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Chapter 0

Set, Relations and Functions

0.1 Logic

In this section we will provide an informal discussion of logic. A statement is a sentence which is
either true or false, for example

(1) 1+1=2
(2) V2 is a rational number.
(3) 7 is a real number.

(4) Exactly 1323 bald eagles were born in 2000 BC,

all are statements. Statement and are true. Statement is false. Statement is probably
false, but verification might be impossible. It nevertheless is a statement.

Let P and ) be statements.

“P and Q7 is the statement that P is true and @ is true. We illustrate the statement P and @)
in the following truth table

P|Q|Pand Q@
T|T T
T|F F
F|T F
F|F F

“P or )7 is the statement that at least one of P and @ is true:
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6 CHAPTER 0. SET, RELATIONS AND FUNCTIONS

P|Q|PorQ@
T|T T
T|F T
F\|T T
F|F F

So “P or ()7 is false exactly when both P and Q are false.

“not-P” (pronounced ‘not P’ or ‘negation of P’) is the statement that P is false:

P | not-P
T F
F T

So not-P is true if P is false. And not-P is false if P is true.

“P = @Q” (pronounced “P implies Q) is the statement “ If P is true, then @ is true”:

P|Q|P=Q
T\|T T
T|F F
F\|T T
F|F T

Note here that if P is true, then “P = @Q 7 is true if and only if Q) is true. But if P is false, then
“P = Q" is true, regardless whether @) is true or false. Consider the statement “ @) or not-P” :

P|Q |not-P | Q or not-P
T|T F T
T|F F F
F|T T T
F|F T T

(%) " or not-P” is true if and only "P = Q" is true.
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9

This shows that one can express the logical operator “=" in terms of the operators ” not-” and

[43 or b)) X
“P <= @Q” (pronounced “P is equivalent to Q") is the statement that P is true if and only if @

is true.:

PlQ|P<=AQ
T\|T T
T|F F
F|T F
F|F T

So P <> Q is true if either both P and @) are true, or both P and () are false. Hence

(%) "P < Q" is true if and only ”(P and @) or (not-P and not-@)” is true.

To show that P and ) are equivalent often shows that P implies Q and that () implies P. Indeed
the truth table

PlQIP=Q| Q=P |(P=Q)and(Q = P)
T\|T T T T
T|F F T F
F| T T F F
F|F F T T
shows that
(* % %) "P <= Q" is true if and only "(P= Q) and (Q = P)” is true.

Often, rather than showing that a statement is true, one shows that the negation of the statement
is false (This is called a proof by contradiction). To do this it is important to be able to determine
the negation of statement. The negation of not-P is P:

P | not-P | not-(not-P)
T F T
F T F

The negation of ” P and @” is ” not-P or not-Q”:
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P| Q| Pand @ |not-(P and Q) | not-P | not-Q | not-P or not-Q
T|T T F F F F
T|F F T F T T
F|T F T T F T
F|F F T T F T

The negation of ” P or 7 is ” not-P and not-Q”:

P|Q|Por@ |not-(Por@)|not-P | not-Q | not-P and not-Q
T|T T F F F F
T|F T F F T F
F|T T F T F F
F|F F T T F T

The statement “not-() = not-P” is called the contrapositive of the statement “P — Q. It’s
actually is equivalent to the statement “P <— Q”:

P|Q|P= Q| not-Q | not-P | not-QQ = not-P
T|T T F F T
T|F F T F F
F|T T F T T
F|F T T T T

The statement “ not-P <= not-Q)” is called the contrapositive of the statement “P <= @Q”. It
is equivalent to the statement “P <—= Q)”:

P|Q|P<= Q@ |not-P | not-Q | not-P <= not-Q
T|T T F F T
T|F F F T F
F|T F T F F
F|F T T T T
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The the statement “Q) = P” is called the converse of the statement “ P = )”. In general the
converse is not equivalent to the original statement. For example the statement if x = 0 then x is
an even integer is true. But the converse (if = is an even integer, then x = 0) is not true.

Theorem 0.1.1 (Principal of Substitution). Let ®(z) be formula involving a variable x. For an
object d let ®(d) be the formula obtained from ®(x) by replacing all occurrences of x by d. If a and
b are objects with a = b, then ®(a) = ®(b).

Proof. This should be self evident. For an actual proof and the definition of an formula consult your
favorite logic book. I

Example 0.1.2. Let ®(x) = 22 + 3z + 4.
If a = 2, then

a’>+3a+4=2"+3-2+4
Notation 0.1.3. Let P(x) be a statement involving the variable x.

(a) “for all x : P(x)” is the statement that for objects a the statements P(a) is true. Instead of

“for all x : P(z)” we will also use ¥z : P(x)”, "P(x) is true for all x”, “P(x) holds for all
x” or similar phrases.

(b) ‘there exists x : P(x)” is the statement there exists an object a such that the statements P(a)
is true. Instead of “there exists x : P(x)” we will use ‘Sz : P(x)”, "P(x) is true for some x”,
“There exists x with P(xz)” or similar phrases.

Example 0.1.4. “for all z : z + x = 22” is a true statement.
“for all  : 22 = 27 is a false statement.
“there exists x : 22 = 27 is a true statement.
“Jr : 22 = 2 and x is an integer” is false statement

Notation 0.1.5. Let P(x) be a statement involving the variable x.

(a) “There exists at most one x : P(x)” is the statement

P(z)and Ply) = =xz=y

(b) “There exists a unique x : P(x)” is the statement

there exists x : Ply) <= y==
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Example 0.1.6. “There exists at most one z : (> = 1 and z is a real number)” is false since 1! = 1
and (—=1)! =1, but 1 # —1.

“There exist a unique z : (2> = —1 and z is a real number)” is true since = —1 is the only
elements in R with 23 = 1.

“There exists at most one z : (22> = —1 and x is a real number)” is true, since there does not
exist any element x € R with 22 = —1.

“There exists a unique z : (22 = —1 and z is a real number)” is false, since there does not exist

any element z € R with 2% = —1.

Lemma 0.1.7. Let P(x) be statement involving the variable x. Then

( there exists = : P(z)) and (there exists at most onez : P(z))

if and only if
there exists a uniquex : P(z)

Proof. =>: Suppose first that

( there exists z : P(z)) and (there exists at most onexz : P(z))

hold. By definition of “There exists:” we conclude that there exists an object a such that P(a) is
true. . Also by definition of “There exists at most one”:

(%) P(z) and P(y) = T =1y.

From and the principal of substitution:

() P(a) and P(y) — a=1y

By|A.1.JILR 7) P <= (T and P) whenever P is a statement and T is a true statement. Since
P(a) is a true statement we conclude that

(s % %) P(y) — P(a) and P(y)

From and we conclude that

(+) Ply) =  a=y

If a =y, then since P(a) is true, we Principal of Substitution shows that P(y) is true. Thus

(++) a=y = P
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From and (+-+]) we get

P(y) = a=y.

Hence the definition of “There exists a unique” gives

There exists a uniquez : P(x).

<=: Suppose next that

There exists a uniquez : P(z)

holds. Then by definition of “There exists a unique”:

there exists z : P(y) <= x = v.
and so there exists an object a such that
(+++) P(y) — a=uy.

Since a = a is true, we conclude that P(a) is true. Thus

(#) there exists z : P(x).

holds.

Suppose “P(x) and P(y) “is true. Then P(z) is true and (++-+]) shows that z = a. Also P(y) is
true and (+++)) gives y = a. From = = a and y = a we get = y (by the Principal of Substitution.
We proved that

P(z)and Ply) = z=uy.

and so the definition of “There exists at most one” gives

(##) There exists at most onex : P(z).
From and (#+) we have
there exists x : P(x) and There exists at most onex : P(x).

Exercises 0.1:
#1. Convince yourself that each of the statement in are true.

#2. Use a truth table to verify the statements LR 17, LR 26, LR 27 and LR 28 in
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0.2 Sets

First of all any set is a collection of objects.

For example
Z:={..,-4,-3,-2,-1,-0,1,2,3,4,...}

is the set of integers. If S is a set and x an object we write x € S if x is a member of S and = ¢ S if
x is not a member of S. In particular,

(%) For all x exactly one of x€S and x¢S holds.

Not all collections of objects are sets. Suppose for example that the collection B of all sets is a
set. Then B € B. This is rather strange, but by itself not a contradiction. So lets make this example
a little bit more complicated. We call a set S nice if S ¢ S. Let D be the collection of all nice sets
and suppose D is a set.

Is D a nice?

Suppose that D is a nice. Since D is the collection of all nice sets, D is a member of D. Thus
D € D, but then by the definition of nice, D is not nice.

Suppose that D is not nice. Then by definition of nice, D € D. Since D is the collection of nice
sets, this means that D is nice.

We proved that D is nice if and only if D is not nice. This of course is absurd. So D cannot be
a set.

Theorem 0.2.1. Let A and B be sets. Then

(A:B)@(forallx:(méA)(z)(xGB))

Proof. Naively this just says that two sets are equal if and only if they have the same members. In
actuality this turns out to be one of the axioms of set theory. O

Definition 0.2.2. Let A and B be sets. We say that A is subset of B and write A C B if
forallz: (r € A) = (x € B)
In other words, A is a subset of B if all the members of A are also members of B.
Theorem 0.2.3. Let A and B sets. Then A = B if and only if AC B and B C A.
Proof.
A=B
= reA<=uzeB — 021
< (r€A=z€B)and(z € B=z€A) — Rule of Logic: [A.1.I([LR 19) : <P<:>Q)
— ((P — Q) and (Q = P))

<— ACBand BCA —definition of subset
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Theorem 0.2.4. Let x be an object. Then there exists a set, denote by {x} such that

te{z} = t=x
Proof. This is an axiom of Set Theory. O

Theorem 0.2.5. Let S be a set and let P(x) be a statement involving the variable . Then there
exists a set, denoted by {s € S| P(s)} such that

te{seS|P(s)} = teS and P(t)
Proof. This follows from the so called replacement axiom in set theory. O

Note that an object ¢t is a member of {s € S | P(s)} if and only if ¢ is a member of S and the
statement P(t) is true.

Example 0.2.6.
{zeZ|a®=1}={1,-1}
{r €Z | x>0} is the set of positive integers.
Notation 0.2.7. Let S be a set and P(z) a statement involving the variable x.

(a) “for all x € S: P(x)” is the statement

foralz: ze€S8= P(z)

(b) “there exists x € S': P(z)” is the statement

there exists x: z € S and P(x)

Example 0.2.8. (1) “forallz € R: 22 > 0” is a true statement.
(2) “there exists * € Q: 2% =27 is a false statement.

Theorem 0.2.9. Let S be a set and let ®(x) be a formula involving the variable x such that ®(s) is
defined for all s in S. Then there exists a set, denoted by {®(s) | s € S} such that

te{®(s)|seS} = there exists s € S t = ®(s)
Proof. This also follows from the replacement axiom in set theory. O

Note that the members of {®(s) | s € S} are all the objects of the form ®(s), where s is a member
of S.
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Example 0.2.10.
{2z | x € Z} is the set of even integers

{a* | v € {-1,2,5}} = { —1,8,125}
We now combine the two previous theorems into one:

Theorem 0.2.11. Let S be a set, let P(x) be a statement involving the variable x and ®(z) a formula
such that ®(s) is defined for all s in S for which P(s) is true. Then there exists a set, denoted by

{@(s) | s € S and P(s)} such that
te {q)(s) | s € S and P(s)} = there exists s € S : (P(s) and t = <I>(s)>
Proof. Define
(%) {CI)(S) |s €S and P(s)} - {@(s)) |se{res| P(r)}}
Then

te {@(s) | s €S and P(s)}

— te {@(5)|5€{T€S\©(r)}} By (%)
= there exists s € {r € S| P(r)} with t = ®(s) 02291
<= there exists s with (s € {r € S| P(r)} and t = ®(s) | definition of ‘there exists s €' see
<= there exists s with (s € S and P(s)) and t = ®(s) | [(0.2H
<= there exists s with [ s € S and (P(s) and t = <I>(s)) Rule of Logic: [A.1.1|(LR 24) :

(P and(Q and R)) <= ((P and Q) and R)
= there exists s € S with (P(s) and t = @(s)) definition of ‘there exists s € see [0.2.7]

O

Note that the members of {®(s) | s € S and P(s)} are all the objects of the form ®(s), where s
is a member of S for which P(s) is true.

Example 0.2.12.
{2n|n € Z and n* = 1} = {2, -2}

{—z |z €Rand z > 0} is the set of negative real numbers
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Theorem 0.2.13. Let A and B be sets.

(a) There exists a set, denoted by AU B and called ‘A union B’, such that

rzr€ AUB = re€Aorx € B

(b) There exists a set, denoted by AN B and called ‘A intersect B’, such that

zr€ANB “— re€Aandz e B

(¢) There exists a set, denoted by A\ B and called ‘A removed B’, such that

reA\B = r€Aandz ¢ B
(d) There exists a set, denoted by O and called empty set, such that

for all = : ¢

(e) Let a and b be objects, then there exists a set, denoted by {a,b}, that

x € {a,b} = r=aorx=>0

Proof. @ This is another axiom of set theory.
Applying with P(z) being the statement “x € B” we can define

ANB:={x € A|x € B}
Applying with P(z) being the statement “x ¢ B” we can define

A\B:={re€ A|x ¢ B}

@ One of the axioms of set theory implies the existence of a set A. Then we can define

h:=A\A
(€) Define {a,b} := {a} U {b}. Then
x € {a,b}
= x € {a} U{b} — definition of {a,b}

> zefalorze{b} —()
— r=aorx=>0 —02.4

15
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Exercises 0.2:
#1. Let A be a set. Prove that () C A.
#2. Let A and B be sets. Prove that AN B = BN A.
#3. List all elements of the following sets:
(a) {x€Q|a?—3x+2=0}.
(b) {x € Z| 2* < 5}.

(c) {23 |z € Z and 2% < 5}.

0.3 Relations and Functions
Definition 0.3.1. Let a, b and c be objects.

(a) (a,b) := {{a},{a,b}}. (a,b) is called the (ordered) pair formed by a and b. a is called the first
coordinate of (a,b) and b the second coordinate of (a,b).

(b) (a,b,¢) == ((a,b),c). (a,b,c) is called the (ordered) triple formed by a,b and c.

Theorem 0.3.2. Let a,b,c,d,e and f be objects.
(a) ((a, b) = (c, d)) — <a —cand b= d).
(b) ((a,b,c):(d,e,f)) = (a:dandb:eandc:f)

Proof. @: See Exercise 0.3

(12)
(a,b,c) = (d,e, f)
= ((a,b),¢) = ((d.e), f) — definition of triple
<~  (a,b)=(d,e) and(c,f) — Part (a]) of this theorem

<— a=dandb=eande=f — Part @Ofthis theorem

Theorem 0.3.3. Let A and B be sets. Then there exists a set, denoted by A x B, such that

reAxB <= there exist a € A and b € B with x = (a,b)

Proof. This can be deduced from the axioms of set theory. O
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Example 0.3.4. Let A ={1,2} and B = {2,3,5}. Then

Ax B=1{(1,2),(1,3),(1,5),(2,2),(2,3),(2,5)}
Definition 0.3.5. Let A and B be sets.
(a) A relation R from A to B is a triple (A, B,T), such that T is a subset of Ax B. Let a and b be
objects. We say that a is in R-relation to b and write aRb if (a,b) € T. So aRb is a statement
and

aRb if and only if (a,b) € T.
(b) Let R= (A,B,T) be a relation.

DomR :=A
CoDom R := B
ImR := {b € B| there exists a € A with aRb}

Colm R :={a € A| there exists b € B with aRb}

(¢) A relation on A is a relation from A to A.

Example 0.3.6. (1) Using our formal definition of a relation, the familiar relation < on the real
numbers, would be the triple

(R,R,{(a,b)eRnyagb})

(2) Let A = {1,2,3}, B = {a,b,c}, T = {(1,a),(1,¢),(2,b),(3,b)}. Then the relation ~:=
(A, B,T) can be visualized by the following diagram:

Also 1 ~ 1 is a true statement, 1 ~ b is a false statement, 2 ~ a is false statement, and 2 ~ b
is a true statement.

Definition 0.3.7. (a) A function from A to B is a relation F' from A to B such that for alla € A
there exists a unique b in B with aF'b. We denote this unique b by F(a) (or by Fa). So

foralla € Aand b€ B : b=F(a) < aFb

F(a) is called the image of a under F. If b = F(a) we will say that F maps a to b.
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(b) We write “F: A — B is function” for “A and B are sets and F' is a function from A to B”".
(c) Let F: A— B be a function and C' a subset of A. Then F[C] :={F(c) | ce C}.
Example 0.3.8. (a) F = (R,R,{(z,2?) | z € R}) is a function with F(z) = 22 for all z € R.

(b) F = (R,R,{(z?% 2%) | € R}) is the relation with z2Fz? for all z € R. For z = 1 we see that
1F'1 and for x = —1 we see that 1F' — 1. So F'is not a function.

(c) Let A={1,2,3}, B={4,5,6,}, T = {(1,4),(2,5),(2,6)} and R = (4, B,T):

Then R is not a function from A to B. Indeed, there does not exist an element b in R with
1Rb. Also there exists two elements b in B with 2Rb namely b =5 and b = 6.

(d) Let A={1,2,3}, B=1{4,5,6,}, S = {(1,4),(2,5),(3,5)} and F = (4, B, T):

Then F is the function from A to B with F(1) =4, F(2) =5 and F(3) = 5.

Notation 0.3.9. A and B be sets and suppose that ®(x) is a formula involving a variable x such
that for all x in A

®(a) is defined and P(a) € B.

Put T ={(a,®(a)) | a € A} and F = (A,B,T). Then F is a function from A to B. We denote
this function by

F: A—- B, a — ®(a).
So F' is a function from A to B and F(a) = ®(a) for all a € A.

Example 0.3.10. (1) F: R — R, r — 2 denotes the function from R to R with F(r) = r2 for
all r € R.
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(2) F: R— R, z — 1 isnot a function, since # is not defined.

3) F: R\ {0} - R, z — % is a function.

Theorem 0.3.11. Let f: A — B and g : C — D be functions. Then f = g if and only if A = C,
B =D and f(a) = g(a) for all a € A.

Proof. By definition of a function, f = (A, B, R) and g = (C, D, S) where RC AxBand S C CxD.
By 0.32([) -

(x) f=gifandonlyof A=C, B=D and R=S.

= If f = g, then the Principal of Substitution implies, f(a) = g(a) for all a € A. Also by ,
A=C and B=D.

<=: Suppose now that A = C, B =D and f(a) = g(a) for all a« € A. By () it suffices to show
that R = S.
Let a € Aand b e B.

(a,b) € R
afb —definition of afb
b= f(a) —the definition of f(a)
b=gla) —since f(a) = g(a)
agb —definition of g(a)

[ A

(a,b) € S —definition of agb

Since A = C and B = D, both R and S are subsets of A x B. Hence each element of R and S is
of the form (a,b),a € A,b € B. It follows that z € R if and only if x € S and so R = S by [0.2.1, [

Definition 0.3.12. Let R be a relation from A to B,
(a) R is called 1-1 (or injective) if for all b € B there exists at most one a in A with aRb.
(b) R is called onto (or surjective) if for all b € B there ezists at least one a € A with aRb.

(¢) R is called a 1-1 correspondence (or bijective) if for all a € A there exists a unique b € B with
aRb and for all d € B there exists a unique ¢ € A with cRd

Example 0.3.13. (1) The relation
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is 1-1 and onto, but its is neither a function nor a 1-1 correspondence.

(2) The relation

[

is a 1-1 function, but is neither onto nor a 1-1 correspondence.

Lemma 0.3.14. (a) Let f be a relation from A to B. Then f is a 1-1 correspondence if and only
if f is a 1-1 and onto function.

(b) Let f: A— B be a function. Then f is 1-1 if and only

For all a,c € A : fla)=f(c) = a=c

(c) A relation f from A to B is onto if and only if Im f = B.

Proof. @

f is a 1-1 correspondence

for all a € A there exists a unique b € B with afb, and

for all d € B there exists a unique ¢ € A with c¢fd - Definition of 1-1 correspondence

f is a function, and

for all d € B there exists a unique ¢ € A with cfd - Definition of a function

f is a function, and
<= for all d € B there exists at most one ¢ € A with cfd, and -[0.1.71
for all d € B there exists at least one ¢ € A with cfd

<= fis a 1-1 and onto function - Definition of 1-1 and onto
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()
fis1-1
<~ forallbe B: there exists at most one a € A with afb - definition of 1-1
< forallbe B: there exists at most one a € A with b = f(a) - definition of f(a)
< forallbe Bya,ce A: b= f(a)and b= f(c) = a=c - definition of “exists at most one”
<= foralla,ce A: fla)=f(c)=a=c

By definition of Im f:

Im f = {b € B| there exists a € A : afb}.
Hence by [0.2.5]

(%) belmf = b € B and there exists a € A : afb
Thus b € Im f implies b € B and so Im f C B. Thus

(xx) B=Imf if and only if B C Im f.

We have
B=1Imf
< BCImf o (2)
<— beB=beclmf - Definition of subset
<~ forallbe B:belmf - Definition of ”for all b € B”
<~ forallbe B: (b € B and there exists a € A : afb) - (4
<= forall b€ B: there exists a € A : afb
<~ f is onto — definition of onto

Definition 0.3.15. (a) Let A be a set. The identity function id4 on A is the function

idg:A— Aja—a

Soida(a) = a for alla € A.
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(b) Let f: A— B and g: B — C be function. Then go f is the function

gof:A—Cia— g(f(a)
So (go f)(a) = g(f(a)) for all a € A.

Exercises 0.3:
#1. Let a,b, c,d be objects. Prove that

((a, b) = (c, d)) — ((a —¢) and (b= d))
#2. Give an example of an 1-1 and onto relation which is not a function.
#3. Let F' = (A, B, R) be a relation. Put

S ={(bya) € Bx A| (a,b) € R} and G = (B, A,S)

Note that G a relation from B and A. Also, if a € A and b € B, then bGa if and only if aF'b.
Show that F' is a function if and only if G is 1-1 and onto.

#4. Let A and B be sets. Let A; and Ay be subsets of A and By and By subsets of B such that
A=A1UA, AN Ay :w, B=B{UBgyand BN By =0. Let 7y : A — By and 7y : As — By be
bijections.(Recall that a bijection is a 1-1 and onto function.) Define

7['1(@) ifa€A1

m:A— B,a—
mo(a) ifa€ Ay

Show that 7 is a bijection.
#5. Prove that the given function is injective
(a) f:Z =7, f(x) =2x.
(b) f:R— R, f(x) =23
(€ f:Z—Q f(x) =7
(d) f:R—=R,f(zr)=—-3x+5.
#6. Prove that the given function is surjective.
(a) f:R =R, f(z)= a3
(b) f:Z—Z, f(x)=x—4.
(¢) f:R—=R, f(x)=—-3x+5.
(d) f:ZxZ— Q, f(a,b) =7 when b# 0 and f(a,b) =0 when b = 0.

#7. (a) Let f: B— C and g: C — D be functions such that g o f is injective. Prove that f is
injective.

(b) Give an example of the situation in part (a) in which g is not injective.
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0.4 The Natural Numbers and Induction
A natural number is a non-negative integer. N denotes the set of all natural numbers. So
N={0,1,2,3...}

We do assume that familiarity with the basic properties of the natural numbers, like addition,
multiplication and the order relation ‘<.
A quick remark how to construct the natural numbers:

0=10

1= {0} =0u {0}
2 ={0,1} =1u{1}
3=1{0,1,2} =20U{2}
4=1{0,1,2,3} =3U{3}

n+1=1{0,1,2,3,...,n} =nU{n}

The relation < on N can be defined by ¢ < j if ¢ C j.

Definition 0.4.1. Let S be a subset of N. Then s is called a minimal element of S if s € S and
s<tforalltes.

The following property of the natural numbers is part of our assumed properties of the integers
and natural numbers (see Appendix [C]).

Well-Ordering Axiom: Let S be a non-empty subset of N. Then S has a minimal element

Using the Well-Ordering Axiom we now provide an important tool to prove statements which
hold for all natural numbers:

Theorem 0.4.2 (Principal Of Mathematical Induction). Suppose that for each n € N a statement
P(n) is given and that:

(i) P(0) is true.
(ii) If P(k) is true for some k € N, then also P(k + 1) is true.

Then P(n) is true for all n € N.
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Proof. Suppose for a contradiction that P(ng) is false for some ng € N. Put

(%) S:={seN| P(s) is false}

Then ng € S and so S is not empty. The Well-Ordering Axiom now implies that S has a
minimal element m. Hence, by definition of a minimal element

() meS and m<sforallse S

By P(0) is true and so 0 ¢ S and m # 0. Thus k := m — 1 is a non-negative integer and
k<m. If ke S, then gives m < k, a contradiction. Thus k ¢ S. By definition of S this means
that P(k) is true. So by (i), P(k + 1) is true. But k+1 = (m — 1) +1 = m and so P(m) is true.
But m € S and so P(m) is false. This contradiction show that P(n) is true for all n € N. O

Theorem 0.4.3. Letn € N and S be a set with exactly n elements. Then S has exactly 2" subsets.

Proof. For n € N, let P(n) be the statement
P(n): If S is a set with exactly n elements, then S has exactly 2" subsets.

If n = 0, then S = (. So S has exactly one subset, namely (). Since 20 = 1 we see that P(0)
holds.

Now suppose that P(k) holds and let S be a set with k& + 1 elements. Fix s € S and put
T =S\ {s}. Then T is a set with k elements.

Let A C S. Then either s € A or s ¢ A but not both.

Suppose that s ¢ A. Then A C T. By the induction assumption, 7 has 2¥ subsets and so there
are 2% subsets of A with s ¢ A.

Suppose that s € A. Then A = {s} U B for a unique subset B of T', namely B = A\ {s}. By the
induction assumption there are 2 choices for B and so there exists 2¥ subsets of S with s € A.

Since the number of subsets of A is the number of subsets of A not containing s plus the number
of subsets of A containing s we conclude that A has 2% + 2% = 2%+1 gubsets. Thus P(k + 1) holds.

We proved that P(0) holds and that P(k) implies P(k+ 1) and so by the Principal Of Induction,
P(n) holds for all n € N. O

Theorem 0.4.4 (Principal Of Complete Induction). Suppose that for each n € N a statement P(n)
s given and that

(i) If k € N and P(i) is true for all i € N with i < k, then P(k) is true.

Then P(n) is true for all n € N.

Proof. Let Q(n) be the statement that P(i) is true for all ¢ € N with ¢ < n. Since there does not
exits ¢ € N with ¢ < 0 we have
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(x)  Q(0) is true.

Suppose now that Q(k) is true, that is P(i) is a true for all i € N with ¢ < k. Then by (f), also
P(k) is true. Hence P(i) is for all 7 in N with ¢ < k4 1. Thus Q(k + 1) is true. We proved

(xx)  If Q(k) is true for some k € N, then also Q(k + 1) is true.

By and the assumptions of the Principal of Mathematical Induction are fulfilled. Hence
Q(n) is true for all n € N. Let n € N. Then Q(n + 1) is true and since n < n+ 1, P(n) is true. [

One last version of the induction principal:

Theorem 0.4.5. Suppose r € Z and for all n € Z with n > r, a statement P(n) is given. Also
assume that one of the following statements holds:

(1) P(r) is true, and if k € Z such that k > r and P(k) is true,then P(k + 1) is true.
(2) If k € Z with k > r and P(i) holds for all i € Z with r <1i < k, then P(k) holds.
Then P(n) holds for all n € Z with n > r.

Proof. For n € N let Q(n) be the statement P(n +r). If (1)) holds we can apply to Q(n) and if
holds we can apply to Q(n). In both cases we conclude that Q(n) holds for all n € N. So
P(n + ) holds for all n € N and P(n) holds for all n € Z with n > r. O

Exercises 0.4:

#1. Prove that the sum of the first n positive integers is nntl)

2
Hint: Let P(k) be the statement:

k(k+1
14+24...+k= (;)
#2. Let r be a real number, r # 1. Prove that for every integer n > 1,

n_1
1+r+r2+...r”*1:T .
r—1

#3. Prove that for every positive integer n there exists an integer k with 22"+ +1 = 2k
#4. Let B be a set of n elements.
(a) If n > 2, prove that the number of two-elements subsets of B is n(n —1)/2.

(b) If n > 3, prove that the number of three-element subsets of B is n(n — 1)(n —2)/3!.
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#5. What is wrong with the following proof that all roses have the same color:

For a positive integer n let P(n) be the statement:

Let A be a set containing n roses. Then all roses in A have the same color.

If n =1, then A only contains on rose and so certainly all roses in A have the same color. Thus
P(1) is true.

Suppose now that P(k) is true, that is whenever B is a set of k roses then all roses in B have
the same color. We need to show that P(k-+1) is true. So let A be any set of k+ 1-roses. Let x and
y be distinct roses in A. Consider the set X = A\ {x} (that is the set of roses in A different from
x). Then X is set of k roses. By the induction assumption P(k) is true and so all roses in X have
the same color. Similarly let Y = A\ {y}, then all roses in'Y have the same color. Now let z be a
rose in A distinct from x and y. Since z is distinct from z, z € X; and since z is distinct from y,
z €Y. We will show that all roses in A have the same color as z. Indeed let a be any rose in A. If
a # x, then both a and z are in X and so a has the same color as z. If a = x then both a and z are
in'Y and so again a and z have the same color. We proved that all roses in A have the same color
as z. Thus P(k + 1) is true.

We proved that P(1) is true and that P(k) implies P(k + 1). Hence by the Principal of Mathe-
matical Induction, P(n) is true for all n. Thus in any finite set of roses all the roses have the same
color. So all roses have the same color.

#6. Let x be a real number greater than —1. Prove that for every positive integer n, (142)" > 1+nx.

0.5 Equivalence Relations

Definition 0.5.1. Let ~ be a relation on a set A (that is a relation from A and A). Then

(a) ~ is called reflexive if a ~ a for all a € A.

(b) ~ is called symmetric if b ~ a for all a,b € A with a ~ b, that is if

aNb > bNa.

(¢) ~ is called transitive if a ~ ¢ for all a,b,c € A with a ~ b and b ~ ¢, that is if

(a~b and b~c) — an~c

(d) ~ is called an equivalence relation if ~ is reflexive,symmetric and transitive.
Example 0.5.2. (1) Consider the relation ” <” on the real numbers:
a < g for all real numbers a and so 7 <7 is reflexive.
1 <2 but 2 ﬁ 1 and so 7 <7 is not symmetric.
Ifa<band b<eg, then a <candso” <7 is transitive.

7

Since ” <7 is not symmetric, 7 <7 is not an equivalence relation.
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(2) Consider the relation ” =” on any set A.
a=a and so” =7 is reflexive.
If a =10, then b=a and so 7 =7 is symmetric.
Ifa=0band b=c, then a =c and so” =7 is transitive.

7 =7 is reflexive, symmetric and transitive and so an equivalence relation.

(3) Consider the relation ” # 7 on any set A.
a+#aandsoif A#0,” #7 is not reflexive.

Suppose A has at least two distinct elements a,b. Then

a#b and b#a but not-(a # a)

So ” # 7 is not transitive.

Definition 0.5.3. (a) Let a,b be integers, then we say that a divides b and write alb if there exists
an integer k with b = ak.

(b) Let n be an integers. Then the relation = (mod n)’ on Z is defined by
a=b (modn) <= nla-0>
If a=b (mod n) we say that a is congruent to b modulo n.
Example 0.5.4. (1) 2|6, since 6 =2-3. But 7131,

(2) 6 =4 (mod 2) is true since 2 divides 6 — 4.
But 3 =8 (mod 2) is false since 2 does not divide 3 — 8. Thus 3 # 8 (mod 2).

If a and b are integers, then a = b (mod 2) if and only if b — a is even and so if and only if
either both a and b are even, or both a and b are odd.

Hence a # b (mod 2) if and only if one of a and b is even and the other is odd.

(3) Let a,b be integers. Then

a=0b (modO0)
O|la—>5

a—b=0-k for some k € Z
a—b=0

a=>b

1117

So congruent modulo 0 is the equality relation.
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(4) Since m =m -1, 1 divides all integers. Thus 1 | b — a for all integers a and b and so

a=b (mod1) forall a,b e Z
Lemma 0.5.5. Let n € Z. Then the relation” = (mod n)” is an equivalence relation on Z.

Proof. We have to show that ” = (mod n)” is reflexive, symmetric and transitive. Let a,b, c € Z.
Reflexive: Since a —a = 0 = 0-n we see that n | a — a and so a = a (mod n). Thus ”
(mod n)” is reflexive.

Symmetric: Suppose that a = b (mod n). Then n | (a — b) and so a — b = nk for some k € Z.
Thus b—a = —(a—b) = —(nk) =n(—k). Son |b—aand b =a (mod n). Thus ” = (mod n)” is
symmetric.

Transitive: Suppose that a = b (mod n) and b = ¢ (mod n). Then n | a —band n | b — ¢ and
so there exist k,l € Z with a — b =nk and b — ¢ = nl. Thus

a—c=(a—b)+(b—c)=nk+nl=n(k+1).
Hence n | a —cand a = ¢ (mod n). Thus ” = (mod n)” is transitive. O
Definition 0.5.6. Let ~ be an equivalence relation on the set A and let n € Z.

(a) For a € A we define [a]. := {b€ A|a~ b}. We often just write [a] for [a]~. [a]~ is called
the equivalence class of a with respect to ~.

(b) A/~:={[a]~ |a € A}. So A/~ is the set of equivalence classes with respect to ~.

(c) Let a € Z. Then [a], is the equivalence class a with respect to = (mod n)’. [a]y, is called the
congruence class of a modulo n.

(d) Zy,:=7/'a=0b (mod n)". SoZ, ={[a], | a € Z} is the set of congruence classes modulo n.

Example 0.5.7. (1) Consider the relation '= (mod 2):

[llo={beZ|1=b (mod2)} ={beZ]|bisodd}

and so [1]2 is the set of odd integers.

0o ={b€Z|0=b (mod2)}={beZ]|biseven }
and so [0]2 is the set of odd integers.

In general:

{beZ|biseven} ifaiseven

alp={bceZ|a=b (mod?2)}= :
[a]2 = { | ( )} {{bezybisodd} if a is odd
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So

Zo = {{n €Z|niseven},{n€Z|nis odd}} = {[0]2, [1]2}.
(2) Consider the relation = (mod 5)”: We have

0=b (modb) <= 5|b—0 <= 5|b <= b=>5kforsomekecZ

SO

0)s={beZ|0=0b (mod5)}={5k]|keZ}=1{0,510,1520,...,—5 —10,—15,—20,...}
Also

1=b (modb) <= 5|b-1 <= b-1=>bkforsomekecZ <= b=>5k+1forsomekecZ

and so

[Ms={beZ|1=b (mod5)}={5k+1|keZ}={1,6,11,16,21,...,—4,-9, —14,—19,...}
Similarly,

2ls={beZ|2=b (modb)}={bk+2|keZ}=1{2,7,12,17,22,...,-3,—-8,—-13,—18,...}

Bl ={b€Z|3=b (modb5)} ={bk+3|keZ}={3_813,18,23,...,-2,-7,—12,-17,...}

M) ={b€eZ|4=b (mod5)} ={bk+4|keZ}={4,9,14,19,24,...,—1,—6,—11,—16,...}
5ls={beZ|5=0b (mod5)}={5k+5|keZ}=1{5101572025,...,0,—5—10,—15,...} =[0]5
6)s={beZ|6=0b (mod5)}={5k+6|keZ}=1{6,11,16,21,26,...,1,-4,-9,—14,...} =][1];

So it seems that

Zs = {[0]s, [1]5, [2]5, [3]5, [4]5}-
Later (see[2.1.2|(b))) we will give a rigorous proof for this.

(3) Consider the relation '= (mod 0). By a =b (mod 0) if and only if a = b.
So

[alo = {a}
and

Zoz{{a}|a€Z}
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(4) By a=b (mod 1) for all a,b. Thus

(=

on the set A ={1,2,3}. Then ~ is an equivalence relation. Also

and

(5) Consider the relation

Mo={acA|l~al={1,2}, [o={acA|[2~a}={1,2) [Blo={acA|3~a}={3)

and so
A/N: {{1’ 2}7 {3}}

Theorem 0.5.8. Let ~ be an equivalence relation on the set A and a,b € A. Then the following
statements are equivalent:

(a) a~b. (c) [a] N [b] # 0. (e) a€b]
(b) b€ [a]. (d) [a] = [b]. (f) b~ a.

Proof. () = (b):  Suppose that a ~ b. Since [a] = {b € A | a ~ b} we conclude that b € [a].

) = (): Suppose that b € [a]. Since ~ is reflexive, we get b ~ b and so b € [b]. Thus
b€ [a] N [b] and [a] N [b] # 0.

— (d):  Suppose [a] N [b] # 0. Then there exists ¢ € [a] N [b].

We will first show that [a] C [b]. Solet d € [a]. Then a ~ d. Sincec € [a] and [a] = {e € A|a ~ e}
we have a ~ ¢ and since ~ is symmetric we conclude that ¢ ~ a. As a ~ d and ~ is transitive, this
gives ¢ ~ d. From c € [b] we get b ~ ¢. Since ¢ ~ d and ~ is transitive, we infer that b ~ d and so
d € [b]. Thus [a] C [b].
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A similar argument shows that [b] C [a]. We proved that [a] C [b] and [b] C [a] and so [a] = [b]
by

(d) = (¢): Since a is reflexive, a ~ a and so a € [a]. As [a] = [b] we get a € [b].

() = (f): By definition [b] = {e € A| b~ e}. Since a € [b] we conclude that b ~ a.

@ = @: Since ~ is symmetric, b ~ a implies a ~ b. ]

Exercises 0.5:

#1. Let f: A — B be a function and define a relation ~ on A by
u~v <= f(u) = f(v).

Prove that ~ is an equivalence relation.

#2. Let A= {1,2,3}. Use the definition of a relation (see [0.3.5([b))) to exhibit a relation on A with

the stated properties.
(a) Reflexive, not symmetric, not transitive.
(b

Symmetric, not reflexive, not transitive.

¢) Transitive, not reflexive, not symmetric.

)

)
()
(d) Reflexive and symmetric, not transitive.
(e) Reflexive and transitive, not symmetric.
(f) Symmetric and transitive, not reflexive.

#3. Let ~ be the relation on the set R* of non-zero real numbers defined by

a
Prove that ~ is an equivalence relation.

#4. Let ~ be a symmetric and transitive relation on a set A. What is wrong with the following

‘proof’ that ~ is reflexive.:
a ~ b implies b ~ a by symmetry; then a ~ b and b ~ a imply that a ~ a by transitivity.
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Chapter 1

Arithmetic in Z

1.1 The Division Algorithm

Theorem 1.1.1 (The Division Algorithm). Let a and b be integers with b > 0. Then there exist
unique integers q and r such that

a=bg+r and 0<r<hb.

Proof. We will first show that ¢ and r exist. Put

S:={a—bx|x€Zanda—bx >0}

We would like to apply the well-ordering Axiom to S, so we need to verify that S is not empty.
That is we need to find z € Z such that a — bz > 0.

If a > 0, then a — b0 = a > 0 and we can choose = = 0.

So suppose a < 0. Let’s try = a. Then a — bz = a — ba = (1 — b)a. Since b > 0 and b is an
integer, b > 1 and so 1 — b < 0. Since a < 0, this implies (1 — b)a > 0 and so a — bz > 0. So we can
indeed choose x = a.

We have proved that S is non-empty. Note that every element of S is a natural number and so
S C N. Hence by the Well-ordering Axiom S has a minimal element r. Thus

resS and r<sforall se€S.

Since r € 5, the definition of S implies that there exists ¢ € Z with r = a — bq. Then a = bq + r
and it remains to show 0 < r < b. Since r € S, r > 0. Suppose for a contradiction that » > b. Then
r —b > 0. Hence

a—blg+1l)=(a—bg) —b=r—56>0

and g+ 1 € Z. Thusr—b € S. Since b > 0 we have r — b < r, but this is a contradiction since r is a
minimal element of S.
This shows the existence of ¢ and r. To show the uniqueness let ¢, 7, ¢ and 7 be integers with

33
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(a:bq+rand0§r<b> and (a:b(j+fand0§f<b>.

We need to show that ¢ = ¢ and r = 7.
From a = bg + r and a = bg + 7 we have

bg+r=0b3+7

and so

() blg—q)=7—r

Multiplying the equation 0 < r < b with —1 gives 0 > —r > —b and so

—b< —r<0.
Adding the inequality
0<7<b
yields
—b<r—1<b

Using (*) we conclude

—b< —blg—q) <b.
Since b > 0 we can divide by b and get

-1l<qg—qg<1.

The only integer strictly between —1 and 1 is 0. Hence ¢ — ¢ = 0 and so ¢ = ¢. Hence (*) gives
7 —r=>b(¢g—q¢) =00=0 and so also 7 = r. O

Corollary 1.1.2 (Division Algorithm). Let a and c be integers with ¢ # 0. Then there exist unique
integers q and v such that

a=cqg+rand0<r<l|cl.
Proof. See Exercise 1.1. {]] O

Definition 1.1.3. Let a and b be integers with b # 0. Let q,r be the unique integers with a = bq+1r
and 0 < r < |b|]. Then r is called the remainder of a when divided by b and q is called the integral
quotient of a when divided by b.

Example 1.1.4. (1) 42=8-5+2 and 0 < 2 < 8. So the remainder of 42 when divided by 8 is 2.

(2) —42=8-—-6+6 and 0 <6 < 8. So the remainder of —42 when divided by 8 is 6.
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Exercises 1.1:
#1. Let a and c be integers with ¢ # 0. Proof that there exist unique integers ¢ and r such that
a=cq+rand 0 <r <.

#2. Prove that the square of an integer is either of the form 3k or the form 3k + 1 for some integer
k.

#3. Use the Division Algorithm to prove that every odd integer is of the form 4k + 1 or 4k + 3 for
some integer k.

#4. (a) Divide 52, 72, 112, 152 and 272 by 8 and note the remainder in each case.
(b) Make a conjecture about the remainder when the square of an odd number is divided by 8.
(¢) Prove your conjecture.

#5. Prove that the cube of any integer has be exactly one of these forms: 9k, 9k + 1 or 9%k + 8 for
some integer k.

1.2 Divisibility
Lemma 1.2.1. Let a and b be integers.

(a)

bla <= b|l-a <= -bla <= -b|-a
(b) @ and —a have the same divisors.
(c) If bl a and a # 0, then 1 < |b|] < |al.
(d) If a # 0, then a has only finitely many divisors.

Proof. @) We will first show

(%) bla =  b|-a

For this suppose that b divides a. Then by definition of “divide” there exists k € Z with a = kb.
Thus —a = —(kb) = (—k)b. Since k € Z also —k € Z. Thus the definition of “divide” shows that b
divides —a. So holds.

(%) b|—a = —b | a.
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Suppose that b divides —a. Then by definition of “divide” there exists k € Z with —a = kb.
Thus a = —(—a) = —(kb) = k(—b). Thus the definition of “divide” shows that —b divides a. So (x|
holds.

(5 % ) —bla = —b|—a

This is («)) applied with —b in place of b.

(+) —b|—a = b|a.
By applied with —b in place of b, if —b | —a then —(—b) | @ and so b | a.
We proved
bla = b|l-a = -bla = -b|l-a = bla
and so @ holds.
(o) By b| a if and only if b | —a. So b is a divisor of a if and only if b is a divisor of —a.

Suppose a # 0 and that b | a. Then a = kb for some k in Z. Since 0b = 0 and a # 0 we have
k # 0 and since k is an integer |k| > 1. Since |b| > 0 this gives |k||b] > 1|b] = |b|. Hence

b < [bf < [k[[b] = [kb] = |al.
Also since a = kb and a # 0, b # 0 and so |[b] > 1. Thus () is proved.

(d) Suppose a # 0 and let b be divisor of a. By (d), |b| < |a| and so —|a| < b < |a|. Thus b is one
of —lal,—|a] +1,—la] +2,...,—1,0,1,...,]a] — 1, |a|] and so a has at most 2|a| + 1 divisors. O

Definition 1.2.2. Let a, b and d be integers.

(a) d is called a common divisor of a and b provided that d | a and d | b.

(b) d is called a greatest common divisor of a and b provided that

(i) d is a common divisor of a and b; and

(ii) if ¢ is a common divisor of a and b then ¢ < d.

Example 1.2.3. (1) The largest integer dividing both 24 and 42 is 6. So 6 is the greatest common
divisor of 24 and 42.

(2) All integers divide 0 and 0. So there does not exist a greatest common divisor of 0 and 0.

Lemma 1.2.4. Let a and b be integers, not both 0. Then a and b have a unique greatest common
divisor. We denote the unique greatest common divisor of a and b by ged(a,b).
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Proof. We may assume that a # 0. Then by @, a has only finitely many divisors. Thus a and
b have only finitely many common divisors. Let ¢1,¢a, ..., ¢, be the common divisors of a and b such
that

c1<cg<cy<...<cp.

Then ¢, is the unique greatest common divisor. O

Lemma 1.2.5. Let a,b,c,u and v be integers and suppose that ¢ is a common divisor of a and b.
Then ¢ divides au + bv. In particular, ¢ divides a + b, au, —au, a + bv, au — bv and a — bv.

Proof. Since ¢ is a common divisor of a and b we have ¢ | a and ¢ | b. So by definition of ‘divide’
there exist k,l € Z with a = kc and b = lc. Thus

au+ bv = (kc)u + (lev) = (ku + lv)c

Since k, [, u and v are integers, also ku + [v is an integer. So the definition of ’divide’ shows that
¢ | au+ bv.
Choosing special values for u and v proves the second statement:

U v | au+ bv

1 1 a-+b
u 0 au
—u| 0 —au

1 v a—+ b

u | —v | au—Dbv

1 | —v| a—bv

O]

Lemma 1.2.6. Let a,b,q and r be integers with a #= 0 or b # 0 and a = bg+r. Then b # 0 or
r # 0. Moreover, ged(a,b) = ged(b, 7).

Proof. 1f b =0 and r = 0 then also a = bg+r = 0¢ + 0, a contradiction to the hypothesis that a # 0
or b#0. Thus b # 0 or r # 0.

In particular, both ged(a,b) and ged(b, r) exists. Put d := ged(a,b) and e := ged(b,r). Then d
divides a and b and so by [1.2.5] d divides r = a — bg. Hence d is a common divisor of b and r. Thus
d < e by the definition of gcd.

Since e = ged(b,r), e divides b and r. So by e divides a = bg + r. Thus e is a common
divisor of @ and b and so e < d. We have proved d < ¢ and e < d and so e = d. O
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Theorem 1.2.7 (Euclidean Algorithm). Let a and b be integers not both 0 and let E_y and Ey be
the equations

Eq, : a = a1l + 00

Ey : b = a0 + b1

Let ¢ € N and suppose inductively we already defined equation Ep,—1 < k <1 of the form

Ey @ r, = axir + byg -
Suppose r; # 0 and let tiy1,q+1 € Z with

Ticl =TiGit1 +tivr  and  |tia| < |ril.

(Note here that such t;11,qi+1 exist by the division algom'thm

Let E;i1 be the equation of the form ri11 = ax;y1 + byi1 obtained by subtracting qi41-times
equation E; from E;_1. Then there exists m € N with rp—1 # 0 and r, = 0. Put d = |rp—1].
Then

(a) Tk, Tk, Yk € Z for all k € Z with —1 < k < m.
(b) d is the greatest common divisor of a and b.
(¢) "m—1 = axm—1 + bym—1 and d = ax + by for some x,y € Z.

Proof. For k € Z with k > —1, let P(k) be the statement that 7, x;, and yj are integers and if k > 1,
then |rg| < |rep—1].

By the definition of Ey and E; we have r_1 = a,x_1 = 1,y_1 = 0,79 = b,zo = 0 and yg — 1.
Thus P(—1) and P(0) hold. Suppose now that i € N, that P(k) holds for all k € Z with —1 < k <7
and that r; # 0. We have

Ei1 @ rio1 = ari-1 + by
E, : r = ar; + by

and subtracting ¢;4+1 times F; from F,;_; we obtain

Eig1 @ ric1—1igiq1 = a(iﬁi—l—xz‘qz'ﬂ) + b(yz‘—1—3€z‘qz‘+1)-

Hence

Ti+1 = Ti—1 — TiGi+1
Ti41 = Tj—1 — TiQi+1

Yi+1 = Yi—1 — TiGi+1-
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By choice, g;11 is an integer. By the induction assumption, x;, z;—1,%;—1 and y; are integers.
Hence also 741, ;41 and y;41 are integers. By choice of ¢;+1 and ;41

Tic1 = rigip1 +tipr and [t ] < |ry)

So
tit1 = Qi1 — rie1 = rip1 and  |ripr| < |rg).

Hence P(i + 1) holds. So by the principal of complete induction, P(n) holds for all n € Z with
n > —1 (for which E,, is defined).
In particular, @ holds and
‘7‘0‘ > ’7"1‘ > ’?”2‘ > ’?“3’ >0 > ‘7“1’ > ...
Since the r;’s are integers, we conclude that there exists m € N with r,,,_1 # 0 and r,, = 0.
From r;_1 = riqi+1 + tix1 = ri¢ir1 + 1ri+1 and we have ged(r;—1,7;) = ged(ri, r41) and so
ged(a, b) = ged(r—1,r0) = ged(ro,r1) = ... = ged(rm—1,7m) = ged(rm—1,0) = |rm-1] = d.

So holds.
The first statement in is the equation F,,_1. If rp,—1 > 0, then d = r;,—1 = axy—1 + bYm—1
and if r,—1 <0, then d = —rp,—1 = a(—zm—1) + b(—Ym—1) and so holds. O

Example 1.2.8. Let a = 1492 and b = 1066. Then

E_;: 1492 = 1492 - 1 + 1066 - O

Ey: 1066 = 1492 - 0 + 1066 - 1

By 426 = 1492 - 1 + 1066 - -1 |E_1 — Ey
Ey 214 = 1492 - -2 + 1066 - 3 |Ey — 2k
Es: 212 = 1492 - 3 + 1066 - —4 |Ey — Ey
Ey: 2 = 1492 - -5 + 1066 - 7 |Ey  — Es
Es - 0 |Es  — 106Ey

So ged(1492,1066) = 2 and 2 = 1492 - —5 + 1066 - 7.

Theorem 1.2.9. Let a and b be integers not both zero and d := ged(a,b). Then d is the smallest
positive integer of the form au + bv with u,v € Z.

Proof. By the Euclidean Algorithm d is of the form au + bv with u,v € Z. Now let e be any
positive integer of the form e = au + bv for some u,v € Z. Since d = ged(a,b), d divides a and b.
Thus by d divides au + bv = e. Hence shows that d < |d| < |e] = e. Thus d is the
smallest possitive integer of the form au + bv with u,v € Z. O
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Corollary 1.2.10. Let a and b be integers not both 0 and d a positive integer. Then d is the greatest
common divisor of a and b if and only if

(I) d is a common divisor of a and b; and

(IT) if ¢ is a common divisor of a and b, then c | d.

Proof. =>: Suppose first that d = ged(a,b). Then holds by the definition of ged. By
d = ax + by for some x,y € Z. So if ¢ is a common divisor of a and b, then shows that ¢ | d.
Thus holds.

<=: Suppose next that and holds. Then d is a common divisor of a and b by . Let ¢
be a common divisor of @ and b. Then by (), ¢ | d. Thus by ¢ < |d| = d. Hence by definition,
d is a greatest common divisor of a and b. O

Theorem 1.2.11. Let a,b integers not both 0 with ged(a,b) = 1. Let ¢ be an integer with a | be.
Then a | c.

Proof. Since ged(a,b) =1, shows that 1 = ax + by for some z,y € Z. Hence

¢ =1lc= (ax + by)c = a(xc) + (be)y.

Note that a divides @ and be, and that zc and y are integers. So by a also divides
a(zc) + (cb)y. Thus a | c. O

Exercises 1.2:
#1. If a | b and b | ¢, prove that a | c.
#2. If a|cand b|c, must ab divide ¢? What if ged(a,b) =17

#3. Let a and b be integers, not both zero. Show that ged(a,b) = 1 if and only if there exist integers
u and v with ua 4+ vb = 1.

#4. Let a and b be integers, not both zero. Let d = ged(a, b) and let e be a positive common divisor
of a and b.

(a) Show that ged(%, g) = g.
(b) Show that ged(4, %) = 1.
#5. Prove or disprove each of the following statements.
(a) If 2{a, then 4 | (a® — 1).
(b) If 2t a, then 8| (a® — 1).

#6. Let n be a positive integers and a and b integers with ged(a,b) = 1. Use induction to show that
ged(a, b™) = 1.



1.3. INTEGRAL PRIMES 41

#7. Let a,b, ¢ be integers with a,b not both zero. Prove that the equation az + by = ¢ has integer
solutions if and only if ged(a, b) | c.

#8. Prove that ged(n,n + 1) = 1 for any integer n.
#9. Prove or disprove each of the following statements.
(a) If 21 a, then 24 | (a® —1).
(b) If 24 a and 3t a, then 24 | (a® — 1).
#10. Let n be an integer. Then ged(n +1,n2 —n+1) =1 or 3.

#11. Let a,b, ¢ be integers with a | be. Show that there exist integers b, ¢ with b | b,¢|cand a = be.

1.3 Integral Primes

Definition 1.3.1. An integer p is called a prime if p ¢ {0,1,—1} and the only divisors of p are 1,
-1, p and —p.

Lemma 1.3.2. (a) Let p be an integer. Then p is a prime if and only if —p is prime.

(b) Let p be a prime and a an integer. Then either (p | a and ged(a,p) = |p|) or (p 1 a and
ged(a,p) = 1).

(c) Let p and q be primes with p | q. Thenp=gq orp= —q.
Proof. @ Note that
() p¢ {0,£1} ifand only if —p ¢ {0,£1},
By [L2]]
(x%)  p and —p have the same divisor.
Moreover,
(%% ) +p==+(-p)

Thus the following statements are equivalent:

p is a prime

— p ¢ {0,4+1} and the only divisors of p are +1 and +p - Definition of a prime.
<= —p ¢ {0,£1} and the only divisors of —p are £1 and £(—p) - , and (x * *
= —p is a prime. - Definition of a prime.

So @ holds.
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(b): Put d := ged(a,p). Then d | p and since d is prime, d € {1, +p}. Since d is positive we
conclude

(+) d=1 or d=|p|.

Case 1: Suppose p | a.

Since p | p, p is a common divisor of a and p. Thus (by , also |p| is a common divisor of
a and p. Since d = ged(a, p) this gives and so d > |p|. As p ¢ {0,£1} we have |p| > 1. Hence also
d>1 and so d # 1. Thus by d=|p|. So p|a and ged(a, p) = |p|. Thus (b)) holds in this case.

Case 2: Suppose p 1 a.

Then also |p| 1 a. As d = ged(a,p),we have d | a and so d # |p|. Hence by dab = 1. Thus
pta and ged(a,b) = 1. So (b)) also holds in this case.

: Suppose p and ¢ are primes with p | ¢. Since ¢ is a prime we get p € {£1,+q}. Since p is
prime, p ¢ {£1} and so p € {*q}. O

Theorem 1.3.3. Let p be an integer with p ¢ {0,£1}. Then the following two statements are
equivalent:

(a) p is a prime.
(b) If a and b are integers with p | ab, then p | a orp | b.

Proof. Suppose p is prime and p | ab for some integers a and b. If p { a, then by ged(p,a) = 1.

Since p | ab, |1.2.11}implies p | b. So p |a or p | b.
For the converse, see Exercise 1.372] O

Corollary 1.3.4. Let p be a prime integer, n a positive integer and aj,as, ...a, integers with p |
ajaz...an. Then p|a; for somei € Z with 1 <1 < n.

Proof. The proof is by induction on n. If n = 1, then p | a; and so the Corollary holds with
i = 1. Suppose now that the Corollary holds for n = k and let aq,a2...axs11 be integers with
plaias...agag+1. Put a=ay...a; and b = agy1. Then p | abandsobyp |laorp|b. Ifp]|a,
then p | a; ...ar and so by the induction assumption, p | a; for some i € Z with 1 <i < k. If p | b,
then p | ag11. In either case p | a; for some i € Z with 1 < i < k+ 1. Thus the Corollary holds for
n==k+1.

The Principal of Induction now shows that the Corollary holds for all positive integers n. O

Lemma 1.3.5. Let n be an integer with n > 1. Then the following statements are equivalent:
(a) n is not a prime.
(b) There ezists a € Z with a |n and 1 < a < n.

(¢) There exist a,b € Z withn =ab, 1 <a<n and 1 <b<n.
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(d) There exist a,b € Z with n =ab, a > 1 and b > 1.

(e) There exist a,b € Z with n = ab, a <n and b < n.

Proof. We will first prove

(x)  Let a and b be positive integers with n = ab, then

(1<a <= b<n) and (1<b <= a<n)

Since a is positive, we have 1 < a if and only if % < 1, if and only if 2 < n and if and only if
b < n. By symmetry, 1 < b if and only of a < n.

(@) = (b): Suppose that n is not a prime. Since n > 1, n ¢ {0,£1} and the definition of a
prime shows that there exists a divisor m of n with m ¢ {+1,4+n}. Put a = |m|. Then also a is a
divisor of n, a is positive and a # 1 and a # n. Since a divides n, implies 1 < |a| < |n|. As a
and n are positive this gives 1 < a < n. Together with a 21 and a #n we get 1 < a < n.

(]E[) = : Suppose a € Z with a | n and 1 < a < n. Then by definition of divide, n = ab
for some b € Z. Since n and a are positive also b is positive. By , since 1 < a we have b < n and
since a < n we have 1 < b. So holds.

= @: If holds, then @ holds for the same a and b.

@ == @: Suppose there exist a,b € Z with n = ab, a > 1 and b > 1. Then gives a < n
and b < n. So @ holds.

@ == @: Suppose now that n = ab with a,b € Z and a < n and b < n. Then a is a divisor
of n and a # n. Since b < n, gives a > 1 and so a # 1, Since a and n are positive also a # —1
and a # —n. So a is a divisor of n other than +1, +£n and the definition of a prime shows that n is
not a prime. [

Theorem 1.3.6. Let n be integer with n > 1. Then there exist a positive integer k and positive
DPTIMES P1, P2,y - - -, P With

n=pip2...pk.

Proof. The proof is by complete induction on n. So let m be an integer with m > 1 and suppose
that the theorem is true for all integers n with 1 < n < m.

Case 1. Suppose m is a prime.
Put £ =1 and p;1 = m. Then m = p; and theorem holds for n = m in this case.

Case 2. Suppose m is not a prime prime.



44 CHAPTER 1. ARITHMETIC IN Z

Then by there exist integers ¢ and b with n = ab, 1 < a < nand 1 < b < n. By the
induction assumption there exist positive integer ¢ and j and primes p1,...,p;, q1....q; with

a="pi...p; and b=q1...q;.
Thus

m:ab:pl...piql...qj.
Put k:=7+ j and for 1 <1 < j define p;1; := ¢;. Then

m=pi...PiPi+1---Pi+j =P1---Pk
So again the theorem for n = m.

By the Principal of Complete Induction, the theorem now holds for all integers n with n > 2. [

Theorem 1.3.7 (Fundamental Theorem of Arithmetic,FTA). Let n be an integer with n > 1. Then
n is a product of positive primes. Moreover, if

n=pip2...Pk and n=qqz...q,

where k,l are positive integers and pi, ...k, q1,---q are positive primes. Then k =1 and (possibly
after reordering the q.s)

br=4q, pP2=42, ..., Dk =(qk-

In more precise terms: There exists a bijection 7 : {1,2...,k} — {1,2,...,1} with p; = q(;) for all
1<i<k.

Proof. By n is a product of positive primes. The proof of the second statement is by complete
induction on n. So let m be an integer with m > 1 and suppose that the FTA holds for all integers
n with 1 < n < m. Suppose also that

(*) m=pipa... Pk and m=qqz...q.

where k,[ are positive integers and p1,...pk, q1,...q are positive primes.
Since p; and g¢; are primes, p; # 1 and g; # 1. Since p; and g; are positive we conclude

(%) pi>lforalll<i<k and ¢ >1lforalll<j<lL.

Case 1. Suppose that m is a prime.

Assume for a contradiction, that k£ > 1. Then by m = p1(p2...px) and by , p1 > 1 and
p2...px > 1. Thus shows that m is not a prime, contrary to the assumption. Thus £ = 1 and
by symmetry also [ = 1. Also p1 = m = ¢; and the FTA holds for n = m.
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Case 2. Suppose that m is not a prime.

Then p1 #m # q; and so k > 2 and [ > 2.
Since m = (p1 ...pr—1)pr we see that py divides m. As m = q; ... q we conclude that pj divides
q1 - - - q and thus by Pk | gj for some 1 < j < [. Since pj, and g¢; are primes, gives pi, = ¢

or pi = —q;. Since py and g; are positive, p; = ¢;. Reordering the ¢;’s we may assume that j = [.
So
(s 5 ) Pk =

Put u := % = %. Dividing the first equation in by pr and the second by ¢; gives

(+) U=Dpip2...P k-1 and U=qq2...q—1-

Bypk>1andsou:%<m. Alsops >1sou=pi...pp—1 > 1. Hence 1 < u < m and so
by the induction assumption the FTA holds for n = u. Thus implies k —1 = [ — 1 and, possibly
after reordering q1,...,qr_1,

pr=q, pP2=4Gqk;, ---5 DPk—1 = qk-1-
From k —1=1—1 we get k =1 and so by (x * %)) pxr = ¢ = qx. So the FTA holds for n = m.

The Principal of Complete Induction now shows that the FTA holds for any integer n with
n > 1. O

Exercises 1.3:

#1. Let p be an integer other than 0,£1. Prove that p is a prime if and only if it has this property:
Whenever r and s are integers such that p = rs, then r = £1 or s = +1.

#2. Let p be an integer other than 0, +1 with this property
(*)  Whenever b and c are integers with p | bc, then p | b or p | c. Prove that p is a prime.

#3. (a) List all the positive divisors of 3°5! where s,t € Z and s,t > 0.
(b) If r,s,t € Z are positive, how many positive divisors does 2"3°5! have?
#4. Prove that ged(a,b) = 1 if and only if there is no prime p such that p | a and p | b.
#5. Prove or disprove each of the following statements:
(a) If p is a prime and p | a® + b% and p | ¢ + d?, then p | (a® — ¢?)
(b) If p is a prime and p | a® + b% and p | ¢® + d?, then p | (a® + ¢?)
(c) If pis a prime and p | @ and p | a® + b%, then p | b
#6. Let a and b be integers. Then a | b if and only if a® = b3.

#7. Prove or disprove: Let n be a positive integer, then there exists p,a € Z such that n = p + a?
and either p = 1 or p is a prime.
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Chapter 2

Congruence in Z and Modular
Arithmetic

2.1 Congruence and Congruence Classes
Let a,b and n be integers. Recall that the relation ‘= (mod n)’ on Z is defined by

a=b (modn) <= nla—0b

By - ‘= (mod n)’ is an equivalence relation on Z. Recall also that [a], is the equivalence
class of ‘= (mod n)’ with respect to a. So

lal, ={b€Z|a=b (modn)}.

Theorem 2.1.1. Let a,b,n be integers with n # 0. Then the following statements are equivalent

(a) a="b+ nk for some integer k. (h) a € [b],.

(b) @ — b= nk for some integer k. (i) b=a (mod n).
(c) nfa—b. () n|b—a.

(

(k) b—a = nl for some integer .

d) a=b (mod n).
)

(e
(f

(1) b=a+nl for some integer 1.

[aln (1 [B]n # 0.

) (m) a and b have the same remainder when di-
)

() [aln = [b]n- vided by n.

Proof. @ — . Add b to both sides of .
@ = @: Follows from the definition of ‘divide’.
<= (d): Follows from the definition of ‘= (mod n)’.

47
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By ‘= (mod n)’ is an equivalence relation. So Theorem implies that (d)-() are
equivalent. Since we already proved that @—@ are equivalent we conclude that @ to are

equivalent.
Note that @ is symmetric in a and b. Since @— are equivalent to (|g), we can interchange a
and b in @— and conclude that (ﬁ[} to (|l are equivalent to . Thus @— are equivalent.

By the division algorithm there exists integers q1,71, g2, 72 with

a=nq +m and 0<r; <|n|

and

b=ngs+ro and 0 <ry<|n|
So r1 and r9 are remainders of a and b, respectively when divided by n.

= @: Suppose holds. Then r; = ro and

a—b=(ng +7r1)— (ng2+r2) =n(qn — q2) + (11 —r2) = n(q1 — q2)-
Hence a = b+ n(q1 — ¢2). Since q1 — g2 € Z we see that @ holds with & = ¢; — g».
@ == : Suppose @ holds. Then a = b+ nk for some integer k. Then

a = (ng2 +12) + nk =n(q + k) + 2.
Since g2 + k € Z and 0 < ry < |n|, we conclude that 7y is the remainder of a when divided by n.
So ry = r9 and holds. O
Corollary 2.1.2. Let n be positive integer.

(a) Let a € Z. Then there exists a unique v € Z with 0 < r < n and [a], = [r]n, namely r is the
remainder of a when divided by n.

(b) There are exactly n distinct congruence classes modulo n, namely

[0]7 [1]7 [2]7 ) [TL - 1]
(¢) |Zyn| = n, that is Zy, has exactly n elements.

Proof. @ Let a € Z, let s be the remainder of a when divided by n and let r € Z with 0 < r < n.
Since 7 = 0n + r and 0 < r < n, r is the remainder of » when divided by n. By [aln, = [r]y if
and only a and r have the same remainder when divided by n, and so if and only if r = s.

(b) By definition each congruence class modulo n is of the form [a],,, with a € Z. By (d), [a], is
equal to exactly one of

0], 11],[2],...,[n—1].

So (]ED holds.
Since Z,, is the set of congruence classes modulo n, follows from (]E[) O
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Example 2.1.3. Determine Zs.

Zs = {[0)s, [, (215, 85, [41s } = { 015, [1]5, 215, [~ 205, [~ 1]5 }

Exercises 2.1:

#1. (a) Let k be an integer with £ =1 (mod 4). Compute the remainder of 6k + 5 when divided
by 4.

(b) Let r and s be integer with r =3 (mod 10) and s = —7 (mod 10). Compute the remainder of
2r 4 3s when divided by 10.

#2. If a,m,n € Z with m,n > 0, prove that [a"]2 = [a"]2
#3. If p > 5 and p is a prime, prove that [p| = [1] or [p] = [5] in Zs.
#4. Find all solutions of each congruence:
(a) 2z =3 (mod 5) (b) 3z =1 (mod 7)
(c) 6z =9 (mod 15) (d) 6z =10 (mod 15)
#5. If a = 2 (mod 4), prove that there are no integers ¢ and d with a = ¢ — d®.
#6. If [a] = [1] in Z,, prove that gcd(a,n) = 1. Show by example that the converse is not true.
#7. (a) Show that 10" =1 (mod 9) for every positive integer n.

(b) Prove that every positive integer is congruent to the sum of its digits mod 9. [for example,
38 =11 (mod 9)].

2.2 Modular Arithmetic

Theorem 2.2.1. Let a,a,b,b and n be integers with n # 0. Suppose that

[al, = [a]n and [b]r, = [b]n-
or that
a=a (modn) and b=b (modn)
Then
[a+ bl = [a+b], and [abl,, = [ab],..
and

a+b=a+b (modn) and ab=ab (mod n)
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Proof. Since

or

for some k,l € Z. Hence

a+b=(a+nk)+ (b+nl) = (a+0b)+n(k+1).
Since k + [ € Z,[2.1.1] gives

[a+bl, = [a+ b, and a+b=a+b (modn)
Also

a-b=(a+nk)(b+nl) = ab+n(al + kb + knl),
and, since al + kb+ knl € Z, implies

[ab],, = [ab], and ab=ab (mod n).

In view of the following definition is well-defined.
Definition 2.2.2. Let a,b and n be integers with n # 0. Then
[a]l, @ [b]p, =[a+0b], and [a], ® [b], = [ab],.
The function
Ly X Lopy = L, (A,B) > AD® B
is called the addition on Z,, and the function
Loy X Ly — L,y (A, B) - A© B

1s called the multiplication on Z,,.
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Example 2.2.3. (1) Compute [3|s ® [7]s.

[Bls © [7]s = [3- 7]s = [21]s = [8 -2+ 5]s = [5]s

Note that [3]s = [11]g and [7]s = [—1]s. So we could also have used the following computation:

1] © [-1]s = [11- —1]s = [-11]s = [-11 + 8 - 2|s = [5]s

Theorem [2.2.1]ensures that we will always get the same answer, not matter what representative
we pick for the congruence class.

(2) Compute [123]212 ® [157]212.

[123]212 @ [157]212 = [123 4 157]212 = [280]212 = [280 — 212]212 = [68]212

Note that [123]212 = [123 — 212]212 = [—89]212 and [157}212 = [157 — 212]212 = [—55]212. Also

[—89]212 @ [—55]212 = [—89 — 55212 = [—144]919 = [—144 + 212]919 = [68]212
(3) Warning: Congruence classes can not be used as exponents:

‘We have

2Y3 =[16]3 =[1]3 and [2']3=[2]3

So

245 # [2']s  even though  [4]3 =13

A®BeZ, [closure for addition)].
2) Ao(Ba(C)=(AeB)aC. [associative addition]

A®B=BaA. [commutative addition]

There exists X € Ly, with A ® X = [0],,. [additive inverse]

(1)

(2)

(3)

4) Aa 0], =A=[0],® A, [additive identity]
(5)

(6) A® B € Z,. [closure for multiplication]
(7)

7NV A0(BoC)=(A0B)oC. [associative multiplication]
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8) Ao(BaC)=(A0B)®a(A0C)and (AeB)0C=(A0C)e (B ). [distributive laws]
(9) A B=B0o A. [commutative multiplication]
(10) 1], 0 A=A=A06[1], [multiplicative identity]

Proof. If d € Z we will just write [d] for [d],. By definition of Z,, there exists integers a, b and ¢ with
A =la], B=[b] and C =[]

We have A@® B = [a] ® [b] = [a + b]. Since a + b € Z we conclude that A ® B € Z,.

(2) Using the definition of @ and the fact that addition in Z is associative we compute

A®(BaC) = laa((p@ld) = [adaeb+ed = [a+((b+c)] = [(a+b)+]
= [a+bold = (dep)eld = (AeB)acC.

Using the definition of & and the fact that addition in Z is commutative we compute

Ae®B = @b = [a+b = [b+a=[b@[d=BeA
Using the definition of @ and the fact that 0 is an additive identity in Z we compute

A®[0] = [a] @ [0] = [a+ 0] = [a] = 4,

and
0@ A=[0]®[a] =[0+a] =[a] = A.

Put X = [—a]. Then X € Z,. Using the definition of @ and the fact that —a is an additive
inverse for a in Z we compute
A® X =la] ®[-a] = [a+ (=a)] = [0].

(6) Similarly to we have A ® B = [a] ® [b] = [ab] and so A ® B € Z,.
Similarly to we can use the definition of ® and the fact that addition in Z is associative
to compute

Ao(BoC) = [do(pold) = [dobd] = [a(be)] = [(ab)c]
=  [a)old = (dop)ol] = (AcB)eC.

Using the definition of & and ® and the distributive law in Z we compute

Ao (BaoC) = [a] ® ([b] @ [¢]) = [dob+d = [a(b+ ¢)]
= [ab + bc] = [abl®ac] = ([a]®[b]) @ ([a] ©c])
= (AOB)® (A6 0),
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and similarly

AeB)oC = (de)old = [a+bhold = [(a+b)]
= [ac + bc] = ladebd = ([dold) e (b]old)
= (AoC0)® (BoO).

@D Similarly to we can use the definition of ® and the fact that multiplication in Z is
commutative to compute

AGB = [dob] = [ab = [ba=[®d=B0oA

Similarly to we can use the definition of ® and the fact that 1 is a multiplicative identity
in Z to compute

and

=
®
e
I
=
®
=
I
gy
2,
I
=
[
N

O]

Notation 2.2.5. Let a,b,n be integers with n # 0. We will often just write a for [a],, a + b for
[a], @ [b]n and ab (or a-b) for [a], ® [b],. This notation is only to be used if it clear from the context
that the symbols represent congruence classes modulo n. Erponents are always integers and never
congruences class.

Example 2.2.6. (1) Compute 4+ 5 and 4 -5 in Z7.

445=9=2 and 4.5=20=6

(2) Determine the addition and multiplication table of Zs.

+(0 1 2 3 4 012 3 4

0/0 1 2 3 4 0/0 OO 0 O

111 2 3 4 5 110 1 2 3 4
and

212 3 4 5 6 2|10 2 4 6 8

313 45 6 7 310 3 6 9 12

414 5 6 7 8 410 4 8 12 16

and after computing remainders when divided by 5:
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+10 1 2 3 4
0j0 1 2 3 4
111 2 3 4 0
212 3 401
313 401 2
414 0 1 2 3

Definition 2.2.7. Let n be a non-zero integer, A € Z,, and k € N.

by

So

A% =11],

and

[a—

- W NN = O

and AR = AF o A,

A= ((A0a)04)...04) 04

TV
k—times

Lemma 2.2.8. Let n be a non-zero integer and k,l € N.

(a) Let a € Z. Then [a]k =

n

[a

]

n-

o o o o o || o
NI V=)
[ =S \C R e I B V)

Then A¥

w O | W
N W e O |

1s inductively defined

(b) Let A,B € Zy,. Then (A® B)¥ = Ak © B*, AF = AF © Al and AM = (AF)L.

Proof. () The proof is by induction on k. For k = 0, [a]° = [1]

Suppose @ holds for £, then

[a**! = [a]* © [a]

[a]k-i—l

[a]* ®[a] — Definition of o]+, 22T

[a*] ® [a] — Induction assumption

[a*a]

[ak+1]

— Definition of ®

— Definition of a

k+1

)

[a°] and so (&) holds for k = 0.

and so @ holds for k£ + 1. So by the Principal of Induction, @ holds for all £ € N.
(o) Choose a,b € Z with A = [a] and B = [b]. Using (@) and the fact that (b)) holds for integers
in place of congruence classes we compute:

(A® B)* = ([a] © [o))* = [ab]* = [(ab)"] = ["0"] = [a"] © o] = [a]* © o] = A* © B,
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and

Remark 2.2.9. Consider the expression
2°+3-7 in Z,

It is not clear which element of Z,, this represents, indeed it could be any of the following for elements:

[2° +3- 7],
[2°]n @[3 7]
2°]n @ ([8]n © [7]n)
25 @[3 7]
215, @ (3]0 © [7]n)
But thanks to Theorem and Theorem all these elements are actually equal. So our

simplified notation is not ambiguous. In other words, our use of the simplified notation is only
Justified by Theorem and Theorem [2.2.8

Example 2.2.10. (1) Compute [1334567] 5.

n

[1334567]12 — [13]§>421567 — [1]?421567 —_ [134567]12 — [1]12

In simplified notation this becomes: In Zq5, 13 = 1 and so
1334567 _ 34567 _ q

Why is the calculation shorter? In simplified notation the expression

[1334567] 12 and [13]?421567

are both written as
1334567

So the step
[1334567]12 — [13]:15421567
is invisibly performed by the simplified notation. Similarly, the step

[1]?121567 — [134567] 12

disappears through our use of the simplified notation.
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(2) Compute [7]198.
In Z50 .

7198 — (72)99 — 4999 — (_1)99 = _1 =49,

(3) Determine the remainder of 53 - 7190 447 . 771 4+ 4. 73 when divided by 50.
In Z50 :

537100 4 47. 770 4 4.73 = 3.(7%)°0 -3.(7%)3.7+4.72.7
= 3. (-1 =3.(-1D)®-7+4--1-7
= 3+21-28=3-7=-4=146

Thus [53- 7190 44777 4+ 4.73]50 = [46]5. Since 0 < 46 < 50, [2.1.2|(a]) shows that the remainder
in question is 46.

Example 2.2.11. Find all solutions of 23 + 2z + 3 = 0 in Zs.

All computation below are in Zs.
By Corollary Zs = {0,1,2,3,4}. Since 3 = =2 and 4 = -1, Z5 = {0,1,2,-2,—1}. We
compute

v |22 + 22 + 3

0j]0 4+ 0 4+ 3 = 3
1 1 + 2 + 3 = 6 =1
218 4+ 4 + 3 =15 =0
—-2/-8 - 4 4+ 3 = -9 =1
-1|/-1 - 2 + 3 =0

So the solution of 23 +22x+3=01in Zs are t =2 and z = —1 = 4.

Exercises 2.2:
#1. Let n be a non-zero integer and A € Z,,. Show that A ® [0], = [0],.
#2. (a) Solve the equation z? 4+ z = 0 in Zs.

(b) Solve the equation x2 + z = 0 in Zg.

(c) If p is a prime, prove that the only solutions of 22 + x = 0 in Z,, are [0] and [p — 1].
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#3. Solve the equations:
(a) 22 =1 in Zy (b) ' =1 in Zs
(c) 22+ 3z +2=0in Zg (d) 22 4+1=0in Z2

#4. (a) Find an element a in Z7 such that every non-zero element of Z; is a power of a.
(b) Do part (a) in Zs
(c) Can you do part (a) in Zg?

#5. (a) Solve the equation 22 + 2 = 0 in Zs.
(b) Solve the equation x2 + z = 0 in Zg.

(c) If p is a prime, prove that the only solutions of 2 + x = 0 in Z,, are [0] and [p — 1].

2.3 Cogruence classes modulo primes
Lemma 2.3.1. Let n,m € Z with n # 0. Then n | m if and only if [m], = [0],.

Proof. n'| m if and only if n | m — 0 and so by if and only [m],, = [0],. O

Theorem 2.3.2. Let n be an integer with |n| > 1. Then the following statements are equiva-
lent:

(a) n is a prime.
(b) For any A € Zy, with A # [0],, there exists X € Z,, with AX = [1],.
(c) Whenever A and B are elements in Z,, with AB = [0],, then A = [0],, or B = [0],.

Proof. Let m € Z. We will write [m] for [m],.

(&) = (0): Suppose n is a prime and let A € Z,, with A # [0]. Then A = [a] for some a € Z.
Since [a] # [0], [2.3.1]implies n { a. Since n is prime, [1.3.2]shows ged(a, n) = 1 and so by the Euclidean
Algorithm there exist u,v € Z with au + nv = 1. Hence 2.1.1|(a)) (g) implies [au] = [1]. By the
definition of multiplication in Z,,, [a][u] = [au] and so [a][u] = [1]. Put X = [u]. Then X € Z, and
AX =[1].

) = (): Suppose (b) holds and let A, B € Z, with AB = [0]. Assume that A # [0]. Then
by (b)) there exists X € Z, with AX = [1]. We compute
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0] = X[0] — See Exercise [2:2]#]]
= X(AB) - Since AB = |0]
XA)B — associative multiplication,
AX)B — commutative multiplication, [2.2.4/(9)
= [1]B  — Since AX =[1]
= B — Since [1] is a multiplicative identity,
We have proven that A # [0] implies B = [0]. So A = [0] or B = [0] and holds.

() = (d): We will use Theorem namely n is a prime if and only if n | a or n | b
whenever a and b are integers with n | ab.
So suppose (c) holds and let a and b be integers with n | ab. Then [ab] = [0] by and thus

[a][b] = [ab] = [0]. (b implies [a] = [0] or [b] = [0]. Hence by [2.3.1]n | a or n | b. Thus by n is

a prime. ]

(
(

Example 2.3.3. Use multiplication tables to verify Theorem for n =4 and n = 5.

Note first that Condition (]E[) in Theorem says that every row of the multiplication
table of Z,, other than Row 0 (that is the row corresponding to 0) contains 1.

Condition (]E[) in Theorem says that 0 only appears in Row 0 and in Column 0 of the
multiplication table.

The multiplication table for Z, and Zs are :

01 2 3 4
01 2 3
0[0 00 0O
0(0 0 0O
110 1 2 3 4
Zy: 110 1 2 3 ZLs :
210 2 4 1 3
210 2 0 2
3/0 3 1 4 2
310 3 21
410 4 3 2 1

Row 2 of the table for Z4 does not contain a 1. Also the entry in Row 2, Column 2 is 0. Moreover
4 is not a prime. So for n = 4 none of the three statements in Theorem holds.

Each row, other than Row 0 of the table for Z5 contains a 1. Also 0 only appears in Row 0 and
in Column 0. Moreover, 5 is a prime. So for n = 5 all of the three statements in Theorem hold.

Corollary 2.3.4 (Multiplicative Cancellation Law). Let p be a prime and A, B,C' € Z, with A # [0],.
Then AB = AC if and only if B = C.
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Proof. <—: If B = C then AB = AC by the principal of substitution.
=—: Now suppose that AB = AC. By there exists X € Z, with AX = [1],. We compute

AB = AC
= X(AB) = X(AC) - Principal Of Substitution
= (XA)B = (XA)C - associative multiplication Stwice
= (AX)B = (AX)C - commutative multiplication [2.2.4|(7),twice
=  [1],B=[1,C  — Since AX = [1],
= B=C — Since [1],, is a multiplicative identity

Example 2.3.5. Verify that the Cancellation Law holds in Z5, but does not hold in Zy.

Let A, D € Z,, with A # [0],. The Cancellation law says if B, C' € Z;, with D = AB and D = AC,
then B = C. So there exists at most one C € Z,, with AC = D. In terms of the multiplication table
this means that no entry appears more than once in Row A of the multiplication table.

Note that 2 appears twice in Row 2 of the multiplication table of Z4, namely in Column 1 and
Column 3. Indeed 2:1=2=2=6=2-3in Z4 but 1 # 3 in Z4. So the Cancellation Law does not
hold for Z4.

Except for Row 0, each row of the multiplication table of Zs contains each of the congruence
classes 0,1,2,3 and 4 exactly once. So the Cancellation law holds in Zs.

Corollary 2.3.6. Let p be a prime and A and B in Z, with A # [0],,.

(a) There exists a unique X € Zy with AX = [1],,.

(b) There exists a unique Y € Z, with AY = B, namely Y = XB.
Proof. By [2.3.2) there exists X € Z, with AX = [1],. Thus AX # [0],. Since A[0], = [0], by exercise
we conclude X # [0],. Let Y € Z,. Then

AY =B
X(AY)=XB — Multiplicative Cancellation Law,
XA)YY = XB — associative multiplication,
AX)Y = XB — commutative multiplication, @
[1],Y = AB — Since AX = [1],

Y =AB — Since 1 is a multiplicative identity,
So Y = X B is the unique element in Z, with AX =Y. Thus (]ED holds.

(
(

1111t1e
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The case B = [1], shows that X[1], = X is the unique element in Z, with AX = [1],. So (a)
holds. O
Example 2.3.7. (a) Solve the equation 2z =1 in Zs.
(b) Solve the equation 2z = 1 in Zg.

(c) Solve the equation 2z = 4 in Zg.

(@): In Zs: 2-3 =1. So 3 is a solution on 2z = 1. By [2.3.6{[),2z = 1 has a unique solution and
so 3 is the unique solution of 2z = 1 in Zs.

() and (d): By Zs ={0,1,2,3,4,5}. We compute

z |01 2 3 4 5
2210 2 4 6 8 10
2z10 2 4 0 2 4

So 2z = 1 has no solution in Zg, but 2z = 4 has two solutions, namely x = 2 and x = 5. The
second solution is explained by the fact that 2-3 =6 = 0 and so

2.5=2-(2+43)=2-242.3=2.240=2-2.

Exercises 2.3:
#1. How many solutions does the equation 6x = 4 have in
(a) Z7 (b) Zs (c) Zyg (d) Zio

#2. Let a,b and n be integers with n # 0 and ged(a,n) = 1. Let v and v be integers with au+nv = 1.
Put A = [a], and B = [b],,.

(a) Show that [a], ® [u], = [1].
(b) Show that there exists a unique X in Z,, with A ® X = B, namely X = [ub],.
(c) Show that there exists Y € Z,, with B®Y = [1], if and only if ged(b,n) = 1.
#3. Let a,b,n,m € Z with n # 0 and m # 0. Prove each of the following statements:
(a) [a]n = [b], if and only if [ma]mn = [Mb]mn.
(b) [a], = [b], if and only if there exists r € Z with 0 < r < |m| and [a]pm = [0+ rn]pm.
(c) Suppose that [a], = [b]n, m | a and m | n. Then m | b.

Remark 2.3.8. Let n be a non-zero integer and A,B € Z,,. The preceding two exercises give rise to
a method to solve the equation A® X = B in Zy,:



2.3. COGRUENCE CLASSES MODULO PRIMES 61

(Step 1) Choose a,b € Z with A = [a],, and B = [b],,. Also let X = [z], with x € Z. So the equation
A ® X = B becomes [ax], = [b].

(Step 2) Use the Euclidean Algorithm to compute d = ged(a,n) and u,v € Z with au + nv = d.

(Step 3) Ifd t b, then A ® X = B does not have a solution. Indeed, if X = [z], were a solution, then

[ax]y, = [b]n. Note that d | a and d | n. So also d | ax and thus by Ezercise 3(c) d | b, a
contradiction.

(Step 4) Suppose now that d | b. Put a = §, b= g and i = 5. Then a = ad,ax = axd, b = bd and
n = nd. Thus by Exercise 3(a) [az]s = [b]s if and only if [az], = [b],.

(Step 5) Dividing ua + vb = d by d gives ua + vb = 1. So by Ezercise 2(b), [ax]n = [bls has a unique
solution in Zs, namely [z]; = [ubls.

(Step 6) By Ezercise 3(b), [x]s = [ubla if and only if [x], = [ub + ril],, for some r € Z with 0 < r < d.
So X in Zy, is a solution of A® X = B if and only if X = [ub+ rn], for some r € Z with
0 <r < d. In other words, the solutions of A® X = B are

[wbly , [ub+dln , [ub+ 2], , fub+ (d—2)iln , [ub+ (d— 1)y,
#4. Solve the following equations:
(a) 122 =2 in Zq9. (d) 7x =2 in Zoy. (g) 25x =10 in Zgs.
(b) 31z =1 in Zsp. (e) 34x =1 in Zog;. (h) 21z =17 in Zss.

(c) 27z = 2 in Zuap. (f) 15z =9 in Zs.
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Chapter 3

Rings

3.1 Definitions and Examples
Definition 3.1.1. A ring is a triple (R, +,-) such that
(i) R is a set;

(ii) + is a function (called ring addition) and R X R is a subset of the domain of +. For (a,b) €
R x R, a+ b denotes the image of (a,b) under +;

(iii) - is a function (called ring multiplication) and R x R is a subset of the domain of -. For
(a,b) € Rx R, a-b (and also ab) denotes the image of (a,b) under -;

and such that the following eight statement hold:

(Ax1) a+be R foralla,be R; [closure of addition]
(Ax2) a4+ (b+c)=(a+b)+c foralla,b,cecR; [associative addition]
(Ax3) a+b=b+a foralla,be R. [commutative addition]
(Ax 4) there exists an element in R, denoted by Or and called ‘zero R’, [additive identity]

such that a=a+0gr=a anda=0r+a foralla € R;

(Ax 5) for each a € R there exists an element in R, denoted by —a [additive inverses]

and called ‘negative a’, such that a + (—a) = Og;

(Ax6) abe R for all a,b € R; [closure for multiplication]
(Ax 7) a(bc) = (ab)c  for all a,b,c € R; [associative multiplication]
(Ax 8) a(b+c¢) =ab+ac and (a +b)c =ac+bc  for all a,b,c € R. [distributive laws]

In the following we will usually say “Let R be a ring” for “ Let (R, +,-) be a ring.”

63
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Definition 3.1.2. Let R be a ring. Then R is called commutative if
(Ax 9) ab=ba for all a,b € R. [commutative multiplication]

Definition 3.1.3. Let R be a ring. We say that R is a ring with identity if there exists an element,
denoted by 1r and called ‘one R’, such that

(Ax10) a=1g-a anda=a-1r foralla € R. [multiplicative identity]
Example 3.1.4. (a) (Z +,-) is a commutative ring with identity.
(b) (Q,+,-) is a commutative ring with identity.
(¢) (R,+,) is a commutative ring with identity.
(d) (C,+,") is a commutative ring with identity.
(e) Let n be a non-zero integer. Then (Z,, ®, ®) is a commutative ring with identity.
(f) (2Z,+,-) is a commutative ring without a multiplicative identity.

(g) Let n be integer with n > 1. The set M, (R) of n x n matrices with coefficients in R together
with the usual addition and multiplication of matrices is a non-commutative ring with identity.

Example 3.1.5. Let R = {0,1} and a,b € R. Define an addition and multiplication on R by

+10 1 10 1
0/0 1 and 00 0O
111 a 110 b

For which values of a and b is (R, +,-) a ring?

Note first that 0 is additive identity, so Og = 0.

Suppose that a = 1. Then 142 =1 # Og for all z € R and so 1 does not have a additive inverse.
Hence R is not a ring.

Suppose now that a = 0.

Assume that b = 1. Then hen (R, +,-) is (Z2,®,®) and so R is ring.

Assume that b = 0. Then then xy = 0 for all z,y € R. Note also that 0 + 0 = 0. It follows that
Axioms 6-8 hold, indeed all expressions evaluate to 0. Axiom 1-5 hold since the addition is the same
as in Zo. So R is a ring.

In both cases R is commutative. If b = 1, then 1 is an identity. If b = 0, R does not have an
identity.



3.1. DEFINITIONS AND EXAMPLES 65

Example 3.1.6. Let R = {0,1} Define an addition and multiplication on R by

BH MO0 1 Lo 1

0|1 0 and 00 1

110 1 111 1
Is (R,H,0) a ring?

Note that 1 is an additive identity, so Og = 1. Also 0 is a multiplicative identity. So 1p = 0.
Using the symbols Or and 1 we can write the addition and multiplication table as follows:

and

Indeed, most entries in the tables are determined by the fact that Og and 1 are the additive and
multiplicative identity, respectively. Also 1zpEH1r =0H0=1=0gr and O 0 =10E1=1=0g.
Observe now that the new tables are the same as for Zy. So (R,H,) is a ring.

Theorem 3.1.7. Let R and S be rings. Recall from [0.3.3 that R x S = {(r,s) | r € R,s € S}.
Define an addition and multiplication on R x S by

(r,s)+(r',s) = (r+r,s+5)
(r,s)(r',s") = (rr',ss)

for all ;7" € R and s,s' € S. Then
(a) Rx S is a ring;
(b) Orxs = (Or,0s);
(¢) —=(rys) = (—=r,—s) forallr € R,s € S;
(d)

)

d) if R and S are both commutative, then so is R x S;

(e
Proof. See Exercise 3.1[#2] O

if both R and S have an identity, then R x S has an identity and 1gxs = (1g, 1g).

Example 3.1.8. Determined the addition table of the ring Zo x Zs.
Recall from 2.1.2|(b)) that Zs = {0,1} and Z3 = {0,1,2}. So

Ze x 73 = {(0,0),(0,1),(0,2),(1,0), (1,1),(1,2).}
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and
+ (0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
(0,0) | (0,0) (0,1) (0,2) (1,0) (1,1) (1,2)
(0,1) | (0,1) (0,2) (0,0) (1,1) (1,2) (1,0)
(O, 2) (0,2) (0,0) (0, 1) (1,2) (1,0) (1,1)
(1,0) | (1,0) (1,1) (1,2) (0,0) (0,1) (0,2)
LY (LD (L2) (L) (0,1 (0,2) (0,0
(L2) | (1,2) (L,0) (L1) (0,2) (0,0) (0,1)

Exercises 3.1:

#1. Let E = {0,¢,b,c} with addition and multiplication defined by the following tables. Assume
associativity and distributivity and show that R is a ring with identity. Is R commutative?

+]10 e b ¢ 0 e b c
0]0 e b ¢ 0/0 0 0 O
ele 0 c b e|l0 e b c
b|lb c 0 e b0 b b 0
clc b e O c|0 ¢ 0 ¢

#2. Prove Theorem

3.2 Elementary Properties of Rings

Lemma 3.2.1. Let R be ring and a,b € R. Then (a + b) + (=b) = a.

Proof.
(a+b)+(=b) = a+(b+(-b) -H1Ax2
= a+0pg —{Ax 3l
= a —HAx 4]

Theorem 3.2.2 (Additive Cancellation Law). Let R be ring and a,b,c € R. Then
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<— c+a=c+b
< at+c=b+c

Proof. “First Statement =—> Second Statement’: Suppose that a = b. Then ¢+ a = ¢+ b by the
Principal of Substitution [0.1.1

“Second Statement = Third Statement’: Suppose that ¢ +a = ¢+ b. Then applied to
each side of the equation gives a +c=b+c.

“Third Statement = First Statement’: Suppose that a + ¢ = b+ ¢. Adding —c to both sides
of the equation gives (a + ¢) + (—c¢) = (b+ ¢) + (—c). Applying to both sides gives a =b. [

Definition 3.2.3. Let R be a ring and ¢ € R. Then c is called an additive identity of R if
a+c=a and ct+a=a
for alla € R.

Corollary 3.2.4 (Additive Identity Law). Let R be a ring and a,c € R. Then the following three
statements are equivalent:

a = OR
< c+a = ¢
< a+c = ¢

In particular, Ogr is the unique additive identity of R.

Proof. Put b= 0g. Then by [Ax4lc+ b= c and b+ ¢ = ¢. Thus by the Principal of Substitution:

a = 0p — a = b
c+a = ¢ = ct+a = c+b
a+c = ¢ = a+c = b+c
So the Corollary follows from the Cancellation Law O

Definition 3.2.5. Let R be a ring and ¢ € R. An additive inverse of ¢ is an element a in R with
ct+a= OR.
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Corollary 3.2.6 (Additive Inverse Law). Let R be a ring and a,c € R. Then

a = —c
= c+a = Op
<= at+c = O0g

In particular, —c is the unique additive inverse of c.

Proof. Put b = —c. By[Ax 5l ¢+ b = 0 and so by [Ax 3l b+ ¢ = 0g. Thus by the Principal of
Substitution:

a = —c <= a = b
c+a = 0p = c+a = c+b
a+c = Og = a+c = b+c
So the Corollary follows from the Cancellation Law |3.2.2 O

Definition 3.2.7. Let (R,+,-) be a ring and S a subset of R. Then (S,+,-) is called a subring of
(R, +, ") provided that (S,+,) is a ring.

Theorem 3.2.8 (Subring Theorem). Suppose that R is a ring and S a subset of R. Then S is a
subring of R if and only if the following four conditions hold:

(I) 0 € S.
(IT) S is closed under addition (that is : if a,b € S, then a+b € S);
(II1) S is closed under multiplication (that is: if a,b € S, then ab € S);
)

(IV) S is closed under negatives (that is: if a € S, then —a € S)

Proof. =>: Suppose first that S is a subring of R.
By [Ax 4l for S there exists 0g € S with Og +a = a for all a € S. In particular, 0 + 0g = 0g. So

by
(%) O0s = Og.

Since Og € S, this gives Og € S and holds.

By[Axdlfor S,a+be S for all a,b € S. So holds.

By [Ax @ for S, ab € S for all a,b € S. So holds.

Let s € S. Then by [Ax 5l for S, there exists t € S with s+t = 0g. By 0s = Or and so
s+t =0g. Thus byt = —s. Since t € S this gives —s € S and holds.

<—: Suppose now that — hold.
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Since S is a subset of R, S is a set. Hence Condition (i) in the definition of a ring holds for S.

Since S is a subset of R, S x S is a subset R x R. By Conditions (ii) and (iii) in the definition
of a ring, R X R is a subset of the domains of 4+ and -. Hence also S x S is a subset of the domains
of 4+ and -. Thus Conditions (ii) and (iii) in the definition of a ring hold for S.

By a+be S forall a,b e S and so[Ax 1l holds for S.

By[Ax2 (a+b)+c=a+ (b+c) for all a,b,c € R. Since S C R we conclude that (a +b) + ¢ =
a+ (b+c) for all a,b,c € S. Thus [Ax 2 holds for S.

Similarly, since for all elements in R it also holds for all elements of S.

Put Og := Og. Then (I)) implies 0g € S. By [Ax4lfor R, a = 0g +a and a = a + Oy for all a € R.
Thus a = 0g +a and a = a + Og for all a € S and so [Ax 4] holds for S.

Let s € S. Then s + (—s) = Og and since 0g = Og, s + (—s) = 0g. By —s € S and so[Ax 9l
holds for S.

By ab € S for all a,b € S and so[Ax 6] holds for S.

Since and [Ax 8 hold for all elements of R they also holds for all elements of S. Thus
and [Ax 8 holds for S.

So hold for S and thus S is a ring. Hence, by definition, S is a subring of R. O

Example 3.2.9. (1) Show that Z is a subring of Q, Q is a subring of R and R is a subring of C.

By example Z, Q and R are rings. So by definition of a subring, Z is a subring of Q, Q
is a subring of R and R is a subring of C.

(2) Let n € Z and put nZ := {nk | k € Z}. Show that nZ is subring of Z.
We will verify the four conditions of the Subring Theorem for S = nZ.
Observe first that since nZ = {nk | k € Z},

(%) a€ni = there exists k € Z with a = nk.

Let a,b € nZ. Then by

() a = nk and b =nl,

for some k,l € Z.
(I):O:nOandSOOGany

(II): a+0b nk+nl =n(k+1). Since k+1 € Z, ;I) shows a +b € Z. So nZ is closed under
addition.

(III): ab (nk)(nl) = n(knl). Since nkl € Z, £|) shows ab € Z. So nZ is closed under
multiplication.

(IV): —a = —(nk) = n(—k). Since —k € Z, (E shows —a € Z. So nZ is closed under

negatives.
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(3) Show that {[0]4,[2]4} is a subring of Zy.

We compute in Zy4: 0z, = 0 € {0,2} and so Condition (I) of the Subring Theorem holds. We
compute :

0 2 -0 2
x [0 2
0|0 2 010 O and
—x |0 2
212 0 210 0

So {0, 2} is closed under addition, multiplication and negatives. Thus {0, 2} is a subring of Z,4
by Subring Theorem.

Definition 3.2.10. Let R be a ring and a,b € R. Then a —b:= a+ (—b).

Proposition 3.2.11. Let R be a ring and a,b,c € R. Then

(a) —0g = Og () —(a+b)=(~a)+(~b) = (~a)—b.

(b) a—0g = a. (h) —(a—0b)=(—a)+b=>b—a.

(c) a-0p=0g=0g-a. (i) (=a)-(=b) = ab.

(d) a-(=b) = —(ab) = (—a) - b. (j) a-(b—c) =ab—ac and (a—b)-c = ac—be.
(e) —(—a) =a. If R has an identity 1,

(f) a—b=0g if and only if a = b. (k) (=1g)-a=—a=a-(—1g).

Proof. @ By[Ax40r + 0g = Or and so by the Additive Inverse Law O0r = —0g.

dﬂ)a—OR Def: - a+(—OR) @ a—i—OR@a.

We compute

a-0r = g (0p +0r) =R 0 0 +a-0p,
and so by the Additive Identity Law a-0r = Og. Similarly Og - a = Op.
@ We have
ab+a- () Z o b+ (=b) "Lt a. 05 @ 0p
So by the Additive Inverse Law —(ab) = a - (-b).

() By[AxHl, a + (—a) = 0g and so by the Additive Inverse Law a=—(—a).
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v a—b=0g
<= a+(=b) =0 — definition of -
< a=—(-b) — Additive Inverse Law [3.2.6]
= a=1b — (]ED

(g)

(@+b)+((=a) + (=b) =T (bta)+ (—a)+ (=b) =T ((b+a)+ (—a)) + (~b)
2T

and so by the Additive Inverse Law —(a +b) = (—a) + (=b). By definition of ”
(~a) + (~b) = (~a) b
(h)
~(a=8) "L —(a+(-b)
B g M pog

[

B (~a) 5 @ a () @an

(E') a-(b—c) Dt - a-(b+(—c)) @a-lH-a-(—c) @ ab + (—(ac)) DL ab — ac.
Similarly (a —b) - ¢ = ab — ac.

Suppose now that R has an additive identity. Then

at (1) -a) "LV 1504 (“1r) a B (g 4+ (1) -« B 0.0 € 0p.

Hence by the Additive Inverse Law —a = (—1g) - a. Similarly, —a = a - (—1g).

Lemma 3.2.12. Let R be ring and a,b,c € R. Then

c = b—a
— ct+a = b
= at+c = b
Proof.
a+c = b

= c+a = b —[Ax3
= (c+a)+(—a) = b+ (—a) — Additive Cancellation Law [3.2.2]
= c = b—a —B2J and Definition of b — a

71
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O
Definition 3.2.13. Let R be a ring with identity.

(a) Let u € R. Then u is called a unit in R if there exists an element in R, denoted by v~ and

called ‘u-inverse’, with

wut = 1p = u .

(b) Let u,v € R. Then v is called an (multiplicative) inverse of u if uv = 1g = vu.
(¢) Let e € R. Then e is called an (multiplicative) identity of R, if ea = a = ae for all a € R.
Example 3.2.14. Find the units in Z, Q and Zg.

Units in Z: Let u be a unit in Z. Then uv = 1 for some v € Z. So u|1 and so by|1.2.1{1 < |u| < 1.
Hence |u| = 1 and +1 are the only units in Z.

Units in Q: Let u is a non-zero rational number. Then u = > with n,m € Z with n # 0 and

m # 0. Thus % = 7 is rational. So all non-zero elements in Q are units.

Units in Zg: By Ze ={0,1,2,3,4,5} and so Zg = {0, £1, £2,3}. We compute

0 £1 £2 3
0o 0 0 O
+£1]0 £1 £2 3
210 £2 £2 0
310 3 0 3

So £1 (that is 1 and 5) are the only units in Zg.
Lemma 3.2.15. (a) Let R be a ring and e and ¢’ € R. Suppose that
(x) ea=a and (x%) a€ =a

for alla € R. Then e = €' and e is a multiplicative identity in R. In particular, a ring has at
most one multiplicative identity.

(b) Let R be a ring with identity and z,y,u € R with

(+) zu=1g and (++) uy=1g.

Then x =y, u is a unit in R and x is an inverse of u.
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Proof. @

(1)

73

O

Theorem 3.2.16 (Multiplicative Inverse Law). Let R be a ring with identity and u,v € R. Suppose

u 18 a unit. Then

voo= u
<~ vu = 1lp
<= w = 1p

In particular, u="' is the unique multiplicative inverse of u.

Proof. Recall first that by definition of unit:

() wut=1p and (%%) ulu=1p

First Statement = Second Statement’: Suppose v = u~!. Then vu = u~

"Second Statement = Third Statement’: Suppose that vu = 1. By
3.2.15 applied with = v and y = v~ we jave v = v~ and so uwv = uu

Ly (*:*) 1p.

(*) uu—! = 15. Thus by
-1 (i) 1
== R'

"Third Statement = First Statement’: Suppose that uv = 1z. By (**) u='u = 1z. Thus

3.2.15| applied with z = v~ and y = v gives u~! = v.
Lemma 3.2.17. Let R be a ring with identity and a and b units in R.
(a) a= ! is a unit and (a=")"! = a.

(b) ab is a unit and (ab)~' =b"ta" 1.

O]

Proof. @ By definition of ¢!, aa™! = 1 = a~'a. Hence also a™'a = 1p = aa™'. Thus a~ ! is a

unit and by the Multiplicative Inverse Law [3.2.16, a = (a=1)7L.
() See Exercise 3.2[#7

O]

Definition 3.2.18. A ring R is called an integral domain provided that R is commutative, R has

an identity, 1g # O and

(Ax 11) whenever a,b € R with ab= 0, then a = 0g or b = 0p.
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Theorem 3.2.19 (Multiplicative Cancellation Law for Integral Domains). Let R be an integral
domain and a,b,c € R with a # 0r. Then

ab = ac
= b = ¢
<— ba = ca

Proof. ‘First Statement = Second Statement:” Suppose ab = ac. Then

a(b—c) =ab—ac [.2.11()

=ab — ab Principal of Substitution, ab = ac
=0r 3.2.11J()

Since R is an integral domain, (Ax 11) holds. So a(b—¢) = Og implies a = O or b — ¢ = 0p. By
assumption a # O and so b — ¢ = Or. Thus by @, b=c.

"Second Statement = Third Statement:” If b = ¢ then ab = ac by the Principal of Substitution.

"Third Statement = First Statement:” Since integral domains are commutative, ba = ca im-
plies ab = ac. O

Definition 3.2.20. A ring R is called a field provided that R is commutative, R has an identity,
1r # Ogr and

(Ax 12) each a € R with a # Og is a unit in R.

Example 3.2.21. Which of the following rings are fields? Which are integral domains?

(a) Z. (c¢) R. (e) Zs. (8) Zp, p a prime.
) Q. (@) Zs. () Ma(R).
All of the rings have a non-zero identity. All but Ms(R) are commutative. If a,b are non zero

real numbers then ab # 0. So (Ax 11) holds for R and so also for Z and Q. Thus Z,Q and R are
integral domains.

@ 2 does not have an inverse in Z. So Z is an integral domain, but not a field.
The inverse of a non-zero rational numbers is rational. So Q is a integral domain and a field.
The inverse of a non-zero real numbers is real. So R is a integral domain and a field.

@ 41 are the only non-zero elements in Z3. 1-1=1and —1-—1=1. So +1 are units and Z3
is a field. Also £1-+1 = 41 # 0 and so Z3 is an integral domain.

. By [3.2.14] the units in Zg are +1 and +3. Thus 2 is not a unit and so Zg is not a field. Note
that 2.3 =6 =0 in Zg and so Zg is not an integral domain
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01 00 10 0 0 01
Note that : = and . = So M(R) is not
00 10 0 0 10 00 10
0 1{ (0 1 00
commutative. Also is not a unit and = . So Ma(R) fails all conditions
0 0 0 0 (0 O 0 0

of a field and integral domain, except for 1 # Og.

By each non-zero element in Z, has an inverse. So Z, is a field. Let A, B € Z with
AB = [0],. Then by A = [0], or B =[0],. Thus Z, is an integral domain.

Proposition 3.2.22. Every field is an integral domain.

Proof. Let F be a field. Then by definition, F' is an commutative ring with identity and 1p # Op.
So it remains the verify [Ax 11]in [3.2.18] For this let a,b € F with

(*) ab = OF.

Suppose that a # O0p. Then by the definition of a field, a is a unit. Thus a has multiplicative
inverse a~'. So we compute

0p at0p ) a ' (a-b) BxT (a'-a)-b Def: a™! 1p-b (Ax 10) b.

Sob= OF
We have proven that if a # O, then b = 0p. So a = Op or b = 0. Hence holds and F is
an integral domain. O

Theorem 3.2.23. Every finite integral domains is a field.

Proof. Let R be a finite integral domain. Then R is a commutative ring with identity and 15 # Og.
So it remains to show that every a € R with a # Op is a unit. Set S := {ar | r € R}. Define a
function f by

f:R— S r—ar

Let b,c € R with f(b) = f(c). Then ab = ac and by the Cancellation Law [3.2.19|b = ¢. Thus f is
1-1. Also

Imf={f(r)|reR}={ar|reR}=25,

and so f is onto. Hence f is a bijection and so |R| = |S|. Since S C R and R is finite we conclude
R = S. In particular, 1p € S and so there exists b € R with 1z = ab. Since R is commutative we
also have ba = 1 and so a is a unit. ]

Definition 3.2.24. Let R be a ring and a € R.

(a) Letn € Z*. Then a™ is inductively defined by a* = a and a™*! = a"a.
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(b) If R has an identity, then a® = 1g.

(¢) If R has an identity and a is a unit, then a="™ = (a=1)" for alln € Z*.

Exercises 3.2:

#1. Let R be a ring and a € R. Let n,m € Z such that a™ and a™ are defined. (So n,m € Z*, or
R has an identity and n,m € N, or R has identity, a is a unit and n,m € Z. ) Show that

(a) aa™ = a"t™.
(b) a™™ = (a™)™.
#2. Prove or disprove:
(a) If R and S are integral domains, then R x S is an integral domain.
(b) If R and S are fields, then R x S is a field.

#3. Which of the following six sets are subrings of Ma(R)? Which ones have an identity?

0 r
(a) All matrices of the form with r € Q.
0 0
a b
(b) All matrices of the form with a,b,c € Z.
0 c
a a
(c) All matrices of the form with a,b € R.
b b
a 0
(d) All matrices of the form with a,b € R.
a 0
a 0
(e) All matrices of the form with a € R.
0 a
a 0
(f) All matrices of the form with a € R.
0 0

#4. Let Z[i] denote the set {a + bi | a,b € Z}. Show that Z[i] is a subring of C.

#5. An element e of a ring is said to be an idempotent if e? = e.
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(a) Find four idempotents in M (R).
(b) Find all idempotents in Zjs.
(c) Prove that the only idempotents in an integral domain R are Or and 1g.

#6. Let R be a ring and b a fixed element of R. Let T'= {rb | r € R}. Prove that T is a subring of

R.
#7. (a) If a and b are units in a ring with identity, prove that ab is a unit with inverse b=1a 1.

(b) Give an example to show that if @ and b are units, then a~!'b~! does not need to be the
multiplicative inverse of ab.

#8. Let R be a ring with identity. If ab and a are units in R, prove that b is a unit.

#9. Let R be a commutative ring with identity 1z # Or. Prove that R is an integral domain if and
only if cancellation holds in R, (that is whenever a,b,c € R with a # Or and ab = ac then b = ¢.)

3.3 Isomorphism and Homomorphism
Definition 3.3.1. Let (R,+,-) and (S,®,®) be rings and let f : R — S be a function.

(a) f is called a homomorphism from (R,+,-) to (S,®,®) if

fla+b)= f(a)® f(b) [f respects addition]

and
fla-b) = f(a)® f(b) [f respects multiplication]

for all a,b € R.

(b) f is called an isomorphism from (R,+,-) to (S,®,®), if f is a homomorphism from (R,+,-)
to (S,®,®) and f is 1-1 and onto

(¢) (R,+,-) is called isomorphic to (S,®,®), if there exists an isomorphism from (R,+,-) to
(S,@,0).

Example 3.3.2. (1) Consider f:Z — R,a — a.

Let a,b € Z. Then

fla+b)=a+b=fla)+f(b)  and  f(ab)=ab= f(a)f(D)

and so f is homomorphism. f is 1-1, but not onto. Hence f is not an isomorphism.
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Consider g : R — R,a — —a.

Let a,b € R. Then

gla+b)=—(a+b)=—a+ (=b) =g(a) + g(b).

and so g respects addition.

glab) = —(ab) ~ and  g(a)g(b) = (—a)(=b) = ab

For a = b = 1 we conclude that

g(1-1)=—-(1-1)=-1 and g(l)g(1)=1-1=1.

So g(1-1) # g(1)-g(1). Thus g does not respect multiplication, and g is not a homomorphism.
But note that g is 1-1 and onto.

Let R and S be rings and consider h : R — S,r — 0Og.
Let a,b € R. Then

gla+b) =05 =05 +0s=g(a) +g(b)  and  g(ab) =05 = 0505 = g(a)g(b).

So g is a homomorphism. g is 1-1 if and only if R = {Ogr} and ¢ is onto if and only if S = {0g}.
Hence ¢ is an isomorphism if and only if R = {Or} and S = {0g}.

Let R be a ring. Consider idg : R — R,r —> 7
Let a,b € R. Then

idr(a+0b) =a+b=1idg(a) + idg(b) and idg(ab) = ab = idr(a)idgr(b)
and so idg is a homomorphism. Since idg is 1-1 and onto, idg is an isomorphism.

Let n be a non-zero integer. Consider h : Z — Zy,,a — [a]y.

Let a,b € Z. By definition of addition and multiplication in Z,

h(a+b) = [a+b], = [a],®[b], = h(a)Bh(b) and h(ab) = [ab],, = [a],®[b], = h(a)Oh(b).

So h is homomorphism. Since

and n # 0, h is not 1-1. So h is not isomorphism.

Let A € Z,,. By definition of Z,,, A = [a],, for some a € Z. Hence h(a) = A and h is onto.
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Example 3.3.3. Consider the function
ros
f:C—>M2(R),T+3i—>|: ]
—s r

Let a,b € C. Then a =r + si and b = 7 + § for some r,s,7,5 € R. So

f<a+b)

7+ si) + (7 + 5i)
_ f((r+f)+(s+§)z'>
|: r+7r s+s
—(s+3) r+7

and
f(ab) - f((r + si)(F + §¢)>
= (07— s3) + (15 + s7)i)
rr—88§  rs4sr

—(r§+sr) riF—s§

1
andsor=7and s =§. Hencea=r+si =74 § = b and so f is 1-1. Note that {

79

0
is not of
0 O]
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ros
the form and so f is not onto.
—-s T

Notation 3.3.4. (a) ‘f : R — S is a ring homomorphism’ stands for more precise (R,+,-) and
(S,®,®) are rings and f is a ring homomorphism from (R,+,-) to (S,®,®).’

(b) Usually we will use the symbols + and - also for the addition and multiplication on S and so
the conditions for a homomorphism become

fla+b)= f(a)+ f(b) and  f(ab) = f(a)f (D)

Remark 3.3.5. Let R = {r1,ra,...,rn} be a ring with n elements. Suppose that the addition and
multiplication table is given by

+ | ™ T Tn 71 T Tn

rn|al ... alj ... Q1n T1 b11 e blj NN bln
A and M

T [475] NN a,-j o Qin T3 bil e bij NN bm

Tn | Gnl ... Qpj ... Qpp Tn | bn1 oo bnj ot bun

So r; +1j =a;; and ryry = b for all1 <i4,j < n.
Let S be a ring and f : R — S a function. For r € R put v’ = f(r). Consider the tables A’ and
M’ obtain from the tables A and M by replacing all entries by its image under f:

L Th Ty TR T
/ / / / / / / /
rylay a.oay . ag, ry by by by,
, : : : : : : ,
A and M
/ / / / / / / /
(T I P N | O by by,
/ / / / / / / /
LR R i T | O oo by o by

(a) f is a homomorphism if and only if A" and M’ are the tables for the addition and multiplication
of the elements 1',... 1y, in S, that is i + 15 = aj; and rir; =b; for all 1 <i,j <n.

(b) fis 1-1 if and only if i, ..., 7l are pairwise distinct.
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(c) f is onto if and only if S = {r},rh, ..., }.

(d) f is an isomorphism if and only if A" is an addition table for S and M' is a multiplication
table for S.

Proof. @ f is a homomorphism if and only if

fla+b)=a+b and f(ab) = f(a)f(b)
for all a,b € R. Since R = {ry,...,r,}, this holds if and only if

flri+trg)=f(ri) + f(r;) and  f(rir;) = f(ri) f(r;)

for all 1 <4,j5 < n. Since r; +1; = a;; and r;7; = b;; this holds if and only if

flaij) = f(ri) + f(ry) and  f(bi;) = f(ri) f(r;)

Since f(r) =1/, this is equivalent to

ro_ / W
a;; =1 +r; and b =mrr;

[) f is 1-1 if and only if for all a,b € R, f(a) = f(b) implies @ = b and so if and only if a # b
implies f(a) # f(b). Since for each a € R there exists a unique 1 < i < n with a = r;, f is 1-1 if and
only for all 1 <4d,5 <mn, i # j implies f(r;) # f(r;), that is i # j implies r; # 7.

f is onto if and only if Imf = S. Since R = {ry,...,r,}, Imf = {f(r1),..., f(rn)} =
{rl,...,r}. So f is onto if and only if S = {r},..., 7}

@ Follows from @-.

Example 3.3.6. Let R be the ring from example [3.1.6] Then the map

f : R—)ZQ,O — [1]2,1 — [0]2
is an isomorphism.

The tables for R are

B0 1 0o 1
010 and 00 1
101 11 1

Replacing 0 by [1]2 and 1 by [0]2 we obtain



82 CHAPTER 3. RINGS

1 [0]> (1> [0
[z | [0]2 [1]2 and (2 | [t]2 [0]2 -
02 | [1]2 [0]2 [0]2 | [0]2 [0]2

Note that these are addition and multiplication tables for Zo and so by f is an isomorphism.
Lemma 3.3.7. Let f: R — S be a homomorphism of rings. Then

(a) f(Or) = 0s.

(b) f(—a) =—f(a) for all a € R.

(¢) fla—"0b)= f(a)— f(b) for all a,b € R.
Suppose in addition that R has an identity and f is onto, then

(d) S is a ring with identity and f(1g) = 1g.

(e) If u is a unit in R, then f(u) is a unit in S and f(u=') = f(u)~ L.

Proof. @ We have
f hom

FOR) + F(Or) =" f(0r+0r) "= F(0R).
So by the Additive Identity Law f(ORr) = 0g.
@ We compute
fla) + f(=a) "2 fa+ (~a)) =2 fom) & o5,

and so by the Additive Inverse Law f(=a) = —f(a).
(&)

f

=

Def —

fla=b) "= fla+(=0) "= fla) + f(=b) = f(a)+ (~f(b)) fla) = f(b).

@ We will first show that f(1g) is an identity in S. For this let s € S. Then since f is onto,
s = f(r) for some r € R. Thus

g

def —

(AX_lO)

f hom
s-f(lr) = f(r)f(lr) =" f(rlr) ~ =" f(r)=s,
and similarly f(1g)-s =s. So f(1g) is an identity in S. By [3.2.15|(a)) a ring has at most one identity
and so f(1g) = 1g.

Let u be a unit in R. We will first show that f(u~!) is an inverse of f(u):

P ) P planty B g @ g,

Similarly f(u=!)f(u) = 1g. Thus f(u~!) is an inverse of f(u) and so f(u) is a unit. Byf(u)_1
is the unique inverse of f(u) and so f(u~!) = f(u)~t O



3.3. ISOMORPHISM AND HOMOMORPHISM 83

Example 3.3.8. Find all onto homomorphisms from Zg to Zo X Zs.
Let f: Zg — Zo x Z3 be an onto homomorphism. For a,b € Z let

(a == [dls,  fla] == F(fals), and [a,8] == ([a]2, [bls)-

Since f is an onto homomorphism, we get from “@ that f(1z,) = 1z,xz,- Since [1] is the
identity in Zg and [1,1] is the identity in Zo x Zg this gives f[1] = [1,1]. Similarly, by [3.3.7 -@
f(0z) = 0z,xz, and thus f[0] = [0,0]. We compute

10} = [0,0]
fl =1
R = b+ 1) = fI+ fI1 = [LA] + [1,1] = [2,2] = [0, 2]
fBI=fR2+1] = f21+ f] = [2,2] + [1,1] = [3,3] = [1,0]
flA] =B+ =fBl+ ] = 3,3] + [1,1] = [4,4] = [0, 1]
fiB] = flA+1] = fl4] + f] = [4,4] + [1,1] = [5,5] = [1, 2]
By R.1.9 Zg = {[0], [1], [2]. [3], [4], 5]}, Z2 = {[0]2, [1]2} and Z3 = {[0]s, 13, [2]s}. Hence f is

uniquely determined and

Zo x Ty = {(z,y) | © € Zn,y € Z3} = {[0,0],0,1],]0,2], [1, 0], [1,1], [1, 2]}.

We conclude that f is 1-1 and onto. Moreover,

(%) flr] = [r,r] for all 0 < r < 5.

We will show that the function f : Zg — Zs x Z3 defined by (*) is a homomorphism. For this we
first show that f[m] = [m,m] for all m € Z. Indeed, by the Division Algorithm, m = 6¢q + r with
q,r € Z and 0 < r < 6. Then by [m]e¢ = [r]e¢ and since m = 2(3q) +r = 3(2q) + r, [m]2 = [r]2
and [m]s = [r]s. So [m] = [r], [m,m] = [r,r] and

() flm] = flr] = [r,r] = [m, m].

Note also that by the definition of addition and multiplication in the direct product Zs x Zs:

(s * %) [n+m,n+m]=[n,n]+[m,m] and [nm,nm]= [n,n|[m,m]

Thus
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finm) = fm,nm) =7 [, ) (m,m) 2

So f is a homomorphism of rings. Since f is 1-1 and onto, f is an isomorphism and so Zg is
isomorphic to Zo X Zs.

Example 3.3.9. Show that Z4 and Zo x Zo are not isomorphic.
Put R := Za x Zy. Since x + x = [0]3 for all x € Zy we also have

(z,y) + (z,y) = (z + z,y +y) = ([0]2, [0]2) = Or.
for all x,y € Zs. Thus

() r+r=0g

for all r € R. Let S be any ring isomorphic to R. We claim that s+ s = 0g for all s € S. Indeed, let
f: R — S be an isomorphism and let s € S. Since f is onto, there exists r € R with f(r) = s. Thus

m * .3.7|ja
s+s= )+ 1) "2 pr+r) 2 ror) HE2 o
Since [1]4 + [1]4 = [2]4 # [0]4 we conclude that Z, is not isomorphic to Zy X Zs.

Corollary 3.3.10. Let f : R — S be a homomorphism of rings. Then Im f is a subring of S. (Recall
here that Im f = {f(r) | r € R}).

Proof. 1t suffices to verify the four conditions in the Subring Theorem Observe first that for
se S,

(%) se€lmf = s = f(r) for some r € R

Let z,y € Im f. Then by :

(%) z=f(a) and y= f(b) forsomea,be R.

(I) By[3.3.7() f(0r) = 0g and so Og € Im f by ()
1 2+y D f@)+ f) ™M fa+b). ByBETa+be R Sow+yelmf by ().

(ITI) =y () f(a)f(b) £ hom f(ab). By[Ax 6l ab € R. So zy € Im f by (*).
(IvV) —=zx = —f(a) f(=a). By[AxHl —a € R. So —z € Im f by (*). O

Definition 3.3.11. Let R be a ring. For n € Z and a € R define na € R as follows:
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(i) 0a = Op.
(ii) If n > 0 and na already has been defined, define (n + 1)a = na + a.

(iii) If n < 0 define na = —((—n)a).

Exercises 3.3:
#1. Let R be ring, n,m € Z and a,b € R. Show that

(a) la = a. (¢) (n+m)a=na+ ma. (e) n(a+b) = na+ nb.

(b) (=1)a = —a. (d) (nm)a = n(ma). (f) n(ab) = (na)b = a(nb)
#2. Let f: R — S be a ring homomorphism. Show that f(na) = nf(a) for all n € Z and a € R.
#3. Let R be a ring. Show that:

(a) If f: Z — R is a homomorphism, then f(1)? = f(1).

(b) Let a € R with a®> = a. Then there exists a unique homomorphism ¢ : Z — R with g(1) = a.

a b
#4. Let S = a,b € Zy p. Given that S is a subring of Ma(Z2). Show that S is
b a+b

isomorphic to the ring R from Exercise 1

#5. (a) Give an example of a ring R and a function f : R — R such that f(a+b) = f(a) + f(b)
for all a,b € R, but f(ab) # f(a)(f(b) for some a,b € R.

(b) Give an example of a ring R and a function f : R — R such that f(ab) = f(a)f(b) for all
a,b € R, but f(a+b) # f(a)+ (f(b) for some a,b € R.

#6. Let L be the ring of all matrices in Mo(Z) of the form
b ¢

0
] with a,b,c € Z. Show that

the function f : L — Z given by f = @ is a surjective homomorphism but is not an

isomorphism.

#7. Let n and m be positive integers with n = 1 (mod m). Define f : Zyp, — Zpm, [€]m — [20]nm.
Show that

(a) f is well-defined. (That is if z,y are integers with [x],, = [y]m, then [zn],m = [yn]nm)

(b) f is a homomorphism.
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(c) fis1-1.
(d) If n > 1, then f is not onto.
#8. Let f: R — S be a ring homomorphism. Let B be a subring of S and define
A={reR]| f(r) e B}.

Show that A is a subring of R.

3.4 Associates in commutative rings

Definition 3.4.1. Let R be a commutative ring and a,b € R. Then we say that a divides b in R
and write alb if there exists ¢ € R with b = ac ]

Lemma 3.4.2. Let R be a commutative ring and r € R. Then Og|r if and only of r = Og.

Proof. By [3.2.11f(d), 0r = Og - O and so Og|0x.
Suppose now that » € R with Og|r. Then there exists s € R with » = Ogs and so by 3.2.11,
r = 0pg. O
Lemma 3.4.3. Let R be a commutative ring and a,b,c € R.
(a) | is transitive, that is if a|b and b|c, then alc.
(b) alb <= a|(—b) <= (—a)|(—b) <= (—a)lb.
(¢) If alb and alc, then a|(b+ ¢) and a|(b— c).
(d) If alb and alc, then a|(bu + cv) and a|(bu — cv) for all u,v € R

Proof. @ Let a,b,c € R such that a|b and b|c. Then by definition of divide there exist r and s in R
with

(*) b=ar and ¢ = bs.
Hence

c = bs = (ar)s = a(rs).
Since R is closed under multiplication, s € R and so a|c by definition of divide.

@ We will first show

(%) alb — al(—b) and (—a)|b
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Suppose that a divides b. Then by definition of “divide” there exists r € R with b = ar. Thus

—b=—(ar) a(—r)

b=ar (—a)(—r)

and

By[Ax 5 —r € R and so a|(—b) and (—a)|b by definition of “divide”. So holds.

Suppose alb. Then by al(=b).

Suppose that a|(—b), then by applied with —b in place of b, (—a)|(—b).

Suppose that (—a)|(—b). Then by applied with —a and —b in place of a and b, (—a)|— (=b).
By 3.2.11)(), —(—b) = b and so —alb.

Suppose that (—a)|b. Then by applied with —a in place of a, —(—a)lb. By [3.2.11|(¢),
—(—a) = a and so alb.

Suppose that alb and a|c. Then by definition of divide there exist r and s in R with

(5 * *) b=ar and c=as
Thus

T k * H 3.2.11
b+car+as@a('r+s) and b B2 4 g B2 a(r — s)

By [Ax Il and [Ax 3] R is closed under addition and subtraction. Thus r+s &€ Randr—s € R
and so alb+ c and alb — c.

Suppose that a|b and a|c and let u,v € R. By definition, b | bu and ¢ | cv and so by (@) abu
and alcv. Thus by (d), a|(bu + cv) and a|(bu — cv). O

Definition 3.4.4. Let R be an commutative ring with identity and let a,b € R. We say that a is
associated to b, or that b is an associate of a and write a ~ b if there exists a unit v in R with
au = b.

Lemma 3.4.5. Let n be a non-zero integer and a € Z. Then ged(a,n) = 1 if and only if [a], is a
unit i Zny,.

Proof. Recall first from that [1], is the identity in Z,.
=>: Suppose that ged(a,n) = 1. Then by Exercise 8 on Homework 4, [a,][u], = [1],, for some
u € Z. Since Z, is commutative this gives [u],[a], = [1], and so [a], is a unit.

<=: Suppose next that [a], is a unit. Then the definition of a unit shows that there exists U
in Z,, with [a], U = [1],. Then U = [u],, for some u € Z and so

lauln, = [a]n[uln = [alU = [1],,

Put d = ged(a,n). Then d | a and d | n and Exercise 9 on Homework 8 shows that d | 1. Thus
d =1 and ged(a,n) = 1.
O

Example 3.4.6. (a) Let n € Z. Find all associates of n in Z.
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(b) Find all associates of 0,1,2 and 5 in Zqy.
@ By [3.2.14] the units in Z are 1. So the associates of n are n - +1, that is +n.

[) By Z1o ={0,1,2,3,4,5,6,7,8,9} and so Zjg = {0, 41,42, +£3,+4, 5}.
We compute

n ‘O:I:l:I:Q:I:3:I:45

gcd(n,lO)‘lO 1 2 1 2 5

and so by the units in Zyg are +1 and £3.
So the associates of a € Z1y are a - £1 and a - 3, that is £a and £3a. We compute

a | associates of a | associates of a, simplified
0 £0,+3-0 0
+1,£3-1 +1,+3
2 +2,+£3-2 +2,+4
5 +5,+3-5 5

Lemma 3.4.7. Let R be a commutative ring with identity. Then the relation ~ (’is associated to’)
1s an equivalence relation on R.

Proof. Reflexive: Let a € R. By (Ax 10), 1 = 1grlg. Hence 1p is a unit in R. By (Ax 10)
algr = a and so a ~ a. Thus ~ is reflexive.

Symmetric: Let a,b € R with a ~ b. Then there exists a unit v € R with au = b. Since u is a
unit, u has an inverse v~!. Hence (multiplying au = b with u 1)

Ax — -1 A
but = (au)u_l a(uu 1) def u ( leo) a

alp
By [3.2.17u~ " is a unit in R and so b ~ a. Thus ~ is symmetric.

Transitive: Let a,b,c € R with a ~ b and b ~ ¢. Then au = b and bv = ¢ for some units v and
v € R. Substituting the first equation in the second gives (au)v = ¢ and so by [Ax 2 a(uv) = ¢. By
B217 wv is a unit in R and so a ~ ¢. Thus ~ is transitive.

Since ~ is reflexive, symmetric and transitive, ~ is an equivalence relation. O

Example 3.4.8. Determine the equivalence classes of ~ on Zqg.
Note that for a € Zjo, [a]~ = {b € Z10 | a ~ b} is the set of associates of a. So by Example

0]~ = {0}
. = {+1,+3}
2. = {£2,+4)
[l = {5}
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By Zyo = {0,1,...,9} = {0,4£1,£2,4£3,+4,5}. So for each = € Zj there exists y €
{0,1,2,5} with = € [y]~. Thus by [z]~ = [y]~. So [0]~,[1]~,[2]~, [5]~ are all the equivalence
classes of ~.

Lemma 3.4.9. Let R be a commutative ring with identity and a,b € R with a ~ b. Then alb and
bla.

Proof. Since a ~ b, au = b for some unit v € R. So alb.
By the relation ~ is symmetric and so a ~ b implies b ~ a. Thus, by the result of the
previous paragraph applied with a and b interchanged, bla. O

Lemma 3.4.10. Let R be a commutative ring with identity and r € R. Then the following four
statements are equivalent:

Proof. () = (b):  Since 1z ~ r,[3.4.9| gives r|1x.
(]E[) — : Follows from the definition of ‘divide’.
== @: Since R is commutative rs = 1 implies sr = 1. So r is a unit.
(d) = (@): By (Ax 10), 1zr = r. Since  is a unit this gives 1z ~ r by definition of ~. O

Lemma 3.4.11. Let R be a commutative ring with identity and a,b,c,d € R.
(a) If a ~ b and c ~ d, then alc if and only if b|d.
(b) If ¢ ~d, then alc if and only if al|d.
(¢) If a ~ b, then a|c if and only if b|c.

Proof. @ Suppose that a ~ b and ¢ ~ d.

=>: Suppose that alc. Since a ~ b, gives bla. Since ac and | is transitive (3.4.3|(a)) we
have b|c. Since ¢ ~ d, gives c|d. Hence by transitivity of |, b|d.

<=: Since ~ is symmetric, b ~ a and d ~ ¢. So the result of previous paragraph applied with
a and b interchanged and ¢ and d interchanged shows that b|d implies a|c.

(]E[) Since ~ is reflexive, a ~ a. Hence @ follows from @ applied with b = a.
Since ~ is reflexive, ¢ ~ ¢. Hence follows from @ applied with ¢ = d. O

Definition 3.4.12. Let R be a commutative ring and a,b € R. We say that a and b divide each
other in R and write a = b if

alb and bla.
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Exercises 3.4:
#1. Let R = Zqo.
(a) Find all units in R.
(b) Determine the equivalence classes of the relation ~ on R.
#2. Let R be a commutative ring with identity. Prove that:
(a) ~ is an equivalence relation on R.
(b) Let a,b,c,d € R with a = b and ¢ =~ d. Then a|c if and only if b|d.

#3. Let n be a positive integer and a,b € Z. Put d = ged(a,n) and e = ged(b,n). Prove
that:

#4. Let R be an integral domain and a, b, c € R such that a # Op and ba|ca. Then b|c.

3.5 The General Associative Commutative and Distributive Laws
in Rings
Definition 3.5.1. Let R be a ring, n a positive integer and a1, as,...a, € R.
(a) Fork € Z with 1 <k <n define Zle a; inductively by
(i) Zilzl a; = ay; and
(ii) Zfill a; = (Zf:l ai) + ag41-

80 Dy a; = << - ((a1 + ag) + a3) +"‘+an—2> +an—1> +ap.

(b) Inductively, we say that z is a sum of (a1,...,a,) in R provided that one of the following
holds:
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(1) n=1 and z = a;.

(2) n > 1 and there exist an integer k with 1 < k < n and z,y € R such that x is a sum of
(a1,...,ar) in R, y is a sum of (ags+1,akt+2,-..,an) in R and z =z +y.

(c) Hle an 15 defined similarly as in (@, Just replace * > 7 by [’ and 4 by “".
(d) A product of (ai,...,a,) in R is defined similarly as in @, just replace ‘sum’ by ‘product’ and
(+ 2 by (‘ 7'

() Letae R. Thena":=[["1a [=ga...a

n—times

(f) If R has an identity and a € R, then a° = 1g.
We will also write a1 + az + ...+ a, for Y " | a, and aias . ..an for [[7; ai,
Example 3.5.2. Let R be a ring and a,b,c,d € R. Find all sums of (a, b, ¢, d).

a is the only sum of (a).
a + b is the only sum of (a,b).
a+ (b+c¢) and (a + b) + ¢ are the sums of (a, b, c).

a+(b+(c+d),a+((b+c)+d),(a+b)+ (c+d),(a+ (b+c¢c))+d and ((a+b) + c) + d are the
sums of (a,b,c,d).

Theorem 3.5.3 (General Associative Law, GAL). Let R be a ring and a1, az, ..., a, elements of R.

Then any sum of (a1, ag,...,a,) in R is equal to Y-, a; and any product of (a1, as, ..., a,) is equal
to Ty ai
Proof. See[D.1.3| O

Theorem 3.5.4 (General Commutative Law,GCL). Let R be a ring, ai,as,...,a, € R and
f:AL2,...,n} = {1,2,...,n}
a 1-1 and onto function.
(a) Dimyai = 22l ag()-
(b) If R is commutative, then [, a; = [}, af@)-
Proof. See[D.2.2] O
Theorem 3.5.5 (General Distributive Law,GDL). Let R be a ring and ay,...,an,b1,..., by € R.

Then
() (0] -3 (e
i=1 j=1

i=1 \j=1
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Proof. See O
Example 3.5.6. Let R be a ring and a,b,c,d, e in R. By the General Associative Law:

a+b+ctd=(a+(b+c)+d=(a+b)+(c+d)=a+ (b+c)+d) =a+ (b+ (c+d)).

By the General Commutative Law:

a+b+c+d+e=d+c+a+b+e=b+a+c+d+e.
By General Distributive Law:

(a+b+c)(d+e) = (ad+ ae) + (bd + be) + (cd + ce).
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Polynomial Rings

4.1 Addition and Multiplication

Definition 4.1.1. Let R and P be a rings with identity and x € P. Then P is called a polynomial
ring with coefficients in R and indeterminate x provided that

(i) R is subring of P.
(ii) ax = za for all a € R.

(iii) For each f € P, there exists n € N and fo, fi1,..., fn € R such that

F=) fia' (= fot ho+...+ fax").
=0

(iv) Whenever n,m € N with n < m and fo, fi,-.., fns9os---,9m € R with

n m
§ fixZ = E gixla
=0 1=0

then f; = g; for all 0 < i <mn and g; = 0g for alln <i < m.
Lemma 4.1.2. Let R be ring with identity and a,b € R.
(a) a"™™ = a"a™ for all n,m € N.
(b) If ab = ab, then ab™ = b a.

Proof. @ If n =0, then a™t™ = a™ = 1pa™ = a’a™. So we may assume that n > 0. Similarly we
may assume that m > 0. Then

GAL
a"a™ = (aa...a)(aa...a) = aa...q =a""
— N — —
n—times m—times n+m—times

93
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For n = 0 we have ab® = algr = a = 1ga = V°a. Thus (]ED holds. Suppose @ holds for n = k.
Then

ab®* ! = a(b*b) = (ab®)b = (b*a)b = b¥(ab) = b*(ba) = (b*b)a = b*Ha.
Thus (]E[) also holds for n = k + 1. So by the Principal Of Induction, (]E[) holds for all n € N. [

Lemma 4.1.3. Let R be a ring with identity and P a polynomial ring with coefficients in R and
indeterminate x. Then 1z = 1p. In particular, x = 1gx.

Proof. Let f € P. Then by definition of a polynomial ring there exists n € N and fo, f1,... fn € R
with

(%) f=> fia
i=0

Let 1 < i < n. By definition of a polynomial ring 1zxz = z1r and so by (]ED

() 1pa! = 2'1R.

Thus

(% %) (fe)1e =2 fiai1n) © (fapet 0 gl
and

n

f

S
H@.
I

g (Z fix'

1=0

N———

n
GDL ; ()
g =) (fix)lg =
i=0
Similarly 1gf = f and so 1g is a multiplicative identity of P. Thus 1z = 1p. Since x € P this gives
1Rl‘ = 1p3} =x. O

Theorem 4.1.4. Let P be a ring with identity, R a subring of P, x € P and f,g € P. Suppose
that

(i) az = za for all a € R;
(ii) there exist n € N and fo,..., fn € R with f =", fixt; and
(iii) there exist m € N and go, ..., gm € R with g = > 1", gix".

Put f; =0g fori>mn and g; = 0g for i > m. Then

max(n,m)

(@) Frg= > (fitg)a.

1=0
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n+m min(n,k) n+m
CNZED 91 DorZ I il D SRNVPS) FIED of D /784 B
i=0 \j=0 k=0 \i=max(0,k—m) i=
Proof. @) Put p = max(n,m). Then f; = 0g for all n < i < p and g; = O for all m < i < p. Hence
P P
(%) f=> fia'  and  g=) ga'.
i=0 i=0
Thus
f+g = (Eof') + (Eooen’) — (%)
= P o (fix' + gizt) —GCL and GAL
= Soho(fi + i)’ - [Ax§
So @ holds.
(]E[) By assumption ax = za and so by (]E[)
(*x) ar™ =z"a

for all « € R and n € N. We now can compute fg.

f9 = (fo> > 97| — @ and @
i= j=0

(fiz")(g;27) | ~GDL

I
]
Ms

I
=)
.
Il
=)

(fiz'gs))a’ | —GAL

z
Il
1
()
-

3

(fz(gj )) J — (%)

I
Ms

~
I

o
<.
I

o

(figj)(:nimj) — GAL

I
MS
NgE

=0 \j=0
n m
= Z P — 1.2
= 7=0
Let k =1+ j for some 0 <7 <nand 0<j<m. Then

0<k<n+m, i<k k—i=73<m, k—-m<i1

and so
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0<k<n+m and max(0,k —m) < i < min(k,n).

Using the substitution £ =i+ j (and so j = k — i) and the GCL and GAL we therefore conclude
that

n m o n+m min(k,n)
> figie™ | = > > figeia
i=0 \ j=0 k=0 \i=max(0,k—m)
(++) n+m min(k,n)
= > figei | 2¥ —GDL

k=0 \:i=max(0,k—m)

If 0 < ¢ < max(0,k —m), then kK —i¢ > m and so gx_; = Or. Hence figr—; = fiOr = Or ( by
EZII)

If min(k,n) < i < k for some i € N, then min(n, k) # k and so min(n,k) = n and n < i. Thus
fi = 0g and so figr—; = Orgr—; = Og. It follows that

min(k,n) k
S figki =Y figh-i
i=max(0,k—m) 1=0
and so also
n+m min(k,n) n+m k
(+++) > Yoo g | A=) <Z figk—i> a.
k=0 \i=max(0,k—m) k=0 \i=0

Combining (+), (++) and (+++) gives (b).
O
Example 4.1.5. (1) Suppose that R = Zo, f = 1+ 2 + 2% and g = 1 + 22 + 2° + 2°. Compute
f+g
fHg=0+z+2%) + (1 +2% 423+ 25
=(1+1)+1+0)z+ 0+ 12+ (1+1)2* + (0 + 0)z* + (0 +1)2°
=0+ 1z + 12% + 023 + 02t + 12°

:x+x2—i—x5

(2) Suppose that R =Zg, f =1+ 2+ 2% and g = 1 + x + 222 + 323. Compute fg.
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fg=0+2z+22*) (1 + 2z + 22% + 323)
=(1-D)+Q-1+1-Dz+(1-2+1-142-1)a?
+(1-3+1-242-1)2% +(1-3+2-2)z" +(2-3)aP
=142z + 522+ 23 4+ 24
Definition 4.1.6. Let R be a ring with identity.

(a) R[z] denotes the polynomial ring with coefficients in R and indeterminate x constructed in

[F.3.1

(b) Let f € R[z] and let n € N and ag,a1,...a, € R with f = > 1 ja;z’. Leti € N. Ifi <n
define f; = a;. If i > n define f; = Og. Then f; is called the coefficient of 2 in f.(Observe
that this is well defined by

(c) N*:=NU{—o00}. For n € N* we define n+ (—o0) = —o0 and —oo +n = —oo. We extend the
relation’ <' on N to N* by declaring that —oco < n for all n € N*.

(d) For f € R[z], deg f is the minimal element of N* with f; = Og for alli € N with i > deg f. So
deg0r = —oc0 and if f =1, fix" with f, # 0, then deg f = n.

(e) If deg f € N then lead(f) is the coefficient of x9°8f in f. If deg f = —o0, then lead(f) = Og.
Lemma 4.1.7. Let R be a ring with identity and f € Rlx].

(a) f=0g if and only if deg f = —o0 and if and only if lead(f) = Og.

(b) deg f =0 if and only if f € R and f # Og.
(¢) f € Rif and only if deg f <0 and if and only if f = lead(f).
(d) f= Z?i%f fiz®. (Here an empty sum is defined to be Og)

Proof. This follows straightforward from the definition of deg f and leadf and we leave the details
to the reader. ]

Lemma 4.1.8. Let R be a ring with identity and f,g € R[z]. Then
(a) deg(f +g) < max(deg f,degg).
(b) deg(—f) =deg[.
(¢c) Ezactly one of the following holds.

(1) deg(fg) = deg f + degg and lead(fg) = lead(f)lead(g).
(2) deg(fg) < deg f + degg, lead(f)lead(g) = Or, f # Or and g # Og.
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In particular, deg fg < deg f + degg.

Proof. Put n := deg f and m :=degg. Then f =", f;z" and g = > " giz".

(EI) By @), f+g= Z?;ag{(n’m)(fi +gi)z* and so (f + g)x = Og for k > max(deg f,degg).
Thus @ holds.

Note that —f = >_1' ((—fi)z'. As f, # Or we also have — f,, # O and so deg(—f) = deg f.

Suppose first that f = 0g. Then fg = 0gg = Or. Hence deg f = —o0, deg(fg) = —oo,leadf =
Or and lead(fg) = Ogr. Hence

deg(fg) = —00 = —00 + deg g = deg f + deg g and lead(fg) = Or = O - lead(g) = lead(f)lead(g)

So (c:1)) holds in this case. Similarly, (c:1)) holds if g = Op.
So suppose f # 0r # g By LT[,

ndm max(k,n)

fg=> > figei | 2"

k=0 \i=min(0,k—m)
Thus (fg)r = Og for £ > n+ m and so deg fg < n + m. Moreover, for kK = n + m we have
max(0,k — m) = max(0,n) = n and min(n, k) = min(n,n + m) = n. So

(fg)n-‘rm = Z fign-‘rm—i = fngm = lead(f)lead(g)'

Suppose that lead(f)lead(g) # Or. Then deg(f + g) = n + m and lead(fg) = lead(f)lead(g).

Thus holds.
Suppose that lead(f)lead(g) = Og. Then deg(f + ¢g) <n + m and (c:2)) holds. O

Theorem 4.1.9. Let R be a commutative ring with identity. Then R|x] is commutative.
Proof. Let f,g € R[x]. Then

fg = (Zfzxz> D gal
i=0 =0

n m
= Z Z figjx'™ — Theorem 1.4
i=0 j=0
n m
= Z Z gj fiad T — R commutative
i=0 j=0
m n
= S gt — GCL, GAL
j=0 i=0

m n
= Zgjznj (Z fiwi> — Theorem E.1.4]
§=0 i=0

= af
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We proved that fg = gf for all f, g € R[z] and so R[x| is commutative. dJ
Theorem 4.1.10. Let R be field or an integral domain. Then

(a) deg(fg) =deg f + degg and lead(fg) = lead(f)lead(g) for all f,g € R]x].
(b) deg(rf) =deg f and lead(rf) = rlead(f) for allr € R and f € R[z] with r # Og.
(c) Rlx] is an integral domain.

Proof. By Theorem [3.2.22 any field is an integral domain. So in any case R is an integral domain.
We will first show that

(*) If f,g € R with lead(f)lead(g) = Og then f = 0g or g = Og.

Indeed since R is an integral domain, lead(f)lead(g) = Or implies lead(f) = 0 or lead(g) = Og.
4.1.7 now implies f = 0gr or g = Op.

@ By
(1) deg(fg) = deg f + degg and lead(fg) = lead(f)lead(g), or

(2) deg(fg) < deg f + degg, lead(f)lead(g) = Or, f # Or and g # Og.

In the first case @ holds. The second case contradicts (*) and so does not occur.

(]E[) By degr = 0 and leadr = r. So (]ED follows from @

By 4.1.9, R[z] is a commutative ring with identity 1g. Note that 1g;) = 1r # Or = Op[y)-
Let fg € R[z] with fg = Og. Then by (R]) lead(f)lead(g) = lead(fg) = lead(0r) = Og and by (*),
f=0g or g =0g. Hence R[] is an integral domain. O

Theorem 4.1.11 (Division Algorithm). Let F be a field and f,g € F[x] with g # Op. Then there
exist uniquely determined q,r € F|x] with

f=g9q+r and degr <degg.

Proof. Fix g € F[z| with g # Op. For n € N let P(n) be the statement:
P(n): If f € R[x] with deg f < n, then there exists ¢, € F[z] with f = gg+r and degr < deg g.

Let k € N such that P(n) holds for all n € N with n < k. We will show that P(k) holds. So let
f € Flx] with deg f < k. Put m = degg. Note that f = g-0r + f. So if K < m, then P(k) holds for
f with g =0g and r = f.

So we may assume that k& > m. Since g # Or we have m = degg € N and g,, # Op. As F is a
field this implies that g, is a unit in F'. Define

(1) F=F=9 95 fuz"™
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Since —g has degree m and g;! frz*~™ has degree k — m, shows that —g - gL fra®~™ has
degree at most m + (k —m) = k. Since f has degree at most k we conclude from that

deg f = deg(f — g g fra ™) < max (deg f.deg(—g - g7, fra" ™)) < k.

The coefficient of ¥ in f is fx — gm9 fr = fu — fe = 0p. Thus degf # k and so degf <k—1. By
the induction assumption, P(k — 1)-holds and so there exist ¢ and 7 € F[z] with

(2) f=9gGd+7 and deg7 <degg.

We compute

f= f+g fagplat™ - (1)
= (9G+7)+g- g fex"™™ —(2)
= (9G+9g g fed"™) +7 —Bx2ABXF
= g-(G+ogp' frr"™) +7 —[BxE
Put ¢ = (]—i—g;blkak*m and r = 7. Then by (3), f = qg + r and by (2), degr = deg7 < degg. Thus
P(k) is proved.

By the Principal of Complete Induction we conclude that P(n) holds for all n € N. This
shows the existence of ¢ and r.

To show uniqueness suppose that for i = 1,2 we have ¢;,r; € F[x] with

(4) f=gg+r and degr; <degg.
Then
991 +1r1 = gq2 + 12
and so
() g-(q1 —q2) =1r2 —71.

Suppose q1 — g2 # 0p Then deg(q; — g2) > 0 and so

EL10(@E)
=" deg(g - (

5
degyg < deg g + deg(q1 — q2) @ —q)) © deg(r1 —72)

%
< max(degry,degre) < deg g.

(Note here that we can apply [4.1.10|(a)) since F'is a field.)
This contradiction shows g1 — g2 = Op. Hence , by (5) alsoro — 71 =¢- (1 —q2) = ¢ -0 = Op.

Thus ¢; = g2 and 7| = 19, see 3.2.11@. O]
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Definition 4.1.12. Let F be field and f,g € F[z] with g # Op. Let q,r € F|x] be the unique
polynomzials with

f=gg+r and degr <degg
Then r is called the remainder of f when divided by g.

Example 4.1.13. Consider the polynomials f = 2%+ 2% — 2+ 1 and g = —2% + 2 — 1 in Z3[x].
Compute the remainder of f when divided by g.

-2 + z - 1
—x?+r—1 zt 4+ 28 -z + 1
zt — 23 a?
— 3 - 22 -z + 1
— 3+ 22 - 2
x? + 1
2 - oz + 1

x
Since degz = 1 < 2 = deg(—22 +  — 1), the remainder of z* + 23 — z + 1 when divided by
—2% + 2+ 1 in Zg[x] is x.
Exercises 4.1:
#1. Perform the indicated operation and simplify your answer:
(a
(b
(c
(d) (22 — 3z +2)(223 — 4o + 1) € Z7[x].

) (3% + 223 — 4a? + x +4) + (4o + 2% + 42 + 3) in Zs[z].
) (z+1)% in Z3[x].

) (z—1)° in Zs|x].

)

#2. Find polynomials ¢ and r such that f = g¢ + r and degr) < degg.

(a) f=32—222+ 622 —x+2and g =22+ 2+ 1in Q[z].
(b) f=2*—T7r+1and g =222 + 1 in Q[x].
) f
) f

(c) f=22*+2°>—x+1and g=2r— 1 in Zs[z].

(d) f=4da* + 223+ 622+ 42+ 5 and g = 322 + 2 in Z7[x].
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#3. Let R be a commutative ring. If a, # Og and ag + a1z + ... + a,z™ is a zero-divisor in R|z],
then a, is a zero divisor in R.

#4. (a) Let R be an integral domain and f, g € R[x]. Assume that the leading coefficent of g is a
unit in R. Verify that the Division algorithm holds for f as divident and ¢ as divisor.

(b) Give an example in Z[z] to show that part (a) may be false if the leading coefficent of g(z) is
not a unit.[Hint: Exercise 4.1.5(b).]

4.2 Divisibility in Flz]

In a general commutative ring it may or may not be easy to decide whether a given element divides
another. But for polynomial over a field it is easy, thanks to the division algorithm:

Lemma 4.2.1. Let F be a field and f,g € F|x] with g # Op. Then g divides f in F[z] if and only
if the remainder of f when divided by g is Op.

Proof. =>: Suppose that g|f. Then by Definition[3.4.1| f = gq for some ¢ € F[z]. Thus f = gq+0F.
Since deg 0 = —oo < deg g, Definition [4.1.12 shows that Op is the remainder of f when divided by

g.

<=: Suppose that the remainder of f when divided by g is 0p. Then by Definition [1.1.3
f = gq+ 0p for some ¢ € F[z]. Thus f = gq and so Definition shows that g|f. O

Lemma 4.2.2. Let R be a field or an integral domain and f,g € R[z]. If g # Or and flg, then
deg f < degg.

Proof. Since flg, g = fh for some h € R[z]. If h = Op, then by 3.2.11, g = fh = fOr = Opg,
contrary to the assumption. Thus h # Or and so degh > 0. Thus by [4.1.10al),

degg = deg fh = deg f + degh > deg f.

Lemma 4.2.3. Let F be a field and f € Flx]. Then the following statements are equivalent:
(a) deg f =0. (c) fllp. (e) f is a unit in F|x].
(b) fe€F and f # Op. (d) f~1p.

Proof. @ = (]ED: See .

@ = : Suppose that f € F and f # Op. Since F is a field, f has an inverse f~! € F.
Then f~! € Flz] and ff~! = 1p. Thus f|1r by definition of ‘divide’ and holds.

() = (d): and (d) = (¢): See[.4.10

— @: Since f is a unit, 1p = fg for some g € F[z]. So by 4.1.10@ deg f + degg =
deg(fg) = deg(1p) = 0 and so also deg f = degg = 0. —
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Lemma 4.2.4. Let F be a field and f,g € Flzx|. Then the following statements are equiva-
lent:

(a) f~g. (c) deg f=degg and flg.
(b) flg and g|f. (d) g~ f.

Proof. @ = (]ED: See

(]E[) == : Suppose that f|g and g|f. We need to show that deg f = deg g. Assume first that
g = Op, then since g|f, we get from that f = 0p. Hence f = g and so also deg g = deg f and
thus holds. Similarly, holds if f = 0p.

Assume that f # Op and g # Op. Since f|g and g|f we conclude from that deg f < degyg
and deg g < deg f. Thus degg = deg f and holds.

= @: Suppose that deg f = degg and f|g. If f = Op, then degg = deg f = —oc0 and so
g =0p. Hence f = g and so f ~ g since ~ reflexive.

Thus we may assume f # Op. Since flg, g = fh for some h € F[z]. Thus by @,
deg g = deg f + degh. Since f # Op we have degg = deg f # —oc and so degh = 0. Thus by
h is a unit. So g ~ f by definition of ~.

(d) = (a):  This holds since ~ is symmetric by O
Definition 4.2.5. Let F be a field and f € Flx].
(a) f is called monic if lead(f) = 1p.

(b) If f # OF then f :=lead(f)'f is called the monic polynomial associated to f. If f = O put
f=0g.

Lemma 4.2.6. Let F be a field and f, g € F[z].
(a
(

b) If f and g are monic and f ~ g, then f =g.

(
(d) deg f=degf.
(e) f~gifandonlyif f=4g.
Proof. Recall from that ~ is an equivalence relation and so reflexive, symmetric and transitive.

@) Suppose that f = 0p. Then f = 0 and so f ~ f as ~ is reflexive.
_ Suppose that f 7 Op. Then also lead(f) # Op and so by lead(f) is a unit in Fz]. Also
f=lead(f)"'f = flead(f)! and so f ~ f.

(]E[) By definition of f ~ g we have fu = g for some unit w in F|x By- 0 # u € F. Hence

) f
)
c) If f #0p, then f is the unique monic polynomial associated to f.
)
) [
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4.1.104(b) f monic (Ax 10)

1r 22" lead(g) "= ¢ lead(fu) lead(f)u | 22" 1 T
and sou=1p and g = fu= flp = f.

Suppose f # Op. By L.L.I0|(5) Then
lead(f) = lead (lead(f) ™" f) lead(f) Head(f) = 1p.

So f is monic. By @ we have f ~ f and so f is a monic polynomial associated to f.
Suppose g is a monic polynomial with g ~ f. Since ~ is symmetric we get we get f ~ g. By @
f~ f As ~ is transitive this gives f ~ g. Since both f and ¢ are monic we conclude from (]EI) that

g=1.
@By@fwfandsobydegf:degf.
@By@fwfandgwg. Thusby

(%) [fle=1fl~ and  [g].=[g]~.

Using this we get

I~y
= [fl~ =g~ - 053
=  [fl~ =~ - @
— f ~ g - 058

Definition 4.2.7. Let F' be a field and f,g € F|z].
(a) h € Flx] is called a common divisor of f and g provided that h|f and hlg.

(b) Let d € F[z]. We say that d is a greatest common divisor of f and g and write

d = ged(f,g)

provided that

(i) d is a common diwvisor of f and g,
(ii) If ¢ is a common divisor of f and g, then degc < degd, and
(iii) d is monic.

Lemma 4.2.8. Let F be a field and f,g,q,d,u € F[x]. Suppose that



4.2. DIVISIBILITY IN F[X] 105

(i) u is a unit in Flz],
(i) f=gq+ru, and
(iii) d = ged(g,r)

Then d = ged(f, g)

Proof. By definition of a greatest common divisor, d | g and d | r. Since f = gq + ru we conclude
from @ that d | f. Thus d is a common divisor of f and g.

Let ¢ be any common divisor of f and g. Since f = gq 4+ ru and w is a unit we have r =
f-ut—g-qu~t. Thus|3.4.3|d) implies that d | . So ¢ is a common divisor of g and 7. As d is a
greatest common divisor of g and r we conclude that degc < degd. Thus d is a greatest common
divisor of f and g. O

Theorem 4.2.9 (Euclidean Algorithm). Let F' be a field and f,g € F[x] with g # OF and let E_;
and Eqy be the equations

E, : f = [f-1p + g-0p
Ey : g = [f-0p + g-lead(g)_1

Let i € N and suppose inductively we defined equations Ey,—1 < k < i of the form

E, © g = froe + g-yk -
where ri, xk, yr € Flz] and r; is monic. According to the division algorithm, let tiy1,qi+1 € F|x]
with
ri—1 = ri¢i+1 +tit1 and degt; 1 < degr;

Iftiv1 # O, put u;r1 = lead(t;41) L. Let E;j11 be equation of the form riv1 = f-xit1 + g - Yir1
obtained by first subtracting q;11-times equation E; from E;_1 and then multiplying the resulting
equation by u;11. Continue the algorithm with i + 1 in place of i.

If tiv1 = 0p, defined =1;,u =x; and v =vy;. Then

d=gcd(f,g) and d= fu+ gv
and the algorithm stops.
Proof. For i € N let P(i) be the following statement:

(1) For —1 < k < i an equation Ej of the form ry, = f - zx + g - yx with rg, xx and yi € F[x] has
been defined;

(2) for —1 < k <i the equation E} is true;

(3) 7; is monic;
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(4) for all 1 <k <, degry < rg_1; and
(5) If d € Flz] with d = ged(ri—1,7;) then d = ged(f, g).

Put 71 = f,x_1 = lp,y_1 = Op,70 = §,70 = O and yo = lead(g)~!. Then for k = —1 and
k =0, Ey is the equation ry, = f -z + g -y and so holds for ¢ = 0. Also E_; and Ej are true, so
holds for i = 0. rg = § is monic and so holds for ¢ = 0. There is no integer k with 1 < k <0

and thus (4]) holds for ¢ = 0. Assume d € Fx] with d = ged(r—-1,70). Then d = ged(f, )k. Note that
g=f-0r+g-lead(g). As lead(g) is a unit in F[z] we conclude from that d = ged(f, g).
Thus P(0) holds. Suppose now that i € N and that P(i) holds. Then the equations

Ey : ria = f-mi1 + g-yi-1 and
E, +r o= [z 4+ 9y
are defined and true. Also ry,xy and yi are in Fx] for k =i — 1 and 4,

Since r; is monic, r; # 0 and so by the Division algorithm there exist unique ¢;41 and ¢;11 in
F[z] with

(*) ric1 = 1iq; + ti+1 and degt;11 < degr;
Consider the case that t;11 # 0p. Subtracting ¢;y1 times E; from FE;_; we obtain the true
equation
ric1 —rigiv1 = f- (@1 —xigiv1) + 9 Yim1 — Yidit1)-

Put u;. 1 = (leadt;1)~!. Multiplying the preceding equation with u;, 1 gives the true equation

Eiyq1 (Ti71 - T‘iqz'+1)uz'+1 = f- (%'71 - %’%‘H)Uiﬂ + g- (.%'71 - yz’QiJrl)uiJrl-

Putting 741 = (ri—1 — 7iGi+1)Uit1, Tiv1 = (Tim1 — TiQip1)Uir1 a0 Yip1 = (Vi1 — Yiir1)Uir1 We
see that F;11 is the equation ;41 = f- 241+ ¢ yi+1 and 741, 2,41 and y;41 are in F[z]. So and
hold for ¢ + 1 in place of 7.

By (*) we have t;11 = r;_1 — rigi+1 and so

-1 ;
Tipl = (Pic1 — TiQiy1)Uit1 = Lig1uipr = tiprlead(tip1)™ = tiy1.

Hence
rit1 = Lt

Thus ;11 is monic and holds. Moreover, t;+1 = ri+1lead(t;4+1) and (*) gives

ri—1 = 1iq; + riy1lead(ti11).
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Hence, if d € F|x] with d = gcd(r;,7i41), we conclude from that d = ged(ri—1,7;). As
P(i)(5) holds, this gives d = ged(f,g) and so in P(i+ 1) holds. We proved that P(i) implies
P(i 4+ 1) and so by the principal of induction, P(i) holds for all ¢ € N, which are reached before
the algorithm stops. Note here that Condition ensures that the algorithm stops in finitely many
steps.

Suppose next that t;11 = 0. Note that by any common divisor of r; and Or has degree at
most degr;. Since r; is monic common divisor of r; and 0 we conclude that r; = ged(r;,0F). As
tiv1 = Op, (*) implies that r;_; = 7;¢; + O and so shows that r; = ged(r—;, ;). As P(i)(5)
holds, this shows that r; = ged(f, g).

By P() the equation

Ei: ri=f-zi+g-y
is true. So putting d = r;,u = x; and v = y; we have
d=ged(f,g) and fu+gv
O

Example 4.2.10. Let f = 32* +42° + 222 + v+ 1 and g = 223 + 22 + 22 + 3 in Zs[z]. Find
u,v € Zo[z] such that fu+ gv = ged(f,g).

In the following if @ in integer, we just write a for [a]s. We have
lead(g) ' =2"1=2"1.1=2"1.6=3

and sorg = § =39 = 62% + 322 + 62 +9 =23 + 322 + = + 4.

Ey : 324234222 +2+1 = f-1 + g-0
Ey 2 +32+2x+4 = f-0 + g¢-3
3

3 +322+x+4 |32 + 423 + 222 + x + 1

3z + 922 + 322 4+ 22

—z? -z + 1
Subtracting 3z times Ey from F_; we get

—2?—zx+1 = f-1 + g-—92 | E_1—Ey-3x

and multiplying with (—1)~! = —1 gives
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Ei : 2242z—-1 = f-—-1 + g¢-4x

24r—1|23 + 322 + = + 4

Subtracting = + 2 times E; from Ej gives

1 = f-(O—(—l)(x+2)> + g-<3—(4x)(:c+2))

and so

Ey 1 = f(z+2) + g (2*+22+3)
Since x + 2 is monic, this equation is Fs. The remainder of any polynomial when divided by 1 is
zero, so the algorithm stops here. Hence
ged(fog)=1=f-(x+2)+g- (2> +2x+3)

Theorem 4.2.11. Let F be a field and f,g € Flz| not both Op.

(a) There exists a unique greatest common divisor d of f and g.

(b) There exists u,v € Fx] with d = fu+ gv.

(¢) If ¢ is a common divisor of f and g, then c|d.

Proof. By the Euclidean algorithm there exist u,v € F[x] such that d := fu + gv is a greatest
common divisor f and g. This proves the existence of d and (]ED

To prove (id]) let ¢ be any common divisor of @ and b. Since d = fu+ gv we conclude from [3.4.3|(d)
that c|d.

It remains to prove the uniqueness of a greatest common divisor. So let e be any greatest common
divisor of f and g. Then e divides f and g and shows that e|d. Since both d and e are greatest
common divisors of f and g we have dege < degd and dege < degd. Thus degd = dege. Since also
e|d we conclude from that d ~ e. As d and e are monic this implies that d = e, see (]ED
Thus d is the unique greatest common divisor of f and g. O
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Definition 4.2.12. Let F be a field and f,g € Flz|. f and g are called relatively prime if f and g
are not both O and ged(f,g) = 1.

Corollary 4.2.13. Let F be a field and f,g € Flx]|. Then f and g are relatively prime if and only
if there exist u,v € Flz| with fu+ gv = 1p.

Proof. =>: Suppose that f and g are relatively prime. Then f and g are not both 0p and
ged(f,g) = 1p. So by [1.2.11)(d) there exist u,v € Fz] with fu+ gv = 1p.

<=: Suppose that there exist u,v € F[x] with fu+ gv = 1p. Since 1p # Op this implies that f
and g are not both Or. Note that 17 is a monic common divisor of f and g. Let ¢ be any common
divisor of f and g. Since 1p = fu + gv we conclude that ¢ | 1p (see @) Hence degec < deg1p
by Thus 1g is a greatest common divisor of f and g and so f and g are relatively prime. [

Proposition 4.2.14. Let F' be a field and f,g,h € F[z]. Suppose that f and g are relatively prime
and f|gh. Then f|h.

Proof. Since f and g are relatively prime [4.2.13[shows that there exist u,v € F[z] with fu+gv = 1p.
Multiplication with A gives (fu)h + (gv)h = h and so (using the General Commutative Law)

[ (uh) + (gh) -v=h.
Since f divides f and f divides gh, now implies that f|h. O

Exercises 4.2:

#1. Let F be a field and a,b € F with a # b. Show that = + a and = + b are relatively prime in
#2. Use the Euclidean Algorithm to find the ged of the given polynomials in the given polynomial

2t — 2% — 2?2+ 1 and 2% — 1 in Q[x].

2+ 2t + 203 — 22 — 2 — 2 and 2 + 223 + 522 + 42 + 4 in Q[z].

)
)
¢) 2+ 32% + 22 + 4 and 2% — 1 in Z;[z].
) 4x* + 223 + 622 + 4z + 5 and 323 + 522 + 62 in Z;[z].
) @3 —iz? + 4z — 4i and 2 + 1 in C[z].

) 2* +x+1and 22+ 2 + 1 in Z[z].

#3. Let F be a field and f € F[z] such that f|g for every non-constant polynomial g € F[z]. Show
that f is a constant polynomial.

#4. Let F be a field and f,g,h € F[z] with f and g relatively prime. If f|h and g|h, prove that
falh.
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#5. Let F be a field and f,g,h € F|x]. Suppose that ¢ # Op and ged(f,g) = 1p. Show that
ged(fh, g) = ged(h, g).

#6. Let F' be a field and f,g € Flx] such that % is non-zero and one of f and g is non-zero. Let
d=ged(f,g) and let f,g € Flx] with f = fd and g = gd. Then ged(f,§) = 1p.

#7. Let I’ be a field and f,g,h € F[z] with f[gh. Show that there exist g, h € Flz] with glg, h|h
and f = gh.
4.3 Irreducible Polynomials
Definition 4.3.1. Let F be a field and f € Flx].
(a) f is called constant if f € F, that is if deg f < 0.
(b) Then f is called irreducible provided that

(i) f is not constant, and
(ii) of g € Flz] with g|f, then
g~1p or g~ f.

(¢) f is called reducible provided that

(i) f #Op, and
(ii) there exists g € F[x] with

glfy g~1lp, and g~ f.

Proposition 4.3.2. Let F be a field and O # f € Flx]. Then the following statements are
equivalent:

(a) f is reducible.

(b) f is divisible by a non-constant polynomial of lower degree.

(c) f is the product of two polynomials of lower degree.

(d) f is the product of two non-constant polynomials of lower degree.
(e) f is the product of two non-constant polynomials.

(f) f is not constant and f is not irreducible.
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Proof. () = (b):  Suppose f is reducible. Then by Definition [4.3.1] there exist g € F[z] with
glf, g =~ 1p and g » f. As g|f and f # Op we have g # Op (see [3.4.2)). By [4.2.3| all non-zero
constant are associated to 1g. Since g » 1r we conclude that g is not constant. By if g|f and
deg f = degg, then g ~ f. As g|f and g » f we conclude that deg f # degg. Also bysince glf
we have degg < deg f and so degg < deg f. Thus g is a non-constant polynomials of lower degree
than f which divides f. Thus (]E[) holds.

(]E[) == : Let g be a non-constant polynomial of lower degree than f with g|f. Then
degg > 0, degg < deg f and f = gh for some h € F[z]. Since f # Op we conclude h # 0p. By

4.1.10[a]) deg f = deg g + deg h and since degg > 0, degh < deg f. Thus (d) holds.

== @: Suppose f = gh with degg < degf and degh < degf. By |4.1.10| deg f =
deg g + deg h. Since degg < deg f we conclude that degh > 0. So h is not constant. Similarly g is

not constant. Thus @ holds.
@ = @: Obvious.

== @): Suppose f = gh where g and h are non-constant polynomials in F[z]|. Then g|f.
Since ¢ is not constant, Lemma gives g » 1p. Since degh > 0 and deg f = degg + degh (
@) we have deg f > degg. Since g is not constant, degg > 0 and so also deg f > 0 and f is
not constant. Also deg f # deg g and gives g = f. Thus by Definition f is not irreducible.
So @ holds.

() = (a):  Suppose f is not constant and f is not irreducible. Then by Definition there
exists g € F|x] with g|f, g » 1r and g » f. So by Definition f is reducible and @ holds. O

Remark 4.3.3. Let F' be a field.
(a) A non-constant polynomial in F[x] is reducible if and only if its is not irreducible.

(b) A constant polynomial in F|x] is neither reducible nor irreducible.

Proof. Let f € Flz] with f # 0p. Then [4.3.2)(a)),(f) shows that

() f is reducible if and only if f non-constant and f is not irreducible.

(): Let f be non-constant polynomial in F[z]. Then f # Og and (*) shows that f is reducible
if and only if f is not irreducible.

@: By definition irreducible polynomials are not constant. Let f € F[z] be reducible. By
definition of a reducible polynomial, f # Og and so (*) shows that f is not constant. O

Lemma 4.3.4. Let F be a field and p a non-constant polynomial in F[z]. Then the following
statement are equivalent:

(a) p is irreducible.

(b) Whenever g, h € F[z] with p|gh, then p|g or plh.
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(¢c) Whenever g, h € F[z] with p= gh, then g or h is constant.

Proof. (a) = (b):  Suppose p is irreducible and let g,h € F[z]| with p|gh. Put d := ged(p, 9).
By definition of ‘ged’, d|p and since p is irreducible, d ~ 1p or d ~ p. We treat these two cases
separately.

Suppose that d ~ 1p. Since both d and 1z are monic we conclude from that d = 1p. So p
and g are relatively prime and, since p|gh, implies p|h.

If d ~ p, then since d|g, 3.4.11 gives plg.

@) = (J: Suppose (b) holds and let g,h € F|[z] with p|gh. Note that p = plg. So p|p and
since p = gh we get p|gh. From (]ED we conclude p|g or p|h. Since the situation is symmetric in g and
h we may assume p|g. Since p # Op and p = gh we get g # Op and h # Op. From p|g andwe
have degp < degg. On the other hand by @, degp = deggh = degg + degh > degg. Thus
deg g = degp and degh = 0. So h € F.

= @: Suppose hold. Then p is not a product of two constant polynomials in F[x].
Hence shows that p is reducible. Since p is not constant, this means that p is irreducible

(see [4.3.3((d))). O

Lemma 4.3.5. Let F' be a field and let p be an irreducible polynomial in F[z|. If ay,...,a, € F[z]
and plajaz .. .ay, then pla; for some 1 <i <n.

Proof. By induction on n. For n = 1 the statement is obviously true. So suppose the statment is
true for n = k and that pla; ... agap41. By[£.3.4] plas ... a; or plagiy. In the first case the induction
assumption implies that p|a; for some 1 < i < k. So in any case p|a; for some 1 < i < k+ 1. Thus
the Lemma holds for £ + 1 and so by the Principal of Mathematical Induction the Lemma

holds for all positive integer n. O

Lemma 4.3.6. Let F be a field and p,q irreducible polynomials in F[x]. Then plq if and only if
p~gq.

Proof. 1f p ~ q, then pl|q, by So suppose that p|g. Since g is irreducible, p ~ 1p or p ~ ¢. Since
p is irreducible, p ¢ F and so by p o~ 1p. Thus p ~ q. O

Lemma 4.3.7. Let F be a field and f,g € F[z| with f ~ g. Then f is irreducible if and only if g is
wrreducible.

Proof. =>: Suppose f is irreducible. Then f ¢ F and so deg f > 1. Since f ~ g, implies
degg = degf > 1. Hence g ¢ F. Let h € F[z] with h|g. Since f ~ g, implies h|f. Since f
is irreducible we conclude h ~ 1g or h ~ f. In the latter case, since ~ is transitive h ~ g.
Hence h ~ 1p or h ~ g and so g is irreducible.

<=: Suppose g is irreducible. Since ~ is symmetric by we have g ~ f. So we can apply
the ‘="-case with f and ¢ interchanged to conclude that f is irreducible. O

Theorem 4.3.8 (Unique Factorization Theorem). Let F' be a field and f a non-constant polynomial
in F[z].
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(a) f is the product of irreducible polynomials in F[z].

(b) If n,m are positive integers and p1,p2,...,Pn and qi,...qm are irreducible polynomials in F[x]
with
f=pp2...pn and f=qq2-..qn,

then n = m and possibly after reordering the q;’s,

b1 ~4q1, D2~ Q2 cevy Pn ™~ dQn.

In more precise terms: there exists a bijection w: {1,...n} — {1,...m} such that
P1~4qr), P2~qr©2)s -5 Pn ™ 4n(n)-

Proof. @ The proof is by complete induction on deg f. So suppose that every non-constant poly-
nomial of lower degree than f is a product of irreducible polynomials.
Suppose that f is irreducible. Then f is the product of one irreducible polynomial (namely itself).
Suppose f is not irreducible. Since f ¢ F, shows that f = gh where g and h are non-
constant polynomials of lower degree than f. By the induction assumption both g and h are products
of irreducible polynomials. Hence also f = gh is the product of irreducible polynomials.

(]ED The proof of is by complete induction on n. So let k be a positive integer and suppose
that (]E[) holds whenever n < k. Suppose also that

(%) J=pip2...pk and f=aq...qm,

where m is a positive integer and p1,...,pk,q1,. .. ¢ are irreducible polynomials in F[x].

Suppose first that f is irreducible. Then by [£.3.2] f is not the product of two non-constant
polynomials in F[z]. Hence (*) implies k = m = 1. Thus p; = f = ¢q1. Since ~ is reflexive this gives
p1 ~ q1 and so (b) holds for n = k in this case.

Suppose next that f is not irreducible. Then p; # f # q1 and so k > 2 and m > 2.

Since f = (p1 ... px—1)pk We see that pg divides f. By (*) f = q1 ... ¢n and so pg divides qj . . . G-

Hence by pi|g; for some 1 < j < m. As pj, and g; are irreducible we get from that py ~ ¢;.
Reordering the g;’s we may assume that

Pk ~ qm-

Then py = gnu for some unit v € F[z]. Thus

(Prw)pz - Pr=1)@m = (01 -+ Pe—1)(@m) = D1 Pe-1Pe = [ = (q1 - - - Gm—1) G-
By 4.1.10|(c) F[z] is an integral domain. Since g, # O, the Cancellation Law |3.2.19| gives

(p1u)p2 . Pk—1 =q1---Gm—1-
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Since u is a unit, pyu ~ p;. Thus since p; is irreducible also piu is irreducible by The
induction assumption now implies that £k — 1 = m — 1 and that, after reordering the g¢;’s,

piu~q, p2~q2, ... Pg-1"~ qkg—-1.

From k—1=m—1 we get k = m. As p1 ~ piu and piu ~ ¢q; we have p; ~ q1, by transitivity of
~. Thus

p1~q, p2~q ... Pk-1"~ k-1,

Moreover, as py ~ ¢, and m = k we have py ~ gi. Thus (b) holds for n = k. By the principal
of complete induction, (b) holds for all positive integers n. O

Exercises 4.3:
#1. Find all irreducible polynomials of
(a) degree two in Zso[z].
(b) degree three in Zsa[z].
(c) degree two in Zs[x].
#2. (a) Show that 22 + 2 is irreducible in Zs[x].
(b) Factor 2* — 4 as a product of irreducibles in Zs[x].

#3. Let F be a field. Prove that every non-constant polynomial f in F'[x]| can be written in the form
f =cpipa...p, with ¢ € F and each p; monic irreducible in F[z]. Show further that if f = dq1 ... qm
with d € F and each ¢; monic and irreducible in F[z], then m = n, ¢ = d and after reordering and
relabeling, if necessary, p; = ¢; for each .

#4. Let F be a field and p € Flz] with p ¢ F. Show that the following two statements are
equivalent:

(a) p is irreducible
(b) If g € Fx] then p|g or ged(p, g) = 1p.

#5. Let F' be a field and let p1,p2, ... p, be irreducible monic polynomials in F'[z] such that p; # p;

l1, 02

forall 1 <i < j <n. Let f,g € F[z] and suppose that f :plflp;@...pﬁ" and g = pi'ps...plr for
some ki, ko, ..., kn,l1,l0..., 1, € N.

(a) Show that f|g in F[z] if and only if k; <; for all 1 <i < n.

(b) For 1 <i < n define m; = min(k;, ;). Show that ged(f,g) = p{"'py?...pon.
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4.4 Polynomial function

Theorem 4.4.1. Let R and S be commutative rings with identities, o : R — S a homomorphism of
rings with a(1g) = 1g and let s € S.

(a) There exists a unique ring homomorphism o, : Rlx] — S such that as(x) = s and as(r) = a(r)

for allr € R.
deg f ' deg f ]
(b) Forall f =" fix' in Rlz], as(f) = Y a(fi)s'.
=0 1=0

Proof. Suppose first that §: R[z] — S is a ring homomorphism with

(%) B(x)=s and B(r) = a(r)

for all € R. Let f € R[x].
Then

deg f ‘
B(f) = /3(2 f:c) 4 17)(d)

This proves (]ED and the uniqueness of as.

It remains to prove the existence. We use (@ to define az. That is we define

deg f ‘
as: Rlx] — S, fr— Z a(fi)s".

=0
It follows that
as(z) = as(lpz) = a(lp)s = 1gs = s
and if r € R, then

as(r) = ozs(rxo) = a(r)so =a(r)ls = a(r).

Let f,g € R[z]. Put n = max(deg f,degg) and m = deg f + degg.
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as(f+g) = Qs (Z(fZ + gi)z > — [A1.4() with R[z] in place of P

1=0
= ol fi + gi)s' — definition of ay
=0
= Z (a(fl) + a(gi)) s' — Since « is a homomorphism
=0

deg f ' degg )
= (Z (fz-)sZ) + <Z oz(gl-)sl> — 1.4 with (S, S,z) in place of (R, P, )

=0 =0
= as(f) + as(g — definition of ayg, twice

m k
as(fg) = Qg (Z (Z figk_Z-) iUk) — [A1.4f) with R[z] in place of P

k=0 \:=0
m k
= Zoz <Z figk_i> sk — definition of ay
k=0 i=0
m k
= Z Z alfi)alge—i) | s — Since « is a homomorphism
k=0 \i=0
deg degg
= ( a(fi)sl) : Z a(gj)s’ — 1.4 with (S, S,z) in place of (R, P, z)
i=0 §=0
= as(f) - as(g) — definition of o, twice
So a, is a homomorphism and the Theorem is proved. O

Example 4.4.2. Compute «; in the following cases:
(1) R is a commutative ring with identity, S = R, a = idg and s € R.
(2) R is a commutative ring with identity, S = R|z], a(r) = r and s = z.

(3) R=7Z, nis an integer, S = Z,|[z], a(r) = [r], and s = .

] deg f deg f

1) as(f) = alfi)s' = Z fis'

| | 1=0

] deg f deg f

2) as(f) = Z fzs—Zfza:—

So a is 1dent1ty function on R[ ].
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Note first that by Example a:Z — Zylx],r — [r]n is a homomorphism. Also

deg f ~ degf
as(f) =Y a(fi)s' = > [filna’
=0 =0

So as(f) is obtain from f by viewing each coefficient as congruence class modulo n rather than
an integer.

Definition 4.4.3. Let I be a set and R a ring.
(a) Fun(1, R) is the set of all functions from I to R.
(b) For «, 8 € Fun(I, R) define o + 3 in Fun(I, R) by
(o + B)(3) = ai) + ()
forallie .
(¢) For «, 8 € Fun(I, R) define a8 in Fun(I, R) by
(aB)(i) = a())B(0)
forallie .
(d) Forr € R define r* € Fun(I, R) by

forallieI.
(e) Fun(R) = Fun(R, R).
Lemma 4.4.4. Let I be a set and R a ring.
(a) Fun(l, R) together with the above addition and multiplication is a ring.
(b) 0% is the additive identity in Fun(l, R).

c) If R has a multiplicative identity 1g, then 1% is a multiplicative identity in Fun(I, R).

(
(d) (—a)(i) = —a(i) for all « € Fun(I, R), i € I.

)

)

)

(e)

Proof. Note that Fun(/, R) = X,;.; R and so @)—@) follow from
@ Let a,b € R and ¢ € I. Then

The function 7 : R — Fun(I, R),r — r* is a homomorphism. If I # ), than T is 1-1.

(a+b)*() = a+b — definition of (a + b)*
= a*(i) +b*(i) — definition of a* and b*

= (a*+b*)(i) — definition of addition of functions
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Thus (a + b)* = a* + b* by and so 7(a + b) = 7(a) + 7(b) by definition of 7.
Similarly,

(ab)*(i) = ab — definition of (ab)*
= a*(i)b*(i) — definition of a* and b*
= (a*b*)(i) — definition of multiplication of function
Hence (ab)* = a*b* by [0.3.11) and so 7(ab) = 7(a)7(b) by definition of 7.
Thus 7 is a homomorphism .

Suppose that I # () and 7(a) = 7(b). Then a* = b* and there exists i € I. Soa = a*(i) = b*(i) = b
and 7 is 1-1. O

Notation 4.4.5. Let R be a commutative ring with identity and f € Rx]. For f = Z?ﬁ%f fixt € Flx]
define the function

ff:R—R
by
deg f '
=Y g
i=0
for all r € R.

f* is called the polynomial function on R induced by f.
Remark 4.4.6. Let R be a commutative ring with identity.

(a) Letid : R — R,r — r be the identity function on R and for r € R let id, : R[x] — R be the
homomorphism from[4.4.1. Then
fr(r) =id,(f)

forall f € Flz] and r € R.

(b) Let f € R[x] be constant polynomial. Then the definitions of f* € Fun(R) in and in

coincide.
Proof. @: By Example id, (f) =Y, deg f fir' and so id,(f) = f*(r).
@SincefEF,f:me and so f*(r) = f for all r € R. O

The following example shows that it is very important to distinguish between a polynomial f
and its induced polynomial function f*.

Example 4.4.7. Determine the functions induced by the polynomials of degree at most two in Zs[z].
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‘ f ‘0‘1‘x‘m—i—l‘xQ‘x2+1‘x2+x‘x2+w+l‘
ffo)yro|1fo 1 0 1 0 1
FO o1l o | 1] o 0 1

We conclude that z* = (22)*. So two distinct polynomials can lead to the same polynomial
function. Also (22 + x)* is the zero function but 22 + x is not the zero polynomial.

Theorem 4.4.8. Let R be commutative ring with identity.
(a) f* € Fun(R) for all f € R[z].
(b) (f +9)"(r) = F() + g°(r) and (f9)*(r) = f*(r)g*(r) for all f,g € Rlz] and 7 € .
() (f+9)"=f"+g" and f*g" = f*g" for all f,g € R[z].
(d)
Proof. @ By definition f* is a function from R to R. Hence f* € Fun(R).
()

The function R[x] — Fun(R), f — f* is a ring homomorphism.

(f+9*(r) = id(f+g) 446 El)
= id,(f) +1id,(g9) — id, is a homomorphism

= f*(r)+g*(r) 446 EI),twice

(fg) —4.4.6@)

)id,(g) — id, is a homomorphism

= f*(r)g*(r) —4.4.6@), twice

and similarly

(fg)*(r) = i

Let » € R. Then
(f+9)r(r) = fFFr)+g(r) — @)
= (f*+g*)(r) — Definition of addition in Fun(R)
So (f+g)" = f*+ g*. Similarly
(fo)*(r) = f*(r)g*(r) — ()
= (f*¢*)(r) — Definition of multiplication in Fun(R)

and so (fg)* = f*g".
@ Follows from . O
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Lemma 4.4.9. Let F be a field, f € F[z] and a € F. Then the remainder of f when divided by
x—ais f*(a).

Proof. Let r be the remainder of f when divided by x —a. So r € F[x], degr < deg(x —a) and there
exists g € F[z] with

(%) f=q- (x—a)+r

Since deg(z — a) = 1 we have degr < 0 and so r € F. Thus

(+) r*(t) =r
for all t € R.
f*(a) (;) (q- (x—a)+r)(a) 4'42 (¢ (z —a))*(a) +r*(a)
B30 ) @—ar@+r@ TS e+
= ¢*(a)(a—a)+r () Op + 7
3'2.2 Op +r @ r

O]

Definition 4.4.10. Let R be a commutative ring with identity, f € R[z] and a € R. Then a is
called a root of f if f*(a) = 0p.

Theorem 4.4.11 (Factor Theorem). Let F a field, f € F[z] and a € F. Then a is a root of f if
and only if x — alf.

Proof. Let r be the remainder of f when divided by z — a. Then

x—alf
— r=0p — 2]
= f*(a) =0p —f*(a) =r by [£4.9

<= aisaroot of f — Definition of root

Lemma 4.4.12. Let R be commutative ring with identity and f € R[z].
(a) Let g € R[x] with g|f. Then any root of g in R is also a root of f in R.

(b) Leta € R and g,h € R[z] with f = gh. Suppose that R is field or an integral domain. Then a
is a root of f if and only if a is a root of g or a is a root of h.
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Proof. @: Let a be a root of g. Then ¢g*(a) = Og. Since g|f, there exists h € R[x| with f = gh.
Then

F(a) = (gh)*(a) =29 g*(a)h*(a) = 0g - h*(a) = 0.

Thus a is a root of f. So @ holds.

(]E[) : Suppose that R is field or an integral domain. By [3.2.22] all fields are integral domains.
Thus R is an integral domain and so (Ax 11) holds. Hence

a is a root of f

= f*(a) =0gr — definition of root

= (gh)*(a) = Or —f=gh

— g (@)h*(a) = On r48(d

= g*(a) =0r or h*(a)=0g —(Ax 11)

<= aisarootof g or aisarootofh —definition of root, twice

O

Example 4.4.13. (1) Let R be a commutative ring with identity and a € R. Find the roots of
r—ain R.

Let b € R. Then (z —a)*(b) = b—a. So b is aroot of x — a if and only if b — a = Or and if and
only if b = a. Hence a is the only root of x — a.

(2) Find the roots of 22 — 1 in Z. Note that

22 —1=@—-1)(z+1)=(z—1)(z—(-1)).

Since Z is an integral domain, [4.4.12|show that the roots of 22 — 1 are the roots of 2 — 1 together
with the roots of z — (—1). So by the roots of #2 — 1 are 1 and —1.

(3) Find the roots of 22 — 1 in Zsg.

Since Zg is not an integral domain, the argument in does not work. We compute in Zg

02—1=—1,(x1)>-1=1-1=0,(+2)’-1=4-1=3,(£3)>=9-1=8=0,4>~-1=15= —1.
So the roots of 2 — 1 are £1 and +3. Note here that (3 —1)(3+1) =2-4 =8 = 0. So the
extra root 3 comes from the fact that 2 -4 = 0 in Zg but neither 2 nor 4 is zero.

Theorem 4.4.14 (Root Theorem). Let F' be a field and f € F[z] a non-zero polynomial.
Then there exist a non-negative integer m, elements ay,...,am € F and q € F[z] such that
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(a) m < degf.
(

(¢) q has no roots in F.

)

b) f=q-(x—a1) - (x—a2) ... - (x —ap).

)

(d) {ai,a2,...,am} is the set of roots of f in F.

In particular, the number of roots of f is at most deg f.

Proof. The proof is by complete induction on deg f. So let £ € N and suppose that theorem holds
for polynomials of degree less than k. Let f be a polynomial of degree k.

Suppose that f has no roots. Then the theorem holds with ¢ = f and m = 0.

Suppose next that f has a root a. Then by the Factor Theorem x — a|f and so

(%) f=g-(x—a)

for some g € Flx Bym 4.1.10|deg f = deg g + deg(z —a) = degg+ 1 and so degg = k — 1. Hence by
the induction assumptlon there exist a non-negative integer n, elements ay,...,a, € F and q € F[z]
such that

(i) n < degg.
(i) g=q-(z—a1) - (x—az) ... - (x —ay)
(iii) ¢ has no roots in F.
(iv) {a1,ag,...,a,} is the set of roots of g.
(i)
Putm=n+1and a, =a. Thenm=n+1 < degg+1=(k—1)+ 1=k =deg f and so
holds. From f=g¢-(z —a) =g (x — ay) and we conclude that (b)) holds. By (i), (d) holds.
Let b € F. Since f =g (z — a), 4.4.12[shows that b is a root of f if and only if b is a root of g

or g is a root of x — a,,. Using we conclude that b root of f if and only if b € {a1,a9,...a,} or
b— a;,, = 0p and so if and only if b € {a1,az2...,an,an} ={ai1,...,an}. Thus also @ holds. O

Remark 4.4.15. 22 — 1 has four roots in Zg, namely £1 and +3, see Example @ So in
rings without (Ax 11) a polynomial can have more roots than its degree.

Lemma 4.4.16. Let F' be a field and f € F|x],

(a) Ifdeg f =1, then f has a root in F.

(b) Ifdeg f > 2 and f is irreducible, then f has no root in F.

(c¢) Ifdeg f =2 or 3, then f is irreducible if and only if f has no roots in F.
Proof. See Exercise
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Exercises 4.4:
#1. Let F be a field and f € F[x]. Show that
(a) If deg f =1, then f has a root in F.
(b) If deg f > 2 and f is irreducible, then f has no root in F.

(c) If deg f =2 or 3, then f is irreducible if and only if f has no roots in F.

#2. Let F' be an infinite field. Then the map F[z] — Fun(F'), f — f* is 1-1 homomorphism. In
particular, if f and g in F[z] induce the same function from F to F, then f = g.

#3. Show that z — 1p divides a,2" + ...a12 + ag in Flz] if and only if ag+ a1 + ...+ a, = 0.

#4. (a) Show that 7 — x induces the zero function on Zr.

(b) Use @ and Theorem [4.4.14] to write 7 — 2 is a product of irreducible monic polynomials in
Zs.

#5. Let R be an integral domain and n € N Let f,g € R[z]. Put n = deg f. If f = O define
f*=0gr and my = 0. If f # Og define

£=> foi
and let my € N be minimal with fp,, # Op. Prozveothat
(a) deg f =mys+deg f°.
(b) f=wbn - (f0)"
(c) (f9)* = f*g".

(d) Let k,l € N and suppose that fy # Og. Then f is the product of polynomials of degree k and
[ in R[x] if and only if f* is the product of polynomials of degree k and [ in R|x].

)
)
)
)

(e) Suppose in addition that R is a field and let a € R. Show that a is a root of f* if and only if
a # 0r and a is a root of f.

#6. Let p be a prime. Let f,g € Zp[z| and let f*,¢* : Z, — Z, be the corresponding polynomial
functions. Show that:

(a) If deg f < p and f* is the zero function, then f = Op.
(b) If deg f < p,degg < p and f # g, then f* # g*.
(c
(

)

) There are exactly pP polynomials of degree less than p in Zy[z].
d) There exist at least pP polynomial functions from Z, to Z,.
)

)

(e
(f

There are exactly p? functions from Z, to Z,.

All functions from Zj, to Z, are polynomial functions.
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Chapter 5

Congruence Classes in F[x]

5.1 The Congruence Relation

Definition 5.1.1. Let F be a field and p € F[x]. Then the relation = (mod p) on F[z] is defined
by
f=g (modp) if plf—ginFlz]

If f =g (mod p) we say that f and g are congruent modulo p.
Example 5.1.2. Let f =23+ 22 +1,g=2>+zand p=a2?+z+1in Zs[z]. Is f =g (mod p)?

f and g are congruent modulo p if and only if p divides f — ¢ and so by f if and only if the
remainder of f — g when divided by p is Or. So we can use the division algorithm to check whether
f and g are congruent modulo p.

We have f —g =23+ 2+ 1 and

24ax+1|23 + xz + 1

2 4+ x + 1

X

So the remainder of f — g when divided by p is not zero and therefore
P4+ +1#2%+2 (mod 2® +x +1)
in Zso[z).

Theorem 5.1.3. Let F' be a field and p € F[z]. Then the relation = (mod p)’ is an equivalence
relation on F[z].

125
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Proof. We need to verify that ‘= (mod p)’ is reflexive, symmetric and transitive.
Reflexive: Let f € Flz]. Then f — f =0rp =p-0p. Sop|f — f and f = f (mod p).
Symmetric: Let f,g € Flz] with f = ¢g (mod p). Then p|f —g. Since g — f = —(f — 9),
@ implies that p|g — f. Thus g = f (mod p).
Transitive: Let f,g,h € Flx] with f = ¢g (mod p) and g = h (mod p). By definition of =

(mod p) we have p|f — g and p|g — h. Observe that f —h = (f — g) + (¢ — h) and so by [.4.3((d),
p|f —h. Thus f = h (mod p). O

Notation 5.1.4. Let F be a field and f,p € Flx].
(a) [f]p denotes the equivalence class of = (mod p)’ containing f. So
[flp={9 € Flz]| f=g (modp)}
[f]p is called the congruence class of f modulo p.

(b) F[z]/(p) is the set of congruence classes modulo p in F[z]. So
Flal/(p) ={ [flp | f € Flz] }

Theorem 5.1.5. Let F' be a field and f,g,p € F|x] with p # 0p. Then the following statements are
equivalent:

(a) f=g+pk for some k € Flz]. (h) £ € [g]p-

(b) f —g=pk for some k € Flz]. (i) g= f (mod p).

(c) plf — g () plg—f-

(d) f=g (mod p). (k) g— f = pl for some | € Fla).

(¢) g €[fly (1) g= f +pl for some | € Fla].

(0 s lgly #0 (m) f and g have the same remainder when di-
(&) [f]p = lglp- vided by p.

Proof. (@) <= (b): and (k) <= (1): This holds by [3.2.12

(b) <= (c): and (k) <= (j): Follows from the definition of ‘divide’.

(c) <= (d): and (i) <= (j): Follows from the definition of ‘= (mod p)’.

By ‘= (mod p)’ is an equivalence relation. We we can apply Theorem and conclude
that statements @— are equivalent.

It follows that statements @— are equivalent.
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Let r1 and 79 be the remainders of f and g, respectively, when divided by p. Then there exist
q1,q2 € Flx] with

f=ppn+r and degr; <degp
g=pg+ry and degry < degp

— (]ED: Suppose holds. Then r; = r9 and

g—f=Wme+r)—(Pa+r)=p-(@—q)+(re—r1)=p- (@2 —q1)-
So (]ED holds with £ = g2 — q1.

@ = : Suppose f = g+ pk for some k € F[z]. Then f = (pga +1r2) + pk = p(q2 + k) + 2.
Note that g2 + k € Flz|, ro € Flz] and degre < degp. So ry is the remainder of f when divided by
p and holds. ]

Theorem 5.1.6. Let F be a field and f,p € F with p # Op. Then there exists a unique r € F|x]
with degr < degp and [f], = [r]p, namely r is the remainder of f when divided by p.

Proof. Let s be the remainder of f when divided by p and let r € F[z] with degr < degp. Since

r =p0p +r and degr < degp, r is the remainder of r when divided by p. By [f]p = [r]p if and
only f and s have the same remainder when divided by n, and so if and only if s = r. O

Lemma 5.1.7. Let F be a field and p € F[x] with p # Op. Then

Flz]/(p) = { [7]p ‘ r € Flz],degr < degp }

Proof. By definition

Fla]/(p) ={ [flp | f € Fla] }.
By for each f € Flx], there exists r € Fz] with [f], = [r], and degr < degp. Thus

{ [f1p ‘ f € Flz] } C{[rlp ‘ r € Flz],degr < degp }
The reversed inclusion is obvious. O

Example 5.1.8. Determine
(a) Zs[z]/(x% + 1), and

(b) Qla]/(2® -z +1).
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@ Put p = 22 + 1 in Z3[z]. Then degp = 2. Since Z3 = {0,1,2}, the polynomials of degree less
than 2 in Zg[z] are

0,1, 2, , x4+ 1, x+2, 2z, 20+ 1, 2z + 2.

Thus shows that

Zs[z)/(x® + 1) = { [ pypezz[ J,deg f <2}
{ pr Ups 2lps [@lps [x+1p, [x42]p, [22]p, [22 4+ 1], [237"‘2}17}'

Any polynomial of degree less than 3 can be written as a + bx + cx?, where a, b, c € Q. Thus

Qlz]/(z® —x + 1) = {[a + bz + cx2]x3,x+1 | a,b,c € Q}.

Exercises 5.1:

#1. Let f,g,p € Q[z]. Determine whether f =g (mod p).
a =a° — 22" +4x° —ox + 1, g =3x" + 2x° — dx° + 2, p=ux°+1;
5 — 27t + 423 — 32 + 1 3zt + 223 — 52 + 2 241
(b) f=a2"+223 322 +2 -5, g=x*+ 2% — 522 + 122 — 25, p=a2+1;
() f=3a044a* +52% 6224527, g=22"+62 ' +23+222+22 -5, p=a3 -2+ -1

#2. Show that, under congruence modulo z3 + 2z + 1 in Z3[z] there are exactly 27 congruence
classes.

#3. Prove or disprove: Let F be a field and f, g, k,p € Flz]. If p is nonzero, p is relatively prime to
k and fk = gk (mod p), then f =g (mod p).

#4. Prove or disprove: Let F' be a field and f, g,p € F[z]. If p is irreducible and fg = 0r (mod p),
then f = 0p (mod p) or g = 0p (mod p).

5.2 Congruence Class Arithmetic

Theorem 5.2.1. Let F be a field and f, g, f,§,p in F[z] with p # 0p. Suppose that

[flp = [flp and 9]y = []p-

Then
[f +9lp= [f"’ lp and [f9lp = [fdlp
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Proof. Since [f], = [f], and [g], = [§], we conclude from that f = f + pk and § = g + pl for
some k,l € F[z]. Hence

F+g=(f+pk)+(g+pD)=(f+g)+p-(k+1).
Since k + 1 € F[z], |5.1.5 gives

[f+9lp = [f + 9lp-
Also

fg=(f+pk)(g+pl)=fg+p-(kg+ fl+kpl),
and since kg + fl + kpl € F[z], implies

[f9lp = [fdp-
O

Definition 5.2.2. Let F be a field and p € F|x] with p # 0p. We define an addition and multipli-
cation on F[z]/(p) by

flp+1glp=1f+9lp and [flp-lglp =" gl
for all f,g € F[z]. By this is well defined.

Example 5.2.3. Compute the addition and multiplication table for Zs[z]/(x? + ).

We write [f] for [f],2,,. Since Zs = {0,1}, the polynomial of degree less than 2 in Z[x] are
0,1,z,z + 1. Thus gives

Lola]/(2* + z) = {[0], [1], [], [z + 1]}

We compute

+ (0] ] ] lz+1] 0] [ | [2] [z+1]
[0] (0] [ el [z +1] 0] | [0] [0} | [0]  [0]
1] 1] 0| [z +1]  [2] [ | 0] [ | [2] [z +1]
[z] [z]  fz+1] (0] [1] [z] |[0] [« [zl (0]
[x+1] | [z+1]  [z] [1] 0] [x4+1] | [0] [z4+1] [0] [z+1]

Note here that
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and

[:U—I—l}[aH—l]:[(x—l—l)(:v—l—l)]:[1‘2+1]:[(x2—|—1)+(x2—|—x)]:[x+1]

Observe from the above tables that Zs[z]/(2? + =) contains the subring {[0],[1]} isomorphic to
Zs. The next theorem shows that a similar statement holds in general.

Theorem 5.2.4. Let F be a field and p € Flx] with p # OF.

(a) The function
o: Flz] = Flz]/(p), [ [f]p

is an onto homomorphism of rings.
(b) Flz]/(p) is a commutative ring with identity [1r|,.

Put F' = {[a],|a € F}. Then F is a subring of F[z]/(p).

—
o
~

(d) Suppose p ¢ F. Then the function
7. F—=F, aw[d,.
is an isomorphism of rings. In particular, F is a subring of F[z]/(p) isomorphic to F.

Proof. () Let f,g € F[z]. Then

o(f+9)=1f+4glp=[flp+lglp =o(f) +0(9)

and

o(fg) = [fg]p = [f]p[g]p =o(f)o(g)

So ¢ is a homomorphism. If a € F[z]/(p), then a = [f], for some a € f € F[z]. So o(f) =a and o
is onto.

) Sec[E03

F={la], | a€ F}={o(a)|a€ F}. Since F is a subring of F[z] and ¢ is a homomorphism
we conclude from Exercise 6 on the Review for Exam 2 that F' is a subring of F[x]/(p).

@ We need to show that 7 is a 1-1 and onto homomorphism. By @), o is a homomorphism.
Observe that 7(a) = o(a) for all a € F. Hence also 7 is a homomorphism.

Let d € F. Then d = [a], for some a € F and so d = 7(a). Thus 7 is onto.

Let a,b € F with 7(a) = 7(b). Then [a], = [b],. Since p ¢ F', degp > 1 and since a,b € F,
dega < 0 and degb < 0. Thus dega < degp and degb < degp. Since [a], = [b], we conclude from
[.1.6] that @ = b. So 7 is 1-1 and (d]) holds. O

The preceding theorem shows that F'[z]/(p) contains a subring isomorphic to F. This suggest
that there exists a ring isomorphic to F'[z]/(p) containg F' has a subring. The next theorem shows
that this is indeed true.



5.2. CONGRUENCE CLASS ARITHMETIC 131
Theorem 5.2.5. Let F be a field and p € Flx] with p ¢ F. Then there exist a ring R and oo € R
such that

(a) F is a subring of R,

(b) there exists an isomorphism ® : R — Flx]/(p) with ®(o) = [z], and ®(a) = [a], for alla € F.

(¢) R is a commutative ring with identity 1p = 1p.

Proof. Let S = Flz]/(p)\ F and R = SUF. ( So for a € F we removed [a], from F[z]/(p) and
replaced it by a.) Define ® : R — F[x]/(p) by

O(r)=Ir]pifre Fand ®(r)=rifres

Then its is easy to check that ® is a bijection. Next we define an addition & and a multiplication ®
on R by

(1) r®s=01d(r)+®(s)) and ros:= 0 HD(r)d(s))
Observe that ®(®~!(u)) = u for all u € F[x]/(p). So applying ® to both sides of (1) gives
O(rds)=d(r)+P(s) and P(ros)=d(r)d(s)

for all r,s € R. implies that R is ring and @ is an isomorphism. Put a = [z],. Then a € S
and so a € R. Moreover ®(«) = ®([z],) = [z],. Let a € F. Then a € R and ®(a) = [a],. Thus (D)
holds.

For a,b € F we have

a®b=d1(®(a) + ®(b) = ([a], + [b],) =2 a+b],) =at+bEF
and

a®b =" (@(a)®(b) = & ([a],[t],) = & ([ab],) = ab € F

So F'is a subring of R. Thus also @ is proved.
By Flz]/(p) is a commutative ring with identity [1p],. Since ® is an isomorphism we
conclude that R is a commutative ring with identity 1. So holds. O

Remark 5.2.6. Let R and S be commutative rings with identities. Suppose that S is a subring of
R and 1g = 1p. Then we identify the polynomial

f= zn:fsz in S[z]
=0

with the polynomial
g= Z fiz' in R|z]
i=0
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Note that with this identification, S[z| becomes a subring of R[x]. But also note that the functions

ffr 828 aw Y fid
1=0
and

n
g: R—R, ar— Zfiai
i=0

are not the same unless S # R, since they have different domains. Nevertheless, we use the notation
n
f(a) = Zfia’.
i=0

even for a € R.

For example consider

f=x2?+1¢€Q[z] and g=12*+1¢€R[z]
Then f = g. But the functions
Q- Qa—a®+1 and G R—>Ra—a®+1
are not the same. But abusing notations we write
PO = (VP 1=

Notation 5.2.7. Let F' be a field and p € Flz] withp ¢ F. Let R and « be as in . We denote
the ring R by Fpla]. (If F = Z, for some prime integer q, we will use the notation Zqplc])

Theorem 5.2.8. Let F' be a field and p € F[z] withp ¢ F and let a and ® be as in[5.2.5,
(a) For all f € Flz], ®(f*(a)) = [f]p-
(b) Let f,g € Flz]. Then f*(a) = g*(a) if and only if [f]p = [9]p-
(c) For each B € Fyla] there exists a unique f € F[z] with deg f < degp and f*(a) = f.
(d) Let n = degp. Then for each B € Fpla] there exist unique by, b1, ...,bp—1 € F with

B=by+bia+...+ bnfloén_l.

(e) Let f € Flx], then f*(a) =0p if and only if p | f in Flzx].

(f) « is a root of p in Fplal.
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Proof. @
deg f ' deg f deg f 4 deg f '
(f*(a)) =@ (Z fzof> =Y 2(fi)®(a) [filplalp = [Z fw] = [flp
i=0 i=0 i=0 i=0 »

Let f € Fpla] and f € F[z]. Then

fa) =5
PN B(f*(a)) = B(B) _ Bis 11
= 7l = 2(9) -

Since ®(B) € Flz]/(p), shows that there exists a unique f € F[z] with deg f < degp and
[f]p = ©(B). It follows that f is also the unique f € F'[z] with deg f < degp and f*(a) = . Thus

holds.

@ Let bg,...bp—1 € F and put f = bg + by + ...+ by_12" L. Then f is a polynomial with
deg f < degp and by, ...,b,—1 are uniquely determined by f. Also

f*(a@) =bg+bia+...4+by_1a" "

and so @ follows from .

(E)
fr(a) =0p
= [ (o) = 05 () — definition of 0%
= 11, = [0 -@
— plf—0F — GBI
= plf —B2.11|[)
@ Since p | p this follows from @ O

Example 5.2.9. Let p = 22 +z € Zs[z]. Determine the addition and multiplication table of Zs ,[c/].
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+ 0 1 « a+1 0 lla a+1
0 0 1 o a+1 0 0 010 0
1 1 O|la+1 « 1 0 lla a+1
Q@ @ a+1 0 1 «a 0 «a «a 0
a+l|a+1 o 1 0 a+1|0 a+1 0 a+1

This can be read of from Example [5.2.3] But it also can be computed from the preceeding
theorem: By [5.2.8)(d) any element of F[a] can be uniquely written as by + by with by, by € Zy. By

Zs ={0,1} and so

Zyplal = {0+ 0a, 0+ 1c, 14+ 0c, 1+ 1a} ={0, 1, o, a« + 1}.

By 28 p*(a) = 0. So
4+a=0 and a”=—a=a.
(Note here that a+a = 2o = 0 and so —a = «a.) This allows us to compute the multiplication table,
for example
(a+)(a+)=c’+a+at+l=a’+1=a+1.

and

ala+1)=a®+a=0

Exercises 5.2:

#1. Write out the addition and multiplication table of Zs[z]/(x® + x + 1). Is Zo[x]/(z3 + 2 + 1) a
field?

#2. Each element of Q[z]/(x2 —3) is can be uniquely written in the form [ax+b] (Why?). Determine
the rules of addition and multiplication of congruence classes.(In other words, if the product of
[az + b][cx + d] is the class [rz + ] describe how to find r and s from a,b,c,d, and similarly for
addition.)

#3. In each part explain why t € F[z|/(p) is a unit and find its inverse.
(@) t = 22 -3] € Qlz]/(z* - 2)
(b)) t = [22+x+1] € Zs[z]/(z*+1)
() t = [2°2+2+1] € Zy]/(@®+2+1)
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5.3 F,[a] when p is irreducible
In this section we determine when Fj[a] is a field.
Lemma 5.3.1. Let F be a field, p € Flz] withp ¢ F and f € Flx].
(a) f*() is a unit in Fpla] if and only if ged(f,p) = 1F.
(b) If 1p = fg + ph for some g,h € Flz], then g*(a) is an inverse of f*(«).

Proof. @ We have

f*() is a unit in Fp[a]

= [*(a)B = 1F for some f € Fp[a] —F,[a] is commutative, [3.4.10]
= f*(a)g*(a) = 1 for some g € F[z] -

= (f9)" (o) = 13:(ax) for some g € Flx] - EZF

= [fglp = [1F]p for some g € F|x] —pb-2.8(b)

= 1r = fg + ph for some g, h € F|x] —B.L5a)(i)

— ged(f,p) = 1F - @213

(o) From the above list of equivalent statement, 1z = fg + ph implies f*(a)g*(e) = 1p. Since
F,|a] is commutative we also have g*(a)f*(«) = 1 and so g*(«) is an inverse of f*(«). O

Proposition 5.3.2. Let F be a field and p € Flx] with p ¢ F. Then the following statements are
equivalent:

(a) p is irreducible in Fx].
(b) Fpla] is a field.
(c) Fpla] is an integral domain.

Proof. @ = @: By “ F,la] is a commutative ring With identity 1p. Suppose p is
irreducible and let § € F,la] with ﬂ 7é 0r. By [p-28(]), 8 = ) for some f € F[z]. Then
f*(a) # 0p and , gives p{ f. Since p is irreducible, Exer(:lseshows that ged(f,p) = 1p.
Hence by Lemma B = f*(a) is a unit in Fpa]. Also since F' is a field, 1y # Op and since (by
5.2.5(c) 1r = 1 (o) and O = Of,[q), all the conditions of a field (see Definition [3.2.20]) hold for
Fylal.

®B) = (J: If F[a] is a field, then by Corollary 3.2.22] F,[a] is an integral domain.

@ = E): Suppose F,la] is an integral domain and (for a contradiction) that p is not
irreducible. Since p ¢ F, shows that p = gh where g and h are non constant polynomials of
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degree less than p. Since g # Op and both g and Op have degree less than p, shows that
g*(a) # 0%:(a). As 0}.(o) = O this gives g*(a) # Op. Similarly, h*(a) # 0p. But

g (a)h*(a) = (gh)"(a) = p*(a) = OF
a contradiction since by definition (Ax 11) holds in integral domains (see [3.2.18)). O

Corollary 5.3.3. Let F' be a field and p an irreducible polynomial in F[z]. Then Fyla] is a field
containing F as subring, and « is a root of p in Fylal.

Proof. By F' is a subring of Fp[a]. Since p is irreducible, implies that Fj[a] is field. By
5.2.8 av is a root of p in Fy[al. O

Example 5.3.4. Put K := R 2, [a]. Determine the addition and multiplication in K and show
that K is a field.

By @) we know that « is a root of 22 + 1 in K. Hence a? +1 = 0 and so
o’ = —1.
By every element of K can be uniquely written as a + ba with a,b € R. We have
(a+ba)+ (c+da)=(a+c)+ (b+ d)a
and
(a+ba)(c+ da) = ac+ (be + ad)a + bda? = ac + (be + ad)a + bd(—1) = (ac — bd) + (ad + be)av.
Suppose that a + Ba # 0. Then a # 0 or b # 0 and so a? + b > 0. Also

a b 1 1 9 .9
(a 4+ bar) <a2+b2 _a2+b2a> :m(a—i-ba)(a—ba): a2+b2(a +b°) =1

Hence a + ba is a unit in K and so K is a field.

We remark that is now straight forward to verify that
¢:Rp2qfa) = C, a+ba—a+bi
is an isomorphism from R,2,4[c] to the complex numbers C.
Corollary 5.3.5. Let F be a field and f € Fz].
(a) Suppose f ¢ F. Then there exists a field K with F as a subring such that f has a root in K.

(b) There ezist a field L with F' as a subring, n € N, and elements c,ay,as...,a, in L such that

f=c(z—a1) - (x—az) ... - (x—ap)
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Proof. @) By @, f is a product of irreducible polynomials. In particular, there exists an
irreducible polynomial p in F[z] dividing f. By K = F,[a] is a field containing F' and « is a
root of p in K. Since p|f, |4.4.12| shows that « is a root of f in K.

(]E[) We will prove (]ED by induction on deg f. If degf < 0, then f € F. So @ holds with
n =0,c= f and L = F. Suppose that k € N and (]E[) holds for any field F' and any polynomial of
degree k in F[z]. Let f be a polynomial of degree k + 1 in F[z]. Then deg f > 1 and so by @ there
exists a field K with F' as a subring and a root a of f in K. By the Factor Theorem 4.4.11| z — «
divides f in K[z] and so f = ¢ (x — «) for some g € K[x]. Thus deg g = k and so by the induction
assumption, there exists a field L with K as a subring and elements c, a1, ...a; in L with

g=c-(x—ay) ... - (z—ag).
Put ag+1 = . Then
f=g9g-x—a)=c-(z—a1) ... - (x —ag) (. — ag41).

Since F' is a subring of K and K is subring of L, F' is subring of L. So holds for polynomials
of degree k 4+ 1. Hence, by the Principal of Mathematical Induction, (]ED holds for polynomials of
arbitrary degree. O

Exercises 5.3:

#1. Determine which of the following congruence-class rings are fields.
(a) Zs[x]/(2® + 222 + 2+ 1).
(b) Zs[x]/ (223 — 42? + 22 + 1).
(c) Zao[x])/(x* + 2% +1).

#2. (a) Verify that Q(v/3) := {r + sv/3|r, s € Q} is a subfield of R.
(b) Show that Q(+/3) is isomorphic to Q[z]/(z% — 3).

#3. (a) Show that Zs[z]/(2® + x + 1) is a field.

(b) Show that 23 + z + 1 has three distinct roots in Zs[z]/(2® + 2 + 1).
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Chapter 6

Ideals and Quotients

6.1 Ideals
Definition 6.1.1. Let I be a subset of the ring R.
(a) We say that I absorbs R if

ra €1l and ar €l forallael,r e R

(b) We say that I is an ideal of R if I is a subring of R and I absorbs R.

Theorem 6.1.2 (Ideal Theorem). Let I be a subset of the ring R. Then I is an ideal in R if and
only if the following four conditions holds:

(i) Op € 1.
(i) a+be I forall a,b e I.

(iii) ra € I and ar € I for alla € I and r € R.
(iv) —a €1 forallae 1.

Proof. =>: Suppose first that I is an ideal in R. By Definition S absorbs R and S is a
subring. Thus holds and by the Subring Theorem also (), and hold.

<=: Suppose that ({i)-(iv) hold. implies ab € I for all a,b € I. So the Subring Theorem
shows that I is a subring of R. By ({ii), I absorbs R and so [ is an ideal in R. O

Example 6.1.3. (1) {3n|n € Z"} is an ideal in Z.
(2) Let F be a field and a € F. Then {f € F[z] | f*(a) = 0p} is an ideal in F[z].

(3) Let R be aring, I an ideal in R. Then {f € R[z] | f; € I for all i € N} is an ideal in R[z].

139
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(4) Let R and S be rings. Then R x {0g} is an ideal in R x S.
Proof. See Exercise O
Definition 6.1.4. Let R be a ring.

(a) Leta € R. Then aR = {ar | a € R}.

(b) Suppose R is commutative and I C R. Then I is called a principal ideal in R if I = aR for
some a € R.

Lemma 6.1.5. Let R be a commutative ring with identity and a € R. Then aR is the smallest ideal
in R containing a, that is

(a) a € aR,

(b) aR is an ideal in R, and

(¢) aR C I, whenever I is an ideal in R with a € I.
Proof. @): Note that a = a - 1g and so a € aR.

(]E[) Let b,c € aR and r € R. Then

b=uas and c = at.

for some s,t € R. Thus

Orp =algr € aR,
b+c=as+at=a(s+1t) €aR,
rb=0br = (as)r = a(sr) € aR
—b = —(as) = a(—s) € aR.

So by aR is an ideal in R.

: Let I be any ideal of R containing a. Since a € I and I absorbs R, ar € I for all r € R and
soaR C 1. ]

Definition 6.1.6. Let I be an ideal in the ring R. The relation = (mod I)’ on R is defined by

a=b (modI) if a—-bel

Remark 6.1.7. (a) Let a,b,n € Z. Then

a=b (modn) <= a=0b (modnZ)
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(b) Let F be a field and f,g,p € F[x] with p # Op. Then

f=g (modp) <= f=g (modpF[z])

Proof. We will prove@. The proof for @ is virtually the same.

f=g (mod p)
< [ —g=pkforsomek € Flz] —BEIH
= f—g € pFlz] —Definition of pF[z]
= f=g (mod pFlx]) —Definition of = (mod I) [GII0)
O
Proposition 6.1.8. Let I be an ideal in R. Then = (mod I)’is an equivalence relation on R.
Proof. We need to show that ‘= (mod I)’ is reflexive, symmetric and transitive. Let a,b,c € R.

Reflexive By [3.2.11] a — a = Or and by the Ideal Theorem O € I. Thusa—a € I andsoa=a
(mod I) by definition of '= (mod I)’.

Symmetric Suppose a =b (mod I). Then a —b € I and so by Ideal Theorem —(a —b) € I. By
3.2.11lb —a = —(a—b). Hence b —a € I and so b = a (mod I) by definition of '= (mod I)’.

Transitive Suppose a = b (mod [) and b = ¢ (mod I), then a —b € I and b — ¢ € I. Hence by
the Ideal Theorem (a —b) + (b—c) € I. Asa—c=(a—b)+ (b—c) thisgivesa—ce€ I. Thusa =c
(mod I). O

Definition 6.1.9. Let R be a ring and I an ideal in R.

(a) Leta € I. Then a+ I denotes the equivalence class of = (mod I)’ containing a. So
a+I={beR|a=b (modI)}={beR|a—-beI}
a+ I is called the coset of I in R containing a.
(b) R/I is the set of cosets of I in R/I. So
R/I ={a+1|ac R}
and R/I is the set of equivalence classes of = (mod I)’

Theorem 6.1.10. Let R be ring and I an ideal in R. Let a,b € R. Then the following statements
are equivalent
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(a) a=0b+i for somei€el (g) a+I=b+1.

(b) a—b=1 for some i€l (h) aeb+1

) a—bel (i) b=a (mod I)

(d) a=b (mod I) G) b—ael

(&) bea+1 (k) b—a=j for somej€ I
) (a+D)N(b+1I)#0. (1) b=a+j for some j € I.

Proof. @ = (]ED: and = : This holds by
@ = : and (ED —= : Obvious.
< (d): and <= (): This holds by definition of ‘= (mod I)’.

By we know that '= (mod I) is an equivalence relation. Also a + I is the equivalence class
of a and so Theorem implies that (d)-(i)) are equivalent. O

Corollary 6.1.11. Let I be an ideal in the ring R.
(a) Letae R. Thena+1={a+i|iel}.
(b) Or + I = 1. In particular, I is a coset of I in R.
(c) Any two cosets of I are either disjoint or equal.

Proof. Let a,b € R.

@ By 6.1.10@, we have b € a+ [ if and only if b = a + ¢ for some ¢ € I and so if and only if
be{a+iliel}.

@) By (@) 0O + I ={0,+i|iel}={i|iel}=1.

Suppose a + I and b+ I are not disjoint. Then (a + I) N (b+ I) # 0 and [6.1.10)f), (g) shows
that a + 1 = b+ I. So two cosets of I in R are either disjoint or equal. O

Exercises 6.1:
#1. Show that:
(a) {3n|n € Z*} is an ideal in Z.

(b) Let F' be a field and a € F. Then {f € F|x] | f*(a) = 0p} is an ideal in F[x].
(c) Let R be aring, I an ideal in R. Then {f € R[z| | f; € I for all i € N} is an ideal in R.

(d) Let R and S be rings. Then R x {Og} is an ideal in R x S.
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#2. Let I, I, ... I, be ideals in the ring R. Show that I; 4+ Is + ...+ I, is the smallest ideal in R
containing Iy, Ios, ..., I, and I,,.

0 0
#3. Is the set J = r € R 3 an ideal in the ring Ma(R) of 2 x 2 matrices over R?
0 r

#4. If I is an ideal in the ring R and J is an ideal in the ring S, prove that I x J is an ideal in the
ring R x S.

#5. Let F' be a field and I an ideal in F[z]. Show that I is a principal ideal. Hint: If I # {Op}
choose d € I with d # Op and deg(d) minimal. Show that I = F[z|d.

#6. Let ® : R — S be a homomorphism of rings and let J be an ideal in S. Put [ = {a € R |
®(a) € J}. Show that I is an ideal in R.

6.2 Quotient Rings
Proposition 6.2.1. Let I be an ideal in R and a,b, d,l; € R with
a+T=a+1 and b+I1=b+1
Then
(a+b)+T=(a+b+I and ab+1=ab+1.

Proof. Since a+ I = a+ I(6.1.10[implies that @ = a 4 ¢ for some ¢ € I. Similarly b=0b+ j for some
jel

Thus .

a+b=(a+i)+ (b+j)=(a+b)+ (i+j).

Since i, € I and I is closed under addition, i 4+ j € I and so by [6.1.10| (a 4+ b) + I = (a +b) + 1.

Also ~

ab=(a+1i)(b+j) =ab+ (aj + ib+ ij)

Since 4,7 € I and I absorbs R we conclude that aj,ib and ij all are in I. Since I is closed under
addition this implies that aj +ib+ij € I and so ab+ I = ab+ I by |6.1.10 O

Definition 6.2.2. Let I be an ideal in the ring R. Then we define an addition + and multiplication
-on R by
(a+1)+O+I)=(a+b)+I and (a+1) - (b+I)=ab+1

for all a,b € R.
Note that by the preceding proposition the addition and multiplication on R/I are well defined.

Remark 6.2.3. (a) Let n € Z. Then Z, = Z/nZ.
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(b) Let F be a field and p € Flx]|. Then F[z]/(p) = Flz|/pF|z].
Proof. This follows from Remark O
Theorem 6.2.4. Let R be a ring and I an ideal in R

The function m: R — R/I, a — a+ I is an onto homomorphism.

(a
(

b) (R/I,+,") is a ring.

)

)
(c) Opyr=Op+1=1.
(d) If R is commutative, then R/I is commutative.

(e) If R has an identity, then R/I has an identity and 1g;; = 1g+ 1.
Proof. @ Let a,b € R. Then

Def +

) PLT @+ )+ 1 PEY @+ D)+ b+ 1) PLT 7(a) + 7 (b)

(a+b
and

mlab) L7 ab+1 "L (a+ Db+ 1) LT n(a)7(b)

So 7 is a homomorphism. Let v € R/I. By definition, R/I = {a+ I | a € R} and so there exists
a € Rwithu=a+I. Thus 7(a) = a+ I = u and so 7 is onto.

(o), and (d): By () 7 is an onto homomorphism. Thus we can apply and conclude that
(]ED, and @ hold.

(@: By @ 7 is an onto homomorphism. Thus @ follows from @ O

Lemma 6.2.5. Let R be a ring and I an ideal in R. Let r € R. Then the following statements are
equivalent:

(a) rel.
(b) r+I=1.
(C) T+I:0R/I'

Proof. @ = (]ED: By [6.1.10|r» € Or + [ if and only of r + 1 = 0p + I. By Opr+1=1
and so @ and (]ED are equivalent.

@ = : By Or/r = I and so (]E[) and H are equivalent. ]

Definition 6.2.6. (a) Let f : R — S be a homomorphism of rings. Then
ker f ={a € R| f(a) =Or}.

ker f is called the kernel of f.
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(b) Let I be an ideal in the ring R. The function
7 R—R/I, r—r+]
is called the natural homomorphism from R to R/I.
Lemma 6.2.7. Let f: R — S be homomorphism of rings. Then ker f is an ideal in R.

Proof. By definition, ker f is a subset of R. We will now verify the four conditions of the Ideal
Theorem So let a,b € ker f and r € R. By definition of ker f,

(%) fla)=0s and f(b) =0s.

(i) fla+b) fhom f(a)+ f(b) @ 0s + 0g Bxd 05 and so a + b € ker f by definition of ker f.

Q) f(ra) T2 fo)fa) 2 f(r)0s 0s and so ra € ker f by definition of ker f. Simi-

larly, ar € ker f.
(iii)  f(OR) Os and so Og € ker f by definition of ker f.
(iv) f(—a) —f(a) < —0g Og and so —a € ker f by definition of ker f. O
Example 6.2.8. Define
o: Rlz] = C, fe= )
Verify that ® is a homomorphism and compute ker ®.

Define p: R — C,r — r. Then p is a homomorphism and @ is the function p; from Lemma|4.4.1
So @ is a homomorphism. s

Let f € F[z]. We need to determine when f*(i) = 0. According to the Division algorithm,
f=(x?+1)-q+r, where ¢, € R[z] with deg(r) < deg(z? + 1) = 2. Then r = a + bz for some
a,b € R and so

() [ =

It follows that

/N

(ac2+1)-q—|—r>*(i) — (1) -¢* () + () = 0- ¢* (i) + (a + bi) = a + bi

f € ker®

— P(f)=0 — definition of ker ®

— f*(i)=0 — definition of ®

<~ a+bi=0 — (%)

< a=0andb=0 — Property of C

<~ a+bxr=0 — definition of polynomial ring

= 7r=0 —r=a+bx

< f=(2241)qfor some ¢ € Rlz] — Division algorithm

— fe (22 +1)R[z] — Definition of (2 + 1)R[z]
Thus ker ® = (22 + 1)R[z].
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Lemma 6.2.9. Let R be a ring, I an ideal in R and 7 : R — R/I,a — a+ I the natural homomor-
phism from R to I. Then kerm = I. In particular, a subset of I is an ideal in R if and only if it is
the kernel of a ring homomorphism with domain R.

Proof. Let r € R. Then

r € kerm
<= 7(r)=0g/ — definition of kern
< r+1=0g; — definition of 7
<~ rel —10.2.9
Thus kerm = 1. O

Lemma 6.2.10. Let f: R — S be a ring homomorphism.
(a) Let a,b e R. Then

fla) = f(b)
— a—>b¢€kerf
— a+ker f =b+ker f

(b) f is 1-1 if and only if ker f = {Or}.

Proof. (@)
fla) = [f(b)
= fla) = f(b) = 0s —B-2.11J(f)
= fla=0b) = 0g -
= a—bekerf — Definition of ker f
= a+kerf = b+kerf —[BII0

(]E[) =>: Suppose f is 1-1 and let a € R. Then

a € ker f
= f(a) =0g — Definition of ker f
= fla)=f(0r) — B3.7)
— a=0pg — fis1-1

Thus ker f = {Or}.

<=: Suppose ker f = {Op} and let a,b € R with f(a) = f(b). Then by (b) a — b € ker f. As
ker f = {Op} this gives a — b = Og, so a = b by 3.2.11f(f). Hence f is 1-1. O
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Theorem 6.2.11 (First Isomorphism Theorem). Let f : R — S be a ring homomorphism. Recall
that Im f = {f(a) | a € R}. The function

f: R/kerf —Imf, (a+kerf) f(a)
is a well-defined ring isomorphism. In particular R/ ker f and Im f are isomorphic rings

Proof. By f(a) = f(b) if and only if a + ker f = b+ ker f. The forward direction shows that f
is 1-1 and backwards direction shows that f is well-defined. If s € Im f, then s = f(a) for some a € R
and so f(a+ker f) = f(a) = s. Hence f is onto. It remains to verify that f is a ring homomorphism.
We compute

Flatker )+ p+kerf)) "L F((a+b)+kerf) Det f fla+b)
TER f@+re) PR Flatker )+ F(b+ker f)
and
Fatkersy-tker) "L Flabsiers) P2 f(ab)
TER f@)-f0) P2 Tlatker ) b+ ker f)
and so f is a homomorphism. O

Example 6.2.12. Let n and m be non-zero integers with ged(n, m) = 1. Apply the isomorphism
theorem to the homomorphism

fiZ =Ly XLy a— ([a]n, [t]m))

We first compute ker f

a € ker f
= fla) =0z, %z, — definition of kerm
= ([aln, [b]m) = ([0]n, [0]im) — definition of f
= [a]l, =[0], and [b], =[0],, —[32
= nla and mla —237]
— nmla — ged(n,m) = 1, Exercise [1.2H
<= a =nmk for some k€ Z — definition of 'divide’
= a € nm — definition of nmZ

Thus ker f = nmZ and so
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Z] ker f = Z/nmZ = Lpm

where the last equality holds by [6.2.3)(a).
By the First Isomorphism Theorem Z/ ker f is isomorphic to Im f and so

Ly 18 isomorphic to  Im f.

Thus

| Im f| = |Znm| = nm.

Also

|Zp, X Zop| = |Zn| - | Zon| = .
Hence |Im f| = |Zy, X Zy,|. Since Im f C Z,, X Zy, this gives Im f = Z,, X Z,,. This gives

Zinn 18 isomorphic to  Zy,, X Zy,.



Appendix A

Logic

A.1 Rules of Logic

In the following we collect a few statements which are always true.

Lemma A.1.1. Let P, QQ and R be statements, let T be a true statement and F a false statement.
Then each of the following statements holds.

(LR1) F = P.
(LR2) P=T.

(LR 3) not -(not -P) <= P.
(LR 4) (not-P — F) = P.
(LR5) PorT.

(LR 6) not-(P and F).

( (Pand T) < P.
(LR8) (Por F) <= P.

( (P and P) <= P.
LR 10) (P or P) < P.
LR 11) P or not-P.

LR 13

)
)
)
)
)
)

LR 7)
)
)
)
)
)
) (P and Q) <= (Q and P).
) (

(
(
(LR 12) not -(P and not -P).
(
(

LR 14) (P or Q) < (Q or P).

149



150

(LR 15) (P <= Q) — ((P and @) or (not -P and not —Q))

(LR 16) (P = Q) <= (not-P or Q).
(LR 17) not -(P = Q) <= (P and not -Q).

(LR 18) (P and (P = Q)) — Q.

(LR 19) ((P — Q) and (Q = P)) — (P < Q).
LR 20) (P = Q) <= (not -QQ = not -P)
LR 21) (P < Q) < (not -P <= not -Q).

( )
( )
(LR 22) not -(P and Q) <= (not -P or not -Q)
( )

LR 23) not -(P or () <= (not -P and not -Q)

(LR 24) ((P and Q) and R) — (P and (Q and R)).

(LR 25) ((P or Q) or R) (P or (Q or R))

(LR 26) ( (P and Q) or R) ((P or R) and (Q or R))

(LR 27)

(
(LR 28) (P:>Q ) and ( Q:>R)>:>(P:>R)
(LR 29) (

P <= Q) and ( Q<:>R)>:>(P<:>R)

P or @)) and R) ((P and R) or (Q and R)>

APPENDIX A. LOGIC

Proof. If any of these statements are not evident to you, you should use a truth table to verify it. [



Appendix B

Relations, Functions and Partitions

B.1 The inverse of a function

Definition B.1.1. Let f: A — B and g : B — A be functions.
(a) g is called a left inverse of f if go f =id4.
(b) g is called a right inverse of g if fog=1idp.
(¢) g is a called an inverse of f if go f =ida and fog=1idp.

Lemma B.1.2. Let f : A — B and h : B — A be functions. Then the following statements are
equivalent.

(a) g is a left inverse of f.
(b)
(©)
(d) Forallae A andb e B:

f s a right inverse of g.
g(f(a)) =a for alla € A.

fl@)=b = a=g(b)

Proof. @ = @: Suppose that g is a left inverse of f. Then go f = id4 and so f is a right
inverse of g.
= : Suppose that f is a right inverse of g. Then by definition of ‘right inverse’

(1) go f=idy
Let a € A. Then

g(f(a)) = (gof)(a) — definition of composition
= ida(e)  =(1)
= a — definition of id 4
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= (d): Suppose that g(f(a)) =a for alla € A. Let a € A and b € B with f(a) = b. Then
by the principal of substitution ¢g(f(a)) = g(b), and since g(f(a)) = a, we get a = g(b).
@ = @: Suppose that for all a € A,b € B:

(2)) fla) =b=a=g(b)
Let a € A and put
(3) b= f(a)
Then by (2)
(4) a=g(b)
and so
(go f)(a) = g(f(a)) — definition of composition
S OIC)
= a (4)

= ida(a) — definition of id
Thus by [0.3.11]go f = id4. Hence g is a left inverse of f. O

Lemma B.1.3. Let f : A — B and h : B — A be functions. Then the following statements are
equivalent.

(a) g is an inverse of f.
(b is a inverse of g.

) f
(c) g(fa) =a for alla € A and f(gb) =0b for allb € A.
)

(d) Forallac A and b€ B:
fa=b <= a=gb

Proof. Note that g is an inverse of f if and only if g is a left and a right inverse of f. Thus the
lemma follows from [B.1.2] O

Theorem B.1.4. Let f : A — B be a function and suppose A # ().
(a) f is 1-1 if and only if f has a right inverse.

(b) f is onto if and only if f has left inverse.
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(¢) f is a 1-1 correspondence if and only f has inverse.

Proof. =>: Since A is not empty we can fix an element ag € A. Let b € B. If b € Im f choose
ap € A with fa, =0b. If b ¢ Im f, put ap = ag. Define

g:B—)A, b— ay

@ Suppose f is 1-1. Let a € A and b € B with b = fa. Then b € Im f and fa, = b = fa. Since
f is 1-1, we conclude that ap = b and so ga = a = b. Thus by g is right inverse of f.

(]E[) Suppose f is onto. Let a € A and b € B with gb = a. Then a = a. Since f is onto,
B =1Im f and so a € Im f and f(ap) = b. Hence fa = b and so by (with the roles of f and f
interchanged), g is left inverse of f.

Suppose f is a 1-1 correspondence. Then f is 1-1 and onto and so by the proof of @ and
(@, g is left and right inverse of f. So g is an inverse of f.

<=

@ Suppose g is a left inverse of f and let a,c € A with fa = fe. Then by the principal of
substitution, g(fa) = g(fc). By g(fa) =a and g(fb) =b. Soa=>band f -s 1-1.

Suppose g is a right inverse of f and let b € B. Then by f(gb) = b and so f is onto.
Suppose f has an inverse. Then f has a left and a right inverse and so by @ and (]ED, fis
1-1 and onto. So f is a 1-1 correspondence. O

B.2 Partitions

Definition B.2.1. Let A be a set and A set of non-empty subsets of A.

(a) A is called a partition of A if for each a € A there exists a unique D € A with a € D.

(b) ~a= <A,A,{(a,b) € Ax A|{a,b} CD for some D eA}).

Example B.2.2. The relation corresponding to a partition A = {{1, 3}, {2}} of A={1,2,3}

{1, 3} is the only member of A containing 1, {2} is the only member of A containing 2 and {1, 3}
is the only member of A containing 3. So A is a partition of A.

Note that {1,2} is not contained in an element of A and so 1 =a 2. {1, 3} is contained in {1,3}
and so 1 ~a 3. Altogether the relation ~a can be described by the following table

~A |1l 2 3
1 r — x
2 | — z -
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where we placed an x in row a and column b of the table iff a ~a b.
We now computed the classes of ~a. We have

1] ={be A|1~ab}={1,3}
2l={beAl2~ab} ={2}
and
B]={be A|3~ab}={1,3}
Thus A/ ~a= {{1,3},{2}} = A.
So the set of classes of relation ~x is just the original partition A. The next theorem shows that
this is true for any partition.

Proposition B.2.3. Let A be set.
(a) If ~ is an equivalence relation, then A/ ~ is a partition of A and ~=r~ 4.
(b) If A is partition of A, then ~a is an equivalence relation and A = A/ ~a.

Proof. (a)) Let a € A. Since ~ is reflexive we have a ~ a and so a € [a] by definition of [a]. Let
D € A/ ~ with a € D. Then D = [b] for some b € A and so a € [b]. [0.5.8 implies [a] = [b] = D. So
[a] is the unique member of A/ ~ containing a. Thus A/ ~ is a partition of A. Put ~=~4,.. Then
a ~ b if and only if {a,b} C D for some D € A/ ~. We need to show that a ~ b if and only if a ~ b.

So let a,b € A with a = b. Then {a,b} C D for some D € A/ ~. By the previous paragraph, [a]
is the only member of A/ ~ containing a. Thus D = [a] and similarly D = [b]. Thus [a] = [b] and
implies a ~ b.

Now let a,b € A with a ~ b. Then both a and b are contained in [b] and so a =~ b.

We proved that a ~ b if and only if @ ~ b and so @ is proved.

@ Let a € A. Since A is a partition, there exists D € A with a € A. Thus {a,a} C D and
hence a ~a a. So ~n is reflexive. If a ~a b then {a, 3} C D for some D € A. Then also {b,a} C D
and hence b ~a. There ~ is symmetric. Now suppose that a,b,c € A with a ~A b and b ~a ¢. Then
there exists D, E € A with a,b € D and b,c € E. Since b is contained in a unique member of A,
D = F and so a ~a c¢. Thus ~x is an equivalence relation.

It remains to show that A = A/ ~a. For a € A let [a] = [a]~a. We will prove:

(x) Let De A anda € D. Then D = [a].

Let b € D. Then {a,b} € D and so a ~a b by definition of ~a. Thus b € [a] by definition of [a].
It follows that D C [a].

Let b € [a]. Then a ~a b by definition of [a] and thus {a,b} € E for some E € A. Since A is a
partition, a is contained in a unique member of A and so F = D. Thus b € D and so [a] C D. We
proved D C [a] and [a] C D and so (| holds.

Let D € A. Since A is a partition of A, D is non-empty subset of A. So we can pick a € D and
implies D = [a]. Thus D € A/ ~a and so A C A/ ~p

Let E € A/ ~a. Then E = [a] for some a € A. Since A is a partition, a € D for some D € A.
gives D = [a| = E' and so E € A. This shows A/ ~AC A.

Together with A C A/ ~a this gives A = A/ ~ and (]ED is proved. O



Appendix C

Real numbers, integers and natural
numbers

In this part of the appendix we list properties of the real numbers, integers and natural numbers we
assume to be true.

C.1 Definition of the real numbers

Definition C.1.1. The real numbers are a quadtruple (R, +,-, <) such that
(R i) R is a set (whose elements are called real numbers)

(R ii) + is a function ( called addition) , R x R is a subset of the domain of + and

a+beR (Closure of addition)
for all a,b € R, where a ® b denotes the image of (a,b) under +;

(R iii) - is a function (called multiplication), R x R is a subset of the domain of - and

a-beR (Closure of multiplication)

for all a,b € R where a -b denotes the image of (a,b) under -. We will also use the notion ab

fora-b.
(R iv) < is a relation from R and R;
and such that the following statements hold:
(RAx1) a+b=b+a foralla,beR. (Commutativity of Addition)

(RAx2) a+ (b+c)=(a+b)+c foralla,bceR; (Associativity of Addition)
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(R Ax 3)

(R Ax 4)

(R Ax 10)

(R Ax 11)

(R Ax 12)

(R Ax 13)

(R Ax 14)

(R Ax 15)
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There exists an element in R, denoted by 0 (and called zero), such that a+0=a and 0+a =a

for all a € R; (Existence of Additive Identity)
For each a € R there exists an element in R, denoted by —a (and called negative a) such that
a+ (—a) =0 and (—a) +a = 0; (Existence of Additive Inverse)
a(b+c) = ab+ ac for all a,b,c € R. (Right Distributivity)
(a+b)ec = ac+ be for all a,b,c € R (Left Distributivity)
(ab)c = a(bc) for all a,b,c € R (Associativity of Multiplication)

There ezists an element in R, denoted by 1 (and called one), such that la = a for all a € R.
(Multiplicative Identity)

For each a € R with a # 0 there exists an element in R, denoted by é (and called ‘a inverse’)
such that aa™ ' =1 and a la = 1;

(Existence of Multiplicative Inverse)

For all a,b € R,
(a<bandb<a) <= (a=0b)

For all a,b,c € R,
(a<bandb<c)= (a <c)

For all a,b,c € R,
(a <band 0 <c¢) = (ac < be)

For all a,b,c € R,
(a<b)=(a+c<b+c)

Each bounded, non-empty subset of R has a least upper bound. That is, if S is a non-empty
subset of R and there exists u € R with s < u for all s € S, then there exists m € R such that
forallr € R,

(sgrforallseS)@(m§T>

For all a,b € R such that b # 0 and 0 < b there exists a positive integer n such that a < nb.
(Here na is inductively defined by la = a and (n+ 1)a = na + a).

Definition C.1.2. The relations <, > and > on R are defined as follows: Let a,b € R, then

(a)
(b)
()

a<bifa<banda#b.
a>bifb<a.

a>bifb<aanda#b



C.2. ALGEBRAIC PROPERTIES OF THE INTEGERS

C.2 Algebraic properties of the integers

Lemma C.2.1. Let a,b,c € Z. Then
(1) a+beZ.

C.3 Properties of the order on the integers
Lemma C.3.1. Let a,b, c be integers.

(a) Ezactly one of a < b,a=">b and b < a holds.

(b) Ifa < b and b < ¢, then a < c.

(¢) If ¢ > 0, then a < b if and only if ac < be.

[§]

)
)
(d) If ¢ <0, then a < b if and only if bc < ac.
) Ifa <b, then a+c < b+c.

)

(
(f

1 is the smallest positive integer.

C.4 Properties of the natural numbers

Lemma C.4.1. Let a,b € N. Then
(a) a+beN.

(b) ab € N.

Theorem C.4.2 (Well-Ordering Axiom). Let S be a non-empty subset of N.

element

157

Then S has a minimal
O
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Appendix D

The Associative, Commutative and
Distributive Laws

D.1 The General Associative Law

Definition D.1.1. Let G be a set.

(a) A binary operation on G is a function + such that G x G is a subset of the domain of + and
+(a,b) € G for all a,b € G.

(b) If + is a binary operation on G and a,b € G, then we write a+ b for +(a,b).
(¢) A binary operation + on G is called associative if a+ (b+ c¢) = (a+b) + ¢ for all a,b,c € G.

Definition D.1.2. Let G be a set and + : G x G — G, (a,b) — a+ b a function. Let n be a positive
integer and a1, a9, ...a, € G. Define 21'1:1 a; = a1 and inductively for n > 1

n n—1
Zai = (Z ai> + ap.
=1 =1

S0 E?:l a; = <( . ((a1 + az) —I—ag) + ... —I—an,g) —i—anl) + an.
Inductively, we say that z is a sum of (a1,...,a,) provided that one of the following holds:
(1) n=1and z = ay.

(2) n > 1 and there ezists an integer k with 1 < k < n and z,y € G such that x is a sum of
(a1,...,ar), y is a sum of (ax+1, Apt2y---,0n) and z = x + y.

For example a is the only sum of (a), a + b is the only sum of (a,b), a + (b+¢) and (a + b) + ¢
are the sums of (a,b,c), and a+ (b+ (c+d)),a+ ((b+¢)+d),(a+b)+ (c+d),(a+ (b+¢)) +d and
((a + b) + ¢) + d are the sums of (a,b,c,d).

159
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Theorem D.1.3 (General Associative Law). Let + be an associative binary operation on the set G.
Then any sum of (ai,az,...,a,) is equal to > | a;.

Proof. The proof is by complete induction. For a positive integer n let P(n) be the statement:
If a1, az, ...a, are elements of G and z is a sum of (a1, as,...,a,), then z =>"" | a;.

Suppose now that n is a positive integer with n and P(k) is true all integer 1 < k < n. Let
ai,as, . ..an be elements of G and z is a sum of (a1, as,...,a,). We need to show that z = """, a;.

Assume that n = 1. By definition a; is the only sum of (a1) and 23:1 a1 =ai. Soz =a; =
D i @i

Assume next that n > 1. We will first show that

(*) If w is any sum of (a1,...,an—1), then u+a, = > 1, a;.

Indeed by the induction assumption, P(n — 1) is true and so u = Z?:_ll a;. Thus u + a, =
S a; + ay, and the definition of 37 | a; implies u + a, = Y7, a;. So (*) is true.

By the definition of ‘sum’ there exists 1 < k < n, a sum z of (ay,...,a;) and a sum y of
(ak+1,---,an) such that z =z +y.

Case 1: k=n—1.

In this case = is a sum of (ay,...,an—1) and y a sum of (a,). So y = a, and by (**) applied with
r=uwehave z =z +y=as+a,= ; ,a.

Case 2: 1 <k<n-—1.

Observe that n — k < n — 1 < n and so by the induction assumption P(n — k) holds. Since y
is a sum of agiq,...,a,) we conclude that y = E?;lk agr;. Since k <n—1,1 < n—k and so by
definition of X, y = Z?;lkfl Gk+i + arn. Since + is associative we compute

z:x+y:x+(2ak+i+an):(x+ Z ak+;) + ap

n—k n—k—1
1

i=1 %

Put u = x + Z;:lk_l ag+i- Then z = u+ a,. Also z is a sum of (aq,...,a;) and Z?:_lk_l gy
is a sum of (ag,...,an—1). So by definition of a sum, w is a sum of (ay,...,a,—1). Thus by (**),

Z=u+an =y 1 a.
We proved that in both cases z = > " ;a;. Thus P(n) holds. By the principal of complete

induction, P(n) holds for all positive integers n. O

D.2 The general commutative law

Definition D.2.1. A binary operation + on a set G is called commutative if a +b = b+ a for all
a,beq.
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Theorem D.2.2 (General Commutative Law I). Let + be an associative and commutative binary
operation on a set G. Let aj,as,...,anp, € G and f:[1...n] = [1...n] a bijection. Then

D ai=ags
=1 =1

Proof. Obsere that the theorem clearly holds for n = 1. Suppose inductively its true for n — 1.

Since f is onto there exists a unique integer k with f(k) = n.

Define g : {1,...n =1} = {1,...,n— 1} by g(i) = f(i) if i < k and ¢g(i) = f(i+ 1) if i > k.
We claim that ¢ is a bijection. For this let 1 <[ < n — 1 be an integer. Then [ = f(m) for some
1<m<mn. Sincel #nand fis 1-1, m # k. If m < k, then g(m) = f(m) =1 and if m > k, then
g(m —1) = f(m) = 1. Thus g is onto and by (]ED g is also 1-1. By assumption the theorem is
true for n — 1 and so

n—1 n—1
(%) D ai =) a0
i=1 i=1
Using the general associative law (GAL, Theorem |D.1.3) we have

2 i1 45 ()
(GAL) = (S5 ar@) + (050 + itk as)
(n=f(k)) = Zz 1 a5a)) F(an + D701 ap)
(‘ +' commutative ) = Z 1 af(z )+ Qi ar@y + an)
(Z 1 afuy) + (Z?:k—&-l af(i))) +an
(i are) + (52 agn)) + an
(definition of g) = (ZZ _1 ag(i)) + (E;‘:—é ag(j))) + an
(GAL) = (X a, (@) T an
(%) = (5 ai) + an
(definition of ) = >ria;

("+'associative ) =

(Substitution j =i+ 1) =

(
(
(
(
(
(

So the Theorem holds for n and thus by the Principal of Mathematical induction for all positive
integers. [

Corollary D.2.3. Let + be an associative and commutative binary operation on a set G. I a
non-empty finite set and fori € I let b; € G. Let g,h : {1,...,n} — I be bijections, then

D boy = by
=1 =1
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Proof. For 1 <14 < n, define a; = by(;). Let f = g Yo h. Then f is a bijection. Moreover, go f = h
and a (i) = by(f(i)) = ba(iy)- Thus

Dby =D ags = > =Y by
=1 =1 =1 =1
O

Definition D.2.4. Let + be an associative and commutative binary operation on a set G. I a finite
set and for i € I let by € G. Then Y cra; := Y i byyy, where n = |I| and f := {1,...,n} is
bijection. (Observe here that by this does not depend on the choice of f.)

Theorem D.2.5 (General Commutative Law II). Let + be an associative and commutative binary
operation on a set G. I a finite set, (I;,|j € J) a partition of I and for i € I let a; € G. Then

dai=) (2 a

il jeJ \iel;

Proof. The proof is by induction on |J|. If |.J| = 1, the result is clearly true. Suppose next that |J| = 2
and say J = {ji,j2}. Let fi: {1,...,n;} — I, be a bijection and define f : {1...,n1 +na} — I by
f(@) = fi1(i) if 1 <i <nyand f(i) = fo(i —n1) if ny +1 <9 < ny+ng. Then clearly f is a onto and
so by (]ED, f is 1-1. We compute

Yierai = " ag)
B (T agw) + (ST )
= (Ciane) + (CEiane)
= (Zz‘eljl “i> ( zEI GZ>
- 2jes (Zielj ai)

Thus the theorem holds if |J| = 2. Suppose now that the theorem is true whenever |J| = k.
We need to show it is also true if |[J| = k+ 1. Let j € J and put Y = I\ J;. Then (I} | j #
k € J) is a partition of Y and (I;,Y") is partition of I. By the induction assumption, ) .,y a; =

D jtked (Zigk ai> and so by the |J| = 2-case
Dier @i = (Zielj ai) + (Ziey @i)
= (Zielj ai) + (Zj;ékej (Zielk ai))
- 2jes (ZiEIJ ai)

The theorem now follows from the Principal of Mathematical Induction. O
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D.3 The General Distributive Law

Definition D.3.1. Let (+,-) be a pair of binary operation on the set G. We say that
(a) (+,-) is left-distributive if a(b+ ¢) = (ab) + (ac) for all a,b,c € G.
(b) (+,-) is right-distributive if (b + c¢)a = (ba) + (ca) for all a,b,c € G.
(c) (+,-) is distributive if its is right- and left-distributive.

Theorem D.3.2 (General Distributive Law). Let (+,-) be a pair of binary operations on the set
G.

(a) Suppose (+,-) is left-distributive and let a,by,...by € G. Then
a - (Zb]) = Zabj
j=1 j=1
(b) Suppose (+,-) is right-distributive and let ay,...an,b € G. Then
i=1 i=1

(¢) Suppose (+,-) is distributive and let ay,...an,b1,...by € G. Then

n m n m

O a)- O b)=>" aibj
: : -

=1 J=1 =1 \Jj=

Proof. @ Clearly @ is true for m = 1. Suppose now @ is true for k£ and let a,by,...bx11 € G.
Then

a- (25:11 bi)

(definition of >7) = a- ((Zle bi) + ka)
(left-distributive) = a- (Zle bi) +a- byt

(induction assumption) = (Zle abZ-) + abgi1
(definition of ) = S Flap

Thus holds for k£ 4+ 1 and so by induction for all positive integers n.
The proof of @ is virtually the same as the proof of @ and we leave the details to the reader.

()
m k n m n m
(Zaz) | (ZbZ) 23 (@ e | E | X
i=1 i=1 j=1

i=1 i=1 \j=1
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Appendix E

Verifying Ring Axioms

Proposition E.0.3. Let (R, +,-) be ring and (S, ®,®) a set with binary operations ® and ©. Sup-
pose there exists an onto homomorphism ® : R — S ( that is an onto function ® : R — S with
O(a+b) = P(a) @ @(b) and ®(ab) = ®(a) ©® ©(b) for all a,b € R. Then

(a) (S,@,®) is a ring and ® is ring homomorphism.

(b) If R is commutative, so is S.

Proof. @ Clearly if S is a ring, then @ is a ring homomorphism. So we only need to verify the eight
ring axioms. For this let a,b,c € S. Since ® is onto ther exist x,y,z € R with ®(z) = a,P(y) = b
and ®(z) = c.

[AXx 1] By assumption @ is binary operation. So[Ax 1] holds for S.
[Ax 2]

a® (bdc) = &(z)® (P(y) ® P(2))
= O(z+y)+2) = Pa+y od(z)

O(z)d Py + 2) = O(z+ (y+2))
(P(z) @ P(y)) @ P(2) = (a@b)®c

Ax3 apb=2x)aP(y)=P(z+y)=Py+2z2)=2@)dP(x)=bda
[AX4] Put Og = ®(0g). Then

a®0g=(x)®P(0r) =P(x+0g) =P(z)=0a

0s +a=®(0r) ® P(x) =P(0r +z) = P(x) = a.
[AX 5 Put d= ®(—x). Then

0@ d=B(z)®b(—z) = Bz + (—z)) = B(0r) = O
[AX 6] By assumption @ is binary operation . So[Ax 6 holds for S.
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Ax 7|
a®boc) = O)o(R(y) ©2(2) = ®(2) © (yz) = P(2(yz))
- (@) = ) od(:) = (B@)ob)od:) = @obhoc
[Ax 8
a®b®c) = O(z)0(2(y) ®P(2) = P(z) © (y + 2) = Qz(y+2)
= O(zy+wzz) = O (zy) + P(r2) = (P(z) 0 P(Y)) + (P(x) ©P(2)) = (a@b)®(a®c)

Similarly (a ®b)©c=(a®@c) @ (bOc).
@ Suppose R is commutative then
3.1.2] a0©b=2(z)®P(y) = P(xy) = P(yx) =P(y) ©P(x) =00 a O



Appendix F

Constructing rings from given rings

F.1 Direct products of rings

Definition F.1.1. Let (R;)ier be a family of rings (that is I is a set and for each i € I, R; is a
ring).

(a) Xcr Ri is the set of all functions v : I — \J;c; Ri,i — r; such that r; € R; for all i € I.

(b) X,cr Ri is called the direct product of (R;)er
(c) We denoter € X, Ri by (r:)icr, (13)i or (r3).

(d) Forr = (r;) and s = (s;) in R define r + s = (r; + s;) and rs = (1;8;).
Lemma F.1.2. Let (R;)ier be a family of rings.

(a) R:= X, R; is a ring.
(b) 0r = (OR,)icr-
(¢) —(ri) = (=ri).
(d) If each R; is a ring with identity, then also X ;. R; is a ring with identity and 1 = (1g,).

)

(e) If each R; is commutative, then X, ; R; is commutative.

Proof. Left as an exercise. O

F.2 Matrix rings

Definition F.2.1. Let R be a ring and m,n positive integers.

(a) An m x n-matrix with coefficients in R is a function

A:{l,...,m}x{l,...,n}—>R, (i,j)»—>aij.
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(b) We denote an m x n-matriz A by [aijli<i<m, [@ijlij, [aij] or

1<j<n
ail ai2
a1 a2
|Am1  Gm2

a

A2n

Qmn

in

(c) Let A = [ai;] and B = [b;j] be m x n matrices with coefficients in R. Then A + B is the

m x n-matriz A+ B := [a;; + bij].

(d) Let A = [a;j];; be an m x n-matriz and B = [bji];x an n X p matriz with coefficients in R.
Then AB is the m x p matriz AB = [} 71 ai;bji]ik-

(€) Myn(R) denotes the set of all m x n matrices with coefficients in R. M, (R) = Mp,(R).

It might be useful to write out the above definitions of A + B and AB in longhand notation:

ail a2 . A1n
a21 a2 o a2n n
_am1 Am2 ... amn_

and ) )
all a1 e A1n
asy ago e aon

|@m1 Qm2 ... Qmn

a11bi1 + ai2ba1 + ... + a1nbny a11bi2 + a12ba2 + ...

az21b11 + az22b21 + ... + az2nbn1 a21b12 + az22b22 + ...

Am1b11 + @ma2b21 + ...+ Gmnbnt  Amibiz2 + amabae + ...

ai1 +bi1 a2 + b2

a21 + b2 a2+ b

| Am1 +bm2  am2 + bma

+ alnbn2

+ a2nbn2

+ amnbn2

b12 - bln

bao ... b9y

a1p + bin

aop + bay,

amn + bmn i

by

bap

bmp

a11bip + a12bop + ... + a1nbnp

a21b1p + a22bap + ... + a2nbnp

amlblp + am262p +...+ amnbnp
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Lemma F.2.2. Let n be an integer and R an ring. Then
(8) (Mo (R), +.-) is a ring.
(b) Ont,(m) = (OR)ij-

)
(¢) —lai] = [~ai] for any [aij] € Mn(R).
(d) If R has an identity, then My (R) has an identity and 1y, (r) =
1 ifi=j
dij = e
Or ifi#]
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(0i5), where

Proof. Put J = {1,...,n} x {1,...,m} and observe that (My(R),+) = (X, R,+). So

implies that Ax THAX Bl (b)) and (d) hold.

Clearly [Ax 6 holds. To verify [Ax Tl let A = [a;;], B = [bjz] and C = [cy] be in M, (R). Put
D = AB and E = BC. Then
(AB)C =DC = Zdikckl = aijbjk Ckl = ZZaijbjkckl
Lk=1 Ja k=1 \y=t 1a j=1k=1 1a
and _ - _ . -
A(BC) = AF = Zaijeﬂ = ZCLZ‘J‘ ( bjkckl> = Z aijbjkckl
[7=1 da =1 k=1 la J=1 k=1 la
Thus A(BC) = (AB)C.
(A+ B)C = [aij + bilij - [ejelin = | D _(aij + bij)cji
J=1 ik
i=1 ik LI ik
So (A+ B)C = AC + BC and similarly A(B+ C) = AB + AC. Thus M, (R) is a ring.
Suppose now that R has an identity 1z. Put I = [d;;];;, where
dij = b 1fz :j:
Op ifi=j
If i # j, then 5ijajk = Ogajr = OR and if ¢ = j then (5ijajk = lpa;r = a;;. Thus
IA = Zéijajk = [azk]zk = A
j=1 ik
and similarly Al = A. Thus A is an identity in R and so @ holds. O
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F.3 Polynomial Rings

In this section we show that if R is ring with identity then existence of a polynomial ring with
coefficients in R.

Theorem F.3.1. Let R be a ring. Let P be the set of all functions f : N — R such that there exists
m € N* with

(1) f(i) = 0g for all i >m

We define an addition and multiplication on P by

(2) (f +9)(@) = f(i) +9(i) and (fg)(i) =)  f(i)g(k —1)

k=0

(a) P is a ring.
(b) Forr € R definer® € P by

L ifi=0
®) @ {OR ifi#0

Then the map R — P,r — r° is a 1-1 homomorphism.

(c) Suppose R has an identity and define x € P by

oo {1m W=l
T Yog i1

Then (after identifying r € R with r° in P), P is a polynomial ring with coefficients in R and
indeterminate .

Proof. Let f,g € P. Let deg f be the minimal m € N* for which (1) holds. Observe that (2) defines
functions f 4+ g and fg from N to R. So to show that f 4+ g and fg are in P we need to verify that
(1) holds for f+ g and fg as well. Let m = maxdeg f,deg g and n = deg f + degg. Then for i > m,
f(i) = Og and g(i) = Or and so also (f + ¢)(i) = Or. Also if i > n and 0 < k < i, then either
k < deg f ori—k > degg. In either case f(k)g(i — k) = Og and so (fg)(i) = Ogr. So we indeed have
f+g€ Pand fg € P. Thus axiom [Ax 1] and [Ax 6 hold. We now verify the remaining axioms one
by one. Observe that f and g in P are equal if and only if f(i) = g(¢) for all : € N. Let f,g,h € P
and ¢ € N.
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(Ax 2]
(F+9)+h)) = (F+9@)+ht) = (@) +g@)+n6E) = f@)+(9()+ (i)
= J@O+ @O +hE) = [fO+@+HE = (F+(g+h)@)
Ax3  (F+9)(@) = (i) +906) = () f@) = (g+ )(@)
(Ax4l Define 0p € P by 0p(i) = Op for all i € N. Then
(f +0p) (i) = f(i) + 0p(i) = f(i) + Or = f(7)
(Op + f)(i) = 0p(i) + f(i) = Or + f(i) = f(4)

[AX 5] Define —f € P by (—f)(i) = —f(4) for all i € N. Then

(f+ (=/NE) = f@) + (=)@ = f(@) + (= (i) = 0r = 0p(i)
Any triple of non-negative integers (k,l,p) with k + [ + p = ¢ be uniquely written as
(k,j—k,i—j) where 0 < j <iand 0 <k <j—k)and uniquely as (k,l,i —k — ) where 0 <i <k
and 0 <[ < ¢ — k. This is used in the fourth equality sign in the following computation:

((fo)h) (@) = Z(fg)() h(i — ) = Z((Zf ) <z—j>>
Jj= 7=0
% J 7
= (Zf z—y)) = > (Z FR)g(Wh(i — k — l)))
Z k=0 . k=0 \I[=0
= ( < g(D)h(i — —l)) = Zf (gh)(i — k)
k=0 =0
= (f(gh))(9)
Ax 8
(f-(g+h)) = fG)-(g+n)G—-35) = FG) - (g(i = 4) + h(i — j))
7=0 'j:O
= D fUeli—5)+fGhri—4) = ) fl)ali—j +Zf (i — 5)
j=0 Jj=0
= (f9)(@) + (fh)(3) = (fg+ fh)( )
(f+9)-h)@) = (f+9)0)-hi-j) = (f(4) + 9(5)) - h(i = )
j=0 - J=0
= D fhi—4)+9(ri—3j) = Y fG)hii—j +Zg (i — )
J=0 j=0

= (FR)(@) + (gh)(3) = (fh+ gh)( )
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Since [Ax 1] through [Ax § hold we conclude that P is a ring and (a)) is proved. Let r,s € R and
k,l € N. We compute

@ (r+9°0) = {01: gy = 0L = 00

and

(r°s)(i) = Y r°(k)s(i — k)
k=0
Note that r°(k) = O unless k£ = 0 and s°(i—k) = Og unless and i—k = 0. Hence r°(k)s(i
unless k = 0 and ¢ —k = 0 (and so also i = 0). Thus (r°s)(i) = 0if i # 0 and (r°s)(0) = r°(0)s°(0) =
rs. This

O/\

(5) r°s® = (rs)°
Define p: R — P,r — r°. If r;s € R with 7° = s°, then r = r°(1) = s°(1) = s and so p is 1-1.
By (4) and (5), p is a homomorphism and so (b)) is proved.

Assume from now on that R has an identity.
For k£ € N let 05, € P be defined by

o f1g ifi=k
©) Ouli) = {OR itk

Let f € P. Then

(7) (r°f)(@)

I

3

e]
—
=y
S~—
-
—
~.

|

k) =7 f(i +Zosz— =r- f(i)

and similarly

(8) (fro)(@) = f(@)-r

In particular, 1% is an identity in P. Since dg = 1% we conclude

9) 0o=1%=1p

For f = d;, we conclude that



F.3. POLYNOMIAL RINGS 173

T ifi=k

(10) (0)(0) = (0} (7) = {OR i

Let m € N and ag, . ..ay, € R. Then (10) implies

i a; ifi<m
11 20 )) = -
(11) (kzzoa’“)(l) {OR if i >m

We conclude that if f € P and ag,a1,as,...ay, € R then

(12) f=> apd, <= m>degfanday=f(k)forall0<k<m
k=0
We compute

(13) (6k61) (1) = > k()i — 5)

=0

Since 0k (7)0;(i — j) is O unless j = k and [ = i — j, that is unless j = k and ¢« = [ + k, in which
case it is 1, we conclude

] 1g ifi=k+1 )
14 516 _ — 5
(14) (0x07) () {OR i it (2)
and so
(15) = 6k+l

Note that z = §;. We conclude that

(16) xk = 5k
By (10)
(17) r°z=ar® forallreR

We will now verify the four conditions (i)-(iv) in the definition of a polynomial. By (b)) we we
can identify r with 7° in R. Then R becomes a subring of P. By (9), 13 = 1p. So (i) holds. By
(17), (ii) holds. (iii) and (iv) follow from (12) and (16). O
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Lemma F.3.2. Let R and P be rings and x € P. Suppose that Conditions @)- in hold
under the convention that fox® := fy for all fo € R. Then R and P have identities and 1r = 1p.

Proof. Since x € P, [4.1.1|iii) shows that z = Yot e;x’ for some m € N and eg, eq,...e, € R. Let
r € R. Then

n

n
re=r Z = Z(T‘ei)xi.
=0

=0

So shows that re; = r. Since rx = xr by a similar argument gives e;r = e and
so e is an identity in R and e; = 1g. Now let f € P. Then f = Y, f;z' for some n € N and

fo,---, fn € R. Thus

falr=0 fix) - 1r=) (filr)a' =) fir' = f
i=0

i=0 i=0
Similarly, 1z - f = f and so 1g is an identity in P. O



Appendix G

Cardinalities

G.1 Cardinalities of Finite Sets

Notation G.1.1. Fora,be Z set [a...b:={c€Z|a < c <b}.

Lemma G.1.2. Let A C [1...n]. Then there exists a bijection o : [1...n] — [1...n] with a(A) C
[1...n—1].

Proof. Since A # [1...n] there exists m € [1...n] with m ¢ A. Define o : [1...n] — [1...n]
by a(n) = m, a(m) = n and «(i) = ¢ for all i € [1...n] with n # i # m. It is easy to verify
that « is bijection. Since a(m) = n and m ¢ A, a(a) # n for all a € A. So n & a(A) and so
a(A)C[1...n]—1. O

Lemma G.1.3. Letn € N and let f: [1...n] = [1...n] be a function. If B is 1-1, then [ is onto.

Proof. The proof is by induction on n. If n = 1, then 5(1) = 1 and so 8 is onto. Let A =
B([1...n—1]). Since f(n) ¢ A, A # [1...n]. Thus by there exists a bijection a : [1...n]
with a(4) € [1...n—1]. Thus af([1...n—1]) C [1...n—1]. By induction af([l...n—1] =
[1...n—1]. Since af is 1-1 we conclude that afB(n) = n. Thus af is onto and «f is a bijection.
Since « is also a bijection this implies that 3 is a bijection. O

Definition G.1.4. A set A is finite if there exists n € N and a bijection ac: A — [1...n].

Lemma G.1.5. Let A be a finite set. Then there exists a unique n € N for which there exists a
bijection a : A — [1...n].

Proof. By definition of a finite set there exist n € N and a bijection a: A — [1...n]. Suppose
that also m € Nand f: A — [1...m] is a bijection. We need to show that n = m and may assume
that n <m. Let y:[l...n] = [1...m],i = i and 6 := yoa o B~ !. Then v is a 1-1 function from
[1...m] to [1...m] and so by [G.1.3] § is onto. Thus also v is onto. Since v([1...n]) = [1...n] we
conclude that [1...n] =[1...m] and so also n = m. O

Definition G.1.6. Let A be a finite set. Then the unique n € N for which there exists a bijection
a:A—[1...n] is called the cardinality or size of A and is denoted by |A|.

175



176 APPENDIX G. CARDINALITIES

Theorem G.1.7. Let A and B be finite sets.
(a) If a: A — B is 1-1 then |A| < |B|, with equality if and only if « is onto.
(b) If a: A — B is onto then |A| > |B|, with equality if and only if « is 1-1.
(c) If A C B then |A| < |B|, with equality if and only if |A| = |B|.

Proof. () If v is onto then « is a bijection and so |A| = | B|. So it suffices to show that if |A| > |B|,
then « is onto. Put n = |A| and m = |B| and let 5: A — [1...n] and v : B — [1...m] be bijection.
Assume n > m and let § : [L...m] — [1...n] be the inclusion map. Then dyaB~! is a 1-1 function
form [1...n] to [1...n] and so by its onto. Hence 0 is onto, n = m and J is bijection. Since
also v is bijection, this forces a8~! to be onto and so also « is onto.

(]E[) Since « is onto there exists 5 : B — A with a8 = idg. Then § is 1-1 and so by @, |B| < |A]
and f is a bijection if and only if |A| = |B|. Since « is a bijection if and only if 3 is, (b)) is proved.

Follows from @ applied to the inclusion map A — B. ]

Proposition G.1.8. Let A and be B be finite sets. Then
(a) If ANB =0, then |[AU B| = |A| + |B|.
(b) |[Ax Bl =|A]-[B|.

Proof. (&) Put n = |A|, m=|B|and let 3: A— [1...n] and 7y : B — [1...m] be bijections. Define
v:AUB — [1...n+m| by

9 Blc)+n ifceB
Then it is readily verified that «y is a bijection and so |[AU B| =n +m = |A| + |B|.

() The proof is by induction on |B|. If |B| = 0, then B = () and so also A x B = . If
|B| = 1, then B = {b} for some b € B and so the map A — A x B,a — (a,b) is a bijection. Thus
|A x B| = |A| = |A| - |B|. Suppose now that (b) holds for any set B of size k. Let C be a set of
size k + 1. Pick ¢ € C and put B = C'\ {c}. Then C = BU {c} and so (@) implies |B| = k. So by
induction |A x B| = |A] - k. Also |A x {c} = |A] and so by

{a(c) ifce A

[AxC|=|Ax B|+|Ax{c} =|A|-k+|Al =|A| - (k+1) =|A||C]
() now follows from the principal of mathematical induction O
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