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0. Introduction

Since the publication in 1985 of Gromov’s paper [G1] on pseudo-holomorphic
curves in symplectic manifolds there has been an increased interest in sym-
plectic manifolds and symplectic topology. In particular, compact symplec-
tic manifolds have become a focus of much study. In 1977 Thurston [T]
gave an example of a compact symplectic manifold with first Betti number
three, showing that not all compact symplectic manifolds admit a Kähler
structure. However, the difference between the family of compact symplectic
manifolds and compact Kähler manifolds remains unclear. In fact there are
essentially only two general procedures for constructing compact symplectic
manifolds: the symplectic fibration construction, originally due to Thurston,
and blowing up along symplectic submanifolds, introduced by Gromov [G2].
Recently R. Gompf has introduced a new construction. He considers two
symplectic 4-manifolds each containing the compact surface Σ symplectically
embedded with trivial normal bundle. By the symplectic neighborhood the-
orem a tubular neighborhood of Σ in each 4-manifold is symplectomorphic
to Σ×D2 equipped with the product symplectic structure. It follows then
that the complements of the tubular neighborhoods of Σ in the symplectic
4-manifolds can be symplectically glued together along tubular shell neigh-
borhoods of Σ by the map Id × φ where φ is an area preserving map of
the annulus which interchanges the boundaries. Gompf proceeded by using
this construction to show that a compact simply-connected 4-manifold not
admitting any complex structure, which he constructed with T. Mrowka [G-
M], admits a symplectic structure. He thus produced the first example of a
compact simply-connected symplectic 4-manifold not admitting any Kähler
structure.

In this paper we introduce a construction of four dimensional symplec-
tic manifolds, that we call symplectic normal connect sum which general-
izes Gompf’s construction. Our procedure constructs a new symplectic 4-
manifold X = X−1#ΨX1 from pairs (Xi,Σi), i = −1, 1, where the Xi are
symplectic 4-manifolds and the Σi are compact embedded symplectic sur-
faces of genus g and of self-intersection n (for i = 1) and −n (for i = −1),
n ≥ 0. We symplectically glue the complements of tubular neighborhoods
of Σ−1 in X−1 and Σ1 in X1 along tubular shell neighborhoods of Σ−1 and
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Σ1. Changing the gluing map Ψ in general produces different symplectic
manifolds X. The details of this construction are given in section 1.

We were led to our construction by the announcement of R. Gompf de-
scribed above. In fact Gompf’s construction is the symplectic normal con-
nect sum for n = 0. However, Gompf’s procedure relies on the product
structure of a neighborhood of Σ to construct the gluing map Id×φ. Thus,
a priori, it is not clear that there is a more general version of his construction
and, if there is, what form it should take. Moreover to prove the non-zero
self-intersection symplectic gluing we use ideas from symplectic reduction, in
particular, a result of Duistermaat-Heckman [D-H]. The symplectic normal
connect sum when n 6= 0 cannot be obtained from the symplectic neighbor-
hood theorem alone. Our aim in this paper is both to describe the symplectic
normal connect sum and to provide examples illustrating the full range of
the theorem. In particular we give examples of symplectic manifolds which
can only be obtained by the symplectic normal connect sum along surfaces
of non-zero self-intersection.

Independently Gompf has generalized his original result and developed
his own version of the symplectic normal connect sum. His result is a sym-
plectic normal connect sum along codimension 2 symplectic submanifolds
of 2m-dimensional symplectic manifolds for m ≥ 2. His proof does not use
symplectic reduction. In the appendix we have given a short and simple
proof of this result using our technique. At this time we know of no appli-
cations of this generalization when m > 2 and the normal bundles of the
submanifolds are non-trivial.

The sections of the paper following section 1 are devoted to using the
symplectic normal connect sum to construct new examples of compact sym-
plectic four manifolds. The basic building blocks we use are pairs (Xi,Σi),
i = −1, 1, where the Xi are Kähler surfaces and the Σi are nonsingular com-
plex curves which satisfy the conditions necessary to build the symplectic
normal connect sum. While it is probably the case that, in general, the
symplectic form ω that we construct on X = X−1#ΨX1 is not itself Kähler,
it is difficult to rule out this possibility. If this occurs then the symplectic
form ω cannot be considered new. Consequently we construct examples of
symplectic manifolds which cannot admit Kähler structures. We use two
different invariants to ensure this, namely, b1, the first betti number and π1,
the fundamental group.

It is well known that, by Hodge theory, the first betti number of a compact
Kähler manifold is even. We exploit this by constructing compact symplectic
manifolds with odd betti number as follows: Let i : Σi ↪→ Xi be the
inclusions and let (i)∗ : H1(Σi) → H1(Xi) be the induced maps in homology.
We show that if the kernels of both homomorphisms (i)∗, i = −1, 1, are
proper then the gluing map Ψ can be chosen so that b1(X−1#ΨX1) is odd.
We then use this result and the fibered product construction of algebraic
geometry to build infinite families of compact symplectic manifolds with odd
betti numbers. These examples can only be constructed by the symplectic
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normal connect sum along surfaces of non-zero self-intersection. Among
these examples we have an infinite family built from pairs, Xi, i = 1,−1 of
minimal Kähler ruled surfaces. In particular, we have

Theorem . There are pairs (Xi,Σi), i = 1,−1, where the Xi are minimal
ruled surfaces and the Σi are embedded holomorphic curves of genus g and
self-intersection numbers 4 + 4a, (i = 1), −(4 + 4a), (i = −1), a ≥ 0 and
gluing maps Φ so that the symplectic normal connect sum X = X−1#ΨX1

along the Σi satisfies:

b1(X) odd

signature(X) = 0

c2(X) = χ(X) = 4 + 12a+ 8a2

c21(X) = 8 + 24a+ 16a2.

The symplectic manifolds X of this theorem cannot be constructed using
the self-intersection zero symplectic connect sum. The theorem requires
the symplectic normal connect sum for non-zero self-intersection surfaces.
Taking a = 0 in the theorem we have constructed a compact symplectic
manifold with Chern numbers c21 = 8 and c2 = 4 and with b1 = 1 . For more
details see Example 5.3 below.

Next we use the fundamental group as an invariant. Gompf [Go] has
shown that any finitely presented group can be realized as the fundamental
group of a compact symplectic manifold. However there are still many basic
questions about the fundamental group of a compact symplectic manifold.
Consider the class of compact Kähler surfaces with fixed Chern numbers
c21 > 0 and c2 > 0. From the work of Gieseker it follows that there are only
finitely many homeomorphism types of such manifolds and, hence, only
finitely many fundamental groups. Does this remain true if we consider,
instead, the class of compact symplectic manifolds? We show that it is false
by proving:

Theorem . There exists an infinite family {Yα : α ∈ N} of symplectic
normal connect sums all with the same Chern numbers, c21 > 0 and c2 > 0,
but each with different fundamental group.

Moreover, using Gieseker’s result, at most only finitely many of these
manifolds can be Kähler. In fact, using results of Arapura, Bressler, Ra-
machandran [A-B-R] and Johnson, Rees [J-R] we show that none of the Yα

are Kähler. For more details see Example 6.2 below.
We are indebted to Dusa McDuff for a simple construction of an S1-

invariant symplectic form on a ruled surface and for pointing out the refer-
ence [A].

1. Symplectic Normal Connect Sum

Let Xi, i = −1, 1, be smooth oriented four manifolds and suppose Σi ↪→
Xi are embedded oriented surfaces both of genus g with normal bundles νi.
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Suppose the euler numbers χ(νi) satisfy:

χ(ν1) = +n, χ(ν−1) = −n. (1.1)

where n ≥ 0. Let N(Σi) and N (Σi) denote tubular neighborhoods of Σi

such that the closure N (Σi) of N (Σi) is contained in N(Σi). Let Wi denote
the corresponding tubular shell neighborhood N(Σi) \ N (Σi) of Σi in Xi.
Suppose that Ψ : W−1 → W1 is an orientation preserving diffeomorphism
taking the inside end of the tubular shell neighborhood W−1 to the outside
end of W1. We define the normal connect sum of X−1 and X1 along Σ−1

and Σ1 via Ψ to be the smooth oriented 4-manifold X obtained by gluing
X−1 \ N (Σ−1) and X1 \ N (Σ1) along the tubular shell neighborhoods W−1

and W1 using Ψ. We will denote X by X−1#ΨX1. Of course the importance
of (1.1) in this operation is to insure that the gluing can be done to equip
X with the orientation induced from both X−1 and X1.

Suppose now that (Xi, ωi), i = −1, 1 are smooth symplectic four manifolds
(compact or not compact, with or without boundary). We have:

Theorem 1.1 (Symplectic normal connect sum). Suppose that Σi ↪→ Xi

are symplectically imbedded compact surfaces of genus g and that χ(ν−1) =
−χ(ν1) where νi is the normal bundle of Σi in Xi. Then after rescaling ω1

or ω−1 there exists a symplectomorphism Ψ of tubular shell neighborhoods of
Σ−1 and Σ1 so that the normal connect sum X = X−1#ΨX1 has a symplectic
structure ω which agrees with the rescaled ωi off a neighborhood of Σi.

Remark 1.1. (1) The symplectic form ω can be constructed so that ω = ω1

on X1 \ N (Σ1) and ω = aω−1 on X−1 \ N (Σ−1), where a ∈ R+. There is
some freedom in the choice of a. However, when n 6= 0, it is subject to the
following conditions: Let

α =
ω1[Σ1]
ω−1[Σ−1]

be the ratio of the symplectic areas of Σ1 and Σ−1. If α ≤ 1 then a must be
close to α and can be chosen to be arbitrarily close to, but not equal to, α. If
α ≥ 1 then a must be close to 1

α and can be chosen to be arbitrarily close to,
but not equal to, 1

α . Here close cannot be made precise because it depends
on the size of neighborhoods determined by the symplectic neighborhood
theorem. Note that even if ω1[Σ1] = ω−1[Σ−1] scaling by a 6= 1 is still
required.

(2) The case n = 0, where the normal bundles νi, i = −1, 1, are trivial can
also be proved directly from the symplectic neighborhood theorem. Using
either that technique or the proof below it follows that, in this case, the
scaling factor a is exactly α so that if ω1[Σ1] = ω−1[Σ−1] then no scaling is
necessary.

The proof of Theorem 1.1 uses various normal form results in symplectic
geometry to model the shells Wi. From these models it is easy to find a
symplectic diffeomorphism to define the necessary symplectic gluing.
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Let Σ be a compact surface of genus g. A ruled surface is an S2-bundle
over Σ. Topologically there are two such bundles, the trivial bundle S2 ×Σ
and the twisted bundle S2×̃Σ. However for our purpose it is more instructive
to construct the ruled surfaces from line bundles. Let Ln be the complex
line bundle over Σ with Chern class c1(Ln) = n. Denote the trivial bundle
by C and consider the complex two-plane bundle Ln⊕C. Projectivize each
fiber and denote the resulting S2-bundle over Σ by Sn = P(Ln⊕C). Sn has
a natural S1 action induced by multiplication by e2πit on each fiber of C.
The image of the section (0, 1) in Ln⊕C determines an embedded surface Z0

in Sn, called the zero section. If σ is any section of Ln, with isolated zeros,
then away from the zeros of σ, (σ, 0) determines a surface in Sn. Let Z∞
denote the closure of this surface. (Z∞ is clearly independent of the choice
of σ.) Z∞ is called the infinity section . It is easy to verify that Z0 ·Z0 = n
so the euler class of the normal bundle of Z0 is n and that Z∞ · Z∞ = −n
so the euler class of the normal bundle of Z∞ is −n. We remark that if n is
even, Sn is, topologically, S2×Σ and if n is odd, Sn is, topologically, S2×̃Σ.
The above construction can be done in the holomorphic category so that Sn

is a complex surface, Z0 and Z∞ are holomorphic curves and Sn is fibered
by holomorphic lines (see [G-H,p.517]). More generally, if M is a smooth
manifold of dimension k and L is a complex line bundle over M with Chern
class c then the above construction determines an S2-bundle over M that
we will denote Sc and call a ruled manifold. Sc has a zero section, Z0, and
an infinity section, Z∞. The Chern classes of the normal bundles of Z0 and
Z∞ are, respectively, c and −c. Exactly as above Sc admits a natural S1

action.
For the proof of Theorem 1.1 we will need to contruct on Sn an S1-

invariant symplectic form τn such that Z0, Z∞ and the fibers F are sym-
plectic submanifolds. The easiest way to motivate this construction is to
assume that such a form exists and to analyse its structure. To this end
it is equally easy to work on the ruled manifold Sc. We suppose that Sc

admits a symplectic form τc and that the S1 action is hamiltonian. Let
H : Sc → R be the hamiltonian function (well-defined up to addition of a
constant). In this context H is also known as the moment map. Without
loss of generality we can suppose that the critical values of H are 0 and
1, corresponding to the critical submanifolds Z0 and Z∞, respectively. All
other values are regular. Let I be an interval of regular values of H. For
each λ ∈ I the level set H−1(λ) is a compact k + 1-dimensional manifold
with the structure of a circle bundle πλ : H−1(λ) →M over M . The Chern
class of this circle bundle is independent of λ and equals c. The restriction
of τc to H−1(λ) is a 2-form invariant under the circle action and so descends
to a symplectic form σλ on M . (M,σλ) is called the symplectic reduction
of (Sc, τc) at λ ∈ I. This gives a family σλ, λ ∈ I, of symplectic forms on
the reduced space M . The work of Duistermaat and Heckman [D-H] shows
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that for λ, η ∈ I:
[σλ] = [ση] + (λ− η)c (1.2)

where [σλ] denotes the cohomology class of σλ. From (1.2) it is easy to see
that [ d

dλσλ] = c. For each λ choose a connection 1-form βλ on πλ : H−1(λ) →
M so that dβλ = π∗λ( d

dλσλ). Now define on H−1(I) the 2-form:

ω = π∗λ(σλ) + dλ ∧ βλ. (1.3)

ω is non-degenerate and closed. In fact any S1 invariant symplectic form on
H−1(I) is equivalent to ω up to an S1-equivariant diffeomorphism preserving
the level sets of H (see [McD1]).

Given a principal circle bundle P →M with Chern class c and a family of
symplectic forms σλ, λ ∈ I on M satisfying (1.2) it is now easy to construct
an S1-invariant symplectic form on Sc. Let S1 act on P × S2 by

t · (p, z) = (p · t−1, t · z), t ∈ S1,

where S1 acts on S2 by rotation about the north-south axis. The quotient of
P × S2 by this action is Sc. An S1-invariant height function h : S2 → [0, 1]
taking the south pole to {0} and the north pole to {1} induces a map
H : Sc → [0, 1] such that the level sets H−1(λ), λ 6= 0, 1 are diffeomorphic
to P and Z0 = H−1(0), Z∞ = H−1(1). Using the family σλ of symplectic
forms we can construct an S1-invariant symplectic form ω on Sc\(Z0∪Z∞) =
H−1(0, 1) using (1.3). Then ω may be smoothly extended over all of Sc so
that ω restricts to σ0 on Z0 and σ1 on Z∞. For more details see [McD-
S,Chap.4].

The proof of Theorem 1.1 will also require the following well known the-
orem whose proof can be found in [W]:

Symplectic Neighborhood Theorem . Let (Yj , ηj), j = 1, 2 be symplec-
tic manifolds with symplectic submanifolds Γj. Suppose that there is an iso-
morphism of the symplectic normal bundles of Γ1 and Γ2, f̂ : ν(Γ1) → ν(Γ2),
which covers a symplectic diffeomorphism f : (Γ1, ω1) → (Γ2, ω2). Then f
may be extended to a symplectic diffeomorphism F : (N(Γ1), ω1) → (N(Γ2), ω2)
such that dF = f̂ : ν(Γ1) → ν(Γ2).

We are now ready to establish the existence of the operation of symplectic
normal connect sum.

Proof of Theorem 1.1. Let Sn denote the ruled surface that is an S2-bundle
over Σ. To construct an S1-invariant symplectic form on Sn we need only
specify a family {σλ} of symplectic forms on Σ subject to (1.2). By Moser’s
theorem, these symplectic forms are determined by their areas σλ(Σ) =∫
Σ σλ, up to a family {gλ} of diffeomorphisms of Σ. Thus, an S1-invariant

symplectic form τn on Sn is determined up to an S1 equivariant diffeo-
morphism by the scalars {[σλ](Σ)} subject to (1.2). By constructing τn
to satisfy

∫
Z0
τn =

∫
Σ1
ω1, we can suppose that there is a symplectic dif-

feomorphism f : (Σ1, ω1) → (Z0, τn). The normal bundles ν(Σ1) and
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ν(Z0) both have euler number n and so are isomorphic as symplectic vec-
tor bundles. Choose an isomorphism f̂ : ν(Σ1) → ν(Z0) covering f . Then
the symplectic neighborhood theorem gives a symplectic diffeomorphism
F : (N(Σ1), ω1) → (N(Z0), τn) with dF = f̂ . Note that the construction
of F involves a choice of a symplectic vector bundle isomorphism. Simi-
larly we can construct a symplectic diffeomorphism F̃ from (N(Σ−1), ω−1)
to (N(Z̃∞), τ̃n) where N(Z̃∞) is a tubular neighborhood of the infinity sec-
tion Z̃∞ in the ruled surface S̃n. (S̃n, τ̃n) will not, in general, be the same
as (Sn, τn) since we must insure that

∫
Σ−1

ω−1 =
∫
Z̃∞

τ̃n.
On the ruled surface (Sn, τn) there is a moment map H : Sn → [0, 1],

where 0 and 1 are the critical values corresponding to Z0 and Z∞, re-
spectively. Similarly on the ruled surface (S̃n, τ̃n) there is a moment map
H̃ : Sn → [0, 1], where 0 and 1 are the critical values corresponding to Z̃0

and Z̃∞, respectively. Choose intervals I and Ĩ such that |I| = |Ĩ| and so
that H−1(I) ⊆ F (N(Σ1)) and H̃−1(Ĩ) ⊆ F̃ (N(Σ−1)). Since τn and τ̃n are
determined on H−1(I) and H̃−1(Ĩ) by a family of scalars satisfying (1.2) we
can rescale τ̃n (and consequently, rescale ω−1) so that there is a symplectic
diffeomorphism ϕ : (H̃−1(Ĩ), τ̃n) → (H−1(I), τn). ϕ takes the inside bound-
ary of H̃−1(Ĩ) to the outside boundary of H−1(I) and takes the level sets of
H̃ to the level sets of H. The diffeomorphism:

Ψ = F−1 ◦ ϕ ◦ F̃ : (F̃−1(H̃−1(Ĩ)), aω−1) → (F−1(H−1(I)), ω1)

determines the required symplectic gluing map between (X−1, aω−1) and
(X1, ω1) where a ∈ R+ is the scaling factor. Theorem 1.1 is proved. �

2. Invariants of Symplectic Normal Connect Sums

Let X be a symplectic normal connect sum X−1#ΨX1 as in Theorem
1.1 where X−1 and X1 are both closed. In this section, we shall compute
various topological and geometric invariants of X in terms of those of X−1

and X1. These computations will be used in the following sections to discuss
a number of examples of symplectic normal connect sums.

Our computations will require various decompositions of X. Let Ui be
the complement of N (Σi) in Xi. Then (Ui, N(Σi)) is an open cover of
Xi. Note that Ui ∩ N(Σi) is equal to the tubular shell neighborhood Wi

of Σi along which the normal connect sum X is obtained by gluing with
the map Ψ. Thus, we may consider (U−1, U1) as an open cover of X with
U−1∩U1 = W−1. With this identification, the inclusion of U−1∩U1 into U−1

is just the inclusion of W−1 into U−1. The inclusion of U−1 ∩U1 into U1, on
the other hand, has been identified with the composition ◦Ψ of the inclusion
map  : W1 → U1 and the gluing diffeomorphism Ψ : W−1 → W1. (In the
subsequent discussion, we shall encounter a number of inclusion maps. We
shall denote all of these maps by .)

The first invariant which we shall discuss is the fundamental group of
X, π1(X). By Van Kampen’s Theorem, π1(X) is the quotient of the free
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product of π1(U−1) and π1(U1) by relations arising from π1(U−1∩U1). More
precisely, from the previous identifications, we see that π1(X) is the universal
solution of the following commutative diagram [M]:

π1(W−1)
()∗−−−→ π1(U−1)y(◦Ψ)∗

y()∗

π1(U1)
()∗−−−→ π1(X).

The tubular shell neighborhood Wi of Σi is an oriented annulus bundle
over Σi. This annulus bundle retracts onto an oriented circle bundle Pi over
Σi. Hence, from the discussion in [F], we may construct a presentation for
π1(Wi) of the following form:

Generators : ai,1, bi,1, ...., ai,g, bi,g, zi (2.1)

Relations :
g∏

j=1

[ai,j , bi,j ] = zin
i , ai,jzi = ziai,j , bi,jzi = zibi,j .

Note that this presentation is not natural. The “base” classes ai,j , bi,j cor-
respond to arbitrarily chosen lifts to the annulus bundle Wi of loops repre-
senting the standard generators of π1(Σi). The fiber class zi corresponds to
the fiber of the associated circle bundle Pi with the appropriate orientation.
Note that unlike the “base” classes, ai,j , bi,j , the fiber class zi is natural.

The relations arising from π1(U−1 ∩ U1), after making the above identifi-
cations, are the following:

∗(a−1,j) = ( ◦Ψ)∗(a−1,j), ∗(b−1,j) = ( ◦Ψ)∗(b−1,j),
(2.2)

∗(z−1) = ( ◦Ψ)∗(z−1)

Henceforth, we assume, without loss of generality, the following constraints
on Ψ∗:

Ψ∗(z−1) = z−1
1 , Ψ∗(

g∏
j=1

[a−1,j , b−1,j ]) =
g∏

j=1

[a1,j , b1,j ]. (2.3)

These constraints arise from the fact that Ψ is an orientation preserving,
end reversing diffeomorphism from W−1 to W1 preserving the annuli of these
annulus bundles up to isotopy. It can be shown that we can prescribe Ψ to
induce any isomorphism from π1(W−1) to π1(W1) which satisfies these two
constraints.

Next we wish to discuss the basic homological invariants of X. First of all,
there are the Betti numbers of X, bi, 0 ≤ i ≤ 4. Since X is orientable, closed
and connected, b0 = b4 = 1, b1 = b3. Therefore, the euler characteristic of X
satisfies χ = 2+2b1+b2. We recall that the euler characteristic is “additive”.
That is, if (U,U ′) is an open cover of any topological space T , then:

χ(T ) = χ(U) + χ(U ′)− χ(U ∩ U ′).
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Applying this identity to the open covers of X−1, X1 and X introduced
above, we obtain the following identities:

χ(Xi) = χ(Ui) + χ(N(Σi))− χ(Wi)

χ(X) = χ(U−1) + χ(U1)− χ(W−1).

Since the euler characteristic of a closed orientable three manifold is equal
to 0, χ(Wi) = χ(Pi) = 0. Recalling that Σi is a compact surface of genus g
we have χ(N(Σi)) = χ(Σi) = 2− 2g. Thus:

χ(X) = χ(X−1) + χ(X1) + 4g − 4. (2.4)

If T is a topological space, then Hj(T ) and Hj(T ) will denote Hj(T,R)
and Hj(T,R) respectively. The integral lattice in Hj(T ) is the image of
Hj(T,Z) under the usual homomorphism Hj(T,Z) → Hj(T). A class in
Hj(T ) is integral if it lies in the integral lattice. A subspace of Hj(T ) is
rational if it has a basis consisting of integral classes. The integral lattice in
H2(X) consists precisely of those classes which are represented by smoothly
embedded oriented surfaces in X. If F denotes such a surface, then we shall
denote the corresponding class in H2(X) by the same symbol F . The inter-
section pairing Q is a nondegenerate, symmetric, bilinear form on H2(X). If
α, β ∈ H2(X), then we shall denote Q(α, β) by α ·β. (Q restricts to an inte-
ger valued, unimodular, symmetric bilinear form on the integral lattice.) Q
is determined by its restriction to the integral lattice. If α1 and α2 are inte-
gral classes, then α1 ·α2 is equal to the algebraic intersection number of any
pair of transverse smoothly embedded oriented surfaces Fi representing αi.
The signature σ of X is equal to b+2 − b

−
2 , where b+2 is the rank of a maximal

positive definite subspace of H2(X) and b−2 is the rank of a maximal negative
definite subspace of H2(X). In order to compute σ(X) in terms of σ(Xi),
we shall appeal to Novikov additivity. The statement of Novikov additiv-
ity involves extending the definition of signature to compact oriented four
manifolds M with boundary ∂M . The above definition is equally valid in
this context. The difference between the closed case and the nonclosed case
can be summarized as follows. In the closed case, the intersection pairing
is nondegenerate and, hence, b2 = b+2 + b−2 . In the nonclosed case, however,
the nullspace of Q is equal to ∗(H2(∂M)). In the nonclosed case, therefore,
we need not have the above relationship between b2, b+2 and b−2 . (For more
details, see [K].)

Let Ni be a tubular neighborhood of Σi such that N (Σi) ⊂ Ni and Ni ⊂
N(Σi). LetMi = Xi\Ni. We may assume that ∂Mi = Pi and that Ψ(P−1) =
P1. We now have a decomposition of Xi into compact four manifolds with
boundary, Mi andNi, glued along their common boundary Pi by the identity
map. Likewise, we have a decomposition of X into M−1 and M1 glued along
their boundaries by the restriction ψ of Ψ to P−1 and P1. We may apply
Novikov additivity to these decompositions of X−1, X1 and X. As a result,
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we have the following identities:

σ(Xi) = σ(Mi) + σ(Ni)

σ(X) = σ(M−1) + σ(M1).

In order to express σ(X) in terms of σ(Xi), we need to compute σ(Ni).
Since Ni is a closed tubular neighborhood of Σi in Xi, H2(Ni) is isomorphic
to R with an integral generator Σi. Therefore, Σi is a basis for H2(Ni).
Since Σi · Σi = in, we conclude that:

σ(Ni) =

{
0 if n = 0,
i otherwise.

It follows immediately from the above identities that:

σ(X) = σ(X−1) + σ(X1). (2.5)

Remark 2.1. The computations of χ(X) and σ(X) given above, almost
allow us to compute all the Betti numbers of X. If we could compute b1(X)
in terms of b1(Xi), then we would be able to determine the invariants b2,
b+2 and b−2 for X in terms of those for Xi. The determination of b1(X),
however, involves more information than we have used above. In particular,
it depends upon the diffeomorphism Ψ used to construct X.

The second Stiefel-Whitney class of X, w2, is a characteristic Z2 cohomol-
ogy class of dimension 2. It is the obstruction to finding a field of 3-frames
over the 2-skeleton of X. As with the Betti numbers of X, the calculation
of w2(X) in terms of w2(Xi) requires more information than we have used
above.

Let ω be a symplectic structure on X. Integrating ω over 2 dimensional
homology classes defines a homomorphism:

ρω : H2(X) → R

which we shall refer to as the period map of ω. The second exterior power of ω
is a nowhere zero top dimensional form. Hence, X has a naturally associated
volume form ω2. This volume form determines a natural orientation on X.
Given (X,ω), we shall always orient X by this orientation.

Since (X,ω) is a symplectic manifold, it admits a unique homotopy class
of compatible almost complex structures. Let J be an almost complex struc-
ture in this homotopy class. The orientation on X induced by J depends
only upon the homotopy class of J . Indeed, it is easy to see that it agrees
with the orientation on X determined by the volume form ω2. The charac-
teristic classes of (X, J) are the Chern classes, c1 and c2. These are integral
2 dimensional, respectively 4 dimensional, cohomology classes of X which
depend only upon the homotopy class of J . Hence, they are well defined in-
variants of (X,ω). These invariants and the topological invariants discussed
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above bear the following relationship to each other ([B-P-V], chapter IV ,
section 7):

[c1] = w2, c21 = 3σ + 2χ, c2 = χ. (2.6)

Here, [c1] denotes the reduction of c1 modulo 2 and c21 denotes the square
c1 ∪ c1 of c1. c21 and c2 are called the Chern numbers of X. From the above
identities, it is clear that the Chern numbers of X are topological invariants
of X. They satisfy the following congruence ([B-P-V], chapter IV , section
7):

c21 + c2 ≡ 0(12). (2.7)

From (2.4), (2.5) and (2.6), we have the following identities:

c21(X) = c21(X−1) + c21(X1) + 8g − 8 (2.8)

c2(X) = c2(X−1) + c2(X1) + 4g − 4.

3. Complex Surfaces

In this section, we shall discuss restrictions on the invariants of X which
arise from the assumptions that X is a complex surface, a Kähler surface or
a minimal surface of general type. We shall appeal to these restrictions in
order to construct interesting examples of symplectic normal connect sums.

First, suppose that X is a compact complex surface. h(p,q) is the dimen-
sion of the Dolbeault cohomology group H(p,q)(X). The geometric genus
pg of X is h(0,2). The irregularity q(X) is h(0,1). These invariants bear the
following relationships to the invariants discussed above ([B-P-V], chapter
IV , section 2):

if b1(X) is even, then b1 = 2q and b+2 = 2pg + 1,

if b1(X) is odd, then b1 = 2q − 1 and b+2 = 2pg.

As a consequence of these constraints, it is clear that q(X) and pg(X) are
topological invariants, q(X) of the unoriented, and pg(X) of the oriented
underlying manifold.

Now suppose that X is a Kähler surface with Kähler form ω. In par-
ticular, ω is a symplectic form on X. Of course, since X is complex, the
invariants ofX must satisfy the restrictions discussed above. Further restric-
tions arise from the Hodge decomposition ([G-H]). The main consequence
of this decomposition, for our purposes, is that:

b1 = 2q and b+2 = 2pg + 1.

In particular, b1 is even. For complex surfaces, this actually characterizes
Kähler manifolds following the work of Kodaira, Miyaoka, Siu and Todorov
([P]):

Theorem . A compact complex surface is Kähler if and only if its first Betti
number is even.
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There are also restrictions on the fundamental group of a compact Kähler
manifold. In particular ([J-R]):

Theorem (Johnson-Rees) . If G1 and G2 are two groups which have at
least one nontrivial finite quotient each, then the free product G1 ∗G2 is not
isomorphic to the fundamental group of any compact Kähler manifold. More
generally, if H is any group, then the direct product (G1 ∗ G2) × H is not
isomorphic to the fundamental group of any compact Kähler manifold.

A related result is the following ([A-B-R]):

Theorem (Arapura-Bressler-Ramachandran) . Let G1 and G2 be two
groups. Let F be a finite group. Let φj : F → Gj be monomorphisms with
φj(F ) 6= Gj. Then the free product of G1 and G2 amalgamated over F via
φ1 and φ2 is not isomorphic to the fundamental group of any compact Kähler
manifold.

Note that the result of [A-B-R] implies the first half of the result of [J-R].
It also implies the second half of the result of [J-R] in the case where H is
finite. This follows from the observation that (G1 ∗G2)×H is isomorphic to
the free product of G1 ×H and G2 ×H amalgamated over H with respect
to the obvious monomorphisms of H into Gi × H. Note that the relevant
hypotheses imply that Gi is a nontrivial group. Hence, the images of H
under these monomorphisms are proper subgroups of G−1 ×H and G1 ×H
as required to appeal to the result of [A-B-R].

Finally, suppose thatX is a minimal surface of general type. In particular,
X is Kähler. The known restrictions on the basic invariants of X, beyond
those discussed above, can be summarized as follows ([B-P-V], chapter V II,
sections 1 and 3):

c21 > 0, c2 > 0, c21 ≤ 3c2, pg ≤
1
2
c21 + 2.

4. Simple Examples

To construct examples of symplectic normal connect sums we use, as
building blocks, pairs (Xi,Σi), i = −1, 1, where the Xi are compact Kähler
surfaces and the Σi are nonsingular complex curves of genus g and self-
intersection in with n ≥ 0. The initial step then is to find nonsingular com-
plex curves in Kähler surfaces. There are, of course, many ways of doing
this. Among the simplest curves are the hyperplane sections. These are ob-
tained by intersecting a 2-dimensional complex variety in CPN (an algebraic
surface) with a hyperplane. Such curves, when nonsingular, have positive
self-intersection. Curves of negative self-intersection are found by resolving
singularities or by simply blowing up positive self-intersection curves suffi-
ciently often. For example, let Σ1 be a nonsingular curve of genus g and
self-intersection n ≥ 0 in a Kähler surface X1. Let X̃1 be the blow-up of X1

at a point p ∈ Σ1. The proper transform Σ̃1 of Σ1 is a nonsingular curve in
X̃1 of genus g and self-intersection n − 1. If X̂1 is the blow-up of X1 at `
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distinct points on Σ1, where ` > n, then the proper transform Σ̂1 of Σ1 in
X̂1 is a nonsingular curve of genus g and self-intersection n − ` < 0. This
observation leads to the following simple construction. Let (X1,Σ1) be as
above and let X−1 be the blow-up of X1 at 2n distinct points of Σ1. The
proper transform Σ−1 of Σ1 inX−1 is a nonsingular curve of genus g and self-
intersection −n. The symplectic normal connect sum of (Xi,Σi), i = −1, 1,
determines a symplectic manifold X = X−1#ΨX1 which is perhaps one of
the simplest examples of a symplectic normal connect sum.

More generally, let Σ1 and Σ′
1 be nonsingular curves of genus g and self-

intersection n ≥ 0 and n′ ≥ 0, respectively, in Kähler surfaces X1 and X ′
1.

Blow up X ′
1 at n + n′ distinct points on Σ′

1 to obtain a Kähler surface
X ′
−1 and a nonsingular curve Σ′

−1 of genus g and self-intersection −n, (the
proper transform of Σ′

1 in X ′
−1). Let X ′ = X ′

−1#ΨX1 be the symplectic
normal connect sum of (X ′

−1,Σ
′
−1) and (X1,Σ1). Alternatively, blow up X1

at n distinct points on Σ1 and blow up X ′
1 at n′ distinct points on Σ′

1 to
obtain Kähler surfaces X0 and X ′

0 containing nonsingular curves Σ0 and
Σ′

0 of genus g and self-intersection zero. Now use the self-intersection zero
symplectic normal connect sum to glue (X0,Σ0) to (X ′

0,Σ
′
0) together to

form a symplectic manifold X ′′ = X0#Ψ′X ′
0. A standard “handle trading”

argument shows (for appropriate choice of Ψ′) that X ′′ is diffeomorphic to
X ′. (In fact, this handle trading argument shows that if we use blowing
up to make the self-intersection numbers of a pair of nonsingular curves
have opposite sign, the diffeomorphism type of the normal connect sum is
insensitive to which curve we blow up.)

Examples, such as those described above, do not require the full range
of Theorem 1.1, but as we saw, can be constructed (up to diffeomorphism)
with self-intersection zero gluing alone. The crucial point is that each neg-
ative curve Σ−1 in these examples is obtained by blowing up a nonsingular
curve of nonnegative self-intersection. We say that Σ−1 is not “genuinely
negative”. A “genuinely negative” curve is a nonsingular curve of negative
self-intersection which cannot be blown down to a nonsingular curve of non-
negative self-intersection. In general, symplectic normal connect sums built
using a genuinely negative curve Σ−1 cannot be constructed using the self-
intersection zero gluing. For this reason, such examples are of particular
interest. In the following sections, we will give many examples of this type.

The abundance of examples of nonsingular curves of both positive and
negative self-intersection in many different Kähler surfaces shows that the
symplectic normal connect sum gives many easily constructed examples of
compact symplectic manifolds. Moreover, the Chern numbers and, often,
other classical invariants of these examples are easily computed. However,
the genus and self-intersection numbers of the curves Σi are not them-
selves sufficient information to determine whether the symplectic mani-
fold (X−1#ΨX1, ω) is or is not a Kähler manifold. Thus, to determine if
X−1#ΨX1 is a new symplectic manifold, further information about the pairs
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(Xi,Σi) is needed. The required information is often difficult to calculate.
This is the subject of the next two sections.

5. Non-Kähler Symplectic Manifolds With b1 Odd

In this section, we shall give a number of examples of symplectic manifolds
whose underlying smooth manifold does not admit any Kähler structure.
These manifolds will all be constructed as symplectic normal connect sums
of Kähler manifolds. They all have b1 odd and, hence, are not homeomorphic
to any Kähler surface, though some are homeomorphic to complex surfaces.

There are many known examples of symplectic manifolds which are not
homeomorphic to Kähler manifolds. In 1976, Thurston gave examples of
closed non-Kähler symplectic manifolds by producing closed symplectic man-
ifolds with odd first Betti number. Thurston’s examples are surface bundles
over symplectic manifolds. His construction of a symplectic structure on
these bundles involves the bundle structure. Our first example will be a
construction of one of the simplest of Thurston’s examples via the operation
of symplectic normal connect sum, (or, more precisely, via a slight variation
of this operation).

Example 5.1 (Thurston’s Torus Bundle Over a Torus). Consider the prod-
uct T 2 × S2 equipped with the product Kähler structure. Let x−1 and x1

be a pair of distinct points on S2. Let Σi denote the surface T 2×{xi}. The
surfaces Σ−1 and Σ1 are symplectically embedded surfaces which represent
the same homology class in T 2 × S2 and, hence, have the same symplectic
area. The self-intersection of each of these surfaces is equal to 0. Hence, by
(2) in remark 1.1, we can glue a tubular shell neighborhood W−1 of Σ−1 to
a tubular shell neighborhood W1 of Σ1 by a symplectomorphism Ψ taking
the inside end of W−1 to the outside end of W1.

Remark 5.1. Note that in this example we are symplectically gluing the
complement of N (Σ−1) ∪ N (Σ1) in T 2 × S2 to itself along tubular shell
neighborhoods of Σ−1 and Σ1. This is possible because Σ−1 and Σ1 are
disjoint, have zero self-intersection and the same area. In the case of nonzero
self-intersection, the necessity of scaling the symplectic forms in order to glue
makes it difficult to perform this type of operation.

Let U be the complement of N (Σ−1)∪N (Σ1) in T 2×S2. U is the product
of T 2 with the two holed sphere S2 \ (B(x−1)∪B(x1)). Hence, we have the
following presentation for π1(U):

Generators : a, b, z

Relations : [a, b] = 1, az = za, bz = zb.

Likewise, we have the following presentations for π1(Wi):

Generators : ai, bi, zi

Relations : [ai, bi] = 1, aizi = ziai, bizi = zibi.
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In terms of the above presentations, the homomorphism induced by the
inclusion of Wi in U can be described as follows:

∗(ai) = a, ∗(bi) = b, ∗(zi) = z.

By choosing Ψ appropriately, as explained in section 2, we may prescribe
the following restrictions on the isomorphism Ψ∗:

Ψ∗(a−1) = a1z1, Ψ∗(b−1) = b1, Ψ∗(z−1) = z−1
1 .

From the relations in (2.2), a standard application of Van Kampen’s theorem
yields a presentation of π1(X) as an HNN extension ([L-S]) of π1(U):

Generators : a, b, z, t

Relations : [a, b] = 1, az = za, bz = zb

tat−1 = az, tbt−1 = b, tzt−1 = z.

Since H1(X,Z) is the abelianization of π1(X), we conclude that H1(X,Z)
is a free abelian group of rank 3, with basis given by the homology classes
of a, b and t. In particular, b1(X) is equal to 3. As discussed above, this
demonstrates that X is not homeomorphic to any Kähler manifold. (On the
other hand, it is easy to see that X is homeomorphic to one of Thurston’s
examples.)

We now wish to describe a scheme for producing examples of compact
symplectic 4-manifolds with b1 odd. To understand this scheme we need to
compute b1 of a normal connect sum. In order to do this, we shall again
use the decomposition of X described in section 2. By applying the Mayer-
Vietoris sequence to the covering (U−1, U1) of X, we obtain the following
right exact sequence:

H1(U−1 ∩ U1)
∗⊕(◦Ψ)∗−−−−−−→ H1(U−1)⊕H1(U1) → H1(X) → 0.

From this sequence, we see that:

b1(X) = b1(U−1) + b1(U1)− rank(∗ ⊕ ( ◦Ψ)∗).

By applying the Mayer-Vietoris sequence to the covering (Ui, N(Σi)) of Xi,
on the other hand, it follows that:

b1(Xi) = b1(Ui) + b1(N(Σi))− rank(∗ ⊕ ∗).

The intersection term Ui ∩N(Σi) of this second Mayer-Vietoris sequence is
equal to Wi, the annulus bundle corresponding to the disc bundle N(Σi)
over Σi. It follows that ∗ maps H1(Ui ∩N(Σi)) onto H1(N(Σi)). Hence:

b1(N(Σi)) ≤ rank(∗ ⊕ ∗).

Now consider the fiber class zi of π1(Wi). Since Σi is a compact symplectic
surface in (Xi, ωi), it represents a nontrivial class αi in H2(Xi). (The coho-
mology class of the symplectic form ωi on Xi evaluates nontrivially on αi.)
The intersection pairing Q on H2(Xi) is nondegenerate and H2(Xi) has an
integral basis. Thus there exists an integral homology class βi in H2(Xi)
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such that αi · βi = mi where mi is a nonzero integer. βi can be represented
by a smoothly embedded, oriented surface Fi. (See [K], chapter II, section
1.) We may assume that Fi is transverse to Σi. Thus, we may assume that
Fi \ N(Σi) is a smoothly embedded, oriented surface in Ui whose bound-
ary is a disjoint union of circles each representing the homology class [zi] of
zi or −[zi]. From the definition of the intersection pairing, this boundary
represents mi[zi]. Hence, since mi 6= 0, [zi] = 0 in H1(Ui). On the other
hand, clearly zi is homologically trivial in N(Σi). Thus, [zi] is in the kernel
of ∗ ⊕ ∗. From (2.1), it follows that:

rank(∗ ⊕ ∗) ≤ 2g.

But b1(N(Σi)) = b1(Σi) = 2g. Hence, we conclude that b1(Ui) = b1(Xi).
Indeed, we see that the inclusion homomorphism:

H1(Ui)
∼=−→ H1(Xi)

is an isomorphism.
Let πi : Wi → Σi denote the projection map of the annulus bundle Wi

over Σi. For any circle γ in Wi, γ and πi(γ) are homologous in N(Σi) and,
hence, in Xi. We may assume, for homological purposes, that Ψ covers an
orientation preserving diffeomorphism Ψ0 from Σ−1 to Σ1. That is, we may
assume that we have a commutative diagram as follows:

W−1
Ψ−−−→ W1yπ−1

yπ1

Σ−1
Ψ0−−−→ Σ1.

From these observations, we see that the following diagram is commutative:

H1(W−1)
∗⊕(◦Ψ)∗−−−−−−→ H1(U−1)⊕H1(U1)y(π−1)∗

y∗⊕∗

H1(Σ−1)
∗⊕(◦Ψ0)∗−−−−−−−→ H1(X−1)⊕H1(X1).

Since W−1 is an annulus bundle over Σ−1 and π−1 is the corresponding
bundle projection map, (π−1)∗ is surjective. On the other hand, by the
previous discussion, ∗⊕ ∗ from H1(U−1)⊕H1(U1) to H1(X−1)⊕H1(X1) is
an isomorphism. Hence, the horizontal homomorphisms in this last diagram
have the same rank:

rank(∗ ⊕ ( ◦Ψ)∗) = rank(∗ ⊕ ( ◦Ψ0)∗).

From the above identities, we conclude that:

b1(X) = b1(X−1) + b1(X1)− rank(∗ ⊕ ( ◦Ψ0)∗).

On the other hand:

2g = b1(Σ−1) = nullity(∗ ⊕ ( ◦Ψ0)∗) + rank(∗ ⊕ ( ◦Ψ0)∗).
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Therefore:

b1(X) = b1(X−1) + b1(X1) + nullity(∗ ⊕ ( ◦Ψ0)∗)− 2g.
(5.1)

Of course, since Ψ0 is a diffeomorphism:

kernel[∗ ⊕ ( ◦Ψ0)∗] = kernel[∗] ∩ [((Ψ0)∗)−1(kernel(∗))].
(5.2)

Let Ki denote the kernel of ∗ : H1(Σi) → H1(Xi). From (5.1) and (5.2),
we have the following observations regarding the parity of b1(X) (when
b1(Xi) is even):

b1(X) ≡


0 (mod 2) if K−1 = 0 or K1 = 0 ,
rank(K−1) (mod 2) if K1 = H1(Σ1),
rank(K1) (mod 2) if K−1 = H1(Σ−1).

Hence, if Ki is not a proper subspace of H1(Σi) for either i = −1 or i = 1,
then the parity of b1(X) is independent of the choice of the symplectic gluing
map, Ψ. (Indeed, in these cases, b1(X) is independent of Ψ.)

As we shall see, the situation is very different whenKi is a proper subspace
of H1(Σi) for i = −1, 1. Henceforth, we assume that we are in this situation.
It is easy to see that Ki is actually a rational subspace of H1(Σi). We recall
that a nonzero integral class is primitive if it is not an integer multiple
of another integral class by an integer greater than 1. We shall need the
following result.

Theorem 5.1. Let Σ be a closed orientable Riemann surface of genus g ≥ 1.
Let V−1 and V1 be proper rational subspaces of H1(Σ). Then there exists a
diffeomorphism f : Σ → Σ such that the rank of f∗(V−1) ∩ V1 is odd.

Proof. Let V0 = V−1 ∩ V1 and let V2 denote the subspace of H1(Σ) spanned
by V−1 and V1. Let ri denote the rank of Vi. We begin by reducing the
problem to the case where V0 and V2 are proper subspaces of H1(Σ).

We recall that we have a Z-valued, nondegenerate, unimodular, antisym-
metric pairing J on H1(Σ,Z) defined by algebraic intersection of 1-cycles.
Let V ⊥

i be the perpendicular subspace of Vi in H1(Σ,Z) with respect to this
pairing J . Since J is nondegenerate, the rank of V ⊥

i is equal to 2g − ri.
Since ri < 2g, there is a nonzero class αi ∈ V ⊥

i . Since J is Z-valued, we can
assume that αi is an integral class. In addition, of course, we can assume
that αi is primitive. It is well known that any primitive integral class in
H1(Σ) can be represented by a nonseparating simple closed curve. Let γi

be such a curve representing αi. It is also well known that any two nonsep-
arating simple closed curves on Σ are equivalent up to a diffeomorphism of
Σ. Thus, there exists a diffeomorphism f0 of Σ such that f0(γ−1) = γ1 and,
hence, (f0)∗(α−1) = α1. Thus, without loss of generality, we may assume
that α−1 = α1. Since α1 ∈ V ⊥

i for i = −1, 1, Vi ⊂ {α1}⊥. It follows that
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V2 ⊂ {α1}⊥. On the other hand, since <,> is nondegenerate, the rank of
{α1}⊥ is equal to 2g − 1. Hence, V2 is a proper subspace of H1(Σ).

If V0 6= {0}, then we have reached the desired reduction. Suppose, on the
other hand that V0 = {0}. Let ri denote the rank of Vi. Then r2 = r−1+r1 ≤
2g. Since Vi is a nontrivial rational subspace of H1(Σ) for i = −1, 1, there
exists a nonzero primitive integral class βi in Vi for i = −1, 1. As in the
previous paragraph, we may choose a diffeomorphism f1 of Σ such that
(f1)∗(β−1) = β1. Let V ′

−1 = (f1)∗(V−1), V ′
1 = V1, V ′

0 = V ′
−1 ∩ V ′

1 and
V ′

2 be the subspace of H1(Σ) spanned by V ′
−1 and V ′

1 . Let r′i denote the
rank of V ′

i . By the choice of f1, V ′
0 6= {0}. On the other hand, since f1

is a diffeomorphism, r′−1 = r−1. Of course, r′1 = r1. Since V ′
0 6= {0},

r′2 < r′−1 + r′1 ≤ 2g. Hence, V ′
0 and V ′

2 are proper subspaces of H1(Σ). We
have reached the desired reduction.

We may assume, without loss of generality, that V0 and V2 are proper
subspaces of H1(Σ). Likewise, of course, we may assume that the rank of
V0 is even. Since V0 is a proper subspace of H1(Σ), V ⊥

0 is a proper subspace
of H1(Σ). Hence, we can choose a nonseparating simple closed curve c on Σ
such that the homology class [c] of c is neither in V ⊥

0 nor in V2. Let f be the
Dehn twist about c. This is a diffeomorphism of Σ which is supported in an
annular neighborhood of c and twists this neighborhood in a “barber pole”
fashion ([B]). The action of f on H1(Σ) is given by the following formula:

f∗(α) = α+ J([c], α)[c].

We shall show that f∗(V−1)∩V1 = V0∩{c}⊥. Suppose that β ∈ f∗(V−1)∩
V1. In particular, β ∈ V1. Moreover, there exists a class α ∈ V−1 such that
f∗(α) = β. By the previous formula:

β = α+ J([c], α)[c].

Suppose that J([c], α) 6= 0. Then:

[c] = (β − α)/J([c], α).

Since β ∈ V1 and α ∈ V−1, this implies that [c] ∈ V2. This contradicts our
choice of c. Hence, J([c], α) = 0. Hence, from the previous formula, β = α.
This implies that β ∈ V−1. Hence, β ∈ V0. Furthermore, it implies that
J([c], β) = 0. Hence, β ∈ {c}⊥. Thus, β ∈ V0 ∩ {c}⊥.

Suppose, on the other hand, that β ∈ V0∩{c}⊥. Then β ∈ V−1, β ∈ V1 and
J([c], β) = 0. This last equality implies that f∗(β) = β. Hence, β ∈ f∗(V−1).
Thus, β ∈ f∗(V−1) ∩ V1.

Since J is nondegenerate and [c] 6= 0, {[c]}⊥ is a subspace of H1(Σ) of
codimension 1. Since [c] does not lie in V ⊥

0 , V0 is not contained in {[c]}⊥.
Hence, V0∩{[c]}⊥ is a subspace of V0 of codimension 1. Since, by assumption,
the rank of V0 is even, the rank of V0 ∩ {[c]}⊥ is odd. In other words, the
rank of f∗(V−1) ∩ V1 is odd. This completes the proof of the theorem. �
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Remark 5.2. Let Σ, V−1 and V1 be as above. It is clear that the proof of
Theorem 5.1 also establishes that there exists a diffeomorphism f ′ : Σ → Σ
such that the rank of f ′∗(V−1) ∩ V1 is even.

We may apply this result to the subspaces V−1 = K−1 and V1 = (Ψ0)−1
∗ (K1).

Let Ψ′ be a symplectic gluing map such that Ψ′
0 is isotopic to Ψ0 ◦ f , where

f is given by Theorem 5.1. Then the normal connect sum X−1#Ψ′X1 has
odd b1. Hence, we have proved the following theorem:

Theorem 5.2. Suppose that Σi ↪→ Xi are symplectically imbedded compact
surfaces of genus g and that χ(ν−1) = −χ(ν1) where νi is the normal bundle
of Σi in Xi. Suppose that the kernel Ki of the inclusion homomorphism from
H1(Σi) to H1(Xi) is a proper subspace of H1(Σi) for i = −1, 1. Then there
exists a symplectomorphism Ψ of tubular shell neighborhoods of Σ−1 and Σ1

so that b1(X−1#ΨX1) is odd.

Remark 5.3. By remark 5.2, there is also a symplectomorphism Ψ′ of
tubular shell neighborhoods of Σ−1 and Σ1 so that b1(X−1#Ψ′X1) is even.

We now wish to describe a method for producing symplectically embedded
surfaces Σ ↪→ (X,ω) such that the kernel K of ∗ : H1(Σ) → H1(X) is a
proper subspace ofH1(Σ). Together with Theorem 5.2, this method provides
the scheme promised above. As we shall see, our method has considerable
flexibility. Our construction involves the fibered product of two branched
covering maps between Riemann surfaces ([H], Chapter II, section 3).

We shall need the following facts about branched coverings. Let φ : M →
N be a branched covering map of degree d between compact, orientable
surfaces M and N . Let Λφ denote the singular set of φ. Let Bφ denote the
corresponding branch set Bφ = φ(Λφ). Let M0 = M \ φ−1(Bφ) and N0 =
N \Bφ. The restriction of φ to M0 and N0 is an unbranched covering map
φ0 of degree d. As such φ0 is determined by its monodromy representation
ρ(φ) : π1(N0) → Sd, where π1(N0) is the fundamental group of N0 and Sd

is the symmetric group on d symbols. If p is a point in M , then degp(φ)
denotes the degree of φ at p. If degp(φ) > 1, then p is a branch point of
φ. The singular set of φ consists precisely of the branch points of φ. The
total branching number of φ is the sum β(φ) =

∑
p∈M (degp(φ) − 1). The

Riemann-Hurwitz relation states that χ(M) = dχ(N) − β(φ). (For more
details, see [B-E], [G-H].)

Let Rj , j = 1, 2, 3 be closed Riemann surfaces of genus gj . Our idea is
to construct a curve C in R1 × R2 and obtain the desired surface Σ as a
proper transform of C in an appropriate blow up X of R1 ×R2. There are
several requirements which we shall need to meet in order for Σ to satisfy the
restrictions imposed by Theorems 1.1 and 5.2. C is constructed as follows.
Let fj : Rj → R3, j = 1, 2, be nonconstant holomorphic maps of degrees
dji. Let C be the following subset of R1 ×R2:

C = {(x, y) ∈ R1 ×R2 | f1(x) = f2(y)}. (5.3)
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C is a complex curve in R1 ×R2 ([B-P-V]). This is implicit in the following
local description of C, which also gives a complete description of the singu-
larities of C. Let (x, y) be a point in C and let u = f1(x) = f2(y) be the
corresponding point in R3. Choose a local coordinate ζ on R3 vanishing at
u. Since fj is a nonconstant holomorphic map between Riemann surfaces,
a standard argument shows that we can choose a local coordinate z on R1

vanishing at x and a local coordinate w on R2 vanishing at y such that in
terms of these local coordinates we can write f1 and f2 as follows:

ζ = f1(z) = zp ζ = f2(w) = wq

for some positive integers p and q. (See [F-K], chapter I, section 1.) These
conclusions imply that fj is a branched covering map with p the degree of
f1 at x and q the degree of f2 at y. The pair (z, w) defines a local chart in a
neighorhood U of (x, y) in R1 ×R2. In this local chart, C has the following
description:

C ∩ U = {(z, w) | zp = wq}.
Note that this description proves that C is a complex curve on R1 × R2

([B-P-V]). It should be noted that C need not be irreducible. In order
for Σ to be connected, it is necessary for C to be irreducible. Hence, we
shall need to impose further restrictions to ensure that Σ is connected. If
either p or q is equal to 1, then this description shows that C is nonsingular
at (x, y). (In particular, if fj is a covering map, then C is nonsingular.
Likewise, if the critical values of f1 are disjoint from those of f2, then C
is nonsingular.) Otherwise, C is singular at (x, y). We shall say that C
has a simple singularity of type (p, q) at (x, y). Clearly, by this discussion,
each singularity of C is a simple singularity of type (p, q) for some (p, q)
with p, q ≥ 2. The singularities of C are isolated and there are only finitely
many. Moreover, from this local description of C and the local description of
blowing up a surface at a point, it is a simple matter to see that the proper
transform Σ of C in an appropriate blow up X of R1 × R2 is a smoothly
embedded complex curve. For instance, suppose that C has exactly one
singularity (x, y) and that (x, y) is a simple singularity of type (2, 2). The
local description of C given above shows that this singularity is an ordinary
double point. That is, near (x, y) the curve C looks like a pair of distinct
complex lines in C2 passing through the origin, {(z, w) | w = z} and {(z, w) |
w = −z}. If we blow up R1 × R2 once at the point (x, y), then the proper
transform of C in the blown up surface is a smooth embedded complex
curve. (In general, of course, we may have to blow up several times in
order to desingularize C. For instance, the proper transform of a simple
singularity v of type (2, 5) after blowing up once at v is a simple singularity
of type (2, 3). After blowing up once more at the proper transform of v, one
has a simple “singularity” of type (2, 1), which is a smooth point.)

Our examples will be built from pairs (X,Σ) where X is a blow-up of
R1 ×R2 and Σ is a desingularization of C. We must ensure that Σ satisfies
various properties. In particular, Σ must be connected and the kernel of
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∗ : H1(Σ) → H1(X) must be proper. In addition, we must find pairs
(Xi,Σi), i = −1, 1 to glue. All of these conditions can be met with careful
choices ofR1, R2, R3, f1 and f2. This we do in the following. We remark that
while we could proceed in complete generality the necessary computations
become very lengthy and tedious. Our intent is to construct interesting
examples illustrating Theorem 5.2. Thus, after some general remarks about
conditions which guarantee the connectedness of Σ and the properness of
K, we will make some simplifying assumptions about R1, R2, R3, f1 and f2

and leave the many other cases to the interested reader.

A: Connectedness of Σ
Suppose that Σ is the desingularization of C in an appropriate blow up

X of R1 × R2. We wish to determine sufficient conditions for Σ to be
connected. (In algebraic terms, we wish to ensure that C is irreducible.)
Let D be the exceptional divisor in X corresponding to the sequence of blow
ups required to obtain X, (where D is the empty divisor if X = R1 × R2).
Let τ : X → R1 × R2 denote the holomorphic map obtained by blowing
down D in X. There exist holomorphic functions hj : Σ → Rj such that
the restriction τ | : Σ → R1 × R2 is equal to (h1, h2). Consider the induced
homomorphism of fundamental groups:

(f1)∗ : π1(R1 \ f−1
1 (Bf2)) → π1(R3 \Bf2).

We have the following criterion for Σ to be connected.

Theorem 5.3. Σ is connected if and only if the restriction of the mon-
odromy representation ρ(f2) to (f1)∗(π1(R1 \ f−1

1 (Bf2))) is transitive.

Proof. Note that we have the following commutative diagram:

Σ h2−−−→ R2yh1

yf2

R1
f1−−−→ R3

From the definition of C and the fact that f1 and f2 are nonconstant holo-
morphic maps, it is clear that hj is a nonconstant holomorphic map. In
particular, therefore, h1 : Σ → R1 is a branched covering map. Hence,
h−1

1 (f−1
1 (Bf2)) is a finite set of points in the surface Σ. Thus Σ is connected

if and only if Σ \ h−1
1 (f−1

1 (Bf2)) is connected. It is easy to see from the
local descriptions discussed above that Bh1 ⊂ f−1

1 (Bf2). Since f−1
1 (Bf2) is a

finite set of points in the connected surface R1, R1 \ f−1
1 (Bf2) is connected.

Hence, the restriction:

h1| : Σ \ h−1
1 (f−1

1 (Bf2)) → R1 \ f−1
1 (Bf2)

is an unbranched covering map over a connected base. By standard covering
space theory, the total space Σ \ h−1

1 (f−1
1 (Bf2)) of h1| is connected if and
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only if the monodromy representation:

ρ(h1|) : π1(R1 \ f−1
1 (Bf2)) → Sd2

is transitive ([B-E]). The proof will follow by comparing ρ(h1|) with the
monodromy representation of the branched covering map f2:

ρ(f2) : π1(R3 \Bf2) → Sd2 .

Let x be the basepoint for π1(R1\f−1
1 (Bf2)). We assume that f1(x) is the

basepoint for π1(R3 \Bf2). Since Bh1 ⊂ f−1
1 (Bf2) and x is not in f−1

1 (Bf2),
the fiber of h1 over x can be identified, via h2, with the fiber of f2 over
f1(x). Since f1(x) is not a critical value for the degree d2 map f2, this fiber
f−1
2 (f1(x)) consists of d2 distinct points, {y1, ..., yd2}. Suppose that γ is a

loop in R1 \ f−1
1 (Bf2) based at x. We wish to compute the permutation

ρ(h1|)(γ) in the symmetric group Sd2 . Let j be an integer with 1 ≤ j ≤ d2.
Suppose that γ̃ is the unique path in Σ\h−1

1 (f−1
1 (Bf2)) such that h1 ◦ γ̃ = γ

and γ̃(0) = pj where h2(pj) = yj . Suppose that γ̃(1) = pj′ . By the definition
of the monodromy representation of a covering map, (ρ(h1|)(γ))(j) = j′. Let
η be the loop f1 ◦γ in R3 \Bf2 based at f1(x). By the previous commutative
diagram, h2 ◦ γ̃ is a path η̃ in R2 \ f−1

2 (Bf2) such that f2 ◦ η̃ = η. Of course,
η̃(0) = yj and η̃(1) = yj′ . Hence, (ρ(f2)(η))(j) = j′. Hence, the following
diagram is commutative:

π1(R1 \ f−1
1 (Bf2))

ρ(h1|)−−−→ Sd2y(f1)∗

∥∥∥
π1(R3 \Bf2)]

ρ(f2)−−−→ Sd2 .

By this commutative diagram and the previous observations, ρ(h1|) is tran-
sitive if and only if the restriction of ρ(f2) to (f1)∗(π1(R1 \ f−1

1 (Bf2))) is
transitive. The proof follows from this equivalence and the previous obser-
vations. �

Note that the theorem applies with f1 and f2 interchanged. Hence, we
can appeal to either criteria to establish the connectedness of Σ. Later, we
shall describe a sufficient condition which ensures that at least one (and,
hence, both) of these two conditions is satisfied in a rather general context.
As indicated above, this context will involve some simplifying assumptions.
We stress, however, that these assumptions are not necessary for the general
scheme which we are presently discussing.

B: The kernel of ∗
Henceforth, we assume that Σ is connected. Let g be the genus of Σ.

We wish to ensure that the kernel K of ∗ : H1(Σ) → H1(X) is a proper
subspace of H1(Σ). If g1 = 0 and g2 = 0, then H1(X) = {0}. In this case,
K is not proper. On the other hand, when g1 ≥ 1, we have the following
criterion to ensure that K is proper.
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Theorem 5.4. If g1 ≥ 1 and g > g1 + g2, then K is proper.

Proof. Since τ∗ : H1(X)
∼=−→ H1(R1 × R2) is an isomorphism, K is equal to

the kernel of :
(h1, h2)∗ : H1(Σ) → H1(R1 ×R2).

This homomorphism may be naturally identified with :

(h1)∗ ⊕ (h2)∗ : H1(Σ) → H1(R1)⊕H1(R2).

Thus:

K = kernel((h1)∗) ∩ kernel((h2)∗). (5.4)

Since h1 : Σ → R1 is a holomorphic map between Riemann surfaces, we
may compute its degree by computing the number of points in h−1

1 (x) where
x is a regular value for h1. Since C has only finitely many singularities, we
may choose x ∈ R1 so that π−1

1 (x) avoids the singularities of C, where π1

denotes projection onto the first factor of R1 × R2. Since D is the preim-
age under τ of the singular set of C and since τ is an isomorphism in the
complement of D, we can identify h−1

1 (x) with τ(h−1
1 (x)). But:

τ(h−1
1 (x)) = C ∩ π−1

1 (x) = {x} × f−1
2 (f1(x)).

Since f1 is a branched covering map, it is an open map. Hence, we may
assume, in addition to the previous assumption on x, that f1(x) is a regular
value for f2. Since f2 is a holomorphic map of degree d2, #f−1

2 (f1(x)) = d2.
Hence, we see that h1 has degree d2. Likewise, h2 has degree d1.

Since the degree of hj is nonzero, hj is a nonconstant holomorphic map.
Hence, hj is a branched covering map between closed, orientable surfaces. It
follows that (hj)∗ : H1(Σ) → H1(Rj) is surjective. Since g1 ≥ 1, H1(R1) 6=
{0}. Since (h1)∗ is surjective, it follows from (5.4) that K is not equal to
H1(Σ). Suppose that K = {0}. Then (h1)∗ ⊕ (h2)∗ is injective. Hence,
g ≤ g1 + g2. This violates our hypothesis and the proof is complete. �

We have the following corollary of Theorem 5.4.

Corollary 5.1. If R2 = S2 and g1, d2 ≥ 2, then K is proper.

Proof. Applying the Riemann-Hurwitz relation to the branched covering
map h1, we conclude that :

2− 2g = d2(2− 2g1)− β(h1).

Since β(h1) ≥ 0 and g1, d2 ≥ 2, this identity implies that g > g1. Since
R2 = S2, g2 = 0. Hence, g > g1 + g2. Since g1 ≥ 2, the result follows
immediately from Theorem 5.4. �

C: Simplifying Assumptions
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Applying the Riemann-Hurwitz relation to the branched covering maps
f1, f2, h1 and h2, we have the following identities:

2− 2g1 = d1(2− 2g3)− β(f1) (5.5)

2− 2g2 = d2(2− 2g3)− β(f2)

2− 2g = d2(2− 2g1)− β(h1)

2− 2g = d1(2− 2g2)− β(h2).

Given β(fj) and β(hj), we can calculate the genus g of Σ from these iden-
tities. The calculation of β(fj) and β(hj), however, involves more explicit
information regarding the maps f1 and f2 and the relationship between their
critical values and critical points. To be explicit and for the sake of simplic-
ity, we shall now restrict the discussion. (We continue to stress the fact that
these simplifying assumptions are not necessary.) We assume that:

R2 = R3 = S2 (g2 = g3 = 0). (5.6)

We shall also assume that:

g1, d1, d2 ≥ 2. (5.7)

By (5.6), (5.7) and Corollary 5.1, K is proper. (Actually, since g1 ≥ 2 and
g2 = 0, the hypothesis that d1 ≥ 2 is redundant. This follows from the fact
that a branched covering map of degree 1 is a homeomorphism. Likewise,
the assumption that g3 = 0 is redundant. It follows from the assumption
that g2 = 0 and the Riemann-Hurwitz relation for the branched covering
map f2.) In addition, we shall assume that:

fj is a simple branched covering map. (5.8)

A branched covering φ : M → N of degree d between closed, oriented
surfaces is simple if #φ−1(y) ≥ d− 1 for all y ∈ N . Let q be a critical value
of φ. Then φ−1(q) = {p1, ..., pd−1} where the degree of φ at pj is equal to 2
if j = 1 and 1 if 2 ≤ j ≤ d− 1. Note that if φ is a simple branched covering
map, then:

β(φ) = #Λφ = #Bφ.

(Indeed, we can take this as a definition of a simple branched covering map.)
Hence, it follows from (5.5), (5.6) and (5.8) that:

#Λf1 = #Bf1 = 2(d1 + g1 − 1) (5.9)

#Λf2 = #Bf2 = 2(d2 − 1).

Remark 5.4. We have assumed that fj is a nonconstant holomorphic map
between compact Riemann surfaces. Actually, we only need to assume that
fj is a branched covering map between closed, oriented surfaces. Indeed, if
φ : M → N is any branched covering map between closed, oriented surfaces
M and N and N is equipped with a complex structure, then there is a
unique complex structure on M such that φ is a holomorphic map ([B-G]).
We point out that this fact implies that the only freedom one has to realize
the branched covering maps fj as holomorphic maps is in the choice of
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conformal structure on R3. If g3 = 0, the Uniformization theorem implies
that there is no freedom in prescribing the complex structures.

The following lemma shows that there are branched covers f1 : R1 → R3

and f2 : R2 → R3 satisfying (5.6), (5.7) and (5.8) for any choice of integers
g1, d1, d2 ≥ 2. In addition, it shows that we have complete freedom in
prescribing the branch values on S2 of f1 and f2.

Lemma 5.1. Let g and d be nonnegative integers such that d ≥ 1. Let
{x1, ..., xr} be a set of r distinct points on S2 where r = 2(d+ g − 1). Then
there exists a nonconstant holomorphic branched covering map f : R → S2

of degree d such that:
(i)Bf = {x1, ..., xr}
(ii)genus(R) = g.

Proof. Let B denote the chosen set of points {x1, ..., xr}. Let Sd denote the
symmetric group on d symbols. If 1 ≤ m,n ≤ d and m 6= n, let (m,n)
denote the transposition which interchanges m and n. The fundamental
group π1(S2 \B) has the following presentation:

Generators : cj , 1 ≤ j ≤ r

Relations :
r∏

j=1

cj = 1,

where cj is represented by a small loop about xj . Hence, we may define a
homomorphism:

ρ : π1(S2 \B) → Sd

whose values on the sequence of generators:

(c1, ...., cr)

are given by the following sequence of transpositions:

((1, 2), .....(1, 2)︸ ︷︷ ︸
2g+2

, (1, 3), (1, 3), (1, 4), (1, 4), ..., (1, d), (1, d)).

By the existence theorem of Hurwitz ([B-E]), there is a branched covering
map f : R→ S2 of degree d with branch set Bf = B and Hurwitz represen-
tation ρf = ρ. Since the transpositions {(1, 2), (1, 3), ..., (1, d)} form a set of
generators of Sd, ρf is transitive. Hence, R is connected. It follows from the
Riemann-Hurwitz relation that R is a compact Riemann surface of genus g.
By remark 5.4, we may assume that f is holomorphic. �

The assumption that f1 and f2 are simple branched covering maps has
the advantage that all the singularities of C are simple singularities of type
(2, 2). In other words, all the singularities of C are ordinary double points.
Hence, we can obtain a desingularization of C by blowing up R1 × S2 once
at each double point of C. Note also that the set of double points on C is
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in one to one correspondence with the set of common critical values of f1

and f2. Let k denote the number of common critical values of f1 and f2.
By (5.9), it follows that:

k ≤ min(2(d1 + g1 − 1), 2(d2 − 1)). (5.10)

Let ` be a nonnegative integer. Let p1, ...., pk denote the singular points
of C. Let q1, ...., q` denote ` distinct smooth points on C. Let X denote
the surface obtained by blowing up R1 × S2 exactly once at each point in
{p1, ...., pk, q1, ...., q`}. Let Σ denote the proper transform of C in X. Note
that Σ is a desingularization of C. (Of course, there are other possibilities
for a desingularization of C. But in any case, we must blow up at least once
at each double point of C. Our choice of desingularization is the simplest
desingularization which provides sufficient control over the self-intersection
of Σ. Once this self-intersection is fixed, the differential topology is insensi-
tive to the choice of desingularization.) The following lemma gives sufficient
restrictions upon k to ensure that Σ is connected.

Lemma 5.2. Let k be any nonnegative integer satisfying (5.10) such that
k ≤ max(d1 + 2g1 − 1, d2 − 1) where g1, d1 and d2 satisfy (5.7). Then there
exist simple branched covering maps f1 : R1 → S2 and f2 : S2 → S2 of
degree d1 and d2 respectively such that:

(i)#(Bf1 ∩Bf2) = k,

(ii)genus(R1) = g1,

(iii) the curve C is irreducible (i.e. Σ is connected)

where C = {(x, y) ∈ R1 × S2 | f1(x) = f2(y)}.

Proof. Let r1 = 2(d1 + g1 − 1) and r2 = 2(d2 − 1). Since k ≤ min(r1, r2),
we may choose subsets B1 and B2 of S2 for which Bj consists of rj distinct
points and B1 ∩ B2 consists of k distinct points. For any choice of such
subsets, by Lemma 5.1, there exist simple branched covering maps f1 :
R1 → S2 and f2 : S2 → S2 of degree d1 and d2 respectively such that
Bfj

= Bj . For any such pair of branched covering maps, we have condition
(i) of the lemma satisfied. It remains to choose f1 and f2 appropriately to
ensure that Σ is connected. This we do by appealing to Theorem 5.3.

We may assume that the monodromy representations of f1 and f2 are
as described in the proof of Lemma 5.1. By assumption, k ≤ d2 − 1 or
k ≤ d1 + 2g1 − 1. Suppose that k ≤ d2 − 1. Since Bf2 \ Bf1 consists of
r2 − k points, where r2 = 2(d2 − 1), there are at least d2 − 1 distinct points
in Bf2 \ Bf1 . Given the freedom we have to prescribe the branch loci, we
can assume that z1, ..., zd2−1 lie in Bf2 \ Bf1 . Let c′j be the generator of
π1(S2 \Bf2) corresponding to the point zj . From our assumption regarding
the monodromy representations, we conclude that ρ(f2)(c′j) = (1, j). The
generator c′j is represented by a small loop γ′j around zj . Since zj is not in
Bf1 , we may assume that γ′j bounds a small disc Dj in S2 \ Bf1 . Since f1
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is a covering map over S2 \ Bf1 , Dj lifts to a small disc D̃j in R1. Hence,
γ′j lifts to a loop γ̃′j in R1 \ f−1

1 (Bf2). This implies that c′j is in the image
L1 of π1(R1 \ f−1

1 (Bf2)) under (f1)∗. Hence, (1, j) is in the image of L1

under ρ(f2). By Theorem 5.3, we conclude that Σ is connected. Likewise, if
k ≤ d1 + 2g1 − 1, then we can choose f1 and f2 so that Σ is connected. �

In light of Lemma 5.2, we assume, in addition to (5.10), that:

k ≤ max(d1 + 2g1 − 1, d2 − 1). (5.11)

D: The genus and self-intersection of Σ

We shall construct our examples by appealing to Lemma 5.2. The fol-
lowing lemma gives the genus and self-intersection of the resulting Riemann
surfaces Σ.

Lemma 5.3. Suppose that f1 and f2 are simple branched covering maps as
in Lemma 5.2. Let Σ be the proper transform of C obtained by blowing up
C at the k double points and ` distinct nonsingular points of C. Then:

genus(Σ) = 1 + d1d2 + d2(g1 − 1)− k − d1

Σ · Σ = 2d1d2 − 4k − `.

Proof. Since Σ is a smoothly embedded complex curve in the complex surface
X, we have the following well-known consequence of the adjunction formula
([B-P-V], chapter I, section 6):

c1(X)(Σ) = χ(Σ) + Σ · Σ. (5.12)

X is obtained by blowing upR1×S2 at k+` distinct points, {p1, ...., pk, q1, ...., q`}
as chosen above. Let Ej be the (−1)-curve corresponding to pj , τ−1(pj). Let
Fj be the (−1)-curve corresponding to qj , τ−1(qj). It follows from Theorem
9.1(vii) in chapter I of [B-P-V], that:

c1(X) = τ∗(c1(R1 × S2))− E∗
1 − ...− E∗

k − F ∗1 − ...− F ∗`

where E∗
j is the Poincare Dual of Ej and F ∗j is the Poincare Dual of Fj .

Hence:

c1(X)(Σ) = c1(R1×S2)(τ∗(Σ))−E1 ·Σ− ...−Ek ·Σ−F1 ·Σ− ...−F` ·Σ.

Since pj is an ordinary double point of C and Σ is the proper transform of
C with respect to blowing up once at each point in {p1, ...., pk, q1, ...., q`},
Ej · Σ = 2. Since qj is a smooth point of C, Fj · Σ = 1. The divisor
D = E1 + ... + Ek + F1 + ...F` meets Σ at exactly 2k + ` points, 2 on
each component Ej of D and 1 on each component Fj . All of these points
of intersection are smooth points of transverse intersection. Since τ is an
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isomorphism off D, τ∗(Σ) = C in H2(R1 × S2). Hence, from the previous
equation:

c1(X)(Σ) = c1(R1 × S2)(C)− 2k − `. (5.14)

By the Kunneth formula and the fact that H1(S2) = {0}, H2(R1 × S2)
has a basis {B,F} where B is represented by a smoothly embedded complex
curve R1×{y} for any y in S2 and F is represented by a smoothly embedded
complex curve {x} × S2 for any x in R1. So C = bB + fF for some real
numbers b and f . We can compute b and f by considering the intersection
form Q on H2(R1×S2). Clearly, B ·B = 0, B ·F = F ·B = 1 and F ·F = 0.
Hence, C ·B = f and C · F = b. On the other hand, we can compute C ·B
and C · F directly as follows. We may choose x such that f1(x) is neither
a critical value of f1 nor of f2. Likewise, we may assume that f2(y) is not
a critical value of f1 or f2. (Furthermore, we may choose x and y such
that B and F avoid the blow-up locus {p1, ..., pk, q1, ..., q`}. We shall appeal
to this assumption in the discussion below.) With these assumptions, all
the pairwise intersection points of C, R1 × {y} and {x} × S2 are smooth
points of transverse intersection. Hence, since all these curves are complex,
we can compute their intersection numbers by counting. Thus, for instance,
C ·B = #(C ∩ (R1 × {y})). By the definition of C:

C ∩ (R1 × {y}) = f−1
1 (f2(y))× {y}.

Since f2(y) is not a critical value of the degree d1 map f1, #(C∩(R1×{y})) =
d1. Hence, C ·B = d1. Likewise, C · F = d2. Thus:

C = d2B + d1F. (5.15)

SinceB is a smoothly embedded complex curve of genus g1 and self-intersection
0, it follows from the adjunction formula that:

c1(R1 × S2)(B) = χ(B) +B ·B = 2− 2g1.

Likewise, since F is a smoothly embedded complex curve of genus 0:

c1(R1 × S2)(F ) = χ(F ) + F · F = 2.

Combining these observations, we conclude that:

c1(R1 × S2)(C) = d2(2− 2g1) + d12.

From (5.14), it follows that:

c1(X)(Σ) = d2(2− 2g1) + d12− 2k − ` (5.16)

Since Σ is a compact Riemann surface of genus g, it follows from (5.12) and
(5.16) that:

2g = 2 + Σ · Σ + d2(2g1 − 2) + 2k + `− 2d1. (5.17)

It remains to compute Σ · Σ. Topologically, blowing up corresponds to a
connect sum with CP2. The associated (−1)-curve corresponds to CP1 ⊂
CP2. It follows from this description and the Mayer-Vietoris sequence,
that H2(X) has a basis {B′, F ′, E1, ..., Ek, F1, ..., F`}, where B′ is the proper
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transform of B and F ′ is the proper transform of F . Therefore, we may
write:

Σ = bB′ + fF ′ + a1E1 + ...+ akEk + b1F1 + ...+ b`F`

for some coefficients b, f, a1, ..., ak, b1, ..., b`. As before, we can compute the
coefficients by appealing to the intersection form Q. Since we have chosen
B and F to avoid the blow-up locus, the previous observations imply that
B′ ·F ′ = B ·F = 1, B′ ·Ej = 0, B′ ·Fj = 0, F ′ ·Ej = 0 and F ′ ·Fj = 0. Since
E1, ..., Ek, F1, ..., F` are disjoint (−1)-curves, Ej · Ej = −1, Ej · Ej′ = 0 if
j 6= j′, Ej ·Fj′′ = 0, Fj′′ ·Fj′′ = −1 and Fj′′ ·Fj′′′ = 0 if j′′ 6= j′′′. Again, since
B and F avoid the blow-up locus, Σ ·B′ = C ·B = d1 and Σ ·F ′ = C ·F = d2.
On the other hand, since pj is an ordinary double point of C, Σ · Ej = 2.
Since qj is a smooth point of C, Σ · Fj = 1. These facts imply that:

Σ = d2B
′ + d1F

′ − 2E1 − ...− 2Ek − F1 − ...− F`.

From this identity, we compute that:

Σ · Σ = 2d1d2 − 4k − `. (5.18)

Together with (5.17), this implies that:

g = 1 + d1d2 + d2(g1 − 1)− k − d1. (5.19)

�

E: Examples
Now we are ready to construct our examples. To each example there is

an associated set of nonnegative integers g−1 , d−1 , d−2 , k−, `−, g+
1 , d+

1 , d+
2 ,

k+, `+, g and n satisfying the following constraints:

g±1 , d
±
1 , d

±
2 ≥ 2 (5.20)

k± ≤ min(2(d±1 + g±1 − 1), 2(d±2 − 1)) (5.21)

k± ≤ max(d±1 + 2g±1 − 1, d±2 − 1). (5.22)

g = d±1 d
±
2 + d±2 (g±1 − 1)− k± − d±1 (5.23)

±n = 2d±1 d
±
2 − 4k± − `±. (5.24)

Any such set of integers will be called an admissible set of parameters. The
following theorem shows that we have complete freedom in prescribing an
admissible set of parameters.

Theorem 5.5. If g±1 , d±1 , d±2 , k±, `±, g and n are admissible parameters,
then there exists a symplectic normal connect sum X = X−#ΨX

+ along
surfaces Σ− and Σ+ of genus g such that b1(X) is odd and X± is obtained
by blowing up the ruled surface R±1 × S2 exactly k± + `± times, where R±1
is a compact Riemann surface of genus g±1
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Proof. Let R±1 be a compact Riemann surface of genus g±1 . By (5.20), (5.21),
(5.22), Lemma 5.2, (5.23), (5.24) and Lemma 5.3, we conclude that there
exist smooth symplectically embedded surfaces Σ± of genus g and self-
intersection ±n in surfaces X± obtained by blowing up R±1 × S2 exactly
k± + `± times. By (5.20) and Corollary 5.1, it follows that the kernel K±

of :
∗ : H1(Σ±) → H1(X±)

is a proper subspace of H1(Σ±). Hence, by Theorem 5.2, there exists a
symplectomorphism Ψ of tubular shell neighborhoods of Σ− and Σ+ so that
b1(X−#ΨX

+) is odd. �

Remark 5.5. Since g and n are determined by the other parameters, they
are not effective parameters for this construction. We include them only for
the sake of convenience. It can be seen that varying `− and `+ does not
affect the differential topology of the normal connect sums X in Theorem
5.5. Hence, in some sense, `− and `+ are also not effective parameters for
this construction.

Actually, there may be several examples corresponding to a given admis-
sible set of parameters. There are several choices involved in the construc-
tion. It seems possible that the choice of the gluing symplectomorphism Ψ
in Theorem 1.1 may effect the symplectomorphism type of X, even if we
stay within a fixed isotopy class. Changing the isotopy class of Ψ may lead
to non-diffeomorphic or non-homeomorphic manifolds. (It is not even clear
how the geometry and topology depend upon the branched covering maps
f±j . The geometry may change under perturbations of f±j . The topology
may depend upon the interplay between the critical values and monodromy
representations of f±j .) All of our examples are constructed by appealing to
Theorem 5.2. The proof of that theorem shows that it is always possible to
change the parity of b1 by changing the symplectic gluing map Ψ to some
symplectic gluing map Ψ′ (remark 5.3). But it may also be possible to have
different odd (or even) values for b1. It is not our purpose here to address
any of these issues, though we hope to address some of them in future work.

The following corollary describes the invariants of the symplectic normal
connect sums in Theorem 5.5.

Corollary 5.2. Let X = X−#ΨX
+ with b1 odd be a symplectic normal

connect sum as in Theorem 5.5. Then:

σ(X) = −2d−1 d
−
2 − 2d+

1 d
+
2 + 3k− + 3k+

c2(X) = χ(X) =(d−1 − 2)(d−2 − 2) + (d+
1 − 2)(d+

2 − 2)

+ 3(d−1 d
−
2 + d+

1 d
+
2 − 2k− − 2k+) + 2g−1 (d−2 − 2)

+ 2g+
1 (d+

2 − 2) + k− + k+
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c21(X) =2(d−1 − 2)(d−2 − 2) + 2(d+
1 − 2)(d+

2 − 2)

+ 4g−1 (d−2 − 2) + 4g+
1 (d+

2 − 2)− k− − k+.

In particular, σ(X) < 0 and, hence, c21(X) < 2c2(X).

Proof. By the multiplicativity of Euler characteristics for product spaces:

χ(R±1 × S2) = 4− 4g±1 .

By previous remarks concerning the intersection form Q on H2(R±1 × S2),
it is clear that:

σ(R±1 × S2) = 0.

From (2.6), we conclude that:

c21(R
±
1 × S2) = 8− 8g±1

c2(R±1 × S2) = 4− 4g±1 .

Since X± is obtained by blowing up R±1 × S2 exactly k± + `± times:

χ(X±) = 4− 4g±1 + k± + `± (5.25)

σ(X±) = −k± − `±

c21(X
±) = 8− 8g±1 − k± − `±

c2(X±) = 4− 4g±1 + k± + `±.

The formulas for σ(X), χ(X), c21(X) and c2(X) follow immediately from
(2.4), (2.5), (2.8) and (5.25). From the formula for σ(X) and (5.24), we find
that:

4σ(X) = −2(d−1 d
−
2 + d+

1 d
+
2 )− 3(`− + `+).

Since d±j > 0, we conclude that σ(X) < 0. Hence, by (2.6), c21(X) <

2c2(X). �

Since b1(X) is odd, none of these examples are homeomorphic to any
Kähler surface. On the other hand, by remark 5.3, there exists a sym-
plectomorphism Ψ′ of tubular shell neighborhoods of Σ− and Σ+ such that
b1(X−#Ψ′X+) is even. Let X ′ denote this normal connect sum X−#Ψ′X+.
By (2.4), (2.5) and (2.8), X ′ has the same euler characteristic, signature and
Chern numbers as X.

Question . Is X ′ homeomorphic to any Kähler surface? Or indeed, for
suitable Ψ′, is X ′ itself a Kähler surface?

Example 5.2 (A Family with b1 Odd and c21 Unbounded). We shall now
give a “1-parameter” family of examples of the preceding type for which
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c21 > 0 and c21 is unbounded. Let a be a nonnegative integer. Consider the
following choice of parameters:

g−1 = g+
1 = 2 + 2a, d−1 = d+

1 = 2 (5.26)

d−2 = 3 + a, d+
2 = 2 + a

k− = 4 + 2a k+ = 1, `− = `+ = 0

g = 4 + 7a+ 2a2, n = 4 + 4a.

These choices give an admissible set of parameters g±1 , d±1 , d±2 , k±, `±, g and
n. Let X be the normal connect sum with b1 odd which was constructed in
Theorem 5.5. By our choice of parameters and Corollary 5.2, we have the
following identities:

σ(X) = −(5 + 2a) (5.27)

χ(X) = c2(X) = 9 + 14a+ 8a2

c21(X) = 3 + 22a+ 16a2.

The above identities and the fact that b1(X) is odd imply that X is not
homeomorphic to any complex surface. For suppose that X is a complex
surface. Let Z be a minimal model for X. Since b1(Z) = b1(X), b1(Z)
is odd. Since c21 increases under blow downs, c21(Z) ≥ c21(X). By (5.27),
therefore, c21(Z) ≥ 3. On the other hand, since Z is a minimal surface with
b1 odd, the table in chapter V I, section 1 of [B-P-V] implies that c21(Z) ≤ 0.
Hence, X is not homeomorphic to any complex surface.

Let X ′ be the normal connect sum with b1 even obtained by changing
the gluing map Ψ to a map Ψ′ as explained above. As we have previously
observed, the euler characteristic, signature and Chern numbers of X ′ agree
with those of X. Suppose that a > 0 and X ′ is complex. By (5.27) and the
table in chapter V I, section 1 of [B-P-V], X ′ is a surface of general type.

Recall that a negative self-intersection nonsingular curve in a Kähler sur-
face can always be constructed by blowing up any nonsingular nonnegative
self-intersection curve sufficiently often. By our terminology this curve is
not genuinely negative. (See section 4.) Of course, such curves cannot exist
on minimal Kähler surfaces. Thus, to form a symplectic normal connect
sum of two minimal Kähler surfaces we must find genuinely negative curves.
The next proposition describes a family of such curves.

Proposition 5.1. The desingularization Σ− of the fibered product of two
branched covering maps f−1 : R−1 → S2 and f−2 : S2 → S2 corresponding to
the parameters g−1 , d−1 , d−2 , k− and `− in (5.26) is genuinely negative.

Proof. Suppose, on the contrary, that Σ− is the proper transform of a
smoothly embedded curve C ′ of nonnegative self-intersection in a surface
Y . Y is obtained from X− by blowing down some exceptional divisor D′

in X−. C ′ is the image of Σ− under the corresponding blow down map
τ−. Since C ′ is smoothly embedded, no component of D′ can meet Σ− with
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multiplicity greater than 1. Each component E′ of D′ is a rational curve in
X− of negative self-intersection. Consider the restriction h of π1 ◦ τ− to E′,
where π1 is projection onto the first factor of R−1 × S2. h is a holomorphic
map from E′ to R−1 . Since E′ is a rational curve and g−1 ≥ 2, h must be
constant. Hence E′ lies in the preimage of a curve G of the form {x′} × S2.
Thus E′ is either the proper transform G′ of G or an exceptional curve of
τ−. In either case, E′ is a (−1)-curve. Suppose that E′ is an exceptional
curve of τ−. Since every point in the blow up locus is a double point of the
fibered product C−, Σ− · E = 2. If we blow down E, then the image of Σ−

will be singular. Since this contradicts our smoothness assumption on C ′,
we conclude that E = G′. Homological considerations as employed in our
previous discussion imply that C− · G = d−1 = 2. Let m be the number of
singular points of C− contained in G. Since G is smooth, further arguments
as employed above imply that G′ ·G′ = −m and Σ− ·G′ = 2− 2m. Since G′

is equal to the (−1)-curve E′, m = 1. Hence, Σ− · E′ = 0. Hence, D′ does
not intersect Σ−. Thus, C ′ ·C ′ = Σ− ·Σ−. By (5.26), Σ− ·Σ− = −(4 + 4a).
Hence, C ′ ·C ′ < 0. This contradicts the assumption that C ′ is nonnegative.
Hence, Σ− is genuinely negative. Indeed, any smooth blow down of Σ− has
the same self-intersection as Σ−. �

Example 5.3 (A Family with b1 Odd, c21 Unbounded, Xj Minimal). We
now wish to modify the previous example to obtain examples of symplectic
normal connect sums which are constructed as normal connect sums of min-
imal surfaces. These examples will be normal connect sums of ruled surfaces
of positive genus. They will in fact be diffeomorphic to blow downs of the
examples just constructed. Let k = k− and C = C− as in the previous
example. Let {p1, ..., pk} be the k distinct double points of C. Let xj be the
first coordinate of pj . Let Gj = {xj} × S2. By the homological considera-
tions above, Gj · C = 2. Gj and C are complex curves meeting at pj with
multiplicity 2. Hence, Gj ∩C = {pj}. It follows that {x1, ..., xk} is a set of k
distinct points on R−1 . Hence, {G1, ..., Gk} is a collection of k distinct fibers
of the ruled surface R−1 × S2. Let E′

j be the proper transform of the fiber
Gj . Consider the divisor D′ = E′

1 + ... + E′
k. By the previous discussion,

D′ is an exceptional divisor. Indeed, D′ is a union of k disjoint (−1)-curves.
Each of these curves is disjoint from Σ−. Let S−1 be the surface obtained
by blowing down D′. Since S−1 is obtained from R−1 × S2 by blowing up at
k− points on distinct fibers of the ruled surface R−1 × S2 and then blowing
down the corresponding proper transforms of these fibers, S−1 is a ruled
surface of genus g−1 . By the table in chapter V I, section 1 of [B-P-V], S−1 is
a minimal surface. Let Σ−1 be the image of Σ− in S−1. Σ−1 is a smoothly
embedded curve of genus g and self-intersection −(4+4a) in S−1. Since S−1

is a minimal surface, Σ−1 is a genuinely negative curve.
For the same reasons, we may blow down a (−1)-curve in the comple-

ment of Σ+ to obtain a smoothly embedded curve Σ1 of genus g and self-
intersection 4 + 4a in a ruled surface S1 of genus g+

1 . The kernels K±1
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corresponding to the inclusions of Σ±1 in S±1 are isomorphic to the kernels
K± and, hence, are proper. Therefore, we can apply Theorem 5.2 to form
a normal connect sum S−1#ΦS1 with b1 odd. Let S denote this normal
connect sum. Appealing to the previous formulas for the basic invariants,
we have the following identities:

σ(S) = 0 (5.28)

c2(S) = χ(S) = 4 + 12a+ 8a2

c21(S) = 8 + 24a+ 16a2.

The example S0 of a compact symplectic manifold with c21 = 8, c2 = 4
and b1 = 1 which was discussed in the introduction corresponds to a = 0.
By (5.26) S0 is a normal connect sum of two ruled surfaces S−1 and S1 of
genus 2 along surfaces Σ± of genus 4 and self-intersection ±1. The proof of
Theorem 5.2 shows that we may choose the gluing map Φ so that b1(S0) = 1.

Note that the (−1)-curves in X± which were blown down to obtain S±1

are disjoint from Σ±. Hence, these (−1)-curves embed in X. Indeed, they
form a family of disjoint (−1)-curves in X. If we blow down this family
of (−1)-curves in X, we obtain a symplectic manifold diffeomorphic to S,
(assuming that we have the appropriate correspondence between the gluing
maps Ψ and Φ used to construct X and S).

Question . Are these symplectic manifolds S−1#ΦS1 minimal?

6. Non-Kähler Symplectic Manifolds With b1 Even

In this section, we shall give further examples of symplectic manifolds
whose underlying smooth manifold does not admit any Kähler structure.
Again, these manifolds will all be constructed as symplectic normal connect
sums of Kähler manifolds. Since all of the examples of this section have
b1 even, the proof that these examples do not admit any Kähler structure
involves more than the calculation of b1. On the other hand, since b1 is even,
our argument actually demonstrates that none of these are homeomorphic
to any complex surface. (See the result quoted from [P] in section 3.)

Example 6.1 (Nontrivial Free Products). This example will be obtained
by a two stage construction. First, using the operation of symplectic normal
connect sum, we shall construct a compact symplectic four manifold X with
an embedded symplectic surface Σ of self-intersection 0 such that π1(X \Σ)
is a free group on two generators c and d. X has the additional property that
the fiber class z of Σ is represented by the commutator [d, c]. Secondly, we
shall form the symplectic normal connect sum Y = X−1#ΦX

1 of two copies
of X, X−1 and X1, along the respective copies of Σ, Γ−1 and Γ1. With
an appropriate choice of Φ, Y is a symplectic manifold whose fundamental
group is isomorphic to G1 ∗G2 where G1 and G2 are two groups which have
at least one nontrivial finite quotient each. By the result of [J-R] mentioned
above, the fundamental group of Y is not the fundamental group of any
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compact Kähler manifold. This conclusion also follows from the result of
[A-B-R].

Remark 6.1. Of course, this implies that Y is not homeomorphic to any
Kähler manifold. Actually, by the same result of [J-R], we can deduce that
Y is non-Kähler in a stable sense. Suppose that S is any compact sym-
plectic manifold. The product Y × S is, of course, a compact symplectic
manifold. Let H be the fundamental group of S. π1(Y × S) is isomorphic
to (G1 ∗G2)×H. Hence, Y × S is also not homeomorphic to any Kähler
manifold. Note that this conclusion can also be deduced from the result
of [A-B-R] provided we restrict to compact Kähler manifolds S with finite
fundamental groups.

For the first stage of the construction, let X1 = CP2. Fix a positive
integer k with k ≥ 3 and let Σ1 be a nonsingular curve of degree k in X1.
Σ1 is a smooth complex curve in X1 whose genus g and self-intersection n
are given by:

g = (k − 1)(k − 2)/2, n = k2. (6.1)

Since k ≥ 3, g ≥ 1. Let R be a compact Riemann surface of genus g.
Choose two distinct points x−1 and x0 on T 2. Let X−1 denote the surface
obtained by blowing up R × T 2 at k2 distinct points on R × {x−1} and
let τ denote the natural projection from X−1 to R × T 2. Let Σ−1 be the
proper transform of R × {x−1} and Σ0 be the proper transform of R ×
{x0}. Proper transformation decreases the self-intersection of a surface by
1 for each point of blowing up lying on the surface. Hence, Σ−1 has self-
intersection −k2, though Σ0 has self-intersection 0. On the other hand, since
proper transformation does not effect the genera of embedded surfaces, Σ−1

and Σ0 both have genus equal to g. By Theorem 1.1, we can form the
symplectic normal connect sum X = X−1#ΨX1 along Σ−1 and Σ1. Denote
this symplectic manifold by X.

By Theorem 1.1, X admits a symplectic structure which agrees with the
symplectic structure on X−1 off a tubular neighborhood of Σ−1. We may
assume that this tubular neighborhood avoids Σ0. Hence, Σ0 naturally
embeds in X as a symplectic surface Σ of genus g and self-intersection 0.
Let Xi be a copy of X and let Γi be a copy of Σ in Xi. By Theorem 1.1,
we can form the symplectic normal connect sum Y = X−1#ΦX

1 along Γ−1

and Γ1.
In order to calculate the fundamental group of Y , we need to compute the

fundamental group of Vi, the complement of a closed tubular neighborhood
of Γi in Xi. Vi is, of course, isomorphic to the complement X∗ of a closed
tubular neighborhood of Σ in X. To understand X∗ we reconsider the con-
struction of X as a normal connect sum. Consider the cover (U−1, U1) of X
as described in section 2. Ui is the complement of a closed tubular neigh-
borhood of Σi in Xi. As in previous discussions, we identify the intersection
U−1∩U1 with the tubular shell neighborhood W−1 of Σ−1 in U−1 so that the
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inclusion of U−1 ∩ U1 in U1 is identified with the composition Ψ ◦ . By the
previous assumption on Σ0, Σ avoids U1. Hence, this cover of X restricts to
a cover (U∗

−1, U1) of X∗, where U∗
−1 corresponds to the complement of N (Σ)

in U−1. We may identify U∗
−1 with the complement of N (Σ0) ∪ N (Σ−1) in

X−1. The projection τ : X−1 → R× T 2, thereby, restricts to a projection:

ρ : U∗
−1 → R× (T 2 \ (B(x0) ∪B(x−1))),

where B(xi) is a disc neighborhood of xi in T 2. By examining this blow
down map ρ we can see that R × (T 2 \ (B(x0) ∪ B(x−1))) is isomorphic
to the complement of a closed tubular neighborhood of a codimension 2-
submanifold D∗ of U∗

−1. (Indeed D∗ is the intersection of the exceptional
divisor for τ with U∗

−1. The assertion follows from the fact that τ is an
isomorphism in the complement of the exceptional divisor.)

It is a well-known fact that if N is a codimension 2 submanifold of a
manifoldM , the fundamental group π1(M) is the quotient of π1(N) obtained
by adding, for each component Ni of N , the relation ηi = 1, where ηi is the
fiber class of Ni in M , (i.e. the class represented by the linking circle of Ni

in M). Hence, it follows that π1(U∗
−1) has the following presentation::

Generators : a1, b1, ...., ag, bg, c, d, e

Relations :
g∏

j=1

[aj , bj ] = 1, ajc = caj , ajd = daj , aje = eaj

bjc = cbj , bjd = dbj , dce = 1.

In addition, it can be shown that the fiber class of Σ−1 in X−1 is trivial in
U∗
−1. (This follows from the fact that Ej meets Σ−1 at exactly one point

and this point is a transverse point of intersection. Hence, we can represent
the fiber class by a small loop γ on Ej encircling this point of intersection.
Since the point of intersection is a transverse point of intersection, we may
assume that the intersection of Ej with U∗

−1 is a disc, the complement of a
closed disc in the 2-sphere Ej . The existence of this disc proves that the fiber
class is trivial in U∗

−1.) In this presentation, c, d and e correspond to a free
basis for π1(T 2 \ (B(x0) ∪ B(x−1))). These generators are chosen so that
the circle surrounding x−1 corresponds to dce and the circle surrounding
x0 corresponds to e−1d−1c−1. As a consequence of the last relation, the
puncture x0 corresponds to the class [d, c] in π1(U∗

−1). On the other hand,
by a result of Zariski, we have the following presentation for π1(U1):

Generator : z, Relation : zk = 1.

Here z is the fiber class of the nonsingular curve Σ1 of degree k inX1 = CP2.
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Let W−1 be the tubular shell neighborhood of Σ−1 in X−1. As in (2.1),
we have the following presentation for π1(W−1):

Generators : a−1,1, b−1,1, ...., a−1,g, b−1,g, z−1

Relations :
g∏

j=1

[a−1,j , b−1,j ] = z−k2

−1 , a−1,jz−1 = z−1a−1,j , b−1,jz−1 = z−1b−1,j .

The homomorphism ∗ : π1(W−1) → π1(U∗
−1) can be described as follows:

∗(a−1,j) = aj , ∗(b−1,j) = bj , ∗(z−1) = 1.

The last identity is simply the previous observation regarding the fiber class
of Σ−1 in U∗

−1. The homomorphism ( ◦ Ψ)∗ : π1(W−1) → π1(U1) can be
described as follows:

( ◦Ψ)∗(a−1,j) = 1, ( ◦Ψ)∗(b−1,j) = 1, ( ◦Ψ)∗(z−1) = z.

Hence, by Van Kampen’s Theorem, we conclude that π1(X∗) is a free group
on two generators, c and d. In addition, we see that the fiber class of Σ in
X∗ corresponds to the commutator [d, c]. (This follows from the previous
remarks regarding the punctures x−1 and x0.)

Now to calculate the fundamental group of Y we apply Van Kampen’s
Theorem to the covering (V−1, V1) of Y . Since Vi is a copy of X∗, we see that
π1(Vi) is a free group on two generators, ci and di. Let W ′

−1 = V−1 ∩ V1,
the tubular shell neighborhood of Γ−1 in X−1. Using a presentation for
π1(W ′

−1) as in (2.1), the homomorphism ∗ : π1(W ′
−1) → π1(V−1) can be

described as follows:

∗(a−1,j) = 1, ∗(b−1,j) = 1, ∗(z−1) = [d−1, c−1].

The last identity corresponds to the previous observation regarding the fiber
class z of Σ in X∗. We may prescribe the following restrictions on the
isomorphism Φ∗:

Φ∗(a−1,j) = a1,jz1, Φ∗(b−1,j) = b1,j , Φ∗(z−1) = z−1
1 . (6.2)

Again, by Van Kampen’s theorem, we obtain the following presentation of
π1(Y ):

Generators : c−1, d−1, c1, d1

Relations : [d1, c1] = 1, [d−1, c−1] = [d1, c1]−1.

As a consequence of these relations, we have the relation [d−1, c−1] = 1. Let
Gi be the group corresponding to the presentation:

Generators : ci, di Relations : [di, ci] = 1.

Clearly, π1(Y ) is isomorphic to the free product G−1 ∗ G1. On the other
hand, Gi is a free abelian group of rank 2. In particular, Gi has at least one
nontrivial finite quotient. Hence, by the result of [J-R] or the result of [A-
B-R], π1(Y ) is not the fundamental group of any compact Kähler manifold.
As a consequence, Y is not homeomorphic to any compact Kähler manifold.
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Remark 6.2. If G is a group, let b1(G) denote b1(S) where S is any space
with π1(S) isomorphic to G. As is well known, b1(G) is well-defined inde-
pendently of S. We have the following alternative argument for the above
conclusion based on the fact that π1(Y ) contains a subgroup G of index
two such that b1(G) = 5. We shall establish this fact below. Suppose that
π1(Y ) is isomorphic to π1(W ) for some compact Kähler manifold W . The
subgroup G is isomorphic to π1(S) for some 2-fold cover S of W . Since S
is a cover (unbranched) of W , we can pull back the Kähler structure on W
to obtain a Kähler structure on S. Since S is a finite cover of the compact
space W , S is compact. Hence, b1(S) is even. But b1(S) = b1(G) = 5.
This is impossible. This gives an alternative argument that π1(Y ) is not
isomorphic to the fundamental group of any compact Kähler manifold.

An example of a subgroup G of π1(Y ) as above can be exhibited as follows.
Let Σ be a surface of genus 2. Let a1, b1, a2, b2 be a standard set of generators
for π1(Σ). Let γ be a simple closed curve representing the commutator
[a1, b1] in π1(Σ). Let C be the 2 dimensional CW complex obtained by
attaching a disc D2 to Σ by a homeomorphism from S1 to γ. Note that
π1(Y ) is isomorphic to π1(C). Consider the 2-fold cover Γ of Σ given by the
monodromy representation:

ρ : π1(Σ) → Z2

ρ(a1) = ρ(a2) = 1 ρ(b1) = ρ(b2) = 0

Γ is a surface of genus 3. Of course, b1(Γ) = 6. The preimage γ′ of γ
in Γ is a disjoint union of simple closed curves γ1 and γ2. γj represents a
nontrivial homology class in H1(Γ) and γ1 + γ2 = 0. Hence, γ1 and γ2 span
a 1 dimensional subspace of H1(Γ). Let D2

j , j = 1, 2 be a pair of discs with
boundaries S1

j . We can extend Γ to a 2-fold cover C ′ of C by attaching
each D2

j to Γ by a homeomorphism from S1
j to γj . The fundamental group

of C ′ is of course isomorphic to a subgroup G of index 2 in π1(Y ). Hence,
b1(G) = b1(C ′). H1(C ′) is isomorphic to the quotient of H1(Γ) by the
subspace of H1(Γ) which is spanned by γ1 and γ2. Hence, by the previous
observations, b1(C ′) = b1(Γ)− 1 = 5. Thus, b1(G) is equal to 5.

Example 6.2 (Infinite Families With Fixed Chern Numbers). We shall
modify the construction of the previous example to obtain the following
theorem.

Theorem 6.1. There exists an infinite family of compact symplectic 4-
manifolds with fixed Chern numbers, no two of which are homeomorphic.

Proof. We construct such a family as a variation on the previous exam-
ple. The description of π1(Vi), π1(W ′

i ) and the homomorphisms induced
by inclusion are as given in the previous example. The variation is in the
prescription of Φ∗ given in (6.2). Let α be a positive integer. We vary the
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prescription of Φ∗ as follows:

Φ∗(a−1,j) = a1,jz
α
1 , Φ∗(b−1,j) = b1,j , Φ∗(z−1) = z−1

1 .

Let Yα be the corresponding symplectic normal connect sum. (Note that Y1

is the manifold of the previous example.) As in the previous example, we
obtain the following presentation of π1(Yα):

Generators : c−1, d−1, c1, d1

Relations : 1 = [d1, c1]α [d−1, c−1] = [d1, c1]−1.

As a consequence of these relations, we have the relation:

[d−1, c−1]α = 1.

Let Gα
i be the group corresponding to the presentation:

Generators : ci, di Relations : [di, ci]α = 1.

Gα
i is a one relator group with relator ri = uα

i where ui is the simple com-
mutator [di, ci]. Hence, the abelianization of Gα

i is a free abelian group of
rank 2. Therefore, in particular, Gα

i is an infinite group. By Proposition
5.17 in chapter II of [L-S], ui is not a proper power in the free group on the
generators ci and di. Hence, by Theorem 5.2 in chapter IV of [L-S], ui has
order α in Gα

i and all elements of finite order in Gα
i are conjugates of powers

of ui. In particular, the orders of torsion elements in Gα
i are precisely the

divisors of α. Let Fα
i be the cyclic subgroup of Gα

i of order α generated by
ui. Since Gα

i is an infinite group, the finite group Fα
i is a proper subgroup

of Gα
i . Let φ be the isomorphism from Fα

−1 to Fα
1 which sends u−1 to u−1

1 .
Clearly, by the above presentation, π1(Yα) is isomorphic to the free product
with amalgamation Gα

−1 ∗φ G
α
1 over the proper finite subgroups Fα

−1 and
Fα

1 . In particular, by Theorem 2.6 in chapter IV of [L-S], Gα
i embeds in

π1(Yα). Furthermore, by Theorem 2.7 in chapter IV of [L-S], every element
of finite order in π1(Yα) is conjugate to an element of Gm

−1 or Gm
1 . In par-

ticular, the orders of torsion elements in π1(Yα) are precisely the divisors of
α. Thus, π1(Yα) is isomorphic to π1(Yβ) if and only if α = β. Hence, Yα is
homeomorphic to Yβ if and only if α = β.

By the discussion in section 2, the Chern numbers of Yα are independent
of α. These numbers can be calculated from (2.8) and (6.1) and the following
facts:

χ(X−1) = k2, σ(X−1) = −k2, χ(X1) = 3, σ(X1) = 1,

where X−1 is the blow up of R × T 2 at k2 points as above and X1 = CP2.
The result is that:

c21(Yα) = 2(5k − 3)(k − 3), c2(Yα) = 2(4k2 − 9k + 3). (6.3)

Fixing k, the compact symplectic manifolds Yα have fixed Chern numbers.
On the other hand, the groups π1(Yα) are distinct and, hence, no two of the
Yα are homeomorphic.

�
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Remark 6.3. By varying the degree k of the curve Σ1 in CP2, the above
construction yields a “2-parameter” family of compact symplectic 4-manifolds:

{Yα(k)|k ≥ 3, α > 0}.

Note that π1(Yα(k)) is independent of k and π1(Yα) is isomorphic to π1(Yβ)
if and only if α = β. On the other hand, the Chern numbers of Yα(k) are
independent of α and the Chern numbers of Yα(k) are equal to those of
Yβ(k′) if and only if k = k′. Hence, Yα(k) is homeomorphic to Yβ(k′) if
and only if (k, α) = (k′, β). In particular, by fixing an integer k ≥ 3, we
obtain an infinite family of compact symplectic 4 manifolds with the same
Chern numbers but distinct fundamental groups. On the other hand by
fixing the integer α > 0, we obtain an infinite family of compact symplectic
4 manifolds with the same fundamental groups but distinct Chern numbers.
Indeed, the Chern numbers strictly increase with respect to k. Hence, these
manifolds cannot even be homeomorphic to blow ups or blow downs of one
another.

When k > 3, using the examples in Theorem 5.1 and results of Gieseker,
we can exhibit a striking contrast between compact symplectic 4-manifolds
and compact Kähler surfaces. Gieseker’s results show that there are only
finitely many diffeomorphism types among all surfaces of general type with
given Chern numbers ([B-P-V], chapter V II, section 1). This, of course,
implies that there are only finitely many homeomorphism types among all
surfaces of general type with given Chern numbers. (Note that these results
do not assume minimality.) Hence, by the classification of complex surfaces
([B-P-V]) there are only finitely many homeomorphism types among all
complex surfaces with fixed Chern numbers satisfying c21 > 0 and c2 > 0.
When k > 3, the infinite family Yα shows that the analogous statement is
false for compact symplectic 4-manifolds. Indeed, when k > 3, (6.3) implies
that c21(Yα) > 0 and c2(Yα) > 0. (Indeed, if k > 3 and Yα is complex, then
Yα is necessarily of general type.)

These compact symplectic manifolds formally resemble surfaces of general
type. This observation motivates the following questions:

Question . What is the geography of compact symplectic 4-manifolds?

Question . What is the geography of minimal compact symplectic 4-manifolds?

By geography we mean: what values in Z×Z are of the form (c21(X), c2(X)),
for some (minimal) compact symplectic 4-manifold X? By the work of Van
de Ven [V] there are no restrictions on (c21, c2) for compact almost complex
4-manifolds. However, there are well-known strict constraints on (c21, c2)
for compact Kähler surfaces [B-P-V]. The geography problem for compact
minimal surfaces of general type remains open and is a subject of current
research. The above questions ask where symplectic manifolds lie between
almost complex manifolds and complex Kähler manifolds. We hope to re-
turn to this problem in future papers.
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We can show that Yα(k) is not homeomorphic to a complex surface for
any k ≥ 3 and α > 0. Suppose, on the contrary, that Yα(k) is homeomorphic
to a complex surface W for some k ≥ 3 and α > 0. From the computation
of π1(Yα) given above, we see that b1(W ) = b1(Yα(k)) = 4. Since W is a
complex surface with even b1, W is Kähler. Thus π1(Yα) is isomorphic to the
fundamental group of some compact Kähler manifold. From the description
of π1(Yα) given above, we see that this contradicts the result of [A-B-R].

Alternatively, we could appeal to the fact that π1(Yα) has a subgroup
G of index 2 with b1(G) = 5 as in remark 6.2. The existence of G is
established as in remark 6.2 with the following modifications. The attaching
homeomorphism from S1 to γ must be replaced by a covering map of degree
m from S1 to γ. The attaching maps from S1

j to γj must be similarly
modified.

One advantage of the second argument is that it allows us to conclude
that Yα is stably non-Kähler as in remark 6.1. For if S is any compact
Kähler manifold, then b1(S) is even. On the other hand, G × π1(S) is a
subgroup of index 2 in π1(Yα × S) with:

b1(G× π1(S)) = 5 + b1(S).

Hence, Yα × S has a subgroup of index 2 with odd b1.
In light of these examples and Gieseker’s results, it is interesting to ask:

Question . Which groups occur as the fundamental groups of compact
symplectic 4-manifolds with fixed Chern numbers c21 > 0 and c2 > 0?

7. Blowing Down

In [G2] Gromov introduced the operations of symplectic blowing up and
symplectic blowing down. Let Σ−1 be a symplectically embedded surface of
genus 0 and self-intersection −1 (a (−1)−curve) in a symplectic 4-manifold
(X̃, ω̃). Suppose that

∫
Σ−1

ω̃ = λ2π. Then Σ−1 has a tubular neighborhood
Nε(Σ−1) so that the tubular shell (W−1, ω̃) is symplectically diffeomorphic
to (Bλ+ε(0) \Bλ(0),Ω), where Br(0) is the ball of center 0, radius r in R4,
and where Ω is the standard symplectic form on R4. Recall that to blow
down Σ−1 we delete Nε(Σ−1) and using the symplectic diffeomorphism glue
in Bλ+ε(0). The resulting symplectic manifold (X,ω) is, up to symplectic
isotopy, independent of ε. For more details, see [McD2]. It is not difficult to
verify that the Chern numbers of X̃ and X are related by:

c21(X) = c21(X̃) + 1 (7.1)

c2(X) = c2(X̃)− 1

It is interesting to notice that this blowing down operation can be con-
sidered as a special case of the symplectic normal connect sum. Let Σ−1 be
a (−1)− curve in a symplectic 4-manifold (X−1, ω−1) with

∫
Σ−1

ω−1 = λ2π.
Let (X1, ω1) be (CP2, ω0) where ω0 is the Fubini-Study 2-form normalized
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such that
∫
CP1 ω0 = λ2π and let Σ1 = CP1 ↪→ CP2. Then the symplectic

normal connect sum of X−1 and X1 along Σ−1 and Σ1 is diffeomorphic to
the blow down of X−1. Since c21(CP2) = 9 and c2(CP2) = 3, (2.4) agrees
with (7.1).

More generally, let Σ−1 be a symplectically embedded surface of genus
0 and self-intersection −4 (a (−4) − curve) in a symplectic 4-manifold
(X−1, ω−1). Let (X1, ω1) be CP2 with the Fubini-Study 2-form and let
Σ1 be a nonsingular quadric curve in CP2. (Σ1 is an embedded holomor-
phic curve of genus zero and self-intersection 4). Let X = X−1#ΨX1 be
the symplectic normal connect sum along Σ−1 and Σ1. We remark that the
topology of X is independent of the choice of gluing map Ψ. Also by (2.4),

c21(X) = c21(X−1) + 1

c2(X) = c2(X−1)− 1.

Thus X is a smooth symplectic manifold which has had the (−4)-curve Σ−1

blown down. In algebraic geometry the blowing down or collapsing of nega-
tive self-intersection curves is defined, though the resulting complex surface
has an isolated singularity. In the symplectic category we can, using the
symplectic normal connect sum, define blowing down (−4)-curves smoothly.

As for blowing down of (−1)-curves there is a simple topological interpre-
tation of blowing down (−4)-curves. In the case of a (−1)-curve, one replaces
the tubular neighborhood of the (−1)-curve with a standard ball. The (−1)-
curve is replaced by a point. This corresponds to the drop in b2. (Since the
tubular neighborhood of a (−1)-curve is diffeomorphic to the complement
of a ball in CP2, one obtains the corresponding topological interpretation
of blowing up as connect sum with CP2.) In the case of a (−4)-curve, the
tubular neighborhood of the (−4)-curve is replaced by the tangent bundle
of RP2 (appropriately oriented). (This follows from the observation that
the complement of a tubular neighborhood of a nonsingular quadric curve
in CP2 is a tubular neighborhood of a complementary RP2 ⊂ CP2.) The
(−4)-curve C is replaced by RP2. Again, b2 drops by 1. This corresponds
to the fact that C is orientable whereas RP2 is nonorientable. On the
other hand, RP2 represents a nontrivial Z2 homology class in the blown
down manifold. (This follows from the fact that RP2 ⊂ CP2 has odd
self-intersection). Hence blowing down of (−4)-curves does not “collapse”
the (−4)-curve, not even on the level of homotopy. (It does “collapse” the
(−4)-curve on the level of homology with real coefficients.)

Appendix

Independently of our work, R. Gompf obtained a version of Theorem 1.1
in arbitrary dimensions. His proof is different from ours, relying on a flow
argument rather than symplectic reduction. In this section, we give a simple
proof of Gompf’s generalization using the symplectic reduction argument of
section 1.
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Let (Xi, ωi), i = −1, 1, be symplectic manifolds of dimension 2n and
(N, η) be a closed symplectic manifold of dimension 2n−2. Let i : N ↪→ Xi

be symplectic embeddings with normal bundles νi. Suppose that c1(ν−1) =
−c1(ν1). Let ρN be a closed 2-form on N so that [ρN ] = c1(ν1) and let ρ be
a closed 2-form on X−1 so that ∗−1ρ = ρN . Then for sufficiently small t the
2-form:

ω̃−1 = ω−1 + tρ (A.1)

is a symplectic form on X−1.

Theorem A.1 (Gompf). For each i = 1,−1 there exist pairs of tubular
neighborhoods Vi, Ui with i(N) ⊂ Vi and Vi ⊂ Ui and a symplectomorphism

Ψ : (U−1 \ V−1, ω̃−1) → (U1 \ V1, ω1)

such that the normal connect sum X = X−1#ΨX1 has a symplectic form ω
which agrees with ω1 and ω̃−1 off a neighborhood of the gluing locus.

Proof. Following the discussion of section 1 we can construct an S1-invariant
symplectic form τ on an S2 bundle over N by specifying a family of sym-
plectic forms {σt} on N satisfying (1.2). The family we choose is:

σt = ω1 + tρN , 0 ≤ t ≤ t0,

where t0 is chosen so that the forms {σt} are symplectic for t satisfying 0 ≤
t ≤ t0. The resulting S2 bundle, S, has symplectic form τ and moment map
Hτ : S → [0, t0] such that τ restricts to ω1 on the zero section Z0 = H−1

τ (0)
and to ω1 + t0ρN on the infinity section H−1

τ (t0). Moreover, Z0 has normal
bundle with Chern class [ρN ] = c1(ν1).

By the symplectic neighborhood theorem there are tubular neighborhoods
W0 of Z0 in S and W1 of N in X1 such that:

F : (W0, τ) → (W1, ω1)

is a symplectomorphism which restricts to the identity map on Z0. Since
H−1

τ [0, t1] is contained in W0 for some t1 < t0, we can suppose that W0 =
H−1

τ [0, t1]. Then F symplectically identifies W1 with H−1
τ [0, t1].

Choose t < t1 sufficiently small so that the 2-form ω̃−1 defined in (A.1)
is symplectic. Now construct an S1-invariant symplectic form υ on S using
the family of symplectic forms on N :

σs = ω1 + sρN , 0 ≤ s ≤ t.

(S, υ) has moment map Hυ : S → [0, t]. Denote the infinity section, H−1
υ (t),

by Z∞. The normal bundle of Z∞ has Chern class −[ρN ] = −c1(ν1) =
c1(ν−1) and υ restricts on Z∞ to the form:

ω1 + tρN = ω−1 + tρN = ω̃−1|N
.

Hence by the symplectic neighborhood theorem there are tubular neighbor-
hoods W∞ of Z∞ in S and W−1 of N in X−1 such that there is a symplec-
tomorphism:

F̃ : (W∞, υ) → (W−1, ω̃−1)
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which restricts to the identity map on Z∞. By choosing W∞ smaller, if
necessary, we can suppose that W∞ \ Z∞ = H−1

υ (s0, t) for some s0 > 0.
Thus on W∞ \ Z∞ the symplectic form υ is determined by the family of
forms σs = ω1 + sρN , s0 < s < t. Recall that on H−1(s0, t) ⊂ H−1(0, t0)
the symplectic form τ is determined by the same family of forms. Hence
there is a symplectomorphism:

ψ : (H−1(s0, t), τ) → (W∞ \ Z∞, υ)
The composition of the three symplectomorphisms: F, F̃ , ψ defines the
required symplectic gluing. �
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