Locally Finite Simple Groups of 1-Type

Stefaan Delcroix
University of Wyoming
Laramie, WY 82071
delcroix@uwyo.edu
Ulrich Meierfrankenfeld
Michigan State University
East Lansing, MI 48824
meier@math.msu.edu

Abstract

A locally finite, simple group G is called of 1-type if every Kegel cover for G has a factor which is an alternating group. In this paper we study the finite subgroups of locally finite simple groups of 1-type. We also introduce the concept of "blockdiagonal embeddings" for groups of alternating type. We show that the groups of 1type are exactly the groups which have an alternating Kegel cover with block diagonal embeddings.

1 Introduction

Let G be a group. G is locally finite if every finite subset of G lies in a finite subgroup of G. G is finitary if there exist a field \mathbb{K} and a faithful $\mathbb{K} G$-module V so that $V / C_{V}(g)$ is finite dimensional for all $g \in G$.

If H is a group and Ω is an H-set, we denote by H^{Ω} the image of H in $\operatorname{Sym}(\Omega)$. So $H^{\Omega} \cong H / C_{H}(\Omega)$.

Let G be an infinite, locally finite, simple group. Let \mathcal{A} be the set of pairs (H, Ω) so that H is a finite subgroup of G, Ω is an H-set, $|\Omega| \geq 7$ and $H^{\Omega}=\operatorname{Alt}(\Omega)$.

We say that G is of alternating type if G is non-finitary and if for each finite subgroup F of G there exists $(H, \Omega) \in \mathcal{A}$ such that $F \leq H$ and F acts faithfully on Ω.

Let G be of alternating type and $F \leq G$ finite. We say that F is non-regular if there exists a finite subgroup $F^{*} \leq G$ with $F \leq F^{*}$ and so that for all $(H, \Omega) \in \mathcal{A}$ with $F^{*} \leq H$, F has no regular orbit on Ω.
G is called of non-regular alternating type if G is of alternating type and G has a non-regular finite subgroup.

Our first theorem (proven in section ??) describes the normal closure of a non-regular subgroup in (large enough) finite over-groups.

Theorem 1.1 Let G be a locally finite simple group of alternating type and F a finite nonregular subgroup of G. Then there exists a finite subgroup $F \leq F^{*} \leq G$ such that for all finite $F^{*} \leq L \leq G$
(a) There exist normal subgroups R_{1}, \ldots, R_{n} of $\left\langle F^{L}\right\rangle$ such that

$$
\left\langle F^{L}\right\rangle=R_{1} R_{2} \ldots R_{n}
$$

and

$$
R_{i} \cong\left(K_{i} \Omega_{\Omega_{i}} \operatorname{Alt}\left(\Omega_{i}\right)\right)^{\prime}
$$

for some finite group K_{i} and some finite set Ω_{i}.
(b) For $i=1, \ldots, n$ let B_{i} be the base group of R_{i} and choose notation so that $\left[R_{i}, F\right] \nsubseteq B_{i}$ if and only if $i \leq m$. Then

$$
R_{1} \ldots R_{m}=R_{1} \times R_{2} \times \ldots \times R_{m} .
$$

Recall that a Kegel cover for G is a set \mathcal{K} such that
(a) Each $K \in \mathcal{K}$ is a pair (H, M), where H is a finite subgroup of G and M is maximal normal subgroup of H.
(b) For each finite subgroup F of G there exists $(H, M) \in \mathcal{K}$ with $F \leq H$ and $F \cap M=1$.

The groups $H / M,(H, M) \in \mathcal{K}$, are called the factors of \mathcal{K}. \mathcal{K} is alternating if all the factors of \mathcal{K} are alternating groups. If \mathcal{K} is an alternating Kegel cover, we view \mathcal{K} as a subset of \mathcal{A}. Indeed, if $(H, M) \in \mathcal{K}$ with $H / M \cong \operatorname{Alt}(\Omega)$, then H acts on Ω (with $M=C_{H}(\Omega)$) and $(H, \Omega) \in \mathcal{A}$. This also reveals that a non-finitary locally finite simple group G is of alternating type if and only if G has an alternating Kegel cover.

Our next theorem (proven in section ??) shows that non-regular subgroups can be detected from a given alternating Kegel cover.

Theorem 1.2 Let G be a locally finite, simple group of alternating type and F a finite subgroup of G. Then F is non-regular if and only if there exists an alternating Kegel cover \mathcal{K} and a non-negative integer t such that for all $(H, \Omega) \in \mathcal{K}$ with $F \leq H, F$ has at most t regular orbits on Ω.

The preceding theorem, together with [?, Proposition 1.33], shows that the groups Brian Hartley called Mf-groups of 'visual diagonal alternating type' [?, Definition 1.31], are in fact of non-regular alternating type. Hence (see section ?? for the details) some of the non-absolutely simple, locally finite simple groups constructed in [?, Section 6] are of non-regular alternating type :

Theorem 1.3 There exist non-absolutely simple, locally finite, simple groups of non-regular alternating type.

Let G be of alternating type
Let $F \leq G$ be finite. Let $\mathcal{A}_{\text {reg }}(F)$ be the set of all $(H, \Omega) \in \mathcal{A}$ so that $F \leq H$ and F has a regular orbit on Ω. We say that F is regular if $\mathcal{A}_{\text {reg }}(F)$ is a Kegel cover for G. Note that the definition of a Kegel cover implies that F is non-regular if and only if F is not regular. G is of regular alternating type if G is locally regular, that is if every finite subgroup of G is regular.

We say that G is of ∞-type if G has the following property :
Let \mathcal{S} be any class of finite simple groups such that every finite group can be embedded into a member of \mathcal{S}. Then there exists a Kegel cover for G all of whose factors are isomorphic to a member of \mathcal{S}.

We say that G is of 1-type if every Kegel cover for G has a factor which is an alternating group.

The next theorem (proven in section ??) shows the relationship between groups of 1-, $\infty-$, regular- and non-regular type.

Theorem 1.4 Let G be a locally finite, simple group of alternating type.
(a) G is of non-regular alternating type if and only if G is of 1-type.
(b) G is of regular alternating type if and only if G is of ∞-type.

Let p be a prime and G a non-finitary, locally finite, simple group. G is of p-type if every Kegel cover for G has a factor which is a classical group in characteristic p. From Theorem ?? and [?, Theorem A] we have

Theorem 1.5 Let G be a locally finite, simple group. Then exactly one of the following holds:

1. G is finitary.
2. G is of 1-type.
3. G is of p-type for a unique prime p.
4. G is of ∞-type.

In [?] "pseudo natural orbits" have been introduced. They are used in [?, Theorem 3.4] to devide alternating Kegel covers into two classes which Brian Hartley [?, Defintion 2.8] called RA- and DA- type. Unfortunately these two types are not disjoint. For example suppose $\left\{\left(G_{i}, \Omega_{i}\right) \mid i=1,2 \ldots\right\}$ is a Kegel cover so that $G_{i}=\operatorname{Alt}\left(\Omega_{i}\right), G_{i} \leq G_{i+1}$ and G_{i} acts semiregulary on Ω_{i}, then this Kegel cover is both of $R A$ and $D A$ type. This comes from the fact that a regular orbit also is a pseudo natural orbit. In this paper we define "block natural orbits" which avoid this problem:

Let $(H, \Omega) \in \mathcal{A}$. By [?, Lemma 2.8], there exists a unique minimal (sub)normal supplement R to $C_{H}(\Omega)$ in H. Let Λ be an H-set. An orbit Σ for H on Λ is called Ω-essential if $C_{H}(\Sigma) \leq C_{H}(\Omega)$. That is if and only if R acts non-trivially on Σ. Σ is called Ω-natural if Σ is isomorphic to Ω as an H-set. Σ is called Ω-block-natural if there exists an H-invariant partition Δ of Σ so that Δ is Ω-natural and such that $N_{H}(D)=C_{H}(D) C_{H}(\Omega)$ for all $D \in \Delta$. In this case, Δ is just the set of orbits of $\mathrm{C}_{H}(\Omega)$ on Σ. Indeed, since H is transitive on $\Sigma, N_{H}(D)$ is transitive on D. Hence $C_{H}(\Omega)$ is transitive on D. We remark that, since $N_{H}(D) / C_{H}(\Omega) \cong \operatorname{Alt}(|\Omega|-1)$ is simple, the condition $N_{H}(D)=C_{H}(D) C_{H}(\Omega)$ is equivalent to $C_{H}(D) \nsubseteq C_{H}(\Omega)$. Λ is called Ω-block-diagonal if all the Ω-essential orbits are Ω-block-natural.

Theorems ?? and ?? reveal that groups of 1-type are loosely speaking the groups of alternating type with "block-diagonal" embeddings.

Some of the results in this paper first appeared in [?] and some of the arguments have been developed in [?].

2 The Set-up

Proposition 2.1 (Hall's Finitary Lemma) A locally finite simple group G which has a sectional cover composed of alternating groups and classical groups of unbounded dimension in which the natural degrees of the element $g \neq 1$ are bounded, has a faithful representation as a finitary linear group.

Proof: This is [?, Corollary 3.13].
The reader might consult [?] for the definition of a sectional cover. For our purposes it is enough to know that every Kegel cover is a sectional cover. If H / M is a classical group or an alternating group, $\operatorname{pdeg}_{H / M}(g)$ denotes the natural degree of g in H / M. So if $H / M=\operatorname{Alt}(\Omega)$, then $\operatorname{pdeg}_{H / M}(g)=\operatorname{deg}_{\Omega}(g)$ is the number of elements in Ω not fixed by g; if H / M is a classical group defined over a \mathbb{K}-space V, then $\operatorname{pdeg}_{H}(g)$ is the minimum of all $\operatorname{dim}_{\mathbb{K}} V / W$, where W is a \mathbb{K}-subspace of V on which g acts projectively trivially. If $g \notin H$, we put $\operatorname{pdeg}_{H / M}(g)=0$.

Corollary 2.2 Let G be a non-finitary, locally finite, simple group and F a finite subgroup of G. Let \mathcal{K} be a Kegel cover for G all of whose factors are alternating or classical groups.

Let s be a positive integer. Then

$$
\mathcal{K}(F, s):=\left\{(H, M) \in \mathcal{K} \mid F \leq H \text { and } \operatorname{pdeg}_{H / M}(f) \geq s, \forall 1 \neq f \in F\right\}
$$

is a Kegel cover for G.
Proof: For $1 \neq f \in F$, let $\mathcal{K}_{f}=\left\{(H, M) \in \mathcal{K} \mid \operatorname{pdeg}_{H / M}(f) \leq s\right\}$. Suppose that \mathcal{K}_{f} is Kegel cover for G. Then by Hall's Finitary Lemma applied to the sectional cover \mathcal{K}_{f}, G is finitary, a contradiction. So \mathcal{K}_{f} is not a Kegel cover for G. Since

$$
\mathcal{K}=\mathcal{K}(F, s) \cup \bigcup_{1 \neq f \in F} \mathcal{K}_{f}
$$

the Coloring Argument [?, Lemma 3.3] implies that $\mathcal{K}(F, s)$ is a Kegel cover for G.
Let \mathcal{D} be a subset of \mathcal{A}, F a finite subgroup of G and s a positive integer. Define

$$
\mathcal{D}(F, s)=\left\{(H, \Omega) \in \mathcal{D} \mid F \leq H \text { and } \operatorname{deg}_{\Omega}(f) \geq s, \forall 1 \neq f \in F\right\}
$$

and

$$
\mathcal{D}(F)=\mathcal{D}(F, 1)
$$

Lemma 2.3 Let G be a locally finite, simple group of alternating type, $F \leq G$ finite and s a positive integer. Then there exists a finite $F \leq F^{*} \leq G$ so that $\mathcal{A}\left(F^{*}\right) \subseteq \mathcal{A}(F, s)$.

Proof: Let l be the function from [?, Lemma 2.5]. By ??, we can choose $\left(F^{*}, \Lambda\right) \in$ $\mathcal{A}(F, l(s))$. Let $(H, \Omega) \in \mathcal{A}\left(F^{*}\right)$. Then by [?, Lemma 2.5], $\operatorname{deg}_{\Omega}(f) \geq s$ for all elements f of prime order in F. Since every non-trivial cyclic group contains an element of prime order, $\operatorname{deg}_{\Omega}(f) \geq s$ for all $1 \neq f \in F$.

For the remainder of the paper, let G be locally finite, simple group of alternating type.

The following result forms the technical basis for the investigations in this paper.
Lemma 2.4 There exists an increasing function $f_{\text {reg }}: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$with $f_{\text {reg }}(n) \geq 9 n^{2}$ and so that the following statement holds:

Let F be a finite subgroup of G and $(H, \Omega) \in \mathcal{A}\left(F, f_{\text {reg }}(|F|)\right)$. Suppose that H is transitive and Ω-essential on a set Λ. Then one of the following holds :

1. F has a regular orbit on Λ.
2. There exist $1 \leq t \leq|F|-2$ and an H-invariant partition Δ of Λ so that the action of H on Δ is isomorphic to the action of H on the subsets of Ω of size t.

Proof: See [?, Lemma 2.14].
For $A \in \mathcal{A}$, we define H_{A} and Ω_{A} by $A=\left(H_{A}, \Omega_{A}\right)$. Let $\mathcal{D} \subseteq \mathcal{A}$. We say that \mathcal{D} is Kegel cover for G if $\left\{\left(H, C_{H}(\Omega)\right) \mid(H, \Omega) \in \mathcal{D}\right\}$ is Kegel cover for G.

Let $\mathcal{D} \subseteq \mathcal{A}$ be a Kegel cover for G. Let F be a finite subgroup of G. Put

$$
\mathcal{D}^{*}(F)=\mathcal{D}\left(F, f_{\text {reg }}(|F|)\right.
$$

We say that F is \mathcal{D}-regular if there exists $D \in \mathcal{D}^{*}(F)$ so that F has a regular orbit on Ω_{D}. In other words, F is \mathcal{D}-regular if and only if $\mathcal{D}^{*}(F) \cap \mathcal{A}_{r e g}(F) \neq \emptyset$. We will prove in Theorem ?? that F is \mathcal{D}-regular if and only if F is regular.

3 Block-Diagonality in Groups of Non-Regular Alternating Type

We continue to use the notation introduced in the previuos section. In particular, G is a locally finite, simple group of alternating type.

Proposition 3.1 Let F be a finite subgroup of $G,(H, \Omega) \in \mathcal{A}^{*}(F) \cap \mathcal{A}_{\text {reg }}(F)$ and Σ an H-set. Then F has a regular orbit on each Ω-essential orbit for H on Σ. In particular, $\mathcal{A}(H) \subseteq \mathcal{A}_{\text {reg }}(F)$.

Proof: Let Λ be an Ω-essential orbit for H on Σ. We need to show that F has a regular orbit on Λ. So we may assume that (2) in ?? holds. Since F has a regular orbit on Ω, there exists $\omega \in \Omega$ with $C_{F}(\omega)=1$. Since $|\Omega| \geq f_{\text {reg }}(|F|) \geq 9|F|^{2} \geq 2|F|$, there exists a subset U of Ω of size t with $U \cap \omega^{F}=\{\omega\}$. Then $N_{F}(U) \leq C_{F}(\omega)=1$ and F has a regular orbit on Δ. Hence F has a regular orbit on Λ.

Proposition 3.2 Let F be a finite subgroup of $G,(H, \Omega) \in \mathcal{A}^{*}(F)$ and $A \in \mathcal{A}$ with $H \leq$ H_{A}. Suppose that Λ is an Ω-essential orbit for H on Ω_{A} and $\omega \in \Omega$ such that
(i) F has no regular orbit on Λ.
(ii) There does not exist $\lambda \in \Lambda$ with $C_{F}(\lambda) \lesseqgtr C_{F}(\omega)$.

Then
(a) There exists an H-invariant partition Δ of Λ so that $\Delta \cong \Omega$ as an H-set.
(b) If $\check{\omega}$ is the element in Δ corresponding to ω, then $\mathrm{C}_{F}(\omega)=N_{F}(\check{\omega})=C_{F}(\check{\omega})=C_{F}(\lambda)$ for all $\lambda \in \check{\omega}$.

Proof: Note that all the assumptions of ?? are fullfilled. By (i), ? ? (1) does not hold. So we can choose t and Δ as in ??(2).

Let $1 \neq f \in C_{F}(\omega)$. Suppose that $t \neq 1$. Since $\operatorname{deg}_{\Omega}(f) \geq 9|F|^{2} \geq 2|F|$, there exists $\rho \in \Omega$ with $\rho \notin \omega^{F}$ and $\rho \neq \rho^{f}$. Since $t \leq|F|-2$, there exists a subset U of Ω of size t with $\rho \in U, \rho^{f} \notin U$ and $U \cap \omega^{F}=\{\omega\}$. Then $N_{F}(U) \leq C_{F}(\omega)$ and $f \notin N_{G}(U)$. Thus $N_{F}(U) \lesseqgtr C_{F}(\omega)$.

Let $\delta \in \Delta$ so that δ corresponds to U. Note that δ is a subset of Λ and pick $\lambda \in \delta$. Then

$$
C_{F}(\lambda) \leq N_{F}(\delta)=N_{F}(U) \lesseqgtr C_{F}(\omega)
$$

a contradiction to the assumptions.
Thus $t=1$ and (a) holds. For (b), pick $\lambda \in \check{\omega}$ and note that

$$
C_{F}(\lambda) \leq N_{F}(\check{\omega})=C_{F}(\omega) .
$$

This implies that $C_{F}(\lambda)=C_{F}(\omega)=N_{F}(\check{\omega})=C_{F}(\check{\omega})$. So (b) holds.

Theorem 3.3 Let G be a locally finite, simple group of alternating type and F a finite subgroup of G. Then the following are equivalent:

1. F is not \mathcal{A}-regular.
2. F is not \mathcal{D}-regular for some alternating Kegel cover \mathcal{D} for G.
3. There exists an alternating Kegel cover \mathcal{D} for G and a non-negative integer t such that for all $A \in \mathcal{D}(F), F$ has at most t regular orbits on Ω_{A}.
4. F is non-regular.

Proof: Clearly (1) implies (2).
Suppose (2) holds. By ??, $\mathcal{D}^{*}(F)$ is a Kegel cover for G. Hence (3) holds with $t=0$ and $\mathcal{D}^{*}(F)$ in place of \mathcal{D}.

Suppose (3) holds but (4) does not. Then F is regular and so $\mathcal{A}_{\text {reg }}(F)$ is a Kegel cover for G. By ??, there exists $(H, \Omega) \in \mathcal{A}_{\text {reg }}(F) \cap \mathcal{A}^{*}(F)$. Let $A \in \mathcal{D}(H)$. By assumption, F has at most t regular orbits on Ω_{A}. Hence by ??, H has at most $t \Omega$-essential orbits on Ω_{A}. Let R be the minimal normal supplement to $C_{H}(\Omega)$ in H. As each Ω-essential H-orbit has size at most $|H|$ and since R acts trivially on the non- Ω-essential orbits, $\operatorname{deg}_{\Omega_{A}}(x) \leq t|H|$ for all $1 \neq x \in R$. Hence by Hall's Finitary Lemma ??, G is finitary, a contradiction. So (3) implies (4).

Suppose finally that (4) holds but (1) does not. Then there exists $(H, \Omega) \in \mathcal{A}_{\text {reg }}(F) \cap$ $\mathcal{A}^{*}(F)$. By ??, $\mathcal{A}(H) \subseteq \mathcal{A}_{\text {reg }}(F)$. As $\mathcal{A}(H)$ is a Kegel cover for G, so is $\mathcal{A}_{\text {reg }}(F)$. So F is regular, a contradiction.

Let F be a finite, non-regular subgroup of G. Let \mathcal{M}_{F} be the set of all $E \leq F$ so that $E=C_{F}(\omega)$ for some $(H, \Omega) \in \mathcal{A}^{*}(F)$ and $\omega \in \Omega$. Note that $E \neq 1$ for all $E \in \mathcal{M}_{F}$. Let
\mathcal{M}_{F}^{*} be the set of minimal elements of \mathcal{M}_{F}. We say that ω is F-extreme if $C_{F}(\omega) \in \mathcal{M}_{F}^{*}$. Let \mathcal{B}_{F} be the set of $(H, \Omega) \in \mathcal{A}^{*}(F)$ so that there exists an F-extreme $\omega \in \Omega$. Let \mathcal{B} be the union of the \mathcal{B}_{F} 's as F runs through the non-regular finite subgroups of G.

Theorem 3.4 Let G be a locally finite, simple group of alternating type and F a finite non-regular subgroup of G. Then the following holds:
(a) Let $(H, \Omega) \in \mathcal{B}_{F}$ and $A \in \mathcal{A}^{*}(F)$ with $H \leq H_{A}$ and $C_{H}\left(\Omega_{A}\right) \leq C_{H}(\Omega)$. Then $A \in \mathcal{B}_{F}$ and H is Ω-block-diagonal on Ω_{A}.
(b) Let $(H, \Omega) \in \mathcal{B}_{F}$. Then $\mathcal{A}(H) \cap \mathcal{A}^{*}(F) \subseteq \mathcal{B}_{F}$.
(c) Let $A, B \in \mathcal{B}_{F}$ with $H_{A} \leq H_{B}$. Then H_{A} is Ω_{A}-block-diagonal on Ω_{B}.
(d) Both \mathcal{B}_{F} and \mathcal{B} are Kegel covers for G.

Proof: (a) Since $\mathrm{C}_{H}\left(\Omega_{A}\right) \leq C_{H}(\Omega)$, there exists an Ω-essential orbit Λ for H on Ω_{A}. Let Λ be any Ω-essential orbit for H on Ω_{A}. Let $\omega \in \Omega$ be F-extreme. Let Δ be the H-invariant partition of Λ, given by ??(a). Let $\check{\omega}$ be the element of Δ, corresponding to ω and $\lambda \in \check{\omega}$. By ??(b),

$$
C_{F}(\omega)=C_{F}(\check{\omega})=C_{F}(\lambda) .
$$

In particular, $C_{F}(\lambda)=C_{F}(\omega) \in \mathcal{M}_{F}^{*}, \lambda$ is F-extreme and $A \in \mathcal{B}_{F}$.
Since $C_{F}(\breve{\omega})=C_{F}(\omega) \neq 1$ and F is faithful on $\Omega, C_{F}(\breve{\omega}) \not \equiv C_{H}(\Omega)$. Hence $C_{H}(\breve{\omega}) \not 又$ $C_{H}(\Omega)$ and Λ is Ω-block-natural. So Ω_{A} is Ω-block-diagonal.
(b) Follows from (a).
(c) If $C_{H_{A}}\left(\Omega_{B}\right) \not \leq C_{H_{A}}\left(\Omega_{A}\right), H_{A}$ has no Ω_{A}-essential orbits on Ω_{B}. So (c) holds in this case. If $C_{H_{A}}\left(\Omega_{B}\right) \leq C_{H_{A}}\left(\Omega_{A}\right)$, we can apply (a) and again (c) holds.
(d) Let $(H, \Omega) \in \mathcal{B}_{F}$. By ??, $\mathcal{A}(H) \cap \mathcal{A}^{*}(F)$ is a Kegel cover for G. By (b), $\mathcal{A}(H) \cap$ $\mathcal{A}^{*}(F) \subseteq \mathcal{B}_{F} \subseteq \mathcal{B}$. So (d) holds.

4 Groups Acting Block-Diagonally on a Set

Let $(H, \Omega) \in \mathcal{A}$ and $\Sigma \subseteq \Omega$. If $|\Omega \backslash \Sigma| \geq 5$, let R_{Σ} be the minimal normal supplement to $C_{H}(\Omega)$ in $C_{H}(\Sigma)$; otherwise put $R_{\Sigma}=1$. Put $R=R_{\emptyset}$.

Suppose that H is Ω-block-diagonal on a set Λ. Let Λ^{*} be the union of the Ω-essential orbits for H on Λ. As every orbit for H on Λ^{*} is Ω-block-natural, there exists an H invariant partition Δ of Λ^{*} so that Ω and Δ are isomorphic as H-sets. Note that this isomorphism is unique. Let $\tilde{\Sigma}$ denote the image of Σ in Δ under this H-isomorphism. Each $D \in \tilde{\Sigma}$ is a subset of Λ^{*}. Let $\hat{\Sigma}=\bigcup \tilde{\Sigma}$ be the union of these subsets. So $\hat{\Sigma} \subseteq \Lambda^{*}$ and $N_{H}(\hat{\Sigma})=N_{H}(\tilde{\Sigma})=N_{H}(\Sigma)$. Define $H_{\hat{\Sigma}}=C_{H}(\hat{\Sigma})$ and $H_{\Sigma}=C_{H}(\Sigma)$. Then $H_{\hat{\Sigma}} \leq H_{\Sigma}$. Note that $C_{H}(\Omega)=H_{\Omega} \leq H_{\Sigma}$ but $H_{\Omega} \notin H_{\hat{\Sigma}}$, unless H_{Ω} acts trivially on Λ^{*} or $\Sigma=\emptyset$.

Lemma 4.1 Let $(H, \Omega) \in \mathcal{A}$. Suppose that H is Ω-block-diagonal on a set Λ. Let $\Sigma \subseteq \Omega$.
(a) If $|\Omega \backslash \Sigma| \geq 5$, then

$$
H_{\Sigma}=H_{\hat{\Sigma}} H_{\Omega}=\left(H_{\hat{\Sigma}} \cap R\right) H_{\Omega} \text { and } R_{\Sigma} \leq H_{\hat{\Sigma}} \cap R
$$

(b) Both $\bigcap_{\omega \in \Omega} R_{\omega}$ and $R \cap H_{\hat{\Omega}}$ act trivially on Λ.
(c) Let $\Sigma_{1}, \Sigma_{2} \subseteq \Omega$ with $\Omega=\Sigma_{1} \cup \Sigma_{2}$. If H is faithful on Λ, then

$$
\left[R_{\Sigma_{1}}, R_{\Sigma_{2}}\right]=\left[H_{\hat{\Sigma}_{1}} \cap R, H_{\hat{\Sigma}_{2}} \cap R\right]=\left[H_{\hat{\Sigma}_{1}}, H_{\hat{\Sigma}_{2}}\right] \cap R=1
$$

Proof: (a) Let $\omega \in \Omega$. Let Ξ be an orbit for H on Λ such that R acts non-trivial on Ξ. Then Ξ is Ω-essential for H and as Λ is Ω-block-diagonal, Ξ is Ω-block-natural. Hence

$$
H_{\omega}=C_{H}(\Xi \cap \hat{\omega}) H_{\Omega} .
$$

Thus $R_{\omega} \leq C_{H}(\Xi \cap \hat{\omega})$. As Ξ was an arbitrary Ω-essential orbit for H on $\Lambda, R_{\omega} \leq H_{\hat{\omega}}$. Thus

$$
H_{\omega}=R_{\omega} H_{\Omega}=H_{\hat{\omega}} H_{\Omega} .
$$

Let $\omega \in \Sigma$. We compute

$$
H_{\Sigma}=H_{\omega} \cap H_{\Sigma}=\left(H_{\hat{\omega}} H_{\Omega}\right) \cap H_{\Sigma}=\left(H_{\hat{\omega}} \cap H_{\Sigma}\right) H_{\Omega} .
$$

By minimality of $R_{\Sigma}, R_{\Sigma} \leq H_{\hat{\omega}} \cap H_{\Sigma} \leq H_{\hat{\omega}}$. As this is true for all $\omega \in \Sigma$ and $H_{\hat{\Sigma}}=\bigcap_{\omega \in \Sigma} H_{\hat{\omega}}$, $R_{\Sigma} \leq H_{\hat{\Sigma}}$. As $H_{\Sigma}=R_{\Sigma} H_{\Omega}, H_{\Sigma}=H_{\hat{\Sigma}} H_{\Omega}$. Finally, $H=R H_{\Omega}$ implies $H_{\Sigma}=\left(R \cap H_{\Sigma}\right) H_{\Omega}$ and so $R_{\Sigma} \leq R \cap H_{\Sigma}$. Hence $R_{\Sigma} \leq H_{\hat{\Sigma}} \cap R$ and $H_{\Sigma}=R_{\Sigma} H_{\Omega}=\left(H_{\hat{\Sigma}} \cap R\right) H_{\Omega}$. This proves (a).
(b) Note that $\hat{\Omega}=\Lambda^{*}$ and so $H_{\hat{\Omega}}$ acts trivially on Λ^{*}. Since R acts trivially on each of the non- Ω-essential orbits for H on Λ, R acts trivially on $\Lambda \backslash \Lambda^{*}$. So $H_{\hat{\Omega}} \cap R$ acts trivially on Λ. By (a), $\bigcap_{\omega \in \Omega} R_{\omega} \leq \bigcap_{\omega \in \Omega}\left(H_{\hat{\omega}} \cap R\right)=H_{\hat{\Omega}} \cap R$. So (b) holds.
(c) Note that $H_{\hat{\Sigma}_{1}} \leq H_{\Sigma_{1}} \leq H_{\Omega \backslash \Sigma_{2}} \leq N_{H}\left(\Sigma_{2}\right) \leq N_{H}\left(H_{\hat{\Sigma}_{2}}\right)$. Similarly, $H_{\hat{\Sigma}_{2}} \leq N_{H}\left(H_{\hat{\Sigma}_{1}}\right)$. So

$$
\left[H_{\hat{\Sigma}_{1}}, H_{\hat{\Sigma}_{2}}\right] \leq H_{\hat{\Sigma}_{1}} \cap H_{\hat{\Sigma}_{2}} \leq H_{\overparen{\Sigma_{1} \cup \Sigma_{2}}}=H_{\hat{\Omega}} .
$$

Using (a) we get that

$$
\left[R_{\Sigma_{1}}, R_{\Sigma_{2}}\right] \leq\left[H_{\hat{\Sigma}_{1}} \cap R, H_{\hat{\Sigma}_{2}} \cap R\right] \leq\left[H_{\hat{\Sigma}_{1}}, H_{\hat{\Sigma}_{2}}\right] \cap R \leq H_{\hat{\Omega}} \cap R .
$$

Since H is faithful on Λ, (b) implies $H_{\hat{\Omega}} \cap R=1$. Thus (c) holds.

Theorem 4.2 Let G be a locally finite, simple group of alternating type and \mathcal{D} an alternating Kegel cover for G. Suppose that there exists $(H, \Omega) \in \mathcal{A}$ such that for all $A \in \mathcal{D}(H)$, H is Ω-block-diagonal on Ω_{A}. Then H is non-regular and G is of non-regular alternating type.

Proof: By ??, $\mathcal{D}^{*}(H)$ is a Kegel cover for G. By ??(2), it suffices to show that for all $A \in \mathcal{D}^{*}(H), H$ does not have a regular orbit on Ω_{A}. Pick $A \in \mathcal{D}^{*}(H)$ and $\lambda \in \Omega_{A}$. Put $\Lambda=\lambda^{H}$. Suppose that Λ is regular. If Λ is not Ω-essential, then $1 \neq R \leq C_{H}(\lambda)$, a contradiction. Hence Λ is Ω-essential and so $\lambda \in \hat{\omega}$ for some $\omega \in \Omega$. By Lemma ??(a), $1 \neq R_{\omega} \leq H_{\hat{\omega}} \leq C_{H}(\lambda)$, a contradiction. So Λ is not regular.

Theorem 4.3 Let $(H, \Omega) \in \mathcal{A}$ and suppose that H is faithful and Ω-block-diagonal on some set. Let R be the minimal normal supplement to H_{Ω} in H. Let $\omega \in \Omega$ and put $K=C_{R}(\omega) / R_{\omega}$. Then

$$
R \cong\left(K z_{\Omega} \operatorname{Alt}(\Omega)\right)^{\prime} .
$$

Proof: To simplify notation, we assume that $\Omega=\{1, \ldots, n\}$ and $\omega=1$. For $i \in \Omega$, pick $r_{i} \in R$ with $1^{r_{i}}=i$. Let $\pi: R \rightarrow \operatorname{Alt}(\Omega)$ be the homomorphism arising from the action of R on Ω. Note that $r_{i} g r_{i g}^{-1} \in C_{R}(1)$ for all $g \in R$ and all $i \in \Omega$. Hence we obtain a map

$$
\phi: R \rightarrow K z_{\Omega} \operatorname{Alt}(\Omega): g \rightarrow\left(\left(r_{i} g r_{i g}^{-1} R_{1}\right)_{i \in \Omega}, \pi(g)\right) .
$$

We will first show that ϕ is a homomorphism. Indeed let $g, h \in R$. Then

$$
\begin{aligned}
\phi(g) \phi(h) & =\left(\left(r_{i} g r_{i^{g}}^{-1} R_{1}\right)_{i \in \Omega}, \pi(g)\right)\left(\left(r_{i} h r_{i^{h}}^{-1} R_{1}\right)_{i \in \Omega}, \pi(h)\right) \\
& =\left(\left(r_{i} g r_{i^{g}}^{-1} r_{i g} h r_{i g h}^{-1} R_{1}\right)_{i \in \Omega}, \pi(g) \pi(h)\right) \\
& =\left(\left(r_{i} g h r_{i^{g h}}^{-1} R_{1}\right)_{i \in \Omega}, \pi(g h)\right) \\
& =\phi(g h)
\end{aligned}
$$

If $\phi(g)=1$, then $\pi(g)=1$ and so

$$
\phi(g)=\left(\left(r_{i} g r_{i}^{-1} R_{1}\right)_{i \in \Omega}, 1\right)
$$

Thus $r_{i} g r_{i}^{-1} \in R_{1}$ and $g \in R_{1}^{r_{i}}=R_{i}$ for all $i \in \Omega$. By ??(b), $g=1$. So ϕ is one-to-one.
Put $D=\phi(R)$ and $S=K l_{\Omega} \operatorname{Alt}(\Omega)$. It remains to show that $D=S^{\prime}$. For $i \in \Omega$ let $D_{i}=\phi\left(R_{i}\right)$. Also let B be the base group of S. Then $B=\bigoplus_{i=1}^{n} B_{i}$ with $B_{i} \cong K$ for all $i \in \Omega$. Note that $B \cap D=\phi\left(C_{R}(\Omega)\right)$. Since $C_{H}(1)=R_{1} C_{H}(\Omega)$ and $R_{1} \leq R$ we have $C_{R}(1)=R_{1} C_{R}(\Omega)$. As $K=C_{R}(1) / R_{1}$, we conclude that $B \cap D$ projects onto B_{i} for all $i \in \Omega$. For $i \in \Omega$, put $Q_{i}=B_{i} \cap D$. As $B \cap D$ normalizes $Q_{i}, Q_{i} \unlhd B_{i}$ for all $i \in \Omega$. Let $Q=\bigoplus_{i \in \Omega} Q_{i}$. Then $Q \unlhd B D=S$.

Put $E=\left\langle B \cap D_{i} \mid i \in \Omega\right\rangle$ and $D^{*}=\left\langle D_{i} \mid i \in \Omega\right\rangle$. Note that both E and D^{*} are normal in D and $D=D^{*}(B \cap D)$. By the definition of R, R has no proper normal supplement to $C_{R}(\Omega)$. Thus $D=D^{*}$.

Let $i \in \Omega$. Then $\left[C_{R}(\Omega), R_{i}\right] \leq C_{R}(\Omega) \cap R_{i}$ and so $\left[B \cap D, D_{i}\right] \leq B \cap D_{i}$. As $D=D^{*}$, we get $[B \cap D, D] \leq E$ and D / E is a perfect central extension of $D / B \cap D \cong \operatorname{Alt}(\Omega)$. Note that $D_{1} / D_{1} \cap B \cong \operatorname{Alt}(\Omega \backslash\{1\})$. Since $D_{1} \not \leq E$ and $D_{1} \cap E=D_{1} \cap B$ we conclude $D_{1} E / E \cong D_{1} / D_{1} \cap E=D_{1} / D_{1} \cap B \cong \operatorname{Alt}(\Omega \backslash\{1\})$. From the Schur multiplier of $\operatorname{Alt}(\Omega)$ [?] and since $|\Omega| \geq 7$ we see that no non-trivial,perfect, central extension of $\operatorname{Alt}(\Omega)$ has a
subgroup isomorphic to $\operatorname{Alt}(\Omega \backslash\{1\})$. Thus $B \cap D=E$. Let $i \neq j \in \Omega$. As $\left[B \cap D, D_{i}\right] \leq$ $B \cap D_{i}, D_{i}$ normalizes $\left(B \cap D_{j}\right)\left(B \cap D_{i}\right)$. Since D_{i} acts transitively on $\Omega \backslash\{i\}$, we get $B \cap D_{k} \leq\left(B \cap D_{j}\right)\left(B \cap D_{i}\right)$ for all $k \in \Omega$. Thus

$$
E=\left(B \cap D_{i}\right)\left(B \cap D_{j}\right), \quad \forall i \neq j \in \Omega
$$

Put

$$
X=\left[B \cap D, B \cap D_{2}, \ldots, B \cap D_{n}\right] .
$$

Since $B \cap D_{j}$ projects trivially onto B_{j} for all $2 \leq j \leq n, X \leq B_{1}$ and so $X \leq Q_{1}$. Since $B \cap D=E=\left(B \cap D_{j}\right)\left(B \cap D_{1}\right)$ for all $2 \leq j \leq n$,

$$
X\left(B \cap D_{1}\right)=\underbrace{[B \cap D, \ldots, B \cap D]}_{n \text { terms }}\left(B \cap D_{1}\right) .
$$

Projecting this equation on B_{1} and using that the projection of $B \cap D_{1}$ is trivial, we get

$$
\underbrace{\left[B_{1}, \ldots, B_{1}\right]}_{n \text { terms }}=X \leq Q_{1} .
$$

So B_{1} / Q_{1} is nilpotent. Hence also B / Q is nilpotent.
Suppose for the moment that B is abelian. Let $B_{0}=\left\{b \in B \mid \sum b_{i}=0\right\}$. So $[B, S]=$ $[B, D]=B_{0}$ and $S^{\prime}=B_{0} \operatorname{Alt}(\Omega)$. As D is perfect, $D \leq S^{\prime}$ and so $E=B \cap D \leq B_{0}$.

Put $L=\left\langle e_{i}-e_{j} \mid e \in E, 1 \leq i<j \leq n\right\rangle \leq K$ and $Y=\left\{b \in B \mid b_{i} \in L\right\}$. Note that $Y \cap B_{0}$ is generated by elements of the form ($0, \ldots, 0, e_{i}-e_{j}, 0, \ldots, 0, e_{j}-e_{i}, 0, \ldots, 0$) where the non-zero entries are in arbitrary positions and $\left(e_{1}, \ldots, e_{n}\right) \in E$. Let $e=\left(e_{1}, \ldots, e_{n}\right) \in E$. Pick $s_{1}, s_{2} \in R$ with $\pi\left(s_{1}\right)=(1,2,3)$ and $\pi\left(s_{2}\right)=(1,4)(5,6)$. Then

$$
\left[e, \phi\left(s_{1}\right), \phi\left(s_{2}\right)\right]=\left[\left(e_{3}-e_{1}, e_{1}-e_{2}, e_{2}-e_{3}, 0, \ldots, 0\right), \phi\left(s_{2}\right)\right]=\left(e_{1}-e_{3}, 0,0, e_{3}-e_{1}, 0, \ldots, 0\right)
$$

We conclude that $Y \cap B_{0} \leq E$. Pick $e=\left(e_{1}, \ldots, e_{n}\right) \in B \cap D_{i} \leq E$. Since $B \cap D_{i}$ projects trivially on $B_{i}, e_{i}=0$. Hence $e_{j}=e_{j}-e_{i} \in L$ for all $j \in \Omega$ and $e \in Y$. So $B \cap D_{i} \leq Y$ and the definition of E implies $E \leq Y$. Thus $Y \cap B_{0} \leq E \leq Y \cap B_{0}$ and $E=Y \cap B_{0}$. As $E=B \cap D$ projects onto B_{1}, we get that $K=L, B=Y$ and $E=B_{0}$. So $D \leq S^{\prime} \leq B_{0} D=D$ and $S^{\prime}=D$.

Thus the theorem holds if B is abelian. More importantly, note that all the above arguments are valid in S / B^{\prime} and so $S^{\prime}=D B^{\prime}$. Hence $B_{0}=E B^{\prime}$ where $B_{0}=S^{\prime} \cap B$. For $j=2,3$, pick $d_{j} \in D$ with $1^{d_{j}}=j$. Then for $j=2,3,\left[B_{1}, d_{j}\right] \leq B_{1} B_{j}$ and $\left[B_{1}, d_{j}\right]$ projects onto B_{1}. Thus

$$
\left[\left[B_{1}, d_{2}\right],\left[B_{1}, d_{3}\right]\right]=\left[B_{1}, B_{1}\right] .
$$

Hence $B_{0}^{\prime}=B^{\prime}$ and $B_{0}=E B_{0}^{\prime}$. As B / Q is nilpotent and $Q \leq E \leq B_{0}, B_{0}^{\prime} Q / Q \leq \Phi\left(B_{0} / Q\right)$. So $B_{0}=E Q=E$ and $S^{\prime}=D B^{\prime}=D B_{0}^{\prime}=D E^{\prime}=D$.

The preceding theorem is false for $|\Omega|=6$ and thus our assumption that $|\Omega| \geq 7$ for all $(H, \Omega) \in \mathcal{A}$. Indeed, let 3 . $\operatorname{Alt}(6)$ be the 3 -cover of $\operatorname{Alt}(6)$. Then 3. $\operatorname{Alt}(6)$ has $\operatorname{Alt}(5)$ as a subgroup. Also, 3. Alt(6) acts faithfully and block-natural on the cosets of Alt(5). But 3. $\operatorname{Alt}(6)$ is not the derived group of a wreath-product.

5 Groups of 1-Type and ∞-Type

The main goal of this section is to prove theorems ?? and ??. For this, we first prove a couple of technical lemmas.

Lemma 5.1 Let H be a group, \mathbb{K} a field and $0 \leq X \leq Y$ a chain of $\mathbb{K} H$-modules. Let P be its stabilizer in $G L_{\mathbb{K}}(Y)$. If H acts projectively non-trivially on Y / X, then

$$
X=[Y,[P, H]] .
$$

Proof: Let $Z=[Y,[P, H]]$ and suppose that $Z \neq X$. Then $Z \leq X$. Replacing $0 \leq X \leq Y$ by $0 \leq X / Z \leq Y / Z$, we may assume that $Z=0$. So $[Y,[P, H]]=0$ and $[P, H]=1$. It is well-known and easily verified that $C_{G L_{\mathbb{K}}(Y)}(P) \leq Z\left(G L_{\mathbb{K}}(Y)\right) P$. But this implies that H acts as scalars on Y / X, a contradiction.

Lemma 5.2 Let T be a finite group, $n \in \mathbb{Z}^{+}$and $T_{1}, T_{2}, \ldots T_{n}$ non-trivial subgroups of T. Suppose that $T \leq \mathrm{PGL}_{\mathbb{K}}(V)$ and that $\operatorname{pdeg}_{V}(t) \geq(n+1)|T|^{2}$ for all $1 \neq t \in T$. Then there exists a T-invariant unipotent subgroup $Q \leq \mathrm{PGL}_{\mathbb{K}}(V)$ with $T \cap Q=1$ and

$$
\left.\left[\left[Q, T_{1}\right],\left[Q, T_{2}\right]\right], \ldots,\left[Q, T_{n}\right]\right] \neq 1
$$

Proof: For $1 \neq t \in T$, let U_{t} be a one-dimensional subspace of V such that $\left(U_{t}\right)^{t} \neq U_{t}$. Put $V_{1}=\left\langle U_{t}^{T} \mid 1 \neq t \in T\right\rangle$. Then $\operatorname{dim}_{\mathbb{K}} V_{1} \leq|T|^{2}, T$ acts projectively faithfully on V_{1} and $\operatorname{pdeg}_{V / V_{1}}(t) \geq n|T|^{2}$ for all $1 \neq t \in T$.

An easy induction argument now shows that there exists an ascending chain

$$
0=V_{0} \leq V_{1} \leq V_{2} \leq V_{n} \leq V_{n+1} \leq V
$$

of T-submodules so that T acts (projectively) faithfully on V_{i+1} / V_{i} and $\operatorname{dim}_{\mathbb{K}} V_{i+1} / V_{i} \leq|T|^{2}$ for all $0 \leq i \leq n$. Let $P \leq \mathrm{GL}_{\mathbb{K}}(V)$ be the stabilizer of this chain and Q the image in $\mathrm{PGL}_{\mathbb{K}}(V)$ of P. For $i=1, \ldots, n$, let S_{i} be the pre-image in $\mathrm{GL}_{\mathbb{K}}(V)$ of T_{i} and $P_{i}=\left[P, S_{i}\right]$. Put $A_{0}=C_{P}\left(V / V_{1}\right), A_{1}=\left[A_{0}, S_{1}\right] \leq P_{1}$ and inductively $A_{i}=\left[A_{i-1}, P_{i}\right]$ for $i=2, \ldots, n$.

We will prove by induction that

$$
(*) \quad\left[V_{i}, A_{i}\right]=0 \text { and }\left[V, A_{i}\right]=\left[V_{i+1}, A_{i}\right]=V_{1}
$$

for all $1 \leq i \leq n$. Note first that $A_{i} \leq A_{0}$ for all i and so $\left[V_{i+1}, A_{i}\right] \leq\left[V, A_{i}\right] \leq\left[V, A_{0}\right] \leq V_{1}$. By ?? applied to $0 \leq V_{1} \leq V_{2}$ and $H=S_{1},\left[V_{2},\left[A_{0}, S_{1}\right]\right]=V_{1}$. Thus $\left(^{*}\right)$ holds for $i=1$.

Suppose that $(*)$ holds for $i-1$. Then

$$
\left[V_{i}, P_{i}, A_{i-1}\right] \leq\left[V_{i-1}, A_{i-1}\right]=0
$$

and

$$
\left[V_{i}, A_{i-1}, P_{i}\right]=\left[V_{1}, P_{i}\right]=0
$$

Thus by the Three Subgroup Lemma,

$$
\left[V_{i},\left[A_{i-1}, P_{i}\right]\right]=0
$$

So the first statement in $\left(^{*}\right)$ holds.
By ?? applied to $0 \leq V_{i} / V_{i-1} \leq V_{i+1} / V_{i-1}$ and $H=S_{i}$,

$$
\left[V_{i+1},\left[P, S_{i}\right]\right]+V_{i-1}=V_{i}
$$

Taking the commutator with A_{i-1} on both sides (and using the induction assumption), we conclude

$$
\left[V_{i+1}, P_{i}, A_{i-1}\right]=V_{1}
$$

Also

$$
\left[V_{i+1}, A_{i-1}, P_{i}\right] \leq\left[V, A_{0}, P_{i}\right] \leq\left[V_{1}, P_{i}\right]=0
$$

Thus by the Three Subgroup Lemma,

$$
\left[V_{i+1},\left[A_{i-1}, P_{i}\right]\right]=V_{1}
$$

Hence $\left(^{*}\right)$ holds for all $1 \leq i \leq n$. In particular, $\left[V, A_{n}\right]=V_{1}$ and $A_{n} \not \leq Z\left(\mathrm{GL}_{\mathbb{K}}(V)\right)$. Note that

$$
A_{n} \leq\left[\left[P, S_{1}\right],\left[P, S_{2}\right], \ldots,\left[P, S_{n}\right]\right]
$$

and the lemma follows by considering the image of the last equation in $\mathrm{PGL}_{\mathbb{K}}(V)$.

Theorem 5.3 Let G be a locally finite, simple group of alternating type and F a finite subgroup of G. Then the following are equivalent :

1. F is regular.
2. Let L be a finite group and $\phi: F \rightarrow L$ an embedding. Then there exists a finite subgroup E of G, containing F, and an epimorphism $\xi: E \rightarrow L$ with $\phi=\left.\xi\right|_{F}$.

Proof: Suppose (1) holds. Let $\phi: F \rightarrow L$ be as in (2). By ?? (3), there exists $(H, \Omega) \in$ $\mathcal{A}(F)$ so that F has at least $|L| /|F|$ regular orbits on Ω and $|\Omega| \geq|L|+2$. In particular, there exists an F-invariant subset Λ of Ω of size $|L|$ so that all the orbits of F on Λ are regular. Let $\rho: L \rightarrow \operatorname{Sym}(\Lambda)$ be an embedding such that $\rho(L)$ acts regularly on Λ. Let $\psi: N_{H}(\Lambda) \rightarrow \operatorname{Sym}(\Lambda)$ be the homomorphism arising from the action of $N_{H}(\Lambda)$ on Λ. As both $\psi(F)$ and $\rho \phi(F)$ act semi-regularly on Λ, there exists an inner automorphism τ of $\operatorname{Sym}(\Lambda)$ with $\left.\psi\right|_{F}=\tau \rho \phi$. Thus

$$
\psi(F)=\tau \rho \phi(F) \leq \tau \rho(L) \leq \operatorname{Sym}(\Lambda)
$$

As $|\Omega| \geq|L|+2,|\Omega \backslash \Lambda| \geq 2$. Since $H^{\Omega}=\operatorname{Alt}(\Omega), \psi\left(N_{H}(\Lambda)\right)=\operatorname{Sym}(\Lambda)$. Let $E=$ $\psi^{-1}(\tau(\rho(L)))$. Since $\psi(F) \leq \tau \rho(L), F \leq E$. Since $\rho: L \rightarrow \operatorname{Sym}(\Lambda)$ is one-to-one, there
exists a partial inverse $\rho^{*}: \rho(L) \rightarrow L$. Put $\xi=\left.\rho^{*} \tau^{-1} \psi\right|_{E}: E \rightarrow L$. As ψ, τ^{-1} and ρ^{*} are onto, $\xi(E)=L$ and

$$
\left.\xi\right|_{F}=\left.\rho^{*} \tau^{-1} \psi\right|_{F}=\rho^{*} \tau^{-1} \tau \rho \phi=\phi
$$

So (1) implies (2).
Suppose that (2) holds. Let $s \geq f_{\text {reg }}(|F|)$ with s even, Ω a set with $|\Omega|=s|F|$ and $L=\operatorname{Alt}(\Omega)$. Let $\phi: F \rightarrow L$ be an embedding so that $\phi(F)$ is semi-regular on Ω. Let E and ξ be given by (2). Then $(E, \Omega) \in \mathcal{A}^{*}(F)$ and all the orbits for F on Ω are regular. Hence F is \mathcal{A}-regular and so by ?? F is regular.

We remark that the preceding theorem remains true if in part 2 . " $\phi: F \rightarrow L$ an embedding" is replaced by " $\phi: F \rightarrow L$ a homomorphism. " Indeed suppose that $\alpha: F \rightarrow L$ is a homomorphism. Define $\phi: F \rightarrow F \times L, f \rightarrow(f, \alpha(f))$ and $\pi: F \times L \rightarrow L,(f, l) \rightarrow l$. Then ϕ is one-to-one and $\alpha=\pi \phi$. So if $\xi: E \rightarrow F \times L$ is onto with $\left.\xi\right|_{F}=\phi$, then $\pi \xi: E \rightarrow L$ is onto with $\left.(\pi \xi)\right|_{F}=\alpha$.

Proof of Theorem ??:

Suppose first that G is of non-regular type. Let F be a finite, non-regular subgroup of G. Assume for a contradiction that G is not of 1-type. Then there exists a Kegel cover \mathcal{K} for G, none of whose factors are alternating groups. By [?, Proposition $3.2(\mathrm{~b})$], we may assume that all the factors of \mathcal{K} are of the form $P S L_{\mathbb{K}}(V)$ for some finite field \mathbb{K} and a \mathbb{K}-vectorspace V. Let $(T, \Sigma) \in \mathcal{B}_{F}$ with $|\Sigma| \geq 10$. By ??, we can choose $(L, M) \in \mathcal{K}(T)$ so that $\operatorname{pdeg}_{L / M}(t) \geq 9|T|^{2}$ for all $1 \neq t \in T$. For $i=1,2$ pick $\Sigma_{i} \subseteq \Sigma$ so that $\Sigma=\Sigma_{1} \cup \Sigma_{2}$ and $\left|\Sigma \backslash \Sigma_{i}\right| \geq 5$. For $i=1,2$, let T_{i}^{*} be the minimal normal supplement to $C_{T}(\Sigma)$ in $C_{T}\left(\Sigma_{i}\right)$. By ??, there exists a T-invariant unipotent subgroup Q / M of L / M so that $T \cap Q=1$ and

$$
\left[\left[Q / M, T_{1}^{*}\right],\left[Q / M, T_{2}^{*}\right]\right] \neq 1
$$

Note that Q / M is a p-group for some prime p. Put $H=T Q$. Then Σ is an H-set with Q acting trivially on Σ and $(H, \Sigma) \in \mathcal{B}_{F}$. Pick $A \in \mathcal{B}_{F}(H)$. By ?? (c), both T and H are faithful and Σ-block-diagonal on Ω_{A}. We use the notation introduced just before Lemma ??. Let R be the minimal normal supplement to H_{Σ} in H. Note that $H_{\Sigma}=Q T_{\Sigma}$. By ??(a),

$$
H_{\Sigma_{i}}=\left(H_{\hat{\Sigma_{i}}} \cap R\right) H_{\Sigma}=\left(H_{\hat{\Sigma_{i}}} \cap R\right) Q T_{\Sigma}
$$

Hence $T_{\Sigma_{i}}=\left(\left(\left(H_{\hat{\Sigma}_{i}} \cap R\right) Q\right) \cap T\right) T_{\Sigma}$ and the minimality of T_{i}^{*} implies $T_{i}^{*} \leq\left(H_{\hat{\Sigma_{i}}} \cap R\right) Q$. Since T_{i}^{*} is perfect and $\left(H_{\hat{\Sigma_{i}}} \cap R\right) Q /\left(H_{\hat{\Sigma}_{i}} \cap R\right) M$ is a p-group, $T_{i}^{*} \leq\left(H_{\hat{\Sigma}_{i}} \cap R\right) M$. Thus

$$
\left[\left[Q, T_{1}^{*}\right],\left[Q, T_{2}^{*}\right]\right] \leq\left(\left[H_{\hat{\Sigma_{1}}}, H_{\hat{\Sigma_{2}}}\right] \cap R\right) M
$$

By ??(c), $\left[\left[Q, T_{1}^{*}\right],\left[Q, T_{2}^{*}\right]\right] \leq M$, a contradiction.
So non-regular type implies 1-type.
Suppose next that G is locally regular. We will show that G is of ∞-type. So let \mathcal{S} be a class of finite simple groups such that every finite group is embedded into a member of \mathcal{S}.

Let F be a finite subgroup of G. Pick $L \in \mathcal{S}$ such that F is embedded in L. By ??, there exist a finite subgroup E of G and $M \unlhd E$ such that $F \leq E, F \cap M=1$ and $E / M \cong L$. Put $K_{F}=(E, M)$. Then $\left\{K_{F} \mid F\right.$ is a finite subgroup of $\left.G\right\}$ is a Kegel cover for G all of whose factors are isomorphic to members of \mathcal{S}.

So we proved that locally regular implies ∞-type.
Suppose next that G is of 1 -type. Then clearly G is not of ∞-type and so also not locally regular. Thus G is non-regular.

Suppose finally that G is of ∞-type. Then G is clearly not of 1-type. As non-regular implies 1-type, we conclude that G is locally regular.

Proposition 5.4 Let G be a locally finite, simple group of alternating type and F a nonregular subgroup. Then there exists a finite $F \leq \tilde{F} \leq G$ such that for all finite $\tilde{F} \leq H \leq G$ and all maximal normal subgroups M of H with $M \cap \tilde{F}=1$, there exists a finite set Ω such that
(a) $H / M \cong \operatorname{Alt}(\Omega)$.
(b) F has no regular orbit on Ω.
(c) $(H, \Omega) \in \mathcal{B}_{F}$

Proof: Let \mathcal{U} be the set of pairs (H, M) where H is a finite subgroup of G, M is a maximal normal subgroup of H and H / M is not isomorphic to an alternating group. By ??(a), G is of 1-type and so \mathcal{U} is not a Kegel cover for G. Hence there exists a finite subgroup F_{1} with $\mathcal{U}\left(F_{1}\right)=\emptyset$. Let $s=f_{\text {reg }}(|F|)$. By ??, there exists a finite $F \leq F_{2} \leq G$ with $\mathcal{A}\left(F_{2}\right) \subseteq \mathcal{A}(F, s)=\mathcal{A}^{*}(F)$. Since \mathcal{B}_{F} is a Kegel cover for G, there exists $(\tilde{F}, \Sigma) \in \mathcal{B}_{F}$ with $\left\langle F_{1}, F_{2}\right\rangle \leq \tilde{F}$.

Let H and M be as in the proposition. Since $\mathcal{U}\left(F_{1}\right)=\emptyset, H / M \cong \operatorname{Alt}(\Omega)$ for some set Ω. Thus $(H, M) \in \mathcal{A}(\tilde{F})$. Since $F_{2} \leq \tilde{F},(H, \Omega) \in \mathcal{A}^{*}(F)$. In particular, since F is non-regular, F has no regular orbit on Ω. Finally, (c) follows from $(\tilde{F}, \Sigma) \in \mathcal{B}_{F}$ and ??(b).

Proof Of Theorem ?? :

Let F be a non-regular finite subgroup of G. Let \tilde{F} be given by ??. For $1 \neq d \in G$, we have that $G=\left\langle d^{G}\right\rangle=\left\langle d^{\left\langle d^{G}\right\rangle}\right\rangle$ and so we can choose a finite $\tilde{F} \leq F^{*} \leq G$ with

$$
\tilde{F} \leq\left\langle d^{\left\langle d^{F^{*}}\right\rangle}\right\rangle
$$

for all $1 \neq d \in \tilde{F}$.
Let $F^{*} \leq L \leq G$ be finite and put $H=\left\langle F^{L}\right\rangle$. Then $\tilde{F} \leq H$. Let $\left\{M_{1}, \ldots, M_{n}\right\}$ be the set of all maximal normal subgroups of H. Pick $i \in\{1, \ldots, n\}$. Since $\left\langle F^{L}\right\rangle \not 又 M_{i}, F \not \leq M_{i}^{l_{i}}$ for some $l_{i} \in L$. Suppose that $1 \neq d \in \tilde{F} \cap M_{i}^{l_{i}}$. Then

$$
F \leq \tilde{F} \leq\left\langle d^{\left\langle d^{F^{*}}\right\rangle}\right\rangle \leq\left\langle d^{H}\right\rangle \leq M_{i}^{l_{i}}
$$

a contradiction. So $\tilde{F} \cap M_{i}^{l_{i}}=1$. Thus by ??(a)(c), $H / M_{i}^{l_{i}} \cong \operatorname{Alt}\left(\Omega_{i}\right)$ for some set Ω_{i} and $\left(H, \Omega_{i}\right) \in \mathcal{B}_{F}$. Note that $M_{i}^{l_{i}}=C_{H}\left(\Omega_{i}\right)$. Let R_{i} be the minimal normal supplement to M_{i} in H. By ?? (d), there exists $A \in \mathcal{B}_{F}(H)$. By ??(c), H is faithful and Ω_{i}-block-diagonal on Ω_{A}. By ??, $R_{i}^{l_{i}} \cong R_{i} \cong\left(K_{i} \imath_{\Omega_{i}} \operatorname{Alt}\left(\Omega_{i}\right)\right)^{\prime}$ for some finite group K_{i}. As $R_{1} \ldots R_{n}$ lies in none of the M_{i} 's, $H=R_{1} R_{2} \ldots R_{n}$. Thus (a) holds.

Let $R=R_{1}$ and $T=R_{2} \ldots R_{m}$. To show (b), it suffices to show that $R \cap T=1$. Note that $B_{i}=R_{i} \cap M_{i}$ and so $\left[R_{i}, F\right] \not \leq B_{i}$ just means $F \not \leq M_{i}$. Thus we can choose $l_{i}=1$ for all $1 \leq i \leq m$. Suppose that $R \cap T \neq 1$. Pick an orbit Λ for H on Ω_{A} so that $R \cap T$ acts non-trivially on Λ. Then R_{1} and at least one R_{j} with $2 \leq j \leq m$ act non-trivially on Λ, say $j=2$. As Ω_{A} is Ω_{i}-block-diagonal, there exist H-invariant partitions Δ_{i} of Λ so that Δ_{i} is isomorphic to Ω_{i} as an H-set for $i=1,2$. Let $\omega \in \Omega_{1}$ be F-extreme and U_{1} the corresponding element in Δ_{1}. For all $\lambda \in U_{1}, C_{F}(\lambda) \leq N_{F}\left(U_{1}\right)=C_{F}(\omega)$. Since ω is F-extreme, $C_{F}(\lambda)=C_{F}(\omega)$ for all $\lambda \in U_{1}$ and so $C_{F}(\omega)$ acts trivially on U_{1}. Let $U_{2} \in \Delta_{2}$.

Suppose that $U_{2} \cap U_{1}=\emptyset$. As $M_{1} \neq M_{2}, H=M_{1} M_{2}$ and so M_{1} acts transitively on Δ_{2}. So we conclude $U \cap U_{1}=\emptyset$ for all $U \in \Delta_{2}$, a contradiction. Hence $U_{2} \cap U_{1} \neq \emptyset$ and so $C_{F}(\omega)$ fixes an element in U_{2}. Thus $C_{F}(\omega)$ normalizes U_{2}. As U_{2} was arbitrary, $C_{F}(\omega)$ acts trivially on Δ_{2} and so on Ω_{2}. Thus $1 \neq C_{F}(\omega) \leq M_{2}$, a contradiction to $F \cap M_{2}=1$.

6 Non-Absolutely Simple Groups of 1-Type

In this section we present examples of non-absolutely simple, locally finite, simple groups of non-regular alternating type. The existence of such groups also follows from [?, 1.33] and Theorem ??. Our class of examples is slightly larger than the one in [?] and also shows that one does not have any control over the quotient $L /\left\langle F^{L}\right\rangle$ in Theorem ??. Since knowledge of most of details of $[?$, Section 6$]$ is required, they are repeated here.

Lemma 6.1 Let H be a perfect, finite group and Ω a faithful, finite H-set. Then there exist a perfect, finite group H^{*} containing H, a function X which associates to each subgroup A of H a subgroup $X(A)$ of H^{*}, and a faithful, finite H^{*}-set Ω^{*} such that
(a) $H \leq\left\langle h^{H^{*}}\right\rangle$ for all $1 \neq h \in H$.
(b) $X(A) \cap H=A$ for all $A \leq H$.
(c) If $A \leq B \leq H$, then $A \unlhd B$ if and only if $X(A) \unlhd X(B)$.
(d) $X(H) \unlhd\left\langle X(H)^{H^{*}}\right\rangle$ but $X(H)$ is not a normal subgroup of H^{*}.
(e) Every non-trivial orbit for H on Ω^{*} is isomorphic to an orbit for H on Ω.
(f) There exists a finite $X(H)$-set Λ so that
(fa) $X(H)^{\Lambda}=\operatorname{Alt}(\Lambda)$
(fb) H acts faithfully on Λ.
(fc) Every non-trivial orbit for H on Λ is isomorphic to an orbit for H on Ω.
Proof: Let I be a faithful, finite H-set so that every non-trivial orbit for H on I is isomorphic to an orbit for H on Ω. Let $S=\operatorname{Alt}(I)$ and $\alpha: H \rightarrow S$ be the monomorphism associated to the action of H on I.

Let T be any non trivial, finite, perfect group and J a faithful, finite T-set such that T acts transitively on J. We assume that $0 \in I$ and $\{0,1\} \subseteq J$. Let $K=H l_{I} S$. For $i \in I$, let $\beta_{i}: H \rightarrow K$ be the canonical isomorphism between H and the i-th component of the base group of K and let β be the canonical monomorphism from S to K. Let $H^{*}=K l_{J} T$ and for $j \in J$, let $\gamma_{j}: K \rightarrow H^{*}$ be the canonical isomorphism between K and the j-th component of the base group of H^{*}. Define $\rho: H \rightarrow H^{*}$ by $\rho(h)=\gamma_{0}\left(\beta_{0}(h)\right) \gamma_{1}(\beta(\alpha(h)))$. Then ρ is clearly a monomorphism. For $A \leq H$, let $X(A)$ be the set of elements in the base group of H^{*} such that the projection onto the 0 -th component is contained in $\gamma_{0}\left(\prod_{i \in I} \beta_{i}(A)\right)$. Identifying H with $\rho(H)$, we see immediately that (b) and (c) hold. Note that $\left\langle X(H)^{H^{*}}\right\rangle$ is the base group of H^{*} and so (d) holds. One easily checks that $\left\langle h^{H^{*}}\right\rangle$ is the base group of H^{*} for all $1 \neq h \in H$ and so (a) holds.

Note that $K=H \imath_{I} S$ acts faithfully on $\Omega \times I$ and $H^{*}=K \imath_{J} T$ acts faithfully on $\Omega^{*}:=\Omega \times I \times J$. By definition of the embedding of H into H^{*}, we see that

- $\Omega \times\{0\} \times\{0\}$ is isomorphic to Ω as an H-set.
- H acts trivially on $\Omega \times\{i\} \times\{0\}$ for all $i \in I \backslash\{0\}$.
- $\{\omega\} \times I \times\{1\}$ is isomorphic to I as an H-set for all $\omega \in \Omega$.
- H acts trivially on $\Omega \times I \times\{j\}$ for all $j \in J \backslash\{0,1\}$.

By assumption, every non-trivial orbit for H on I is isomorphic to an orbit for H on Ω. So (e) holds.

Put $\Lambda=\{\Omega \times\{i\} \times\{1\} \mid i \in I\}$. Then the base group of H^{*} normalizes Λ. Hence Λ is an $X(H)$-set. Since $\gamma_{1}(K) \leq X(H)$ and $S=\operatorname{Alt}(I)$, we get $X(H)^{\Lambda}=\operatorname{Alt}(I)$. Also, Λ is isomorphic to I as an H-set. So (f) holds.

Proof of Theorem ??:

Let G_{1} be a finite perfect group and Ω_{1} a faithful, finite G_{1}-set so that G_{1} has no regular orbits on Ω_{1}. Inductively, for $i \geq 1$, let $G_{i+1}=G_{i}^{*}, X_{i}$ a function from the subgroups of G_{i} to the subgroups of G_{i+1}, Ω_{i+1} a faithful, finite G_{i+1}-set and Λ_{i+1} a finite $X_{i}\left(G_{i}\right)$-set which fulfills ??. Let $G=\bigcup_{i=1}^{\infty} G_{i}$. Then by ?? (a)(d), G is an infinite, locally finite simple group.

Put $M_{1,1}=1, M_{1,2}=G_{1}$ and inductively, for $n \geq 1$, we put $M_{n+1, j}=X_{n}\left(M_{n, j}\right)$ for $1 \leq j \leq 2 n, M_{n+1,2 n+1}=\left\langle X_{n}\left(G_{n}\right)^{G_{n+1}}\right\rangle$ and $M_{n+1,2 n+2}=G_{n+1}$. Using induction on n and $\boldsymbol{?} \boldsymbol{?}(\mathrm{c})(\mathrm{d})$, we get that for all $n \geq 1, M_{n, i} \triangleleft M_{n, i+1}$ for $1 \leq i \leq 2 n-1$ and $M_{m, i} \cap G_{n}=M_{n, i}$ for all $m>n$ and $1 \leq i \leq 2 n$. For $i \geq 1$, put $M_{i}=\bigcup_{n \geq \frac{i}{2}} M_{n, i}$. Then $G_{n} \leq M_{2 n}$ for all
$n \geq 1$ and so $G=\bigcup_{i=1}^{\infty} M_{i}$. Also, $G_{n} \cap M_{i}=M_{n, i}$ for all $n \geq 1$ and $1 \leq i \leq 2 n$. By ??(d), $M_{i} \triangleleft M_{i+1}$ for all $i \geq 1$.

Hence G is not absolutely simple. Suppose G is finitary. Then by [?], G is an alternating group and so absolutely simple. Therefore G is not finitary. For $i \geq 1$, let $H_{i+1}=X_{i}\left(G_{i}\right)$. Then G_{i} acts faithfully on Λ_{i+1} and so $\mathcal{D}=\left\{\left(H_{i}, \Lambda_{i}\right) \mid i \geq 2\right\}$ is an alternating Kegel cover for G. By ?? (e)(fc) and induction on i, each non-trivial orbit for G_{1} on Ω_{i} or Λ_{i} is isomorphic to a G_{1}-orbit on Ω_{1} for all $i \geq 2$. Since G_{1} has no regular orbits on Ω_{1}, we conclude that G_{1} has no regular orbits on Λ_{i} for all $i \geq 2$. So by ??, G_{1} is non-regular and G is of non-regular alternating type.

References

[Del] S. Delcroix, Non-finitary Locally Finite Simple Groups Universiteit Gent, (2000) Thesis.
[FM] N. Flowers and U. Meierfrankenfeld, On the center of maximal subgroups in locally finite simple groups of alternating type submitted to J. Group Theory
[Ha1] J.I. Hall, Infinite alternating groups as finitary linear transformation groups J. Algebra 119 (1988),337-359.
[Ha2] J.I. Hall, Locally Finite Simple Finitary Groups, in B. Hartley et al. (eds.) Finite and Locally Finite Groups Kluwer Academic Publishers, (1995), 147-188.
[Har] B. Hartley Simple Locally Finite Groups, in B. Hartley et al. (eds.) Finite and Locally Finite Groups Kluwer Academic Publishers, (1995), 1-44.
[Mei] U. Meierfrankenfeld, Non-Finitary Locally Finite Simple Groups, in B. Hartley et al. (eds.) Finite and Locally Finite Groups Kluwer Academic Publishers, (1995), 189-212.
[Sch] I. Schur, Über die Darstellungen der symmetrischen und alternierenden Gruppen durch gebrochenen linearen Substitutionen, Crelle J. 139 (1911), 155-250.

