First of all, there are the Betti numbers of $X, b_{i}, 0 \leq i \leq 4$. Since X is orientable, closed and connected, $b_{0}=b_{4}=1, b_{1}=b_{3}$. Therefore, the euler characteristic of X satisfies $\chi=2+2 b_{1}+b_{2}$. We recall that the euler characteristic is "additive". That is, if $\left(U, U^{\prime}\right)$ is an open cover of any topological space T, then:

$$
\chi(T)=\chi(U)+\chi\left(U^{\prime}\right)-\chi\left(U \cap U^{\prime}\right) .
$$

Applying this identity to the open covers of X_{-1}, X_{1} and X introduced above, we obtain the following identities:

$$
\begin{aligned}
& \chi\left(X_{i}\right)=\chi\left(U_{i}\right)+\chi\left(N\left(\Sigma_{i}\right)\right)-\chi(W i) \\
& \chi(X)=\chi\left(U_{-1}\right)+\chi\left(U_{1}\right)-\chi\left(W_{-1}\right) .
\end{aligned}
$$

Since the euler characteristic of a closed orientable three manifold is equal to $0, \chi\left(W_{i}\right)=\chi\left(P_{i}\right)=0$. Recalling that Σ_{i} is a compact surface of genus g we have $\chi\left(N\left(\Sigma_{i}\right)\right)=\chi\left(\Sigma_{i}\right)=2-2 g$. Thus:

$$
\begin{equation*}
\chi(X)=\chi\left(X_{-1}\right)+\chi\left(X_{1}\right)+4 g-4 . \tag{2.4}
\end{equation*}
$$

If T is a topological space, then $H_{j}(T)$ and $H^{j}(T)$ will denote $H_{j}(T, \mathbf{R})$ and $H^{j}(T, \mathbf{R})$ respectively. The integral lattice in $H_{j}(T)$ is the image of $H_{j}(T, \mathbf{Z})$ under the usual homomorphism $H_{j}(T, \mathbf{Z}) \rightarrow \mathbf{H}_{\mathbf{j}}(\mathbf{T})$. A class in $H_{j}(T)$ is integral if it lies in the integral lattice. A subspace of $H_{j}(T)$ is rational if it has a basis consisting of integral classes. The integral lattice in $H_{2}(X)$ consists precisely of those classes which are represented by smoothly embedded oriented surfaces in X. If F denotes such a surface, then we shall denote the corresponding class in $H_{2}(X)$ by the same symbol F. The intersection pairing Q is a nondegenerate, symmetric, bilinear form on $H_{2}(X)$. If $\alpha, \beta \in H_{2}(X)$, then we shall denote $Q(\alpha, \beta)$ by $\alpha \cdot \beta$. (Q restricts to an integer valued, unimodular, symmetric bilinear form on the integral lattice.) Q is determined by its restriction to the integral lattice. If α_{1} and α_{2} are integral classes, then $\alpha_{1} \cdot \alpha_{2}$ is equal to the algebraic intersection number of any pair of transverse smoothly embedded oriented surfaces F_{i} representing α_{i}. The signature σ of X is equal to $b_{2}^{+}-b_{2}^{-}$, where b_{2}^{+}is the rank of a maximal positive definite subspace of $H_{2}(X)$ and b_{2}^{-}is the rank of a maximal negative definite subspace of $H_{2}(X)$. In order to compute $\sigma(X)$ in terms of $\sigma\left(X_{i}\right)$, we shall appeal to Novikov additivity. The statement of Novikov additivity involves extending the definition of signature to compact oriented four manifolds M with boundary ∂M. The above definition is equally valid in this context. The difference between the closed case and the nonclosed case can be summarized as follows. In the closed case, the intersection pairing is nondegenerate and, hence, $b_{2}=b_{2}^{+}+b_{2}^{-}$. In the nonclosed case, however, the nullspace of Q is equal to $\jmath_{*}\left(H_{2}(\partial M)\right)$. In the nonclosed case, therefore, we need not have the above relationship between b_{2}, b_{2}^{+}and b_{2}^{-}. (For more details, see $[\mathrm{K}]$.)

Let N_{i} be a tubular neighborhood of Σ_{i} such that $\overline{\mathcal{N}\left(\Sigma_{i}\right)} \subset N_{i}$ and $\overline{N_{i}} \subset$ $N\left(\Sigma_{i}\right)$. Let $M_{i}=X_{i} \backslash N_{i}$. We may assume that $\partial M_{i}=P_{i}$ and that $\Psi\left(P_{-1}\right)=$ P_{1}. We now have a decomposition of X_{i} into compact four manifolds with boundary, M_{i} and $\overline{N_{i}}$, glued along their common boundary P_{i} by the identity map. Likewise, we have a decomposition of X into M_{-1} and M_{1} glued along their boundaries by the restriction ψ of Ψ to P_{-1} and P_{1}. We may apply Novikov additivity to these decompositions of X_{-1}, X_{1} and X. As a result,
we have the following identities:

$$
\begin{gathered}
\sigma\left(X_{i}\right)=\sigma\left(M_{i}\right)+\sigma\left(\overline{N_{i}}\right) \\
\sigma(X)=\sigma\left(M_{-1}\right)+\sigma\left(M_{1}\right) .
\end{gathered}
$$

In order to express $\sigma(X)$ in terms of $\sigma\left(X_{i}\right)$, we need to compute $\sigma\left(\overline{N_{i}}\right)$. Since $\overline{N_{i}}$ is a closed tubular neighborhood of Σ_{i} in $X_{i}, H_{2}\left(\overline{N_{i}}\right)$ is isomorphic to \mathbf{R} with an integral generator Σ_{i}. Therefore, Σ_{i} is a basis for $H_{2}\left(\overline{N_{i}}\right)$. Since $\Sigma_{i} \cdot \Sigma_{i}=i n$, we conclude that:

$$
\sigma\left(\overline{N_{i}}\right)= \begin{cases}0 & \text { if } n=0, \\ i & \text { otherwise. }\end{cases}
$$

It follows immediately from the above identities that:

$$
\begin{equation*}
\sigma(X)=\sigma\left(X_{-1}\right)+\sigma\left(X_{1}\right) . \tag{2.5}
\end{equation*}
$$

Remark 2.1. The computations of $\chi(X)$ and $\sigma(X)$ given above, almost allow us to compute all the Betti numbers of X. If we could compute $b_{1}(X)$ in terms of $b_{1}\left(X_{i}\right)$, then we would be able to determine the invariants b_{2}, b_{2}^{+}and b_{2}^{-}for X in terms of those for X_{i}. The determination of $b_{1}(X)$, however, involves more information than we have used above. In particular, it depends upon the diffeomorphism Ψ used to construct X.

The second Stiefel-Whitney class of X, w_{2}, is a characteristic $\mathbf{Z}_{\mathbf{2}}$ cohomology class of dimension 2 . It is the obstruction to finding a field of 3 -frames over the 2 -skeleton of X. As with the Betti numbers of X, the calculation of $w_{2}(X)$ in terms of $w_{2}\left(X_{i}\right)$ requires more information than we have used above.

Let ω be a symplectic structure on X. Integrating ω over 2 dimensional homology classes defines a homomorphism:

$$
\rho_{\omega}: H_{2}(X) \rightarrow \mathbf{R}
$$

which we shall refer to as the period map of ω. The second exterior power of ω is a nowhere zero top dimensional form. Hence, X has a naturally associated volume form ω^{2}. This volume form determines a natural orientation on X. Given (X, ω), we shall always orient X by this orientation.

Since (X, ω) is a symplectic manifold, it admits a unique homotopy class of compatible almost complex structures. Let J be an almost complex structure in this homotopy class. The orientation on X induced by J depends only upon the homotopy class of J. Indeed, it is easy to see that it agrees with the orientation on X determined by the volume form ω^{2}. The characteristic classes of (X, J) are the Chern classes, c_{1} and c_{2}. These are integral 2 dimensional, respectively 4 dimensional, cohomology classes of X which depend only upon the homotopy class of J. Hence, they are well defined invariants of (X, ω). These invariants and the topological invariants discussed
above bear the following relationship to each other ([B-P-V], chapter $I V$, section 7):

$$
\begin{equation*}
\left[c_{1}\right]=w_{2}, \quad c_{1}^{2}=3 \sigma+2 \chi, \quad c_{2}=\chi . \tag{2.6}
\end{equation*}
$$

Here, $\left[c_{1}\right]$ denotes the reduction of c_{1} modulo 2 and c_{1}^{2} denotes the square $c_{1} \cup c_{1}$ of $c_{1} . c_{1}^{2}$ and c_{2} are called the Chern numbers of X. From the above identities, it is clear that the Chern numbers of X are topological invariants of X. They satisfy the following congruence ([B-P-V], chapter $I V$, section 7):

$$
\begin{equation*}
c_{1}^{2}+c_{2} \equiv 0(12) . \tag{2.7}
\end{equation*}
$$

From (2.4), (2.5) and (2.6), we have the following identities:

$$
\begin{align*}
c_{1}^{2}(X) & =c_{1}^{2}\left(X_{-1}\right)+c_{1}^{2}\left(X_{1}\right)+8 g-8 \tag{2.8}\\
c_{2}(X) & =c_{2}\left(X_{-1}\right)+c_{2}\left(X_{1}\right)+4 g-4 .
\end{align*}
$$

3. Complex Surfaces

In this section, we shall discuss restrictions on the invariants of X which arise from the assumptions that X is a complex surface, a Kähler surface or a minimal surface of general type. We shall appeal to these restrictions in order to construct interesting examples of symplectic normal connect sums.

First, suppose that X is a compact complex surface. $h^{(p, q)}$ is the dimension of the Dolbeault cohomology group $H^{(p, q)}(X)$. The geometric genus p_{g} of X is $h^{(0,2)}$. The irregularity $q(X)$ is $h^{(0,1)}$. These invariants bear the following relationships to the invariants discussed above ([B-P-V], chapter $I V$, section 2):

$$
\begin{aligned}
& \text { if } b_{1}(X) \text { is even, then } b_{1}=2 q \text { and } b_{2}^{+}=2 p_{g}+1, \\
& \text { if } b_{1}(X) \text { is odd, then } b_{1}=2 q-1 \text { and } b_{2}^{+}=2 p_{g} .
\end{aligned}
$$

As a consequence of these constraints, it is clear that $q(X)$ and $p_{g}(X)$ are topological invariants, $q(X)$ of the unoriented, and $p_{g}(X)$ of the oriented underlying manifold.

Now suppose that X is a Kähler surface with Kähler form ω. In particular, ω is a symplectic form on X. Of course, since X is complex, the invariants of X must satisfy the restrictions discussed above. Further restrictions arise from the Hodge decomposition ([G-H]). The main consequence of this decomposition, for our purposes, is that:

$$
b_{1}=2 q \text { and } b_{2}^{+}=2 p_{g}+1 .
$$

In particular, b_{1} is even. For complex surfaces, this actually characterizes Kähler manifolds following the work of Kodaira, Miyaoka, Siu and Todorov ([P]):

Theorem . A compact complex surface is Kähler if and only if its first Betti number is even.

There are also restrictions on the fundamental group of a compact Kähler manifold. In particular ([J-R]):

Theorem (Johnson-Rees). If G_{1} and G_{2} are two groups which have at least one nontrivial finite quotient each, then the free product $G_{1} * G_{2}$ is not isomorphic to the fundamental group of any compact Kähler manifold. More generally, if H is any group, then the direct product $\left(G_{1} * G_{2}\right) \times H$ is not isomorphic to the fundamental group of any compact Kähler manifold.

A related result is the following ([A-B-R]):
Theorem (Arapura-Bressler-Ramachandran) . Let G_{1} and G_{2} be two groups. Let F be a finite group. Let $\phi_{j}: F \rightarrow G_{j}$ be monomorphisms with $\phi_{j}(F) \neq G_{j}$. Then the free product of G_{1} and G_{2} amalgamated over F via ϕ_{1} and ϕ_{2} is not isomorphic to the fundamental group of any compact Kähler manifold.

Note that the result of [A-B-R] implies the first half of the result of [J-R]. It also implies the second half of the result of $[\mathrm{J}-\mathrm{R}]$ in the case where H is finite. This follows from the observation that $\left(G_{1} * G_{2}\right) \times H$ is isomorphic to the free product of $G_{1} \times H$ and $G_{2} \times H$ amalgamated over H with respect to the obvious monomorphisms of H into $G_{i} \times H$. Note that the relevant hypotheses imply that G_{i} is a nontrivial group. Hence, the images of H under these monomorphisms are proper subgroups of $G_{-1} \times H$ and $G_{1} \times H$ as required to appeal to the result of [A-B-R].

Finally, suppose that X is a minimal surface of general type. In particular, X is Kähler. The known restrictions on the basic invariants of X, beyond those discussed above, can be summarized as follows ([B-P-V], chapter VII, sections 1 and 3):

$$
c_{1}^{2}>0, \quad c_{2}>0, \quad c_{1}^{2} \leq 3 c_{2}, \quad p_{g} \leq \frac{1}{2} c_{1}^{2}+2 .
$$

4. Simple Examples

To construct examples of symplectic normal connect sums we use, as building blocks, pairs $\left(X_{i}, \Sigma_{i}\right), i=-1,1$, where the X_{i} are compact Kähler surfaces and the Σ_{i} are nonsingular complex curves of genus g and selfintersection in with $n \geq 0$. The initial step then is to find nonsingular complex curves in Kähler surfaces. There are, of course, many ways of doing this. Among the simplest curves are the hyperplane sections. These are obtained by intersecting a 2 -dimensional complex variety in $\mathbf{C P}{ }^{\mathbf{N}}$ (an algebraic surface) with a hyperplane. Such curves, when nonsingular, have positive self-intersection. Curves of negative self-intersection are found by resolving singularities or by simply blowing up positive self-intersection curves sufficiently often. For example, let Σ_{1} be a nonsingular curve of genus g and self-intersection $n \geq 0$ in a Kähler surface X_{1}. Let \tilde{X}_{1} be the blow-up of X_{1} at a point $p \in \Sigma_{1}$. The proper transform $\tilde{\Sigma}_{1}$ of Σ_{1} is a nonsingular curve in \tilde{X}_{1} of genus g and self-intersection $n-1$. If \hat{X}_{1} is the blow-up of X_{1} at ℓ
distinct points on Σ_{1}, where $\ell>n$, then the proper transform $\hat{\Sigma}_{1}$ of Σ_{1} in \hat{X}_{1} is a nonsingular curve of genus g and self-intersection $n-\ell<0$. This observation leads to the following simple construction. Let $\left(X_{1}, \Sigma_{1}\right)$ be as above and let X_{-1} be the blow-up of X_{1} at $2 n$ distinct points of Σ_{1}. The proper transform Σ_{-1} of Σ_{1} in X_{-1} is a nonsingular curve of genus g and selfintersection $-n$. The symplectic normal connect sum of $\left(X_{i}, \Sigma_{i}\right), i=-1,1$, determines a symplectic manifold $X=X_{-1} \#_{\Psi} X_{1}$ which is perhaps one of the simplest examples of a symplectic normal connect sum.

More generally, let Σ_{1} and Σ_{1}^{\prime} be nonsingular curves of genus g and selfintersection $n \geq 0$ and $n^{\prime} \geq 0$, respectively, in Kähler surfaces X_{1} and X_{1}^{\prime}. Blow up X_{1}^{\prime} at $n+n^{\prime}$ distinct points on Σ_{1}^{\prime} to obtain a Kähler surface X_{-1}^{\prime} and a nonsingular curve Σ_{-1}^{\prime} of genus g and self-intersection $-n$, (the proper transform of Σ_{1}^{\prime} in $\left.X_{-1}^{\prime}\right)$. Let $X^{\prime}=X_{-1}^{\prime} \#_{\Psi} X_{1}$ be the symplectic normal connect sum of $\left(X_{-1}^{\prime}, \Sigma_{-1}^{\prime}\right)$ and $\left(X_{1}, \Sigma_{1}\right)$. Alternatively, blow up X_{1} at n distinct points on Σ_{1} and blow up X_{1}^{\prime} at n^{\prime} distinct points on Σ_{1}^{\prime} to obtain Kähler surfaces X_{0} and X_{0}^{\prime} containing nonsingular curves Σ_{0} and Σ_{0}^{\prime} of genus g and self-intersection zero. Now use the self-intersection zero symplectic normal connect sum to glue $\left(X_{0}, \Sigma_{0}\right)$ to ($X_{0}^{\prime}, \Sigma_{0}^{\prime}$) together to form a symplectic manifold $X^{\prime \prime}=X_{0} \#_{\Psi^{\prime}} X_{0}^{\prime}$. A standard "handle trading" argument shows (for appropriate choice of Ψ^{\prime}) that $X^{\prime \prime}$ is diffeomorphic to X^{\prime}. (In fact, this handle trading argument shows that if we use blowing up to make the self-intersection numbers of a pair of nonsingular curves have opposite sign, the diffeomorphism type of the normal connect sum is insensitive to which curve we blow up.)

Examples, such as those described above, do not require the full range of Theorem 1.1, but as we saw, can be constructed (up to diffeomorphism) with self-intersection zero gluing alone. The crucial point is that each negative curve Σ_{-1} in these examples is obtained by blowing up a nonsingular curve of nonnegative self-intersection. We say that Σ_{-1} is not "genuinely negative". A "genuinely negative" curve is a nonsingular curve of negative self-intersection which cannot be blown down to a nonsingular curve of nonnegative self-intersection. In general, symplectic normal connect sums built using a genuinely negative curve Σ_{-1} cannot be constructed using the selfintersection zero gluing. For this reason, such examples are of particular interest. In the following sections, we will give many examples of this type.

The abundance of examples of nonsingular curves of both positive and negative self-intersection in many different Kähler surfaces shows that the symplectic normal connect sum gives many easily constructed examples of compact symplectic manifolds. Moreover, the Chern numbers and, often, other classical invariants of these examples are easily computed. However, the genus and self-intersection numbers of the curves Σ_{i} are not themselves sufficient information to determine whether the symplectic manifold ($X_{-1} \#_{\Psi} X_{1}, \omega$) is or is not a Kähler manifold. Thus, to determine if $X_{-1} \#_{\Psi} X_{1}$ is a new symplectic manifold, further information about the pairs
$\left(X_{i}, \Sigma_{i}\right)$ is needed. The required information is often difficult to calculate. This is the subject of the next two sections.

5. Non-Kähler Symplectic Manifolds With b_{1} Odd

In this section, we shall give a number of examples of symplectic manifolds whose underlying smooth manifold does not admit any Kähler structure. These manifolds will all be constructed as symplectic normal connect sums of Kähler manifolds. They all have b_{1} odd and, hence, are not homeomorphic to any Kähler surface, though some are homeomorphic to complex surfaces.

There are many known examples of symplectic manifolds which are not homeomorphic to Kähler manifolds. In 1976, Thurston gave examples of closed non-Kähler symplectic manifolds by producing closed symplectic manifolds with odd first Betti number. Thurston's examples are surface bundles over symplectic manifolds. His construction of a symplectic structure on these bundles involves the bundle structure. Our first example will be a construction of one of the simplest of Thurston's examples via the operation of symplectic normal connect sum, (or, more precisely, via a slight variation of this operation).

Example 5.1 (Thurston's Torus Bundle Over a Torus). Consider the product $T^{2} \times S^{2}$ equipped with the product Kähler structure. Let x_{-1} and x_{1} be a pair of distinct points on S^{2}. Let Σ_{i} denote the surface $T^{2} \times\left\{x_{i}\right\}$. The surfaces Σ_{-1} and Σ_{1} are symplectically embedded surfaces which represent the same homology class in $T^{2} \times S^{2}$ and, hence, have the same symplectic area. The self-intersection of each of these surfaces is equal to 0 . Hence, by (2) in remark 1.1, we can glue a tubular shell neighborhood W_{-1} of Σ_{-1} to a tubular shell neighborhood W_{1} of Σ_{1} by a symplectomorphism Ψ taking the inside end of W_{-1} to the outside end of W_{1}.

Remark 5.1. Note that in this example we are symplectically gluing the complement of $\overline{\mathcal{N}\left(\Sigma_{-1}\right)} \cup \overline{\mathcal{N}\left(\Sigma_{1}\right)}$ in $T^{2} \times S^{2}$ to itself along tubular shell neighborhoods of Σ_{-1} and Σ_{1}. This is possible because Σ_{-1} and Σ_{1} are disjoint, have zero self-intersection and the same area. In the case of nonzero self-intersection, the necessity of scaling the symplectic forms in order to glue makes it difficult to perform this type of operation.

Let U be the complement of $\overline{\mathcal{N}\left(\Sigma_{-1}\right)} \cup \overline{\mathcal{N}\left(\Sigma_{1}\right)}$ in $T^{2} \times S^{2} . U$ is the product of T^{2} with the two holed sphere $S^{2} \backslash\left(B\left(x_{-1}\right) \cup B\left(x_{1}\right)\right)$. Hence, we have the following presentation for $\pi_{1}(U)$:

$$
\begin{array}{r}
\text { Generators : } \quad a, \quad b, \quad z \\
\text { Relations }: \quad[a, b]=1, \quad a z=z a, \quad b z=z b .
\end{array}
$$

Likewise, we have the following presentations for $\pi_{1}\left(W_{i}\right)$:

$$
\begin{gathered}
\text { Generators: } \quad a_{i}, \quad b_{i}, \quad z_{i} \\
\text { Relations : } \quad\left[a_{i}, b_{i}\right]=1, \quad a_{i} z_{i}=z_{i} a_{i}, \quad b_{i} z_{i}=z_{i} b_{i} .
\end{gathered}
$$

In terms of the above presentations, the homomorphism induced by the inclusion of W_{i} in U can be described as follows:

$$
\jmath_{*}\left(a_{i}\right)=a, \quad \jmath_{*}\left(b_{i}\right)=b, \quad \jmath_{*}\left(z_{i}\right)=z .
$$

By choosing Ψ appropriately, as explained in section 2, we may prescribe the following restrictions on the isomorphism Ψ_{*} :

$$
\Psi_{*}\left(a_{-1}\right)=a_{1} z_{1}, \quad \Psi_{*}\left(b_{-1}\right)=b_{1}, \quad \Psi_{*}\left(z_{-1}\right)=z_{1}^{-1} .
$$

From the relations in (2.2), a standard application of Van Kampen's theorem yields a presentation of $\pi_{1}(X)$ as an HNN extension ([L-S]) of $\pi_{1}(U)$:

$$
\begin{gathered}
\text { Generators : } a, \quad b, \quad z, \quad t \\
\text { Relations }: \quad[a, b]=1, \quad a z=z a, \quad b z=z b \\
\text { tat }^{-1}=a z, \quad t b t^{-1}=b, \quad t z t^{-1}=z
\end{gathered}
$$

Since $H_{1}(X, \mathbf{Z})$ is the abelianization of $\pi_{1}(X)$, we conclude that $H_{1}(X, \mathbf{Z})$ is a free abelian group of rank 3 , with basis given by the homology classes of a, b and t. In particular, $b_{1}(X)$ is equal to 3 . As discussed above, this demonstrates that X is not homeomorphic to any Kähler manifold. (On the other hand, it is easy to see that X is homeomorphic to one of Thurston's examples.)

We now wish to describe a scheme for producing examples of compact symplectic 4-manifolds with b_{1} odd. To understand this scheme we need to compute b_{1} of a normal connect sum. In order to do this, we shall again use the decomposition of X described in section 2. By applying the MayerVietoris sequence to the covering $\left(U_{-1}, U_{1}\right)$ of X, we obtain the following right exact sequence:

$$
H_{1}\left(U_{-1} \cap U_{1}\right) \xrightarrow{\jmath * \oplus(\jmath \circ \Psi)_{*}} H_{1}\left(U_{-1}\right) \oplus H_{1}\left(U_{1}\right) \rightarrow H_{1}(X) \rightarrow 0 .
$$

From this sequence, we see that:

$$
b_{1}(X)=b_{1}\left(U_{-1}\right)+b_{1}\left(U_{1}\right)-\operatorname{rank}\left(\jmath_{*} \oplus(\jmath \circ \Psi)_{*}\right) .
$$

By applying the Mayer-Vietoris sequence to the covering $\left(U_{i}, N\left(\Sigma_{i}\right)\right)$ of X_{i}, on the other hand, it follows that:

$$
b_{1}\left(X_{i}\right)=b_{1}\left(U_{i}\right)+b_{1}\left(N\left(\Sigma_{i}\right)\right)-\operatorname{rank}\left(\jmath_{*} \oplus J_{*}\right) .
$$

The intersection term $U_{i} \cap N\left(\Sigma_{i}\right)$ of this second Mayer-Vietoris sequence is equal to W_{i}, the annulus bundle corresponding to the disc bundle $N\left(\Sigma_{i}\right)$ over Σ_{i}. It follows that \jmath_{*} maps $H_{1}\left(U_{i} \cap N\left(\Sigma_{i}\right)\right)$ onto $H_{1}\left(N\left(\Sigma_{i}\right)\right)$. Hence:

$$
b_{1}\left(N\left(\Sigma_{i}\right)\right) \leq \operatorname{rank}\left(\jmath_{*} \oplus \jmath_{*}\right) .
$$

Now consider the fiber class z_{i} of $\pi_{1}\left(W_{i}\right)$. Since Σ_{i} is a compact symplectic surface in $\left(X_{i}, \omega_{i}\right)$, it represents a nontrivial class α_{i} in $H_{2}\left(X_{i}\right)$. (The cohomology class of the symplectic form ω_{i} on X_{i} evaluates nontrivially on α_{i}.) The intersection pairing Q on $H_{2}\left(X_{i}\right)$ is nondegenerate and $H_{2}\left(X_{i}\right)$ has an integral basis. Thus there exists an integral homology class β_{i} in $H_{2}\left(X_{i}\right)$
such that $\alpha_{i} \cdot \beta_{i}=m_{i}$ where m_{i} is a nonzero integer. β_{i} can be represented by a smoothly embedded, oriented surface F_{i}. (See $[\mathrm{K}]$, chapter $I I$, section 1.) We may assume that F_{i} is transverse to Σ_{i}. Thus, we may assume that $F_{i} \backslash N\left(\Sigma_{i}\right)$ is a smoothly embedded, oriented surface in U_{i} whose boundary is a disjoint union of circles each representing the homology class $\left[z_{i}\right]$ of z_{i} or $-\left[z_{i}\right]$. From the definition of the intersection pairing, this boundary represents $m_{i}\left[z_{i}\right]$. Hence, since $m_{i} \neq 0,\left[z_{i}\right]=0$ in $H_{1}\left(U_{i}\right)$. On the other hand, clearly z_{i} is homologically trivial in $N\left(\Sigma_{i}\right)$. Thus, $\left[z_{i}\right]$ is in the kernel of $\jmath_{*} \oplus \jmath_{*}$. From (2.1), it follows that:

$$
\operatorname{rank}\left(\jmath_{*} \oplus \jmath_{*}\right) \leq 2 g .
$$

But $b_{1}\left(N\left(\Sigma_{i}\right)\right)=b_{1}\left(\Sigma_{i}\right)=2 g$. Hence, we conclude that $b_{1}\left(U_{i}\right)=b_{1}\left(X_{i}\right)$. Indeed, we see that the inclusion homomorphism:

$$
H_{1}\left(U_{i}\right) \stackrel{ }{\cong} H_{1}\left(X_{i}\right)
$$

is an isomorphism.
Let $\pi_{i}: W_{i} \rightarrow \Sigma_{i}$ denote the projection map of the annulus bundle W_{i} over Σ_{i}. For any circle γ in W_{i}, γ and $\pi_{i}(\gamma)$ are homologous in $N\left(\Sigma_{i}\right)$ and, hence, in X_{i}. We may assume, for homological purposes, that Ψ covers an orientation preserving diffeomorphism Ψ_{0} from Σ_{-1} to Σ_{1}. That is, we may assume that we have a commutative diagram as follows:

From these observations, we see that the following diagram is commutative:

$$
\begin{array}{cc}
H_{1}\left(W_{-1}\right) \xrightarrow{\jmath_{*} \oplus(\jmath \circ \Psi)_{*}} & H_{1}\left(U_{-1}\right) \oplus H_{1}\left(U_{1}\right) \\
\quad \downarrow\left(\pi_{-1}\right)_{*} & \downarrow{ }^{\jmath * \oplus \jmath_{*}} \\
H_{1}\left(\Sigma_{-1}\right) \xrightarrow{\jmath_{*} \oplus\left(\jmath \circ \Psi_{0}\right)_{*}} & H_{1}\left(X_{-1}\right) \oplus H_{1}\left(X_{1}\right) .
\end{array}
$$

Since W_{-1} is an annulus bundle over Σ_{-1} and π_{-1} is the corresponding bundle projection map, $\left(\pi_{-1}\right)_{*}$ is surjective. On the other hand, by the previous discussion, $\jmath_{*} \oplus \jmath_{*}$ from $H_{1}\left(U_{-1}\right) \oplus H_{1}\left(U_{1}\right)$ to $H_{1}\left(X_{-1}\right) \oplus H_{1}\left(X_{1}\right)$ is an isomorphism. Hence, the horizontal homomorphisms in this last diagram have the same rank:

$$
\operatorname{rank}\left(\jmath_{*} \oplus(\jmath \circ \Psi)_{*}\right)=\operatorname{rank}\left(\jmath_{*} \oplus\left(\jmath \circ \Psi_{0}\right)_{*}\right) .
$$

From the above identities, we conclude that:

$$
b_{1}(X)=b_{1}\left(X_{-1}\right)+b_{1}\left(X_{1}\right)-\operatorname{rank}\left(\jmath_{*} \oplus\left(\jmath \circ \Psi_{0}\right)_{*}\right) .
$$

On the other hand:

$$
2 g=b_{1}\left(\Sigma_{-1}\right)=\operatorname{nullity}\left(\jmath_{*} \oplus\left(\jmath \circ \Psi_{0}\right)_{*}\right)+\operatorname{rank}\left(\jmath_{*} \oplus\left(\jmath \circ \Psi_{0}\right)_{*}\right) .
$$

Therefore:

$$
\begin{equation*}
b_{1}(X)=b_{1}\left(X_{-1}\right)+b_{1}\left(X_{1}\right)+\operatorname{nullity}\left(\jmath_{*} \oplus\left(\jmath \circ \Psi_{0}\right)_{*}\right)-2 g . \tag{5.1}
\end{equation*}
$$

Of course, since Ψ_{0} is a diffeomorphism:

$$
\begin{equation*}
\operatorname{kernel}\left[\jmath_{*} \oplus\left(\jmath \circ \Psi_{0}\right)_{*}\right]=\operatorname{kernel}\left[J_{*}\right] \cap\left[\left(\left(\Psi_{0}\right)_{*}\right)^{-1}\left(\operatorname{kernel}\left(\jmath_{*}\right)\right)\right] . \tag{5.2}
\end{equation*}
$$

Let K_{i} denote the kernel of $\jmath_{*}: H_{1}\left(\Sigma_{i}\right) \rightarrow H_{1}\left(X_{i}\right)$. From (5.1) and (5.2), we have the following observations regarding the parity of $b_{1}(X)$ (when $b_{1}\left(X_{i}\right)$ is even):

$$
b_{1}(X) \equiv\left\{\begin{array}{lll}
0 \quad(\bmod 2) & & \text { if } K_{-1}=0 \text { or } K_{1}=0, \\
\operatorname{rank}\left(K_{-1}\right) & (\bmod 2) & \text { if } K_{1}=H_{1}\left(\Sigma_{1}\right), \\
\operatorname{rank}\left(K_{1}\right) & (\bmod 2) & \text { if } K_{-1}=H_{1}\left(\Sigma_{-1}\right) .
\end{array}\right.
$$

Hence, if K_{i} is not a proper subspace of $H_{1}\left(\Sigma_{i}\right)$ for either $i=-1$ or $i=1$, then the parity of $b_{1}(X)$ is independent of the choice of the symplectic gluing map, Ψ. (Indeed, in these cases, $b_{1}(X)$ is independent of Ψ.)

As we shall see, the situation is very different when K_{i} is a proper subspace of $H_{1}\left(\Sigma_{i}\right)$ for $i=-1,1$. Henceforth, we assume that we are in this situation. It is easy to see that K_{i} is actually a rational subspace of $H_{1}\left(\Sigma_{i}\right)$. We recall that a nonzero integral class is primitive if it is not an integer multiple of another integral class by an integer greater than 1 . We shall need the following result.

Theorem 5.1. Let Σ be a closed orientable Riemann surface of genus $g \geq 1$. Let V_{-1} and V_{1} be proper rational subspaces of $H_{1}(\Sigma)$. Then there exists a diffeomorphism $f: \Sigma \rightarrow \Sigma$ such that the rank of $f_{*}\left(V_{-1}\right) \cap V_{1}$ is odd.

Proof. Let $V_{0}=V_{-1} \cap V_{1}$ and let V_{2} denote the subspace of $H_{1}(\Sigma)$ spanned by V_{-1} and V_{1}. Let r_{i} denote the rank of V_{i}. We begin by reducing the problem to the case where V_{0} and V_{2} are proper subspaces of $H_{1}(\Sigma)$.

We recall that we have a \mathbf{Z}-valued, nondegenerate, unimodular, antisymmetric pairing J on $H_{1}(\Sigma, \mathbf{Z})$ defined by algebraic intersection of 1-cycles. Let V_{i}^{\perp} be the perpendicular subspace of V_{i} in $H_{1}(\Sigma, \mathbf{Z})$ with respect to this pairing J. Since J is nondegenerate, the rank of V_{i}^{\perp} is equal to $2 g-r_{i}$. Since $r_{i}<2 g$, there is a nonzero class $\alpha_{i} \in V_{i}^{\perp}$. Since J is \mathbf{Z}-valued, we can assume that α_{i} is an integral class. In addition, of course, we can assume that α_{i} is primitive. It is well known that any primitive integral class in $H_{1}(\Sigma)$ can be represented by a nonseparating simple closed curve. Let γ_{i} be such a curve representing α_{i}. It is also well known that any two nonseparating simple closed curves on Σ are equivalent up to a diffeomorphism of Σ. Thus, there exists a diffeomorphism f_{0} of Σ such that $f_{0}\left(\gamma_{-1}\right)=\gamma_{1}$ and, hence, $\left(f_{0}\right)_{*}\left(\alpha_{-1}\right)=\alpha_{1}$. Thus, without loss of generality, we may assume that $\alpha_{-1}=\alpha_{1}$. Since $\alpha_{1} \in V_{i}^{\perp}$ for $i=-1,1, V_{i} \subset\left\{\alpha_{1}\right\}^{\perp}$. It follows that
$V_{2} \subset\left\{\alpha_{1}\right\}^{\perp}$. On the other hand, since $<,>$ is nondegenerate, the rank of $\left\{\alpha_{1}\right\}^{\perp}$ is equal to $2 g-1$. Hence, V_{2} is a proper subspace of $H_{1}(\Sigma)$.

If $V_{0} \neq\{0\}$, then we have reached the desired reduction. Suppose, on the other hand that $V_{0}=\{0\}$. Let r_{i} denote the rank of V_{i}. Then $r_{2}=r_{-1}+r_{1} \leq$ $2 g$. Since V_{i} is a nontrivial rational subspace of $H_{1}(\Sigma)$ for $i=-1,1$, there exists a nonzero primitive integral class β_{i} in V_{i} for $i=-1,1$. As in the previous paragraph, we may choose a diffeomorphism f_{1} of Σ such that $\left(f_{1}\right)_{*}\left(\beta_{-1}\right)=\beta_{1}$. Let $V_{-1}^{\prime}=\left(f_{1}\right)_{*}\left(V_{-1}\right), V_{1}^{\prime}=V_{1}, V_{0}^{\prime}=V_{-1}^{\prime} \cap V_{1}^{\prime}$ and V_{2}^{\prime} be the subspace of $H_{1}(\Sigma)$ spanned by V_{-1}^{\prime} and V_{1}^{\prime}. Let r_{i}^{\prime} denote the rank of V_{i}^{\prime}. By the choice of $f_{1}, V_{0}^{\prime} \neq\{0\}$. On the other hand, since f_{1} is a diffeomorphism, $r_{-1}^{\prime}=r_{-1}$. Of course, $r_{1}^{\prime}=r_{1}$. Since $V_{0}^{\prime} \neq\{0\}$, $r_{2}^{\prime}<r_{-1}^{\prime}+r_{1}^{\prime} \leq 2 g$. Hence, V_{0}^{\prime} and V_{2}^{\prime} are proper subspaces of $H_{1}(\Sigma)$. We have reached the desired reduction.

We may assume, without loss of generality, that V_{0} and V_{2} are proper subspaces of $H_{1}(\Sigma)$. Likewise, of course, we may assume that the rank of V_{0} is even. Since V_{0} is a proper subspace of $H_{1}(\Sigma), V_{0}^{\perp}$ is a proper subspace of $H_{1}(\Sigma)$. Hence, we can choose a nonseparating simple closed curve c on Σ such that the homology class $[c]$ of c is neither in V_{0}^{\perp} nor in V_{2}. Let f be the Dehn twist about c. This is a diffeomorphism of Σ which is supported in an annular neighborhood of c and twists this neighborhood in a "barber pole" fashion ([B]). The action of f on $H_{1}(\Sigma)$ is given by the following formula:

$$
f_{*}(\alpha)=\alpha+J([c], \alpha)[c] .
$$

We shall show that $f_{*}\left(V_{-1}\right) \cap V_{1}=V_{0} \cap\{c\}^{\perp}$. Suppose that $\beta \in f_{*}\left(V_{-1}\right) \cap$ V_{1}. In particular, $\beta \in V_{1}$. Moreover, there exists a class $\alpha \in V_{-1}$ such that $f_{*}(\alpha)=\beta$. By the previous formula:

$$
\beta=\alpha+J([c], \alpha)[c] .
$$

Suppose that $J([c], \alpha) \neq 0$. Then:

$$
[c]=(\beta-\alpha) / J([c], \alpha)
$$

Since $\beta \in V_{1}$ and $\alpha \in V_{-1}$, this implies that $[c] \in V_{2}$. This contradicts our choice of c. Hence, $J([c], \alpha)=0$. Hence, from the previous formula, $\beta=\alpha$. This implies that $\beta \in V_{-1}$. Hence, $\beta \in V_{0}$. Furthermore, it implies that $J([c], \beta)=0$. Hence, $\beta \in\{c\}^{\perp}$. Thus, $\beta \in V_{0} \cap\{c\}^{\perp}$.

Suppose, on the other hand, that $\beta \in V_{0} \cap\{c\}^{\perp}$. Then $\beta \in V_{-1}, \beta \in V_{1}$ and $J([c], \beta)=0$. This last equality implies that $f_{*}(\beta)=\beta$. Hence, $\beta \in f_{*}\left(V_{-1}\right)$. Thus, $\beta \in f_{*}\left(V_{-1}\right) \cap V_{1}$.

Since J is nondegenerate and $[c] \neq 0,\{[c]\}^{\perp}$ is a subspace of $H_{1}(\Sigma)$ of codimension 1. Since $[c]$ does not lie in V_{0}^{\perp}, V_{0} is not contained in $\{[c]\}^{\perp}$. Hence, $V_{0} \cap\{[c]\}^{\perp}$ is a subspace of V_{0} of codimension 1 . Since, by assumption, the rank of V_{0} is even, the rank of $V_{0} \cap\{[c]\}^{\perp}$ is odd. In other words, the rank of $f_{*}\left(V_{-1}\right) \cap V_{1}$ is odd. This completes the proof of the theorem.

Remark 5.2. Let Σ, V_{-1} and V_{1} be as above. It is clear that the proof of Theorem 5.1 also establishes that there exists a diffeomorphism $f^{\prime}: \Sigma \rightarrow \Sigma$ such that the rank of $f_{*}^{\prime}\left(V_{-1}\right) \cap V_{1}$ is even.

We may apply this result to the subspaces $V_{-1}=K_{-1}$ and $V_{1}=\left(\Psi_{0}\right)_{*}^{-1}\left(K_{1}\right)$. Let Ψ^{\prime} be a symplectic gluing map such that Ψ_{0}^{\prime} is isotopic to $\Psi_{0} \circ f$, where f is given by Theorem 5.1. Then the normal connect sum $X_{-1} \#_{\Psi^{\prime}} X_{1}$ has odd b_{1}. Hence, we have proved the following theorem:

Theorem 5.2. Suppose that $\Sigma_{i} \hookrightarrow X_{i}$ are symplectically imbedded compact surfaces of genus g and that $\chi\left(\nu_{-1}\right)=-\chi\left(\nu_{1}\right)$ where ν_{i} is the normal bundle of Σ_{i} in X_{i}. Suppose that the kernel K_{i} of the inclusion homomorphism from $H_{1}\left(\Sigma_{i}\right)$ to $H_{1}\left(X_{i}\right)$ is a proper subspace of $H_{1}\left(\Sigma_{i}\right)$ for $i=-1,1$. Then there exists a symplectomorphism Ψ of tubular shell neighborhoods of Σ_{-1} and Σ_{1} so that $b_{1}\left(X_{-1} \#_{\Psi} X_{1}\right)$ is odd.
Remark 5.3. By remark 5.2, there is also a symplectomorphism Ψ^{\prime} of tubular shell neighborhoods of Σ_{-1} and Σ_{1} so that $b_{1}\left(X_{-1} \#_{\Psi^{\prime}} X_{1}\right)$ is even.

We now wish to describe a method for producing symplectically embedded surfaces $\Sigma \hookrightarrow(X, \omega)$ such that the kernel K of $\jmath_{*}: H_{1}(\Sigma) \rightarrow H_{1}(X)$ is a proper subspace of $H_{1}(\Sigma)$. Together with Theorem 5.2, this method provides the scheme promised above. As we shall see, our method has considerable flexibility. Our construction involves the fibered product of two branched covering maps between Riemann surfaces ($[\mathrm{H}]$, Chapter $I I$, section 3).

We shall need the following facts about branched coverings. Let $\phi: M \rightarrow$ N be a branched covering map of degree d between compact, orientable surfaces M and N. Let Λ_{ϕ} denote the singular set of ϕ. Let B_{ϕ} denote the corresponding branch set $B_{\phi}=\phi\left(\Lambda_{\phi}\right)$. Let $M_{0}=M \backslash \phi^{-1}\left(B_{\phi}\right)$ and $N_{0}=$ $N \backslash B_{\phi}$. The restriction of ϕ to M_{0} and N_{0} is an unbranched covering map ϕ_{0} of degree d. As such ϕ_{0} is determined by its monodromy representation $\rho(\phi): \pi_{1}\left(N_{0}\right) \rightarrow \mathcal{S}_{d}$, where $\pi_{1}\left(N_{0}\right)$ is the fundamental group of N_{0} and \mathcal{S}_{d} is the symmetric group on d symbols. If p is a point in M, then $\operatorname{deg}_{p}(\phi)$ denotes the degree of ϕ at p. If $\operatorname{deg}_{p}(\phi)>1$, then p is a branch point of ϕ. The singular set of ϕ consists precisely of the branch points of ϕ. The total branching number of ϕ is the sum $\beta(\phi)=\sum_{p \in M}\left(\operatorname{deg}_{p}(\phi)-1\right)$. The Riemann-Hurwitz relation states that $\chi(M)=d \chi(N)-\beta(\phi)$. (For more details, see [B-E], [G-H].)

Let $R_{j}, j=1,2,3$ be closed Riemann surfaces of genus g_{j}. Our idea is to construct a curve C in $R_{1} \times R_{2}$ and obtain the desired surface Σ as a proper transform of C in an appropriate blow up X of $R_{1} \times R_{2}$. There are several requirements which we shall need to meet in order for Σ to satisfy the restrictions imposed by Theorems 1.1 and 5.2. C is constructed as follows. Let $f_{j}: R_{j} \rightarrow R_{3}, j=1,2$, be nonconstant holomorphic maps of degrees $d_{j i}$. Let C be the following subset of $R_{1} \times R_{2}$:

$$
\begin{equation*}
C=\left\{(x, y) \in R_{1} \times R_{2} \mid f_{1}(x)=f_{2}(y)\right\} . \tag{5.3}
\end{equation*}
$$

C is a complex curve in $R_{1} \times R_{2}([\mathrm{~B}-\mathrm{P}-\mathrm{V}])$. This is implicit in the following local description of C, which also gives a complete description of the singularities of C. Let (x, y) be a point in C and let $u=f_{1}(x)=f_{2}(y)$ be the corresponding point in R_{3}. Choose a local coordinate ζ on R_{3} vanishing at u. Since f_{j} is a nonconstant holomorphic map between Riemann surfaces, a standard argument shows that we can choose a local coordinate z on R_{1} vanishing at x and a local coordinate w on R_{2} vanishing at y such that in terms of these local coordinates we can write f_{1} and f_{2} as follows:

$$
\zeta=f_{1}(z)=z^{p} \quad \zeta=f_{2}(w)=w^{q}
$$

for some positive integers p and q. (See [F-K], chapter I, section 1.) These conclusions imply that f_{j} is a branched covering map with p the degree of f_{1} at x and q the degree of f_{2} at y. The pair (z, w) defines a local chart in a neighorhood \mathcal{U} of (x, y) in $R_{1} \times R_{2}$. In this local chart, C has the following description:

$$
C \cap \mathcal{U}=\left\{(z, w) \mid z^{p}=w^{q}\right\}
$$

Note that this description proves that C is a complex curve on $R_{1} \times R_{2}$ ([B-P-V]). It should be noted that C need not be irreducible. In order for Σ to be connected, it is necessary for C to be irreducible. Hence, we shall need to impose further restrictions to ensure that Σ is connected. If either p or q is equal to 1 , then this description shows that C is nonsingular at (x, y). (In particular, if f_{j} is a covering map, then C is nonsingular. Likewise, if the critical values of f_{1} are disjoint from those of f_{2}, then C is nonsingular.) Otherwise, C is singular at (x, y). We shall say that C has a simple singularity of type (p, q) at (x, y). Clearly, by this discussion, each singularity of C is a simple singularity of type (p, q) for some (p, q) with $p, q \geq 2$. The singularities of C are isolated and there are only finitely many. Moreover, from this local description of C and the local description of blowing up a surface at a point, it is a simple matter to see that the proper transform Σ of C in an appropriate blow up X of $R_{1} \times R_{2}$ is a smoothly embedded complex curve. For instance, suppose that C has exactly one singularity (x, y) and that (x, y) is a simple singularity of type $(2,2)$. The local description of C given above shows that this singularity is an ordinary double point. That is, near (x, y) the curve C looks like a pair of distinct complex lines in \mathbf{C}^{2} passing through the origin, $\{(z, w) \mid w=z\}$ and $\{(z, w) \mid$ $w=-z\}$. If we blow up $R_{1} \times R_{2}$ once at the point (x, y), then the proper transform of C in the blown up surface is a smooth embedded complex curve. (In general, of course, we may have to blow up several times in order to desingularize C. For instance, the proper transform of a simple singularity v of type $(2,5)$ after blowing up once at v is a simple singularity of type $(2,3)$. After blowing up once more at the proper transform of v, one has a simple "singularity" of type $(2,1)$, which is a smooth point.)

Our examples will be built from pairs (X, Σ) where X is a blow-up of $R_{1} \times R_{2}$ and Σ is a desingularization of C. We must ensure that Σ satisfies various properties. In particular, Σ must be connected and the kernel of
J. $_{*}: H_{1}(\Sigma) \rightarrow H_{1}(X)$ must be proper. In addition, we must find pairs $\left(X_{i}, \Sigma_{i}\right), i=-1,1$ to glue. All of these conditions can be met with careful choices of $R_{1}, R_{2}, R_{3}, f_{1}$ and f_{2}. This we do in the following. We remark that while we could proceed in complete generality the necessary computations become very lengthy and tedious. Our intent is to construct interesting examples illustrating Theorem 5.2. Thus, after some general remarks about conditions which guarantee the connectedness of Σ and the properness of K, we will make some simplifying assumptions about $R_{1}, R_{2}, R_{3}, f_{1}$ and f_{2} and leave the many other cases to the interested reader.

A: Connectedness of Σ

Suppose that Σ is the desingularization of C in an appropriate blow up X of $R_{1} \times R_{2}$. We wish to determine sufficient conditions for Σ to be connected. (In algebraic terms, we wish to ensure that C is irreducible.) Let D be the exceptional divisor in X corresponding to the sequence of blow ups required to obtain X, (where D is the empty divisor if $X=R_{1} \times R_{2}$). Let $\tau: X \rightarrow R_{1} \times R_{2}$ denote the holomorphic map obtained by blowing down D in X. There exist holomorphic functions $h_{j}: \Sigma \rightarrow R_{j}$ such that the restriction $\tau \mid: \Sigma \rightarrow R_{1} \times R_{2}$ is equal to $\left(h_{1}, h_{2}\right)$. Consider the induced homomorphism of fundamental groups:

$$
\left(f_{1}\right)_{*}: \pi_{1}\left(R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)\right) \rightarrow \pi_{1}\left(R_{3} \backslash B_{f 2}\right)
$$

We have the following criterion for Σ to be connected.
Theorem 5.3. Σ is connected if and only if the restriction of the monodromy representation $\rho\left(f_{2}\right)$ to $\left(f_{1}\right)_{*}\left(\pi_{1}\left(R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)\right)\right.$) is transitive.

Proof. Note that we have the following commutative diagram:

From the definition of C and the fact that f_{1} and f_{2} are nonconstant holomorphic maps, it is clear that h_{j} is a nonconstant holomorphic map. In particular, therefore, $h_{1}: \Sigma \rightarrow R_{1}$ is a branched covering map. Hence, $h_{1}^{-1}\left(f_{1}^{-1}\left(B_{f_{2}}\right)\right)$ is a finite set of points in the surface Σ. Thus Σ is connected if and only if $\Sigma \backslash h_{1}^{-1}\left(f_{1}^{-1}\left(B_{f_{2}}\right)\right)$ is connected. It is easy to see from the local descriptions discussed above that $B_{h_{1}} \subset f_{1}^{-1}\left(B_{f_{2}}\right)$. Since $f_{1}^{-1}\left(B_{f_{2}}\right)$ is a finite set of points in the connected surface $R_{1}, R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)$ is connected. Hence, the restriction:

$$
h_{1} \mid: \Sigma \backslash h_{1}^{-1}\left(f_{1}^{-1}\left(B_{f_{2}}\right)\right) \rightarrow R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)
$$

is an unbranched covering map over a connected base. By standard covering space theory, the total space $\Sigma \backslash h_{1}^{-1}\left(f_{1}^{-1}\left(B_{f_{2}}\right)\right)$ of $h_{1} \mid$ is connected if and
only if the monodromy representation:

$$
\rho\left(h_{1} \mid\right): \pi_{1}\left(R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)\right) \rightarrow \mathcal{S}_{d_{2}}
$$

is transitive ([B-E]). The proof will follow by comparing $\rho\left(h_{1} \mid\right)$ with the monodromy representation of the branched covering map f_{2} :

$$
\rho\left(f_{2}\right): \pi_{1}\left(R_{3} \backslash B_{f_{2}}\right) \rightarrow \mathcal{S}_{d_{2}} .
$$

Let x be the basepoint for $\pi_{1}\left(R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)\right)$. We assume that $f_{1}(x)$ is the basepoint for $\pi_{1}\left(R_{3} \backslash B_{f_{2}}\right)$. Since $B_{h_{1}} \subset f_{1}^{-1}\left(B_{f_{2}}\right)$ and x is not in $f_{1}^{-1}\left(B_{f_{2}}\right)$, the fiber of h_{1} over x can be identified, via h_{2}, with the fiber of f_{2} over $f_{1}(x)$. Since $f_{1}(x)$ is not a critical value for the degree d_{2} map f_{2}, this fiber $f_{2}^{-1}\left(f_{1}(x)\right)$ consists of d_{2} distinct points, $\left\{y_{1}, \ldots, y_{d_{2}}\right\}$. Suppose that γ is a loop in $R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)$ based at x. We wish to compute the permutation $\rho\left(h_{1} \mid\right)(\gamma)$ in the symmetric group $\mathcal{S}_{d_{2}}$. Let j be an integer with $1 \leq j \leq d_{2}$. Suppose that $\tilde{\gamma}$ is the unique path in $\Sigma \backslash h_{1}^{-1}\left(f_{1}^{-1}\left(B_{f_{2}}\right)\right)$ such that $h_{1} \circ \tilde{\gamma}=\gamma$ and $\tilde{\gamma}(0)=p_{j}$ where $h_{2}\left(p_{j}\right)=y_{j}$. Suppose that $\tilde{\gamma}(1)=p_{j^{\prime}}$. By the definition of the monodromy representation of a covering map, $\left(\rho\left(h_{1} \mid\right)(\gamma)\right)(j)=j^{\prime}$. Let η be the loop $f_{1} \circ \gamma$ in $R_{3} \backslash B_{f_{2}}$ based at $f_{1}(x)$. By the previous commutative diagram, $h_{2} \circ \tilde{\gamma}$ is a path $\tilde{\eta}$ in $R_{2} \backslash f_{2}^{-1}\left(B_{f_{2}}\right)$ such that $f_{2} \circ \tilde{\eta}=\eta$. Of course, $\tilde{\eta}(0)=y_{j}$ and $\tilde{\eta}(1)=y_{j^{\prime}}$. Hence, $\left(\rho\left(f_{2}\right)(\eta)\right)(j)=j^{\prime}$. Hence, the following diagram is commutative:

By this commutative diagram and the previous observations, $\rho\left(h_{1} \mid\right)$ is transitive if and only if the restriction of $\rho\left(f_{2}\right)$ to $\left(f_{1}\right)_{*}\left(\pi_{1}\left(R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)\right)\right.$) is transitive. The proof follows from this equivalence and the previous observations.

Note that the theorem applies with f_{1} and f_{2} interchanged. Hence, we can appeal to either criteria to establish the connectedness of Σ. Later, we shall describe a sufficient condition which ensures that at least one (and, hence, both) of these two conditions is satisfied in a rather general context. As indicated above, this context will involve some simplifying assumptions. We stress, however, that these assumptions are not necessary for the general scheme which we are presently discussing.

B: The kernel of \jmath_{*}

Henceforth, we assume that Σ is connected. Let g be the genus of Σ. We wish to ensure that the kernel K of $\jmath_{*}: H_{1}(\Sigma) \rightarrow H_{1}(X)$ is a proper subspace of $H_{1}(\Sigma)$. If $g_{1}=0$ and $g_{2}=0$, then $H_{1}(X)=\{0\}$. In this case, K is not proper. On the other hand, when $g_{1} \geq 1$, we have the following criterion to ensure that K is proper.

Theorem 5.4. If $g_{1} \geq 1$ and $g>g_{1}+g_{2}$, then K is proper.
Proof. Since $\tau_{*}: H_{1}(X) \stackrel{\cong}{\rightrightarrows} H_{1}\left(R_{1} \times R_{2}\right)$ is an isomorphism, K is equal to the kernel of :

$$
\left(h_{1}, h_{2}\right)_{*}: H_{1}(\Sigma) \rightarrow H_{1}\left(R_{1} \times R_{2}\right) .
$$

This homomorphism may be naturally identified with :

$$
\left(h_{1}\right)_{*} \oplus\left(h_{2}\right)_{*}: H_{1}(\Sigma) \rightarrow H_{1}\left(R_{1}\right) \oplus H_{1}\left(R_{2}\right) .
$$

Thus:

$$
\begin{equation*}
K=\operatorname{kernel}\left(\left(h_{1}\right)_{*}\right) \cap \operatorname{kernel}\left(\left(h_{2}\right)_{*}\right) . \tag{5.4}
\end{equation*}
$$

Since $h_{1}: \Sigma \rightarrow R_{1}$ is a holomorphic map between Riemann surfaces, we may compute its degree by computing the number of points in $h_{1}^{-1}(x)$ where x is a regular value for h_{1}. Since C has only finitely many singularities, we may choose $x \in R_{1}$ so that $\pi_{1}^{-1}(x)$ avoids the singularities of C, where π_{1} denotes projection onto the first factor of $R_{1} \times R_{2}$. Since D is the preimage under τ of the singular set of C and since τ is an isomorphism in the complement of D, we can identify $h_{1}^{-1}(x)$ with $\tau\left(h_{1}^{-1}(x)\right)$. But:

$$
\tau\left(h_{1}^{-1}(x)\right)=C \cap \pi_{1}^{-1}(x)=\{x\} \times f_{2}^{-1}\left(f_{1}(x)\right) .
$$

Since f_{1} is a branched covering map, it is an open map. Hence, we may assume, in addition to the previous assumption on x, that $f_{1}(x)$ is a regular value for f_{2}. Since f_{2} is a holomorphic map of degree $d_{2}, \# f_{2}^{-1}\left(f_{1}(x)\right)=d_{2}$. Hence, we see that h_{1} has degree d_{2}. Likewise, h_{2} has degree d_{1}.

Since the degree of h_{j} is nonzero, h_{j} is a nonconstant holomorphic map. Hence, h_{j} is a branched covering map between closed, orientable surfaces. It follows that $\left(h_{j}\right)_{*}: H_{1}(\Sigma) \rightarrow H_{1}\left(R_{j}\right)$ is surjective. Since $g_{1} \geq 1, H_{1}\left(R_{1}\right) \neq$ $\{0\}$. Since $\left(h_{1}\right)_{*}$ is surjective, it follows from (5.4) that K is not equal to $H_{1}(\Sigma)$. Suppose that $K=\{0\}$. Then $\left(h_{1}\right)_{*} \oplus\left(h_{2}\right)_{*}$ is injective. Hence, $g \leq g_{1}+g_{2}$. This violates our hypothesis and the proof is complete.

We have the following corollary of Theorem 5.4.
Corollary 5.1. If $R_{2}=S^{2}$ and $g_{1}, d_{2} \geq 2$, then K is proper.
Proof. Applying the Riemann-Hurwitz relation to the branched covering map h_{1}, we conclude that:

$$
2-2 g=d_{2}\left(2-2 g_{1}\right)-\beta\left(h_{1}\right) .
$$

Since $\beta\left(h_{1}\right) \geq 0$ and $g_{1}, d_{2} \geq 2$, this identity implies that $g>g_{1}$. Since $R_{2}=S^{2}, g_{2}=0$. Hence, $g>g_{1}+g_{2}$. Since $g_{1} \geq 2$, the result follows immediately from Theorem 5.4.

C: Simplifying Assumptions

Applying the Riemann-Hurwitz relation to the branched covering maps f_{1}, f_{2}, h_{1} and h_{2}, we have the following identities:

$$
\begin{align*}
& 2-2 g_{1}=d_{1}\left(2-2 g_{3}\right)-\beta\left(f_{1}\right) \tag{5.5}\\
& 2-2 g_{2}=d_{2}\left(2-2 g_{3}\right)-\beta\left(f_{2}\right) \\
& 2-2 g=d_{2}\left(2-2 g_{1}\right)-\beta\left(h_{1}\right) \\
& 2-2 g=d_{1}\left(2-2 g_{2}\right)-\beta\left(h_{2}\right) .
\end{align*}
$$

Given $\beta\left(f_{j}\right)$ and $\beta\left(h_{j}\right)$, we can calculate the genus g of Σ from these identities. The calculation of $\beta\left(f_{j}\right)$ and $\beta\left(h_{j}\right)$, however, involves more explicit information regarding the maps f_{1} and f_{2} and the relationship between their critical values and critical points. To be explicit and for the sake of simplicity, we shall now restrict the discussion. (We continue to stress the fact that these simplifying assumptions are not necessary.) We assume that:

$$
\begin{equation*}
R_{2}=R_{3}=S^{2} \quad\left(g_{2}=g_{3}=0\right) \tag{5.6}
\end{equation*}
$$

We shall also assume that:

$$
\begin{equation*}
g_{1}, d_{1}, d_{2} \geq 2 \tag{5.7}
\end{equation*}
$$

By (5.6), (5.7) and Corollary 5.1, K is proper. (Actually, since $g_{1} \geq 2$ and $g_{2}=0$, the hypothesis that $d_{1} \geq 2$ is redundant. This follows from the fact that a branched covering map of degree 1 is a homeomorphism. Likewise, the assumption that $g_{3}=0$ is redundant. It follows from the assumption that $g_{2}=0$ and the Riemann-Hurwitz relation for the branched covering map f_{2}.) In addition, we shall assume that:

$$
\begin{equation*}
f_{j} \text { is a simple branched covering map. } \tag{5.8}
\end{equation*}
$$

A branched covering $\phi: M \rightarrow N$ of degree d between closed, oriented surfaces is simple if $\# \phi^{-1}(y) \geq d-1$ for all $y \in N$. Let q be a critical value of ϕ. Then $\phi^{-1}(q)=\left\{p_{1}, \ldots, p_{d-1}\right\}$ where the degree of ϕ at p_{j} is equal to 2 if $j=1$ and 1 if $2 \leq j \leq d-1$. Note that if ϕ is a simple branched covering map, then:

$$
\beta(\phi)=\# \Lambda_{\phi}=\# B_{\phi} .
$$

(Indeed, we can take this as a definition of a simple branched covering map.) Hence, it follows from (5.5), (5.6) and (5.8) that:

$$
\begin{gather*}
\# \Lambda_{f_{1}}=\# B_{f_{1}}=2\left(d_{1}+g_{1}-1\right) \tag{5.9}\\
\# \Lambda_{f_{2}}=\# B_{f_{2}}=2\left(d_{2}-1\right) .
\end{gather*}
$$

Remark 5.4. We have assumed that f_{j} is a nonconstant holomorphic map between compact Riemann surfaces. Actually, we only need to assume that f_{j} is a branched covering map between closed, oriented surfaces. Indeed, if $\phi: M \rightarrow N$ is any branched covering map between closed, oriented surfaces M and N and N is equipped with a complex structure, then there is a unique complex structure on M such that ϕ is a holomorphic map ([B-G]). We point out that this fact implies that the only freedom one has to realize the branched covering maps f_{j} as holomorphic maps is in the choice of
conformal structure on R_{3}. If $g_{3}=0$, the Uniformization theorem implies that there is no freedom in prescribing the complex structures.

The following lemma shows that there are branched covers $f_{1}: R_{1} \rightarrow R_{3}$ and $f_{2}: R_{2} \rightarrow R_{3}$ satisfying (5.6), (5.7) and (5.8) for any choice of integers $g_{1}, d_{1}, d_{2} \geq 2$. In addition, it shows that we have complete freedom in prescribing the branch values on S^{2} of f_{1} and f_{2}.

Lemma 5.1. Let g and d be nonnegative integers such that $d \geq 1$. Let $\left\{x_{1}, \ldots, x_{r}\right\}$ be a set of r distinct points on S^{2} where $r=2(d+g-1)$. Then there exists a nonconstant holomorphic branched covering map $f: R \rightarrow S^{2}$ of degree d such that:

$$
\begin{gathered}
\text { (i) } B_{f}=\left\{x_{1}, \ldots, x_{r}\right\} \\
\text { (ii)genus }(R)=g .
\end{gathered}
$$

Proof. Let B denote the chosen set of points $\left\{x_{1}, \ldots, x_{r}\right\}$. Let \mathcal{S}_{d} denote the symmetric group on d symbols. If $1 \leq m, n \leq d$ and $m \neq n$, let (m, n) denote the transposition which interchanges m and n. The fundamental group $\pi_{1}\left(S^{2} \backslash B\right)$ has the following presentation:

$$
\begin{gathered}
\text { Generators : } c_{j}, \quad 1 \leq j \leq r \\
\text { Relations : } \quad \prod_{j=1}^{r} c_{j}=1,
\end{gathered}
$$

where c_{j} is represented by a small loop about x_{j}. Hence, we may define a homomorphism:

$$
\rho: \pi_{1}\left(S^{2} \backslash B\right) \rightarrow \mathcal{S}_{d}
$$

whose values on the sequence of generators:

$$
\left(c_{1}, \ldots, c_{r}\right)
$$

are given by the following sequence of transpositions:

$$
(\underbrace{(1,2), \ldots \ldots(1,2)}_{2 g+2},(1,3),(1,3),(1,4),(1,4), \ldots,(1, d),(1, d)) .
$$

By the existence theorem of Hurwitz ($[\mathrm{B}-\mathrm{E}]$), there is a branched covering map $f: R \rightarrow S^{2}$ of degree d with branch set $B_{f}=B$ and Hurwitz representation $\rho_{f}=\rho$. Since the transpositions $\{(1,2),(1,3), \ldots,(1, d)\}$ form a set of generators of $\mathcal{S}_{d}, \rho_{f}$ is transitive. Hence, R is connected. It follows from the Riemann-Hurwitz relation that R is a compact Riemann surface of genus g. By remark 5.4, we may assume that f is holomorphic.

The assumption that f_{1} and f_{2} are simple branched covering maps has the advantage that all the singularities of C are simple singularities of type $(2,2)$. In other words, all the singularities of C are ordinary double points. Hence, we can obtain a desingularization of C by blowing up $R_{1} \times S^{2}$ once at each double point of C. Note also that the set of double points on C is
in one to one correspondence with the set of common critical values of f_{1} and f_{2}. Let k denote the number of common critical values of f_{1} and f_{2}. By (5.9), it follows that:

$$
\begin{equation*}
k \leq \min \left(2\left(d_{1}+g_{1}-1\right), 2\left(d_{2}-1\right)\right) \tag{5.10}
\end{equation*}
$$

Let ℓ be a nonnegative integer. Let p_{1}, \ldots, p_{k} denote the singular points of C. Let q_{1}, \ldots, q_{ℓ} denote ℓ distinct smooth points on C. Let X denote the surface obtained by blowing up $R_{1} \times S^{2}$ exactly once at each point in $\left\{p_{1}, \ldots, p_{k}, q_{1}, \ldots ., q_{\ell}\right\}$. Let Σ denote the proper transform of C in X. Note that Σ is a desingularization of C. (Of course, there are other possibilities for a desingularization of C. But in any case, we must blow up at least once at each double point of C. Our choice of desingularization is the simplest desingularization which provides sufficient control over the self-intersection of Σ. Once this self-intersection is fixed, the differential topology is insensitive to the choice of desingularization.) The following lemma gives sufficient restrictions upon k to ensure that Σ is connected.

Lemma 5.2. Let k be any nonnegative integer satisfying (5.10) such that $k \leq \max \left(d_{1}+2 g_{1}-1, d_{2}-1\right)$ where g_{1}, d_{1} and d_{2} satisfy (5.7). Then there exist simple branched covering maps $f_{1}: R_{1} \rightarrow S^{2}$ and $f_{2}: S^{2} \rightarrow S^{2}$ of degree d_{1} and d_{2} respectively such that:

$$
\begin{aligned}
& \text { (i) \# }\left(B_{f_{1}} \cap B_{f_{2}}\right)=k, \\
& \text { (ii)genus }\left(R_{1}\right)=g_{1},
\end{aligned}
$$

(iii) the curve C is irreducible (i.e. Σ is connected)
where $C=\left\{(x, y) \in R_{1} \times S^{2} \mid f_{1}(x)=f_{2}(y)\right\}$.
Proof. Let $r_{1}=2\left(d_{1}+g_{1}-1\right)$ and $r_{2}=2\left(d_{2}-1\right)$. Since $k \leq \min \left(r_{1}, r_{2}\right)$, we may choose subsets B_{1} and B_{2} of S^{2} for which B_{j} consists of r_{j} distinct points and $B_{1} \cap B_{2}$ consists of k distinct points. For any choice of such subsets, by Lemma 5.1, there exist simple branched covering maps f_{1} : $R_{1} \rightarrow S^{2}$ and $f_{2}: S^{2} \rightarrow S^{2}$ of degree d_{1} and d_{2} respectively such that $B_{f_{j}}=B_{j}$. For any such pair of branched covering maps, we have condition (i) of the lemma satisfied. It remains to choose f_{1} and f_{2} appropriately to ensure that Σ is connected. This we do by appealing to Theorem 5.3.

We may assume that the monodromy representations of f_{1} and f_{2} are as described in the proof of Lemma 5.1. By assumption, $k \leq d_{2}-1$ or $k \leq d_{1}+2 g_{1}-1$. Suppose that $k \leq d_{2}-1$. Since $B_{f_{2}} \backslash B_{f_{1}}$ consists of $r_{2}-k$ points, where $r_{2}=2\left(d_{2}-1\right)$, there are at least $d_{2}-1$ distinct points in $B_{f_{2}} \backslash B_{f_{1}}$. Given the freedom we have to prescribe the branch loci, we can assume that $z_{1}, \ldots, z_{d_{2}-1}$ lie in $B_{f_{2}} \backslash B_{f_{1}}$. Let c_{j}^{\prime} be the generator of $\pi_{1}\left(S^{2} \backslash B_{f_{2}}\right)$ corresponding to the point z_{j}. From our assumption regarding the monodromy representations, we conclude that $\rho\left(f_{2}\right)\left(c_{j}^{\prime}\right)=(1, j)$. The generator c_{j}^{\prime} is represented by a small loop γ_{j}^{\prime} around z_{j}. Since z_{j} is not in $B_{f_{1}}$, we may assume that γ_{j}^{\prime} bounds a small disc D_{j} in $S^{2} \backslash B_{f_{1}}$. Since f_{1}
is a covering map over $S^{2} \backslash B_{f_{1}}, D_{j}$ lifts to a small disc \tilde{D}_{j} in R_{1}. Hence, γ_{j}^{\prime} lifts to a loop $\tilde{\gamma_{j}^{\prime}}$ in $R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)$. This implies that c_{j}^{\prime} is in the image L_{1} of $\pi_{1}\left(R_{1} \backslash f_{1}^{-1}\left(B_{f_{2}}\right)\right)$ under $\left(f_{1}\right)_{*}$. Hence, $(1, j)$ is in the image of L_{1} under $\rho\left(f_{2}\right)$. By Theorem 5.3, we conclude that Σ is connected. Likewise, if $k \leq d_{1}+2 g_{1}-1$, then we can choose f_{1} and f_{2} so that Σ is connected.

In light of Lemma 5.2, we assume, in addition to (5.10), that:

$$
\begin{equation*}
k \leq \max \left(d_{1}+2 g_{1}-1, d_{2}-1\right) . \tag{5.11}
\end{equation*}
$$

D: The genus and self-intersection of Σ

We shall construct our examples by appealing to Lemma 5.2. The following lemma gives the genus and self-intersection of the resulting Riemann surfaces Σ.

Lemma 5.3. Suppose that f_{1} and f_{2} are simple branched covering maps as in Lemma 5.2. Let Σ be the proper transform of C obtained by blowing up C at the k double points and ℓ distinct nonsingular points of C. Then:

$$
\begin{gathered}
\operatorname{genus}(\Sigma)=1+d_{1} d_{2}+d_{2}\left(g_{1}-1\right)-k-d_{1} \\
\Sigma \cdot \Sigma=2 d_{1} d_{2}-4 k-\ell .
\end{gathered}
$$

Proof. Since Σ is a smoothly embedded complex curve in the complex surface X, we have the following well-known consequence of the adjunction formula ([B-P-V], chapter I, section 6):

$$
\begin{equation*}
c_{1}(X)(\Sigma)=\chi(\Sigma)+\Sigma \cdot \Sigma . \tag{5.12}
\end{equation*}
$$

X is obtained by blowing up $R_{1} \times S^{2}$ at $k+\ell$ distinct points, $\left\{p_{1}, \ldots ., p_{k}, q_{1}, \ldots, q_{\ell}\right\}$ as chosen above. Let E_{j} be the (-1)-curve corresponding to $p_{j}, \tau^{-1}\left(p_{j}\right)$. Let F_{j} be the (-1)-curve corresponding to $q_{j}, \tau^{-1}\left(q_{j}\right)$. It follows from Theorem 9.1 (vii) in chapter I of [B-P-V], that:

$$
c_{1}(X)=\tau^{*}\left(c_{1}\left(R_{1} \times S^{2}\right)\right)-E_{1}^{*}-\ldots-E_{k}^{*}-F_{1}^{*}-\ldots-F_{\ell}^{*}
$$

where E_{j}^{*} is the Poincare Dual of E_{j} and F_{j}^{*} is the Poincare Dual of F_{j}. Hence:

$$
c_{1}(X)(\Sigma)=c_{1}\left(R_{1} \times S^{2}\right)\left(\tau_{*}(\Sigma)\right)-E_{1} \cdot \Sigma-\ldots-E_{k} \cdot \Sigma-F_{1} \cdot \Sigma-\ldots-F_{\ell} \cdot \Sigma .
$$

Since p_{j} is an ordinary double point of C and Σ is the proper transform of C with respect to blowing up once at each point in $\left\{p_{1}, \ldots ., p_{k}, q_{1}, \ldots ., q_{\ell}\right\}$, $E_{j} \cdot \Sigma=2$. Since q_{j} is a smooth point of $C, F_{j} \cdot \Sigma=1$. The divisor $D=E_{1}+\ldots+E_{k}+F_{1}+\ldots F_{\ell}$ meets Σ at exactly $2 k+\ell$ points, 2 on each component E_{j} of D and 1 on each component F_{j}. All of these points of intersection are smooth points of transverse intersection. Since τ is an
isomorphism off $D, \tau_{*}(\Sigma)=C$ in $H_{2}\left(R_{1} \times S^{2}\right)$. Hence, from the previous equation:

$$
\begin{equation*}
c_{1}(X)(\Sigma)=c_{1}\left(R_{1} \times S^{2}\right)(C)-2 k-\ell \tag{5.14}
\end{equation*}
$$

By the Kunneth formula and the fact that $H_{1}\left(S^{2}\right)=\{0\}, H_{2}\left(R_{1} \times S^{2}\right)$ has a basis $\{B, F\}$ where B is represented by a smoothly embedded complex curve $R_{1} \times\{y\}$ for any y in S^{2} and F is represented by a smoothly embedded complex curve $\{x\} \times S^{2}$ for any x in R_{1}. So $C=b B+f F$ for some real numbers b and f. We can compute b and f by considering the intersection form Q on $H_{2}\left(R_{1} \times S^{2}\right)$. Clearly, $B \cdot B=0, B \cdot F=F \cdot B=1$ and $F \cdot F=0$. Hence, $C \cdot B=f$ and $C \cdot F=b$. On the other hand, we can compute $C \cdot B$ and $C \cdot F$ directly as follows. We may choose x such that $f_{1}(x)$ is neither a critical value of f_{1} nor of f_{2}. Likewise, we may assume that $f_{2}(y)$ is not a critical value of f_{1} or f_{2}. (Furthermore, we may choose x and y such that B and F avoid the blow-up locus $\left\{p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{\ell}\right\}$. We shall appeal to this assumption in the discussion below.) With these assumptions, all the pairwise intersection points of $C, R_{1} \times\{y\}$ and $\{x\} \times S^{2}$ are smooth points of transverse intersection. Hence, since all these curves are complex, we can compute their intersection numbers by counting. Thus, for instance, $C \cdot B=\#\left(C \cap\left(R_{1} \times\{y\}\right)\right)$. By the definition of C :

$$
C \cap\left(R_{1} \times\{y\}\right)=f_{1}^{-1}\left(f_{2}(y)\right) \times\{y\} .
$$

Since $f_{2}(y)$ is not a critical value of the degree d_{1} map $f_{1}, \#\left(C \cap\left(R_{1} \times\{y\}\right)\right)=$ d_{1}. Hence, $C \cdot B=d_{1}$. Likewise, $C \cdot F=d_{2}$. Thus:

$$
\begin{equation*}
C=d_{2} B+d_{1} F . \tag{5.15}
\end{equation*}
$$

Since B is a smoothly embedded complex curve of genus g_{1} and self-intersection 0 , it follows from the adjunction formula that:

$$
c_{1}\left(R_{1} \times S^{2}\right)(B)=\chi(B)+B \cdot B=2-2 g_{1} .
$$

Likewise, since F is a smoothly embedded complex curve of genus 0 :

$$
c_{1}\left(R_{1} \times S^{2}\right)(F)=\chi(F)+F \cdot F=2 .
$$

Combining these observations, we conclude that:

$$
c_{1}\left(R_{1} \times S^{2}\right)(C)=d_{2}\left(2-2 g_{1}\right)+d_{1} 2 .
$$

From (5.14), it follows that:

$$
\begin{equation*}
c_{1}(X)(\Sigma)=d_{2}\left(2-2 g_{1}\right)+d_{1} 2-2 k-\ell \tag{5.16}
\end{equation*}
$$

Since Σ is a compact Riemann surface of genus g, it follows from (5.12) and (5.16) that:

$$
\begin{equation*}
2 g=2+\Sigma \cdot \Sigma+d_{2}\left(2 g_{1}-2\right)+2 k+\ell-2 d_{1} . \tag{5.17}
\end{equation*}
$$

It remains to compute $\Sigma \cdot \Sigma$. Topologically, blowing up corresponds to a connect sum with $\overline{\mathbf{C P}}^{2}$. The associated (-1)-curve corresponds to $\overline{\mathbf{C P}}^{1} \subset$ $\overline{\mathbf{C P}}^{2}$. It follows from this description and the Mayer-Vietoris sequence, that $H_{2}(X)$ has a basis $\left\{B^{\prime}, F^{\prime}, E_{1}, \ldots, E_{k}, F_{1}, \ldots, F_{\ell}\right\}$, where B^{\prime} is the proper
transform of B and F^{\prime} is the proper transform of F. Therefore, we may write:

$$
\Sigma=b B^{\prime}+f F^{\prime}+a_{1} E_{1}+\ldots+a_{k} E_{k}+b_{1} F_{1}+\ldots+b_{\ell} F_{\ell}
$$

for some coefficients $b, f, a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{\ell}$. As before, we can compute the coefficients by appealing to the intersection form Q. Since we have chosen B and F to avoid the blow-up locus, the previous observations imply that $B^{\prime} \cdot F^{\prime}=B \cdot F=1, B^{\prime} \cdot E_{j}=0, B^{\prime} \cdot F_{j}=0, F^{\prime} \cdot E_{j}=0$ and $F^{\prime} \cdot F_{j}=0$. Since $E_{1}, \ldots, E_{k}, F_{1}, \ldots, F_{\ell}$ are disjoint (-1)-curves, $E_{j} \cdot E_{j}=-1, E_{j} \cdot E_{j^{\prime}}=0$ if $j \neq j^{\prime}, E_{j} \cdot F_{j^{\prime \prime}}=0, F_{j^{\prime \prime}} \cdot F_{j^{\prime \prime}}=-1$ and $F_{j^{\prime \prime}} \cdot F_{j^{\prime \prime \prime}}=0$ if $j^{\prime \prime} \neq j^{\prime \prime \prime}$. Again, since B and F avoid the blow-up locus, $\Sigma \cdot B^{\prime}=C \cdot B=d_{1}$ and $\Sigma \cdot F^{\prime}=C \cdot F=d_{2}$. On the other hand, since p_{j} is an ordinary double point of $C, \Sigma \cdot E_{j}=2$. Since q_{j} is a smooth point of $C, \Sigma \cdot F_{j}=1$. These facts imply that:

$$
\Sigma=d_{2} B^{\prime}+d_{1} F^{\prime}-2 E_{1}-\ldots-2 E_{k}-F_{1}-\ldots-F_{\ell}
$$

From this identity, we compute that:

$$
\begin{equation*}
\Sigma \cdot \Sigma=2 d_{1} d_{2}-4 k-\ell \tag{5.18}
\end{equation*}
$$

Together with (5.17), this implies that:

$$
\begin{equation*}
g=1+d_{1} d_{2}+d_{2}\left(g_{1}-1\right)-k-d_{1} \tag{5.19}
\end{equation*}
$$

E: Examples

Now we are ready to construct our examples. To each example there is an associated set of nonnegative integers $g_{1}^{-}, d_{1}^{-}, d_{2}^{-}, k^{-}, \ell^{-}, g_{1}^{+}, d_{1}^{+}, d_{2}^{+}$, k^{+}, ℓ^{+}, g and n satisfying the following constraints:

$$
\begin{gather*}
g_{1}^{ \pm}, d_{1}^{ \pm}, d_{2}^{ \pm} \geq 2 \tag{5.20}\\
k^{ \pm} \leq \min \left(2\left(d_{1}^{ \pm}+g_{1}^{ \pm}-1\right), 2\left(d_{2}^{ \pm}-1\right)\right) \tag{5.21}\\
k^{ \pm} \leq \max \left(d_{1}^{ \pm}+2 g_{1}^{ \pm}-1, d_{2}^{ \pm}-1\right) \tag{5.22}\\
g=d_{1}^{ \pm} d_{2}^{ \pm}+d_{2}^{ \pm}\left(g_{1}^{ \pm}-1\right)-k^{ \pm}-d_{1}^{ \pm} \tag{5.23}\\
\pm n=2 d_{1}^{ \pm} d_{2}^{ \pm}-4 k^{ \pm}-\ell^{ \pm} \tag{5.24}
\end{gather*}
$$

Any such set of integers will be called an admissible set of parameters. The following theorem shows that we have complete freedom in prescribing an admissible set of parameters.

Theorem 5.5. If $g_{1}^{ \pm}, d_{1}^{ \pm}, d_{2}^{ \pm}, k^{ \pm}, \ell^{ \pm}, g$ and n are admissible parameters, then there exists a symplectic normal connect sum $X=X^{-} \#_{\Psi} X^{+}$along surfaces Σ^{-}and Σ^{+}of genus g such that $b_{1}(X)$ is odd and $X^{ \pm}$is obtained by blowing up the ruled surface $R_{1}^{ \pm} \times S^{2}$ exactly $k^{ \pm}+\ell^{ \pm}$times, where $R_{1}^{ \pm}$ is a compact Riemann surface of genus $g_{1}^{ \pm}$

Proof. Let $R_{1}^{ \pm}$be a compact Riemann surface of genus $g_{1}^{ \pm}$. By (5.20), (5.21), (5.22), Lemma 5.2, (5.23), (5.24) and Lemma 5.3, we conclude that there exist smooth symplectically embedded surfaces $\Sigma^{ \pm}$of genus g and selfintersection $\pm n$ in surfaces $X^{ \pm}$obtained by blowing up $R_{1}^{ \pm} \times S^{2}$ exactly $k^{ \pm}+\ell^{ \pm}$times. By (5.20) and Corollary 5.1, it follows that the kernel $K^{ \pm}$ of :

$$
\jmath_{*}: H_{1}\left(\Sigma^{ \pm}\right) \rightarrow H_{1}\left(X^{ \pm}\right)
$$

is a proper subspace of $H_{1}\left(\Sigma^{ \pm}\right)$. Hence, by Theorem 5.2 , there exists a symplectomorphism Ψ of tubular shell neighborhoods of Σ^{-}and Σ^{+}so that $b_{1}\left(X^{-} \#_{\Psi} X^{+}\right)$is odd.

Remark 5.5. Since g and n are determined by the other parameters, they are not effective parameters for this construction. We include them only for the sake of convenience. It can be seen that varying ℓ^{-}and ℓ^{+}does not affect the differential topology of the normal connect sums X in Theorem 5.5. Hence, in some sense, ℓ_{-}and ℓ_{+}are also not effective parameters for this construction.

Actually, there may be several examples corresponding to a given admissible set of parameters. There are several choices involved in the construction. It seems possible that the choice of the gluing symplectomorphism Ψ in Theorem 1.1 may effect the symplectomorphism type of X, even if we stay within a fixed isotopy class. Changing the isotopy class of Ψ may lead to non-diffeomorphic or non-homeomorphic manifolds. (It is not even clear how the geometry and topology depend upon the branched covering maps $f_{j}^{ \pm}$. The geometry may change under perturbations of $f_{j}^{ \pm}$. The topology may depend upon the interplay between the critical values and monodromy representations of $f_{j}^{ \pm}$.) All of our examples are constructed by appealing to Theorem 5.2. The proof of that theorem shows that it is always possible to change the parity of b_{1} by changing the symplectic gluing map Ψ to some symplectic gluing map Ψ^{\prime} (remark 5.3). But it may also be possible to have different odd (or even) values for b_{1}. It is not our purpose here to address any of these issues, though we hope to address some of them in future work.

The following corollary describes the invariants of the symplectic normal connect sums in Theorem 5.5.

Corollary 5.2. Let $X=X^{-} \#_{\Psi} X^{+}$with b_{1} odd be a symplectic normal connect sum as in Theorem 5.5. Then:

$$
\begin{gathered}
\sigma(X)=-2 d_{1}^{-} d_{2}^{-}-2 d_{1}^{+} d_{2}^{+}+3 k^{-}+3 k^{+} \\
c_{2}(X)=\chi(X)= \\
\\
+3\left(d_{1}^{-}-2\right)\left(d_{2}^{-}-2\right)+\left(d_{1}^{+}-2\right)\left(d_{2}^{+}-2\right) \\
\\
\\
\left.+2 g_{1}^{+}\left(d_{2}^{+}-2\right)+d_{1}^{+} d_{2}^{+}-2 k^{-}-2 k^{+}\right)+2 k^{-}\left(d_{2}^{-}-2\right)
\end{gathered}
$$

$$
\begin{aligned}
c_{1}^{2}(X)= & 2\left(d_{1}^{-}-2\right)\left(d_{2}^{-}-2\right)+2\left(d_{1}^{+}-2\right)\left(d_{2}^{+}-2\right) \\
& +4 g_{1}^{-}\left(d_{2}^{-}-2\right)+4 g_{1}^{+}\left(d_{2}^{+}-2\right)-k^{-}-k^{+}
\end{aligned}
$$

In particular, $\sigma(X)<0$ and, hence, $c_{1}^{2}(X)<2 c_{2}(X)$.
Proof. By the multiplicativity of Euler characteristics for product spaces:

$$
\chi\left(R_{1}^{ \pm} \times S^{2}\right)=4-4 g_{1}^{ \pm}
$$

By previous remarks concerning the intersection form Q on $H_{2}\left(R_{1}^{ \pm} \times S^{2}\right)$, it is clear that:

$$
\sigma\left(R_{1}^{ \pm} \times S^{2}\right)=0
$$

From (2.6), we conclude that:

$$
\begin{aligned}
& c_{1}^{2}\left(R_{1}^{ \pm} \times S^{2}\right)=8-8 g_{1}^{ \pm} \\
& c_{2}\left(R_{1}^{ \pm} \times S^{2}\right)=4-4 g_{1}^{ \pm}
\end{aligned}
$$

Since $X^{ \pm}$is obtained by blowing up $R_{1}^{ \pm} \times S^{2}$ exactly $k^{ \pm}+\ell^{ \pm}$times:

$$
\begin{gather*}
\chi\left(X^{ \pm}\right)=4-4 g_{1}^{ \pm}+k^{ \pm}+\ell^{ \pm} \tag{5.25}\\
\sigma\left(X^{ \pm}\right)=-k^{ \pm}-\ell^{ \pm} \\
c_{1}^{2}\left(X^{ \pm}\right)=8-8 g_{1}^{ \pm}-k^{ \pm}-\ell^{ \pm} \\
c_{2}\left(X^{ \pm}\right)=4-4 g_{1}^{ \pm}+k^{ \pm}+\ell^{ \pm}
\end{gather*}
$$

The formulas for $\sigma(X), \chi(X), c_{1}^{2}(X)$ and $c_{2}(X)$ follow immediately from $(2.4),(2.5),(2.8)$ and (5.25). From the formula for $\sigma(X)$ and (5.24), we find that:

$$
4 \sigma(X)=-2\left(d_{1}^{-} d_{2}^{-}+d_{1}^{+} d_{2}^{+}\right)-3\left(\ell^{-}+\ell^{+}\right)
$$

Since $d_{j}^{ \pm}>0$, we conclude that $\sigma(X)<0$. Hence, by $(2.6), c_{1}^{2}(X)<$ $2 c_{2}(X)$.

Since $b_{1}(X)$ is odd, none of these examples are homeomorphic to any Kähler surface. On the other hand, by remark 5.3, there exists a symplectomorphism Ψ^{\prime} of tubular shell neighborhoods of Σ_{-}and Σ_{+}such that $b_{1}\left(X_{-} \#_{\Psi^{\prime}} X_{+}\right)$is even. Let X^{\prime} denote this normal connect sum $X_{-} \#_{\Psi^{\prime}} X_{+}$. By (2.4), (2.5) and (2.8), X^{\prime} has the same euler characteristic, signature and Chern numbers as X.

Question . Is X^{\prime} homeomorphic to any Kähler surface? Or indeed, for suitable Ψ^{\prime}, is X^{\prime} itself a Kähler surface?

Example 5.2 (A Family with b_{1} Odd and c_{1}^{2} Unbounded). We shall now give a "1-parameter" family of examples of the preceding type for which
$c_{1}^{2}>0$ and c_{1}^{2} is unbounded. Let a be a nonnegative integer. Consider the following choice of parameters:

$$
\begin{gather*}
g_{1}^{-}=g_{1}^{+}=2+2 a, \quad d_{1}^{-}=d_{1}^{+}=2 \tag{5.26}\\
d_{2}^{-}=3+a, \quad d_{2}^{+}=2+a \\
k^{-}=4+2 a \quad k^{+}=1, \quad \ell^{-}=\ell^{+}=0 \\
g=4+7 a+2 a^{2}, \quad n=4+4 a .
\end{gather*}
$$

These choices give an admissible set of parameters $g_{1}^{ \pm}, d_{1}^{ \pm}, d_{2}^{ \pm}, k^{ \pm}, \ell^{ \pm}, g$ and n. Let X be the normal connect sum with b_{1} odd which was constructed in Theorem 5.5. By our choice of parameters and Corollary 5.2, we have the following identities:

$$
\begin{gather*}
\sigma(X)=-(5+2 a) \tag{5.27}\\
\chi(X)=c_{2}(X)=9+14 a+8 a^{2} \\
c_{1}^{2}(X)=3+22 a+16 a^{2} .
\end{gather*}
$$

The above identities and the fact that $b_{1}(X)$ is odd imply that X is not homeomorphic to any complex surface. For suppose that X is a complex surface. Let Z be a minimal model for X. Since $b_{1}(Z)=b_{1}(X), b_{1}(Z)$ is odd. Since c_{1}^{2} increases under blow downs, $c_{1}^{2}(Z) \geq c_{1}^{2}(X)$. By (5.27), therefore, $c_{1}^{2}(Z) \geq 3$. On the other hand, since Z is a minimal surface with b_{1} odd, the table in chapter $V I$, section 1 of [B-P-V] implies that $c_{1}^{2}(Z) \leq 0$. Hence, X is not homeomorphic to any complex surface.

Let X^{\prime} be the normal connect sum with b_{1} even obtained by changing the gluing map Ψ to a map Ψ^{\prime} as explained above. As we have previously observed, the euler characteristic, signature and Chern numbers of X^{\prime} agree with those of X. Suppose that $a>0$ and X^{\prime} is complex. By (5.27) and the table in chapter $V I$, section 1 of [B-P-V], X^{\prime} is a surface of general type.

Recall that a negative self-intersection nonsingular curve in a Kähler surface can always be constructed by blowing up any nonsingular nonnegative self-intersection curve sufficiently often. By our terminology this curve is not genuinely negative. (See section 4.) Of course, such curves cannot exist on minimal Kähler surfaces. Thus, to form a symplectic normal connect sum of two minimal Kähler surfaces we must find genuinely negative curves. The next proposition describes a family of such curves.

Proposition 5.1. The desingularization Σ^{-}of the fibered product of two branched covering maps $f_{1}^{-}: R_{1}^{-} \rightarrow S^{2}$ and $f_{2}^{-}: S^{2} \rightarrow S^{2}$ corresponding to the parameters $g_{1}^{-}, d_{1}^{-}, d_{2}^{-}, k^{-}$and ℓ^{-}in (5.26) is genuinely negative.
Proof. Suppose, on the contrary, that Σ^{-}is the proper transform of a smoothly embedded curve C^{\prime} of nonnegative self-intersection in a surface $Y . Y$ is obtained from X^{-}by blowing down some exceptional divisor D^{\prime} in $X^{-} . C^{\prime}$ is the image of Σ^{-}under the corresponding blow down map τ^{-}. Since C^{\prime} is smoothly embedded, no component of D^{\prime} can meet Σ^{-}with
multiplicity greater than 1 . Each component E^{\prime} of D^{\prime} is a rational curve in X^{-}of negative self-intersection. Consider the restriction h of $\pi_{1} \circ \tau^{-}$to E^{\prime}, where π_{1} is projection onto the first factor of $R_{1}^{-} \times S^{2} . h$ is a holomorphic map from E^{\prime} to R_{1}^{-}. Since E^{\prime} is a rational curve and $g_{1}^{-} \geq 2, h$ must be constant. Hence E^{\prime} lies in the preimage of a curve G of the form $\left\{x^{\prime}\right\} \times S^{2}$. Thus E^{\prime} is either the proper transform G^{\prime} of G or an exceptional curve of τ^{-}. In either case, E^{\prime} is a (-1)-curve. Suppose that E^{\prime} is an exceptional curve of τ^{-}. Since every point in the blow up locus is a double point of the fibered product $C^{-}, \Sigma^{-} \cdot E=2$. If we blow down E, then the image of Σ^{-} will be singular. Since this contradicts our smoothness assumption on C^{\prime}, we conclude that $E=G^{\prime}$. Homological considerations as employed in our previous discussion imply that $C^{-} \cdot G=d_{1}^{-}=2$. Let m be the number of singular points of C^{-}contained in G. Since G is smooth, further arguments as employed above imply that $G^{\prime} \cdot G^{\prime}=-m$ and $\Sigma^{-} \cdot G^{\prime}=2-2 m$. Since G^{\prime} is equal to the (-1)-curve $E^{\prime}, m=1$. Hence, $\Sigma^{-} \cdot E^{\prime}=0$. Hence, D^{\prime} does not intersect Σ^{-}. Thus, $C^{\prime} \cdot C^{\prime}=\Sigma^{-} \cdot \Sigma^{-}$. By (5.26), $\Sigma^{-} \cdot \Sigma^{-}=-(4+4 a)$. Hence, $C^{\prime} \cdot C^{\prime}<0$. This contradicts the assumption that C^{\prime} is nonnegative. Hence, Σ^{-}is genuinely negative. Indeed, any smooth blow down of Σ^{-}has the same self-intersection as Σ^{-}.

Example 5.3 (A Family with b_{1} Odd, c_{1}^{2} Unbounded, X_{j} Minimal). We now wish to modify the previous example to obtain examples of symplectic normal connect sums which are constructed as normal connect sums of minimal surfaces. These examples will be normal connect sums of ruled surfaces of positive genus. They will in fact be diffeomorphic to blow downs of the examples just constructed. Let $k=k^{-}$and $C=C^{-}$as in the previous example. Let $\left\{p_{1}, \ldots, p_{k}\right\}$ be the k distinct double points of C. Let x_{j} be the first coordinate of p_{j}. Let $G_{j}=\left\{x_{j}\right\} \times S^{2}$. By the homological considerations above, $G_{j} \cdot C=2 . G_{j}$ and C are complex curves meeting at p_{j} with multiplicity 2. Hence, $G_{j} \cap C=\left\{p_{j}\right\}$. It follows that $\left\{x_{1}, \ldots, x_{k}\right\}$ is a set of k distinct points on R_{1}^{-}. Hence, $\left\{G_{1}, \ldots, G_{k}\right\}$ is a collection of k distinct fibers of the ruled surface $R_{1}^{-} \times S^{2}$. Let E_{j}^{\prime} be the proper transform of the fiber G_{j}. Consider the divisor $D^{\prime}=E_{1}^{\prime}+\ldots+E_{k}^{\prime}$. By the previous discussion, D^{\prime} is an exceptional divisor. Indeed, D^{\prime} is a union of k disjoint (-1)-curves. Each of these curves is disjoint from Σ^{-}. Let S_{-1} be the surface obtained by blowing down D^{\prime}. Since S_{-1} is obtained from $R_{1}^{-} \times S^{2}$ by blowing up at k^{-}points on distinct fibers of the ruled surface $R_{1}^{-} \times S^{2}$ and then blowing down the corresponding proper transforms of these fibers, S_{-1} is a ruled surface of genus g_{1}^{-}. By the table in chapter $V I$, section 1 of $[\mathrm{B}-\mathrm{P}-\mathrm{V}], S_{-1}$ is a minimal surface. Let Σ_{-1} be the image of Σ^{-}in S_{-1}. Σ_{-1} is a smoothly embedded curve of genus g and self-intersection $-(4+4 a)$ in S_{-1}. Since S_{-1} is a minimal surface, Σ_{-1} is a genuinely negative curve.

For the same reasons, we may blow down a (-1)-curve in the complement of Σ^{+}to obtain a smoothly embedded curve Σ_{1} of genus g and selfintersection $4+4 a$ in a ruled surface S_{1} of genus g_{1}^{+}. The kernels $K_{ \pm 1}$
corresponding to the inclusions of $\Sigma_{ \pm 1}$ in $S_{ \pm 1}$ are isomorphic to the kernels $K^{ \pm}$and, hence, are proper. Therefore, we can apply Theorem 5.2 to form a normal connect sum $S_{-1} \#{ }_{\Phi} S_{1}$ with b_{1} odd. Let S denote this normal connect sum. Appealing to the previous formulas for the basic invariants, we have the following identities:

$$
\begin{gather*}
\sigma(S)=0 \tag{5.28}\\
c_{2}(S)=\chi(S)=4+12 a+8 a^{2} \\
c_{1}^{2}(S)=8+24 a+16 a^{2} .
\end{gather*}
$$

The example S^{0} of a compact symplectic manifold with $c_{1}^{2}=8, c_{2}=4$ and $b_{1}=1$ which was discussed in the introduction corresponds to $a=0$. By (5.26) S^{0} is a normal connect sum of two ruled surfaces S_{-1} and S_{1} of genus 2 along surfaces $\Sigma_{ \pm}$of genus 4 and self-intersection ± 1. The proof of Theorem 5.2 shows that we may choose the gluing map Φ so that $b_{1}\left(S^{0}\right)=1$.

Note that the (-1)-curves in $X^{ \pm}$which were blown down to obtain $S_{ \pm 1}$ are disjoint from $\Sigma^{ \pm}$. Hence, these (-1)-curves embed in X. Indeed, they form a family of disjoint (-1)-curves in X. If we blow down this family of (-1)-curves in X, we obtain a symplectic manifold diffeomorphic to S, (assuming that we have the appropriate correspondence between the gluing maps Ψ and Φ used to construct X and S).
Question . Are these symplectic manifolds $S_{-1} \#_{\Phi} S_{1}$ minimal?

6. Non-Kähler Symplectic Manifolds With b_{1} Even

In this section, we shall give further examples of symplectic manifolds whose underlying smooth manifold does not admit any Kähler structure. Again, these manifolds will all be constructed as symplectic normal connect sums of Kähler manifolds. Since all of the examples of this section have b_{1} even, the proof that these examples do not admit any Kähler structure involves more than the calculation of b_{1}. On the other hand, since b_{1} is even, our argument actually demonstrates that none of these are homeomorphic to any complex surface. (See the result quoted from $[\mathrm{P}]$ in section 3.)
Example 6.1 (Nontrivial Free Products). This example will be obtained by a two stage construction. First, using the operation of symplectic normal connect sum, we shall construct a compact symplectic four manifold X with an embedded symplectic surface Σ of self-intersection 0 such that $\pi_{1}(X \backslash \Sigma)$ is a free group on two generators c and $d . X$ has the additional property that the fiber class z of Σ is represented by the commutator $[d, c$]. Secondly, we shall form the symplectic normal connect sum $Y=X^{-1} \#_{\Phi} X^{1}$ of two copies of X, X^{-1} and X^{1}, along the respective copies of Σ, Γ_{-1} and Γ_{1}. With an appropriate choice of Φ, Y is a symplectic manifold whose fundamental group is isomorphic to $G_{1} * G_{2}$ where G_{1} and G_{2} are two groups which have at least one nontrivial finite quotient each. By the result of [J-R] mentioned above, the fundamental group of Y is not the fundamental group of any
compact Kähler manifold. This conclusion also follows from the result of [A-B-R].

Remark 6.1. Of course, this implies that Y is not homeomorphic to any Kähler manifold. Actually, by the same result of [J-R], we can deduce that Y is non-Kähler in a stable sense. Suppose that S is any compact symplectic manifold. The product $Y \times S$ is, of course, a compact symplectic manifold. Let H be the fundamental group of $S . \pi_{1}(Y \times S)$ is isomorphic to $\left(G_{1} * G_{2}\right) \times H$. Hence, $Y \times S$ is also not homeomorphic to any Kähler manifold. Note that this conclusion can also be deduced from the result of [A-B-R] provided we restrict to compact Kähler manifolds S with finite fundamental groups.

For the first stage of the construction, let $X_{1}=\mathbf{C P}^{2}$. Fix a positive integer k with $k \geq 3$ and let Σ_{1} be a nonsingular curve of degree k in X_{1}. Σ_{1} is a smooth complex curve in X_{1} whose genus g and self-intersection n are given by:

$$
\begin{equation*}
g=(k-1)(k-2) / 2, \quad n=k^{2} . \tag{6.1}
\end{equation*}
$$

Since $k \geq 3, g \geq 1$. Let R be a compact Riemann surface of genus g. Choose two distinct points x_{-1} and x_{0} on T^{2}. Let X_{-1} denote the surface obtained by blowing up $R \times T^{2}$ at k^{2} distinct points on $R \times\left\{x_{-1}\right\}$ and let τ denote the natural projection from X_{-1} to $R \times T^{2}$. Let Σ_{-1} be the proper transform of $R \times\left\{x_{-1}\right\}$ and Σ_{0} be the proper transform of $R \times$ $\left\{x_{0}\right\}$. Proper transformation decreases the self-intersection of a surface by 1 for each point of blowing up lying on the surface. Hence, Σ_{-1} has selfintersection $-k^{2}$, though Σ_{0} has self-intersection 0 . On the other hand, since proper transformation does not effect the genera of embedded surfaces, Σ_{-1} and Σ_{0} both have genus equal to g. By Theorem 1.1, we can form the symplectic normal connect sum $X=X_{-1} \#_{\Psi} X_{1}$ along Σ_{-1} and Σ_{1}. Denote this symplectic manifold by X.

By Theorem 1.1, X admits a symplectic structure which agrees with the symplectic structure on X_{-1} off a tubular neighborhood of Σ_{-1}. We may assume that this tubular neighborhood avoids Σ_{0}. Hence, Σ_{0} naturally embeds in X as a symplectic surface Σ of genus g and self-intersection 0 . Let X^{i} be a copy of X and let Γ_{i} be a copy of Σ in X^{i}. By Theorem 1.1, we can form the symplectic normal connect sum $Y=X^{-1} \#_{\Phi} X^{1}$ along Γ_{-1} and Γ_{1}.

In order to calculate the fundamental group of Y, we need to compute the fundamental group of V_{i}, the complement of a closed tubular neighborhood of Γ_{i} in $X^{i} . V_{i}$ is, of course, isomorphic to the complement X^{*} of a closed tubular neighborhood of Σ in X. To understand X^{*} we reconsider the construction of X as a normal connect sum. Consider the cover $\left(U_{-1}, U_{1}\right)$ of X as described in section $2 . U_{i}$ is the complement of a closed tubular neighborhood of Σ_{i} in X_{i}. As in previous discussions, we identify the intersection $U_{-1} \cap U_{1}$ with the tubular shell neighborhood W_{-1} of Σ_{-1} in U_{-1} so that the
inclusion of $U_{-1} \cap U_{1}$ in U_{1} is identified with the composition $\Psi \circ \jmath$. By the previous assumption on Σ_{0}, Σ avoids U_{1}. Hence, this cover of X restricts to a cover $\left(U_{-1}^{*}, U_{1}\right)$ of X^{*}, where U_{-1}^{*} corresponds to the complement of $\overline{\mathcal{N}(\Sigma)}$ in U_{-1}. We may identify U_{-1}^{*} with the complement of $\overline{\mathcal{N}\left(\Sigma_{0}\right)} \cup \overline{\mathcal{N}\left(\Sigma_{-1}\right)}$ in X_{-1}. The projection $\tau: X_{-1} \rightarrow R \times T^{2}$, thereby, restricts to a projection:

$$
\rho: U_{-1}^{*} \rightarrow R \times\left(T^{2} \backslash\left(B\left(x_{0}\right) \cup B\left(x_{-1}\right)\right)\right),
$$

where $B\left(x_{i}\right)$ is a disc neighborhood of x_{i} in T^{2}. By examining this blow down map ρ we can see that $R \times\left(T^{2} \backslash\left(B\left(x_{0}\right) \cup B\left(x_{-1}\right)\right)\right)$ is isomorphic to the complement of a closed tubular neighborhood of a codimension 2submanifold D^{*} of U_{-1}^{*}. (Indeed D^{*} is the intersection of the exceptional divisor for τ with U_{-1}^{*}. The assertion follows from the fact that τ is an isomorphism in the complement of the exceptional divisor.)

It is a well-known fact that if N is a codimension 2 submanifold of a manifold M, the fundamental group $\pi_{1}(M)$ is the quotient of $\pi_{1}(N)$ obtained by adding, for each component N_{i} of N, the relation $\eta_{i}=1$, where η_{i} is the fiber class of N_{i} in M, (i.e. the class represented by the linking circle of N_{i} in M). Hence, it follows that $\pi_{1}\left(U_{-1}^{*}\right)$ has the following presentation::

$$
\begin{gathered}
\text { Generators: } \quad a_{1}, \quad b_{1}, \ldots ., a_{g}, \quad b_{g}, \quad c, \quad d, \quad e \\
\text { Relations : } \quad \prod_{j=1}^{g}\left[a_{j}, b_{j}\right]=1, \quad a_{j} c=c a_{j}, \quad a_{j} d=d a_{j}, \quad a_{j} e=e a_{j} \\
b_{j} c=c b_{j}, \quad b_{j} d=d b_{j}, \quad d c e=1 .
\end{gathered}
$$

In addition, it can be shown that the fiber class of Σ_{-1} in X_{-1} is trivial in U_{-1}^{*}. (This follows from the fact that E_{j} meets Σ_{-1} at exactly one point and this point is a transverse point of intersection. Hence, we can represent the fiber class by a small loop γ on E_{j} encircling this point of intersection. Since the point of intersection is a transverse point of intersection, we may assume that the intersection of E_{j} with U_{-1}^{*} is a disc, the complement of a closed disc in the 2 -sphere E_{j}. The existence of this disc proves that the fiber class is trivial in U_{-1}^{*}.) In this presentation, c, d and e correspond to a free basis for $\pi_{1}\left(T^{2} \backslash\left(B\left(x_{0}\right) \cup B\left(x_{-1}\right)\right)\right)$. These generators are chosen so that the circle surrounding x_{-1} corresponds to dce and the circle surrounding x_{0} corresponds to $e^{-1} d^{-1} c^{-1}$. As a consequence of the last relation, the puncture x_{0} corresponds to the class $[d, c]$ in $\pi_{1}\left(U_{-1}^{*}\right)$. On the other hand, by a result of Zariski, we have the following presentation for $\pi_{1}\left(U_{1}\right)$:

$$
\text { Generator : } \quad z, \quad \text { Relation : } \quad z^{k}=1 .
$$

Here z is the fiber class of the nonsingular curve Σ_{1} of degree k in $X_{1}=\mathbf{C P}{ }^{2}$.

Let W_{-1} be the tubular shell neighborhood of Σ_{-1} in X_{-1}. As in (2.1), we have the following presentation for $\pi_{1}\left(W_{-1}\right)$:

$$
\begin{gathered}
\text { Generators: } \quad a_{-1,1}, \quad b_{-1,1}, \ldots, a_{-1, g}, \quad b_{-1, g}, \quad z_{-1} \\
\text { Relations: } \quad \prod_{j=1}^{g}\left[a_{-1, j}, b_{-1, j}\right]=z_{-1}^{-k^{2}}, \quad a_{-1, j} z_{-1}=z_{-1} a_{-1, j}, \quad b_{-1, j} z_{-1}=z_{-1} b_{-1, j} .
\end{gathered}
$$

The homomorphism $\jmath_{*}: \pi_{1}\left(W_{-1}\right) \rightarrow \pi_{1}\left(U_{-1}^{*}\right)$ can be described as follows:

$$
\jmath_{*}\left(a_{-1, j}\right)=a_{j}, \quad \jmath_{*}\left(b_{-1, j}\right)=b_{j}, \quad \jmath_{*}\left(z_{-1}\right)=1 .
$$

The last identity is simply the previous observation regarding the fiber class of Σ_{-1} in U_{-1}^{*}. The homomorphism $(\jmath \circ \Psi)_{*}: \pi_{1}\left(W_{-1}\right) \rightarrow \pi_{1}\left(U_{1}\right)$ can be described as follows:

$$
(\jmath \circ \Psi)_{*}\left(a_{-1, j}\right)=1, \quad(\jmath \circ \Psi)_{*}\left(b_{-1, j}\right)=1, \quad(\jmath \circ \Psi)_{*}\left(z_{-1}\right)=z .
$$

Hence, by Van Kampen's Theorem, we conclude that $\pi_{1}\left(X^{*}\right)$ is a free group on two generators, c and d. In addition, we see that the fiber class of Σ in X^{*} corresponds to the commutator $[d, c]$. (This follows from the previous remarks regarding the punctures x_{-1} and x_{0}.)

Now to calculate the fundamental group of Y we apply Van Kampen's Theorem to the covering $\left(V_{-1}, V_{1}\right)$ of Y. Since V_{i} is a copy of X^{*}, we see that $\pi_{1}\left(V_{i}\right)$ is a free group on two generators, c_{i} and d_{i}. Let $W_{-1}^{\prime}=V_{-1} \cap V_{1}$, the tubular shell neighborhood of Γ_{-1} in X^{-1}. Using a presentation for $\pi_{1}\left(W_{-1}^{\prime}\right)$ as in (2.1), the homomorphism $\jmath_{*}: \pi_{1}\left(W_{-1}^{\prime}\right) \rightarrow \pi_{1}\left(V_{-1}\right)$ can be described as follows:

$$
\jmath_{*}\left(a_{-1, j}\right)=1, \quad \jmath_{*}\left(b_{-1, j}\right)=1, \quad \jmath_{*}\left(z_{-1}\right)=\left[d_{-1}, c_{-1}\right] .
$$

The last identity corresponds to the previous observation regarding the fiber class z of Σ in X^{*}. We may prescribe the following restrictions on the isomorphism Φ_{*} :

$$
\begin{equation*}
\Phi_{*}\left(a_{-1, j}\right)=a_{1, j} z_{1}, \quad \Phi_{*}\left(b_{-1, j}\right)=b_{1, j}, \quad \Phi_{*}\left(z_{-1}\right)=z_{1}^{-1} . \tag{6.2}
\end{equation*}
$$

Again, by Van Kampen's theorem, we obtain the following presentation of $\pi_{1}(Y)$:

$$
\begin{gathered}
\text { Generators: } \quad c_{-1}, \quad d_{-1}, \quad c_{1}, \quad d_{1} \\
\text { Relations : } \quad\left[d_{1}, c_{1}\right]=1, \quad\left[d_{-1}, c_{-1}\right]=\left[d_{1}, c_{1}\right]^{-1} .
\end{gathered}
$$

As a consequence of these relations, we have the relation $\left[d_{-1}, c_{-1}\right]=1$. Let G_{i} be the group corresponding to the presentation:

$$
\text { Generators: } \quad c_{i}, d_{i} \text { Relations: } \quad\left[d_{i}, c_{i}\right]=1 .
$$

Clearly, $\pi_{1}(Y)$ is isomorphic to the free product $G_{-1} * G_{1}$. On the other hand, G_{i} is a free abelian group of rank 2 . In particular, G_{i} has at least one nontrivial finite quotient. Hence, by the result of [J-R] or the result of [A-$\mathrm{B}-\mathrm{R}], \pi_{1}(Y)$ is not the fundamental group of any compact Kähler manifold. As a consequence, Y is not homeomorphic to any compact Kähler manifold.

Remark 6.2. If G is a group, let $b_{1}(G)$ denote $b_{1}(S)$ where S is any space with $\pi_{1}(S)$ isomorphic to G. As is well known, $b_{1}(G)$ is well-defined independently of S. We have the following alternative argument for the above conclusion based on the fact that $\pi_{1}(Y)$ contains a subgroup G of index two such that $b_{1}(G)=5$. We shall establish this fact below. Suppose that $\pi_{1}(Y)$ is isomorphic to $\pi_{1}(W)$ for some compact Kähler manifold W. The subgroup G is isomorphic to $\pi_{1}(S)$ for some 2-fold cover S of W. Since S is a cover (unbranched) of W, we can pull back the Kähler structure on W to obtain a Kähler structure on S. Since S is a finite cover of the compact space W, S is compact. Hence, $b_{1}(S)$ is even. But $b_{1}(S)=b_{1}(G)=5$. This is impossible. This gives an alternative argument that $\pi_{1}(Y)$ is not isomorphic to the fundamental group of any compact Kähler manifold.

An example of a subgroup G of $\pi_{1}(Y)$ as above can be exhibited as follows. Let Σ be a surface of genus 2 . Let $a_{1}, b_{1}, a_{2}, b_{2}$ be a standard set of generators for $\pi_{1}(\Sigma)$. Let γ be a simple closed curve representing the commutator [a_{1}, b_{1}] in $\pi_{1}(\Sigma)$. Let C be the 2 dimensional CW complex obtained by attaching a disc D^{2} to Σ by a homeomorphism from S^{1} to γ. Note that $\pi_{1}(Y)$ is isomorphic to $\pi_{1}(C)$. Consider the 2-fold cover Γ of Σ given by the monodromy representation:

$$
\begin{gathered}
\rho: \pi_{1}(\Sigma) \rightarrow \mathbf{Z}_{\mathbf{2}} \\
\rho\left(a_{1}\right)=\rho\left(a_{2}\right)=1 \quad \rho\left(b_{1}\right)=\rho\left(b_{2}\right)=0
\end{gathered}
$$

Γ is a surface of genus 3. Of course, $b_{1}(\Gamma)=6$. The preimage γ^{\prime} of γ in Γ is a disjoint union of simple closed curves γ_{1} and $\gamma_{2} . \gamma_{j}$ represents a nontrivial homology class in $H_{1}(\Gamma)$ and $\gamma_{1}+\gamma_{2}=0$. Hence, γ_{1} and γ_{2} span a 1 dimensional subspace of $H_{1}(\Gamma)$. Let $D_{j}^{2}, j=1,2$ be a pair of discs with boundaries S_{j}^{1}. We can extend Γ to a 2 -fold cover C^{\prime} of C by attaching each D_{j}^{2} to Γ by a homeomorphism from S_{j}^{1} to γ_{j}. The fundamental group of C^{\prime} is of course isomorphic to a subgroup G of index 2 in $\pi_{1}(Y)$. Hence, $b_{1}(G)=b_{1}\left(C^{\prime}\right) . \quad H_{1}\left(C^{\prime}\right)$ is isomorphic to the quotient of $H_{1}(\Gamma)$ by the subspace of $H_{1}(\Gamma)$ which is spanned by γ_{1} and γ_{2}. Hence, by the previous observations, $b_{1}\left(C^{\prime}\right)=b_{1}(\Gamma)-1=5$. Thus, $b_{1}(G)$ is equal to 5 .

Example 6.2 (Infinite Families With Fixed Chern Numbers). We shall modify the construction of the previous example to obtain the following theorem.

Theorem 6.1. There exists an infinite family of compact symplectic 4manifolds with fixed Chern numbers, no two of which are homeomorphic.

Proof. We construct such a family as a variation on the previous example. The description of $\pi_{1}\left(V_{i}\right), \pi_{1}\left(W_{i}^{\prime}\right)$ and the homomorphisms induced by inclusion are as given in the previous example. The variation is in the prescription of Φ_{*} given in (6.2). Let α be a positive integer. We vary the
prescription of Φ_{*} as follows:

$$
\Phi_{*}\left(a_{-1, j}\right)=a_{1, j} z_{1}^{\alpha}, \quad \Phi_{*}\left(b_{-1, j}\right)=b_{1, j}, \quad \Phi_{*}\left(z_{-1}\right)=z_{1}^{-1} .
$$

Let Y_{α} be the corresponding symplectic normal connect sum. (Note that Y_{1} is the manifold of the previous example.) As in the previous example, we obtain the following presentation of $\pi_{1}\left(Y_{\alpha}\right)$:

$$
\begin{gathered}
\text { Generators: } \quad c_{-1}, \quad d_{-1}, \quad c_{1}, \quad d_{1} \\
\text { Relations : } \quad 1=\left[d_{1}, c_{1}\right]^{\alpha} \quad\left[d_{-1}, c_{-1}\right]=\left[d_{1}, c_{1}\right]^{-1} .
\end{gathered}
$$

As a consequence of these relations, we have the relation:

$$
\left[d_{-1}, c_{-1}\right]^{\alpha}=1 .
$$

Let G_{i}^{α} be the group corresponding to the presentation:

$$
\text { Generators: } \quad c_{i}, \quad d_{i} \text { Relations : } \quad\left[d_{i}, c_{i}\right]^{\alpha}=1 .
$$

G_{i}^{α} is a one relator group with relator $r_{i}=u_{i}^{\alpha}$ where u_{i} is the simple commutator $\left[d_{i}, c_{i}\right]$. Hence, the abelianization of G_{i}^{α} is a free abelian group of rank 2. Therefore, in particular, G_{i}^{α} is an infinite group. By Proposition 5.17 in chapter $I I$ of [L-S], u_{i} is not a proper power in the free group on the generators c_{i} and d_{i}. Hence, by Theorem 5.2 in chapter $I V$ of [L-S], u_{i} has order α in G_{i}^{α} and all elements of finite order in G_{i}^{α} are conjugates of powers of u_{i}. In particular, the orders of torsion elements in G_{i}^{α} are precisely the divisors of α. Let F_{i}^{α} be the cyclic subgroup of G_{i}^{α} of order α generated by u_{i}. Since G_{i}^{α} is an infinite group, the finite group F_{i}^{α} is a proper subgroup of G_{i}^{α}. Let ϕ be the isomorphism from F_{-1}^{α} to F_{1}^{α} which sends u_{-1} to u_{1}^{-1}. Clearly, by the above presentation, $\pi_{1}\left(Y_{\alpha}\right)$ is isomorphic to the free product with amalgamation $G_{-1}^{\alpha} *_{\phi} G_{1}^{\alpha}$ over the proper finite subgroups F_{-1}^{α} and F_{1}^{α}. In particular, by Theorem 2.6 in chapter $I V$ of $[\mathrm{L}-\mathrm{S}], G_{i}^{\alpha}$ embeds in $\pi_{1}\left(Y_{\alpha}\right)$. Furthermore, by Theorem 2.7 in chapter $I V$ of [L-S], every element of finite order in $\pi_{1}\left(Y_{\alpha}\right)$ is conjugate to an element of G_{-1}^{m} or G_{1}^{m}. In particular, the orders of torsion elements in $\pi_{1}\left(Y_{\alpha}\right)$ are precisely the divisors of α. Thus, $\pi_{1}\left(Y_{\alpha}\right)$ is isomorphic to $\pi_{1}\left(Y_{\beta}\right)$ if and only if $\alpha=\beta$. Hence, Y_{α} is homeomorphic to Y_{β} if and only if $\alpha=\beta$.

By the discussion in section 2, the Chern numbers of Y_{α} are independent of α. These numbers can be calculated from (2.8) and (6.1) and the following facts:

$$
\chi\left(X_{-1}\right)=k^{2}, \quad \sigma\left(X_{-1}\right)=-k^{2}, \quad \chi\left(X_{1}\right)=3, \quad \sigma\left(X_{1}\right)=1,
$$

where X_{-1} is the blow up of $R \times T^{2}$ at k^{2} points as above and $X_{1}=\mathbf{C P}{ }^{2}$. The result is that:

$$
\begin{equation*}
c_{1}^{2}\left(Y_{\alpha}\right)=2(5 k-3)(k-3), \quad c_{2}\left(Y_{\alpha}\right)=2\left(4 k^{2}-9 k+3\right) . \tag{6.3}
\end{equation*}
$$

Fixing k, the compact symplectic manifolds Y_{α} have fixed Chern numbers. On the other hand, the groups $\pi_{1}\left(Y_{\alpha}\right)$ are distinct and, hence, no two of the Y_{α} are homeomorphic.

Remark 6.3. By varying the degree k of the curve Σ_{1} in $\mathbf{C P}^{2}$, the above construction yields a " 2 -parameter" family of compact symplectic 4-manifolds:

$$
\left\{Y_{\alpha}(k) \mid k \geq 3, \alpha>0\right\}
$$

Note that $\pi_{1}\left(Y_{\alpha}(k)\right)$ is independent of k and $\pi_{1}\left(Y_{\alpha}\right)$ is isomorphic to $\pi_{1}\left(Y_{\beta}\right)$ if and only if $\alpha=\beta$. On the other hand, the Chern numbers of $Y_{\alpha}(k)$ are independent of α and the Chern numbers of $Y_{\alpha}(k)$ are equal to those of $Y_{\beta}\left(k^{\prime}\right)$ if and only if $k=k^{\prime}$. Hence, $Y_{\alpha}(k)$ is homeomorphic to $Y_{\beta}\left(k^{\prime}\right)$ if and only if $(k, \alpha)=\left(k^{\prime}, \beta\right)$. In particular, by fixing an integer $k \geq 3$, we obtain an infinite family of compact symplectic 4 manifolds with the same Chern numbers but distinct fundamental groups. On the other hand by fixing the integer $\alpha>0$, we obtain an infinite family of compact symplectic 4 manifolds with the same fundamental groups but distinct Chern numbers. Indeed, the Chern numbers strictly increase with respect to k. Hence, these manifolds cannot even be homeomorphic to blow ups or blow downs of one another.

When $k>3$, using the examples in Theorem 5.1 and results of Gieseker, we can exhibit a striking contrast between compact symplectic 4-manifolds and compact Kähler surfaces. Gieseker's results show that there are only finitely many diffeomorphism types among all surfaces of general type with given Chern numbers ([B-P-V], chapter VII, section 1). This, of course, implies that there are only finitely many homeomorphism types among all surfaces of general type with given Chern numbers. (Note that these results do not assume minimality.) Hence, by the classification of complex surfaces ([B-P-V]) there are only finitely many homeomorphism types among all complex surfaces with fixed Chern numbers satisfying $c_{1}^{2}>0$ and $c_{2}>0$. When $k>3$, the infinite family Y_{α} shows that the analogous statement is false for compact symplectic 4 -manifolds. Indeed, when $k>3$, (6.3) implies that $c_{1}^{2}\left(Y_{\alpha}\right)>0$ and $c_{2}\left(Y_{\alpha}\right)>0$. (Indeed, if $k>3$ and Y_{α} is complex, then Y_{α} is necessarily of general type.)

These compact symplectic manifolds formally resemble surfaces of general type. This observation motivates the following questions:
Question. What is the geography of compact symplectic 4-manifolds?
Question. What is the geography of minimal compact symplectic 4-manifolds?
By geography we mean: what values in $\mathbf{Z} \times \mathbf{Z}$ are of the form $\left(c_{1}^{2}(X), c_{2}(X)\right)$, for some (minimal) compact symplectic 4 -manifold X ? By the work of Van de Ven [V] there are no restrictions on $\left(c_{1}^{2}, c_{2}\right)$ for compact almost complex 4 -manifolds. However, there are well-known strict constraints on $\left(c_{1}^{2}, c_{2}\right)$ for compact Kähler surfaces [B-P-V]. The geography problem for compact minimal surfaces of general type remains open and is a subject of current research. The above questions ask where symplectic manifolds lie between almost complex manifolds and complex Kähler manifolds. We hope to return to this problem in future papers.

We can show that $Y_{\alpha}(k)$ is not homeomorphic to a complex surface for any $k \geq 3$ and $\alpha>0$. Suppose, on the contrary, that $Y_{\alpha}(k)$ is homeomorphic to a complex surface W for some $k \geq 3$ and $\alpha>0$. From the computation of $\pi_{1}\left(Y_{\alpha}\right)$ given above, we see that $b_{1}(W)=b_{1}\left(Y_{\alpha}(k)\right)=4$. Since W is a complex surface with even b_{1}, W is Kähler. Thus $\pi_{1}\left(Y_{\alpha}\right)$ is isomorphic to the fundamental group of some compact Kähler manifold. From the description of $\pi_{1}\left(Y_{\alpha}\right)$ given above, we see that this contradicts the result of [A-B-R].

Alternatively, we could appeal to the fact that $\pi_{1}\left(Y_{\alpha}\right)$ has a subgroup G of index 2 with $b_{1}(G)=5$ as in remark 6.2. The existence of G is established as in remark 6.2 with the following modifications. The attaching homeomorphism from S^{1} to γ must be replaced by a covering map of degree m from S^{1} to γ. The attaching maps from S_{j}^{1} to γ_{j} must be similarly modified.

One advantage of the second argument is that it allows us to conclude that Y_{α} is stably non-Kähler as in remark 6.1. For if S is any compact Kähler manifold, then $b_{1}(S)$ is even. On the other hand, $G \times \pi_{1}(S)$ is a subgroup of index 2 in $\pi_{1}\left(Y_{\alpha} \times S\right)$ with:

$$
b_{1}\left(G \times \pi_{1}(S)\right)=5+b_{1}(S) .
$$

Hence, $Y_{\alpha} \times S$ has a subgroup of index 2 with odd b_{1}.
In light of these examples and Gieseker's results, it is interesting to ask:
Question . Which groups occur as the fundamental groups of compact symplectic 4 -manifolds with fixed Chern numbers $c_{1}^{2}>0$ and $c_{2}>0$?

7. Blowing Down

In [G2] Gromov introduced the operations of symplectic blowing up and symplectic blowing down. Let Σ_{-1} be a symplectically embedded surface of genus 0 and self-intersection -1 (a (-1)-curve) in a symplectic 4-manifold $(\tilde{X}, \tilde{\omega})$. Suppose that $\int_{\Sigma_{-1}} \tilde{\omega}=\lambda^{2} \pi$. Then Σ_{-1} has a tubular neighborhood $N_{\epsilon}\left(\Sigma_{-1}\right)$ so that the tubular shell ($\left.W_{-1}, \tilde{\omega}\right)$ is symplectically diffeomorphic to $\left(B_{\lambda+\epsilon}(0) \backslash \overline{B_{\lambda}(0)}, \Omega\right)$, where $B_{r}(0)$ is the ball of center 0 , radius r in \mathbf{R}^{4}, and where Ω is the standard symplectic form on \mathbf{R}^{4}. Recall that to blow down Σ_{-1} we delete $N_{\epsilon}\left(\Sigma_{-1}\right)$ and using the symplectic diffeomorphism glue in $B_{\lambda+\epsilon}(0)$. The resulting symplectic manifold (X, ω) is, up to symplectic isotopy, independent of ϵ. For more details, see [McD2]. It is not difficult to verify that the Chern numbers of \tilde{X} and X are related by:

$$
\begin{align*}
& c_{1}^{2}(X)=c_{1}^{2}(\tilde{X})+1 \tag{7.1}\\
& c_{2}(X)=c_{2}(\tilde{X})-1
\end{align*}
$$

It is interesting to notice that this blowing down operation can be considered as a special case of the symplectic normal connect sum. Let Σ_{-1} be a $(-1)-$ curve in a symplectic 4 -manifold $\left(X_{-1}, \omega_{-1}\right)$ with $\int_{\Sigma_{-1}} \omega_{-1}=\lambda^{2} \pi$. Let $\left(X_{1}, \omega_{1}\right)$ be $\left(\mathbf{C P}^{2}, \omega_{\mathbf{0}}\right)$ where ω_{0} is the Fubini-Study 2 -form normalized
such that $\int_{\mathbf{C P}^{1}} \omega_{0}=\lambda^{2} \pi$ and let $\Sigma_{1}=\mathbf{C P}{ }^{\mathbf{1}} \hookrightarrow \mathbf{C P}^{2}$. Then the symplectic normal connect sum of X_{-1} and X_{1} along Σ_{-1} and Σ_{1} is diffeomorphic to the blow down of X_{-1}. Since $c_{1}^{2}\left(\mathbf{C P}^{2}\right)=\mathbf{9}$ and $c_{2}\left(\mathbf{C P}^{2}\right)=\mathbf{3},(2.4)$ agrees with (7.1).

More generally, let Σ_{-1} be a symplectically embedded surface of genus 0 and self-intersection -4 (a (-4) - curve) in a symplectic 4 -manifold $\left(X_{-1}, \omega_{-1}\right)$. Let $\left(X_{1}, \omega_{1}\right)$ be $\mathbf{C P}^{2}$ with the Fubini-Study 2 -form and let Σ_{1} be a nonsingular quadric curve in $\mathbf{C P}^{2}$. (Σ_{1} is an embedded holomorphic curve of genus zero and self-intersection 4$)$. Let $X=X_{-1} \#_{\Psi} X_{1}$ be the symplectic normal connect sum along Σ_{-1} and Σ_{1}. We remark that the topology of X is independent of the choice of gluing map Ψ. Also by (2.4),

$$
\begin{aligned}
& c_{1}^{2}(X)=c_{1}^{2}\left(X_{-1}\right)+1 \\
& c_{2}(X)=c_{2}\left(X_{-1}\right)-1 .
\end{aligned}
$$

Thus X is a smooth symplectic manifold which has had the (-4)-curve Σ_{-1} blown down. In algebraic geometry the blowing down or collapsing of negative self-intersection curves is defined, though the resulting complex surface has an isolated singularity. In the symplectic category we can, using the symplectic normal connect sum, define blowing down (-4)-curves smoothly.

As for blowing down of (-1)-curves there is a simple topological interpretation of blowing down (-4)-curves. In the case of a (-1)-curve, one replaces the tubular neighborhood of the (-1)-curve with a standard ball. The (-1) curve is replaced by a point. This corresponds to the drop in b_{2}. (Since the tubular neighborhood of a (-1)-curve is diffeomorphic to the complement of a ball in $\overline{\mathbf{C P}^{2}}$, one obtains the corresponding topological interpretation of blowing up as connect sum with $\overline{\mathbf{C P}^{2}}$.) In the case of a (-4)-curve, the tubular neighborhood of the (-4)-curve is replaced by the tangent bundle of $\mathbf{R P}^{2}$ (appropriately oriented). (This follows from the observation that the complement of a tubular neighborhood of a nonsingular quadric curve in $\mathbf{C P}^{\mathbf{2}}$ is a tubular neighborhood of a complementary $\mathbf{R} \mathbf{P}^{\mathbf{2}} \subset \mathbf{C P}^{2}$.) The (-4)-curve C is replaced by $\mathbf{R P}^{2}$. Again, b_{2} drops by 1 . This corresponds to the fact that C is orientable whereas $\mathbf{R} \mathbf{P}^{\mathbf{2}}$ is nonorientable. On the other hand, $\mathbf{R P}^{2}$ represents a nontrivial $\mathbf{Z}_{\mathbf{2}}$ homology class in the blown down manifold. (This follows from the fact that $\mathbf{R P} \mathbf{P}^{2} \subset \mathbf{C P}^{2}$ has odd self-intersection). Hence blowing down of (-4)-curves does not "collapse" the (-4)-curve, not even on the level of homotopy. (It does "collapse" the (-4)-curve on the level of homology with real coefficients.)

Appendix

Independently of our work, R. Gompf obtained a version of Theorem 1.1 in arbitrary dimensions. His proof is different from ours, relying on a flow argument rather than symplectic reduction. In this section, we give a simple proof of Gompf's generalization using the symplectic reduction argument of section 1.

Let $\left(X_{i}, \omega_{i}\right), \quad i=-1,1$, be symplectic manifolds of dimension $2 n$ and (N, η) be a closed symplectic manifold of dimension $2 n-2$. Let $\jmath_{i}: N \hookrightarrow X_{i}$ be symplectic embeddings with normal bundles ν_{i}. Suppose that $c_{1}\left(\nu_{-1}\right)=$ $-c_{1}\left(\nu_{1}\right)$. Let ρ_{N} be a closed 2 -form on N so that $\left[\rho_{N}\right]=c_{1}\left(\nu_{1}\right)$ and let ρ be a closed 2 -form on X_{-1} so that $\jmath_{-1}^{*} \rho=\rho_{N}$. Then for sufficiently small t the 2-form:

$$
\begin{equation*}
\tilde{\omega}_{-1}=\omega_{-1}+t \rho \tag{A.1}
\end{equation*}
$$

is a symplectic form on X_{-1}.
Theorem A. 1 (Gompf). For each $i=1,-1$ there exist pairs of tubular neighborhoods V_{i}, U_{i} with $\jmath_{i}(N) \subset V_{i}$ and $\overline{V_{i}} \subset U_{i}$ and a symplectomorphism

$$
\Psi:\left(U_{-1} \backslash \overline{V_{-1}}, \tilde{\omega}_{-1}\right) \rightarrow\left(U_{1} \backslash \overline{V_{1}}, \omega_{1}\right)
$$

such that the normal connect sum $X=X_{-1} \#_{\Psi} X_{1}$ has a symplectic form ω which agrees with ω_{1} and $\tilde{\omega}_{-1}$ off a neighborhood of the gluing locus.
Proof. Following the discussion of section 1 we can construct an S^{1}-invariant symplectic form τ on an S^{2} bundle over N by specifying a family of symplectic forms $\left\{\sigma_{t}\right\}$ on N satisfying (1.2). The family we choose is:

$$
\sigma_{t}=\omega_{1}+t \rho_{N}, \quad 0 \leq t \leq t_{0},
$$

where t_{0} is chosen so that the forms $\left\{\sigma_{t}\right\}$ are symplectic for t satisfying $0 \leq$ $t \leq t_{0}$. The resulting S^{2} bundle, S, has symplectic form τ and moment map $H_{\tau}: S \rightarrow\left[0, t_{0}\right]$ such that τ restricts to ω_{1} on the zero section $Z_{0}=H_{\tau}^{-1}(0)$ and to $\omega_{1}+t_{0} \rho_{N}$ on the infinity section $H_{\tau}^{-1}\left(t_{0}\right)$. Moreover, Z_{0} has normal bundle with Chern class $\left[\rho_{N}\right]=c_{1}\left(\nu_{1}\right)$.

By the symplectic neighborhood theorem there are tubular neighborhoods W_{0} of Z_{0} in S and W_{1} of N in X_{1} such that:

$$
F:\left(W_{0}, \tau\right) \rightarrow\left(W_{1}, \omega_{1}\right)
$$

is a symplectomorphism which restricts to the identity map on Z_{0}. Since $H_{\tau}^{-1}\left[0, t_{1}\right]$ is contained in W_{0} for some $t_{1}<t_{0}$, we can suppose that $W_{0}=$ $H_{\tau}^{-1}\left[0, t_{1}\right]$. Then F symplectically identifies W_{1} with $H_{\tau}^{-1}\left[0, t_{1}\right]$.

Choose $t<t_{1}$ sufficiently small so that the 2 -form $\tilde{\omega}_{-1}$ defined in (A.1) is symplectic. Now construct an S^{1}-invariant symplectic form v on S using the family of symplectic forms on N :

$$
\sigma_{s}=\omega_{1}+s \rho_{N}, \quad 0 \leq s \leq t
$$

(S, v) has moment map $H_{v}: S \rightarrow[0, t]$. Denote the infinity section, $H_{v}^{-1}(t)$, by Z_{∞}. The normal bundle of Z_{∞} has Chern class $-\left[\rho_{N}\right]=-c_{1}\left(\nu_{1}\right)=$ $c_{1}\left(\nu_{-1}\right)$ and v restricts on Z_{∞} to the form:

$$
\omega_{1}+t \rho_{N}=\omega_{-1}+t \rho_{N}=\tilde{\omega}_{-1_{\left.\right|_{N}}} .
$$

Hence by the symplectic neighborhood theorem there are tubular neighborhoods W_{∞} of Z_{∞} in S and W_{-1} of N in X_{-1} such that there is a symplectomorphism:

$$
\tilde{F}:\left(W_{\infty}, v\right) \rightarrow\left(W_{-1}, \tilde{\omega}_{-1}\right)
$$

which restricts to the identity map on Z_{∞}. By choosing W_{∞} smaller, if necessary, we can suppose that $W_{\infty} \backslash Z_{\infty}=H_{v}^{-1}\left(s_{0}, t\right)$ for some $s_{0}>0$. Thus on $W_{\infty} \backslash Z_{\infty}$ the symplectic form v is determined by the family of forms $\sigma_{s}=\omega_{1}+s \rho_{N}, \quad s_{0}<s<t$. Recall that on $H^{-1}\left(s_{0}, t\right) \subset H^{-1}\left(0, t_{0}\right)$ the symplectic form τ is determined by the same family of forms. Hence there is a symplectomorphism:

$$
\psi:\left(H^{-1}\left(s_{0}, t\right), \tau\right) \rightarrow\left(W_{\infty} \backslash Z_{\infty}, v\right)
$$

The composition of the three symplectomorphisms: F, \tilde{F}, ψ defines the required symplectic gluing.

References

[A-B-R] Arapura, D., Bressler, P. and Ramachandran, M., On the fundamental group of a compact Kähler manifold, preprint
[A] Audin, M., The Topology of Torus Actions on Symplectic Manifolds, Birkhäuser, Basel, 1991
[B] Birman, J. S., Braids, Links, and Mapping Class Groups, Annals of Mathematics Studies, no. 82, Princeton University Press, Princeton, New Jersey, 1974
[B-G] Berenstein, C. A., and Gay, R., Complex Variables, Springer-Verlag, Berlin Heidelberg, 1991
[B-P-V] Barth, W., Peters, C. and Van de Ven, A., Compact Complex Surfaces, SpringerVerlag, Berlin Heidelberg, 1984
[D-H] Duistermaat, J. and Heckman, G., On the variation in the cohomology of the symplectic forms of the reduced phase space, Invent. Math. 69 (1982) 259-268
[F-K] Farkas, H. M. and Kra, I., Riemann Surfaces, Springer-Verlag, Berlin Heidelberg, 1992
[F] Freedman, M. H., Automorphisms of circle bundles over surfaces, Lecture Notes in Mathematics, no. 438, Springer-Verlag, Berlin Heidelberg, 1975
[Go] Gompf, R., Some new symplectic 4-manifolds, preprint
[G-M] Gompf, R. and Mrowka, T., Irreducible 4-manifolds need not be complex, Ann. of Math., to appear
[G-H] Griffiths, P. and Harris, J., Principles of Algebraic Geometry, John Wiley \& Sons, New York, 1978
[G1] Gromov, M., Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347
[G2] Gromov, M., Partial Differential Relations, Springer-Verlag, Berlin Heidelberg, 1987
[H] Hartshorne, R., Algebraic Geometry, Springer-Verlag, Berlin Heidelberg, 1977
[J-R] Johnson, F. E. A. and Rees, E. G., On the fundamental group of a complex algebraic manifold, London Math. Soc. Bull. 19 (1987) 463-466
$[\mathrm{K}] \quad$ Kirby, R. C., The topology of 4-manifolds, Lecture Notes in Mathematics, no. 1374, Springer-Verlag, Berlin Heidelberg, 1989
[L-S] Lyndon, R. C. and Schupp, P. E., Combinatorial Group Theory, Springer-Verlag, Berlin Heidelberg, 1977
[McD1] McDuff, D., The moment map for circle actions on symplectic manifolds, Journal of Geom. and Physics 5 (1988) 149-160
[McD2] McDuff, D., Blow ups and symplectic embeddings in dimension 4, Topology 30 (1991) 409-421
[McD-S] McDuff, D. and Salamon, D., Lectures on Symplectic Topology
[Mo] Moser, J., On the volume elements on a manifold, Trans. AMS 120 (1965) 286294
[P] Peters, C., Introduction to the theory of compact complex surfaces, preprint
[T] Thurston, W. P., Some simple examples of symplectic manifolds, Proc. AMS 55 (1976) 467-468
[V] Van de Ven, A., On the Chern numbers of certain complex and almost complex manifolds, Proc. Natl. Acad. Sci. USA 55 (1966), 1624-1627
[W] Weinstein, A., Lectures on Symplectic Manifolds, CBMS Regional Conference \#29, AMS (1977)

Department of Mathematics, Michigan State University, East Lansing, MI 48824

[^0]: Date: Month Number, 1994.

