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Abstract

We consider the 3-local geometryM of the Monster group M introduced in [BF] as a locally
dual polar space of the group Ω−8 (3) and independently in [RS] in the context of minimal p-
local parabolic geometries for sporadic simple groups. More recently the geometry appeared
implicitly in [DM] within the Z3-orbifold construction of the Moonshine module V \. In this
paper we prove the simple connectedness of M. This result makes unnecessary the refereeing
to the classification of finite simple groups in the Z3-orbifold construction of V \ and realizes an
important step in the classification of the flag-transitive c-extensions of the classical dual polar
spaces (cf. [Yo]). We make use of the simple connectedness results for the 2-local geometry of
M [Iv1] and for a subgeometry inM which is the 3-local geometry of the Fischer group M(24)
[IS].

1 Introduction

The Monster group M acts flag-transitively on a diagram geometry M which is described by the
following diagram:

3
◦

3
◦

9
◦ c∗

1
◦.

The elements of M corresponding to the nodes from the left to the right on the diagram are
called points, lines, planes and quadrics, respectively. The residue of a quadric is the classical polar
space associated with the group Ω−8 (3). The quadrics and planes incident to a line form the geometry
of vertices and edges of a complete graph on 11 vertices. The existence of M was independently
established in [BF] and [RS]. We follow [BF] to review briefly the construction ofM and to formulate
its basic properties. The starting point is the description of conjugacy classes of the subgroups of
order 3 in the Monster [At].

Lemma 1.1 In the Monster group M every element of order 3 is conjugate to its inverse and there
are exactly three conjugacy classes of subgroups of order 3 with representatives σ, µ and τ , so that

(a) NM (σ) ∼ 31+12.2.Suz.2, where Suz is the Suzuki sporadic simple group;

(b) NM (µ) ∼ 3.M(24), where M(24) is the largest sporadic Fischer 3-transposition group;

(c) NM (τ) ∼ Sym(3)× F3, where F3 is the sporadic simple group discovered by Thompson.

We define a subgroup of order 3 in M to be of Suzuki, Fischer or Thompson type if it is conjugate
to σ, µ or τ from 1.1, respectively.

A crucial role in the construction of M is played by a subgroup M8 ∼ 38.Ω−8 (3).2 in M . If
Q8 = O3(M8) thenM8/Q8 is an extension of the simple orthogonal group Ω−8 (3) by an automorphism
of order 2, Q8 is the natural orthogonal module for M8/Q8 and NM (Q8) = M8.
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Lemma 1.2 Let ϕ be the orthogonal form of minus type on Q8 preserved by M8/Q8. Then M8/Q8
acting on the subgroups of order 3 in Q8 has two orbits I and N such that

(a) |I| = 1 066, the subgroups in I are isotropic with respect to ϕ and of Suzuki type in M ; for
σ ∈ I we have NM8/Q8(σ) ∼ 36.2.U4(3).22;

(b) |N | = 2 214, the subgroups in N are non-isotropic with respect to ϕ and of Fischer type in M ;
for µ ∈ N we have NM8/Q8(µ) ∼ Ω7(3).2.

Proof: Under the action of O2(M8/Q8) ∼ Ω−8 (3) the set of order 3 subgroups in Q8 splits into
three orbits I, N1, N2 with lengths 1 066, 1 107, 1 107 and stabilizers isomorphic to 36.2.U4(3).2,
Ω7(3).2, Ω7(3).2, respectively (cf. [At]). As 317 divides the order of each of the stabilizers there are
no Thompson type subgroups in Q8 and as the elements of I are 3-central they are of Suzuki type.
By Lagrange 37Ω7(3) is not involved in Suz and since 31+12 has no elementary abelian subgroup or
order 38, N1 and N2 consist of Fischer type subgroups. Finally, in M(24) all subgroups of order 37

whose normalizer involve Ω7(3) are conjugated. Hence N1 and N2 fuse into a single M8/Q8-orbit.

By 1.2 the polar space acted on flag-transitively by M8/Q8 can be identified with the Suzuki-pure
subgroups in Q8 with two subgroups being incident if one of them contains the other one. Let Q1,
Q2, Q3 be Suzuki-pure subgroups in Q8 with Q1 < Q2 < Q3, so that |Qi| = 3i for 1 ≤ i ≤ 3. Then
the points, lines, planes and quadrics in M are defined to be the subgroups in M conjugate to Q1,
Q2, Q3 and Q8, respectively, with F = {Q1, Q2, Q3, Q8} being a maximal flag. Let Mi = NM (Qi)
be the maximal parabolic subgroup corresponding to the flag-transitive action of M on M. Then
M8 is as above while M1 is the normalizer of a Suzuki type subgroup Q1 (which we will also denote
by σ) and M1 ∼ 31+12.2.Suz.2 by 1.1a. The stabilizer of F in M contains a Sylow 3-subgroup of
M . Hence for two elements of M to be incident it is necessary for their common stabilizer in M to
contain a Sylow 3-subgroup. Let Pi = O3(Mi), P ∗i be the kernel of the action of Mi on the residue of
Qi inM and M̄i = Mi/P

∗
i for i = 1, 2, 3 and 8. It is clear that Qi ≤ Pi and that Q8 = P8 = P ∗8 . For

i = 1, 2, 3 and 8 we denote by Mi the set of points, lines, planes and quadrics in M, respectively.
For an element α in M we denote by Mi(α) the set of elements in Mi incident to α.

Let Σ be the graph on the Suzuki type subgroups in Q8 in which two subgroups are adjacent if
they are orthogonal with respect to ϕ. Then Σ is strongly regular with parameters

v = 1 066, k = 336, l = 729, λ = 92, µ = 112.

(that is, Σ has v = 1 066 vertices, every vertex has k = 336 neighbors and l = 729 vertices in distance
two, two adjacent vertices have λ = 92 common neighbors and two vertices of distance two have
µ = 112 common neighbors.).

The quotient M8/Q8 induces a rank 3 action on Σ, so that if σ ∈ Σ then NM8/Q8(σ) acts
transitively on the set Σ1(σ) of points adjacent to σ in Σ and on the set Σ2(σ) of points at distance
2 from σ.

The next statement follows from standard properties of classical groups.

Lemma 1.3 Let L = NM8/Q8(σ) and z be an involution from O3,2(L). Then

(a) L ∼ 36.2.U4(3).22 and Q8, as a module for L, has a unique composition series:

1 < σ < 〈Σ1(σ)〉 = σ⊥ < Q8;

(b) both σ⊥/σ and O3(L) are isomorphic to the natural orthogonal module for O2(L)/O3(L) ∼
2.U4(3) ∼ 2.PΩ−6 (3);
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(c) O3(L) acts regularly on Σ2(σ);

(d) z acts fixed point-freely on σ⊥/σ and on O3(L); it centralizes a unique subgroup ε ∈ Σ2(σ)
and CQ8(z) = 〈σ, ε〉 is 2-dimensional containing two subgroups of Suzuki and two subgroups of
Fischer type.

Since NM8(σ) contains a Sylow 3-subgroup of M , it contains P1 = O3(NM (σ)). By 1.1a and 1.3,
we have P1 ∩ Q8 = σ⊥, P1Q8 = O3(NM8(σ)) and z acts fixed-point freely on P1/Q1. This shows
that all the points collinear to σ are contained in P1 and that P ∗1 = P1〈z〉. Let ε be as in 1.3d.
Then Q8 = 〈ε, CP1(ε)〉 is uniquely determined by ε and σ. So if Q∗8 is another quadric containing σ
then Q8 ∩Q∗8 is a point, a line or a plane. Furthermore, the image δ of Q8 in M̄1 = M1/P

∗
1 ∼ Suz.2

is a subgroup of order 3. Moreover, NM8(σ)/P ∗1 = NM̄1
(δ) ∼ 3.U4(3).22 and by [At] is a maximal

subgroup in M̄1. Thus the quadrics from M8(σ) correspond to 3-central subgroups of order 3 in
M̄1. The next lemma (cf. [BCN], Section 13.7) describes the action of M̄1 on its 3-central subgroups
of order 3.

Lemma 1.4 The group S ∼ Suz.2 acting on the set ∆ of its subgroups of order 3 with normalizer
U ∼ 3.U4(3).22 has rank 5 with subdegrees 1, 280, 486, 8 505 and 13 608. If ∆ denotes also the graph
of valency 280 invariant under this action, then:

(a) two distinct vertices of ∆ commute (as subgroups in S) if and only if they are adjacent;

(b) ∆ is distance-transitive with distribution diagram given on Figure 1 and S is the full automor-
phism group of ∆;

(c) if K is a maximal clique in ∆ then |K| = 11, the setwise stabilizer T of K is a maximal
subgroup in S and T ∼ 35.(2 ×Mat11), so that O3(T ) is generated by the subgroups from K
and T/O3,2(T ) ∼Mat11 acts 5-transitively on the vertices of K while O3(T ) fixes none of the
vertices outside K;

(d) let δ be the vertex of ∆ stabilized by U , then the geometry of cliques and edges containing δ
with the incidence relation via inclusion is isomorphic to the geometry of 1- and 2-dimensional
totally isotropic subspaces in 6-dimensional orthogonal GF (3)-space of minus type and it is
acted on flag-transitively by O2(U)/O3(U) ∼ U4(3) ∼ PΩ−6 (3);

(e) if % is a vertex at distance 2 from δ in ∆ then the subgraph induced on the vertices adjacent to
both δ and % is the complete bipartite graph K4,4.

(f) If % is a vertex of distance 2, 3 or 4 from δ then 〈δ, %〉 is isomorphic to SL2(3), Alt(5) and
Alt(4), respectively.

Next we make use of the following information about the action of M1 on the set of subgroups
of order 9 in P1 containing σ (cf. [Wi]).

Lemma 1.5 M̄1 has two orbits L and K on the set of subgroups of order 9 in P1 containing σ,
moreover

(a) if l ∈ L then NM̄1
(l) ∼ 35.(2×Mat11) is the stabilizer of a maximal clique in the graph ∆ as

in 1.4c and all subgroups of order 3 in l are of Suzuki type;

(b) if k ∈ K then NM̄1
(k) ∼ U5(2).2 and all subgroups of order 3 in k except σ are of Fischer type.
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1 280 8505 13608 486
1

36 128 180

280 243 8 144 90 10 280

Figure 1: Distribution diagram of ∆.

Since P1 is extraspecial, it follows from the above lemma that the subgroups of order 3 in P1
other than σ form exactly two conjugacy classes L̃ and K̃ of M1 with normalizers

(3× 31+10).2.35.(2×Mat11) and (3× 31+10) : (2× U5(2).2),

respectively.
It is clear that the subgroups from L in 1.5 are exactly the lines from M2(σ). Comparing 1.5a

and 1.4c we can identifyM2(σ) with the set of cliques in the graph ∆ onM8(σ). Since a flag ofM
is stabilized by a Sylow 3-subgroup of M , it follows from 1.4c that a line l ∈ M2(σ) and a quadric
δ ∈M8(σ) are incident if and only if l, as a clique of ∆, contains δ. By 1.4d two cliques l1 and l2 of
∆ of maximal possible intersection have exactly two vertices, say δ1 and δ2 in common. Then the
lines l1 and l2 are in two different quadrics and hence they generate an element of M which has to
be the plane p which is the intersection of δ1 and δ2. This enables us to identify p with the edge
{δ1, δ2} of ∆.

Thus the elements fromMi(σ) for i = 2, 3 and 8 can be considered as cliques, edges and vertices
of the graph ∆ with the natural incidence relation. In particular the planes and quadrics incident
to a given line are edges and vertices of the corresponding clique of size 11 in ∆. Hence we have
that the diagram of M is as given above and also (compare [Wi]) that

M2 ∼ 32+5+10 : (GL2(3)×Mat11), M̄2 ∼ Sym(4)×Mat11;

M3 ∼ 33+6+8 : (L3(3)×D8 : 2), M̄3 ∼ L3(3)× 2.

The main result of the paper is the following.

Theorem 1.6 The 3-local geometry M of the Monster is simply connected, equivalently, M is
the universal completion of the amalgam of maximal parabolic subgroups M1, M2, M3 and M8
corresponding to the action of M on M.

Here and elsewhere a tuple {Hi |∈ I} of subgroups in a group will also be viewed as the amalgam
obtained by considering the intersection of the Hi and the inclusion maps.
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To prove the theorem we define G to be the universal completion of the amalgam {Mi | i =
1, 2, 3, 8}. Identify Mi with its image in G. Then there is a unique homomorphism χ of G onto M
with χMi

= idMi
for all i. We will show eventually that χ is an isomorphism.

The second author would like to thank the Imperial College, the Universität Bielefeld and the
Martin Luther-Universität Halle-Wittenberg for their hospitality.

2 M(24)-subgeometry

In this section we discuss a subgeometry M(µ) in M stabilized by a subgroup F := NM (µ) ∼
3.M(24), where µ is a subgroup of order 3 of Fischer type in M . The elements of M(µ) are some
(not all) elements of M centralized by µ and the incidence relation is induced by that in M.

As above, let F = {Q1, Q2, Q3, Q8} be a maximal flag in M with Q1 = σ and let µ be a Fischer
type subgroup of Q8 contained in Q⊥3 . Define M(µ) to be the subgeometry in M induced by the
images under F = NM (µ) of the elements in F . We discuss the diagram ofM(µ) and the structure
of the parabolic subgroups Fi := NF (Qi) = NMi(µ) corresponding to the action of F on M(µ).

Since µ is non-isotropic with respect to ϕ we have,

Q8 = µ⊕ µ⊥,

where µ⊥ is the natural orthogonal module for F8/Q8 ∼ Ω7(3).2. Moreover, Q1, Q2 and Q3 are
contained in µ⊥ and form a maximal flag in the polar space defined on µ⊥. Thus F8/µ ∼ 37.Ω7(3).2
and the residue of Q8 in M(µ) is the non-degenerate orthogonal polar space in dimension 7 over
GF (3).

By 1.5 we have F1/µ ∼ 31+10.(2×U5(2).2) and one can see that the image of Q8 in F̄1 = F1/(F1∩
P ∗1 ) ∼ U5(2).2 is a 3-central subgroup of order 3 with the normalizer isomorphic to (3 × U4(2)).2.
Let Θ be the graph on all these subgroups of order 3 in F̄1 in which two subgroups are adjacent if
they commute. Then Θ is strongly regular with parameters

v = 176, k = 40, l = 135, λ = 12, µ = 8

and clearly it is a subgraph in the graph ∆ as in 1.4. In these terms the quadrics, planes and lines
inM(µ) incident to σ are the vertices, edges and cliques (of size 5) in Θ with the natural incidence
relation. This shows that the diagram of M(µ) is the following

3
◦

3
◦

3
◦ c∗

1
◦.

It is easy to deduce the structure of two other parabolic subgroups (compare [RS]):

F2/µ ∼ 32+4+8.(GL2(3)× Sym(5)), F3/µ ∼ 33+7+3.2.(L3(3)× 2).

In [IS] the geometry M(µ) was proved to be simply connected.

Lemma 2.1 The geometry M(µ) is simply connected and hence 3.M(24) is the unique faithful
completion of the amalgam consisting of the subgroups F1, F2, F3 and F8.

This immediately implies the following.
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Lemma 2.2 Let X be a faithful completion of the amalgam consisting of the Monster subgroups
Mi, i = 1, 2, 3, 8. Let µ be a non-isotropic subgroup of order 3 in Q8 contained in Q⊥3 . Then X
contains a subgroup Mµ ∼ 3.M(24), which normalizes µ, such that Mµ ∩Mi = NMi

(µ) = NMµ
(Qi)

for i = 1, 2, 3 and 8. If X = M then Mµ = NM (µ).

A subgroup µ as in the above lemma will be said to be of Fischer type. We remark that the
subgroup Mµ of X does not only dependent on µ but a priori also on the flag (M1,M2,M3,M8).
But as the reader might check Mµ is already determined by µ together with any one of the Mi’s,
i = 1, 2, 3 or 8

3 The 2-local geometry of the Monster

There are exactly two classes of involutions in M , called the Conway type and Baby Monster type
involutions with representatives z and t, such that

CM (z) ∼ 21+24
+

.Co1 and CM (t) ∼ 2.F2,

where Co1 is the first Conway sporadic simple group and F2 is the Fischer Baby Monster group [At].
Let C = CM (z). Then for i = 4 and 8 up to conjugation in C there is a unique Conway-pure

subgroup Ei of order i in O2(C) containing z, whose normalizer in M contains a Sylow 2-subgroup
of M . Moreover these two subgroups can be chosen so that E4 < E8 and we will assume that the
inclusion holds. Let N = NM (E4) and L = NM (E8). Then

C ∼ 21+24
+

.Co1, N ∼ 22+11+22.(Sym(3)×Mat24), L ∼ 23+6+12+18.(L3(2)× 3.Sym(6)).

Furthermore C, N and L are the stabilizers of a point, a line and a plane from a maximal flag
in the 2-local minimal parabolic geometry of the Monster group [RS] having the following diagram:

2
◦

2
◦

2
◦

2
◦ ∼

2
◦.

This geometry was proved to be 2-simply connected in [Iv1] and by standard principles this result
is equivalent to the following.

Lemma 3.1 The Monster group M is the universal completion of the amalgam of its subgroups C,
N and L defined as above.

Our strategy to prove Theorem 1.6 is to show that the universal completion G of the amalgam
of the 3-local parabolics Mi is also a completion of the amalgam consisting of the subgroups C, N
and L as in 3.1.

Lemma 3.2 Let µ be a subgroup of Fischer type in M . Then Mµ has exactly four classes of
involutions and for an involution t ∈Mµ exactly one of the following holds:

(a) t inverts µ, t is of Baby Monster type and CMµ(t) ∼= M(23)× C2.

(b) t centralizes µ, t is of Baby Monster type and CMµ(t) ∼ 3.22M(22).2.

(c) t inverts µ, t is of Conway type and CMµ(t) ∼ 23.U6(2).Sym(3).

(d) t centralizes µ, t is of Conway type and CMµ(t) ∼ 3.21+12
+ .3.U4(3).22.
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Proof: By [At] Mµ has four classes of involutions with centralizers as given. By Lagrange, Co1
involves neither M(23) nor 3.M(22).2 and so the first two classes are of Baby Monster type. Since
Conway type involutions both invert and centralize groups of Fischer type the remaining two classes
must be of Conway type.

Lemma 3.3 Let z be an involution from P ∗1 = O3,2(M1). Then every involution in M1 is conjugated
to an involution s ∈ CM1(z) and one of the following holds:

(a) s = z, CM1(s) ∼ 6.Suz.2 and s is of Conway type in M ;

(b) s inverts σ, CM1(s)P ∗1 /P
∗
1 ∼ 2.Mat12; s and sz are conjugated in M1 and the centralizer of s

in P1/σ has order 36;

(c) s centralizes σ and CM1(s)P ∗1 /P
∗
1 ∼ 21+6

− .O−6 (2) (two conjugacy classes).

Proof: The conjugacy classes of involutions in M1/P1 ∼ 2.Suz.2 can be read from [At]. Since z
centralizes σ and acts fixed point-freely on P1/σ, the structure of CM1(s) in (a) follows. Since the
Baby Monster has no elements of order 3 with normalizer of the shape 3 · Suz.2, z is of Conway
type. In (b) we have CP1/σ(s) = [P1/σ, sz] and since s and sz are conjugated, both subspaces have
dimension 6.

4 The 3-local geometry for Co1

In [Iv2], a relationship between the 3- and 2-local geometries of the Monster via a 224-cover of the
3-local geometry of the Conway group [BF] was noticed.

Let X be an arbitrary faithful completion of the amalgam (M1,M2,M3,M8) of the 3-local
parabolics in M which has M has a quotient and let X be the geometry whose elements are the
cosets in X of Mi for i = 1, 2, 3, 8 and where two cosets are incident if their intersection is non-empty.
If X = M or X = G where as above G is the universal completion of the amalgam, then X is M
or the universal cover G of M, respectively. For an element x of X let Mx denote the stabilizer
of x in X which is a conjugate of Mi for i = 1, 2, 3 or 8 depending on the type of x. If x = Mig
put Qx = Qgi , Px = P gi and P ∗x = P ∗gi . When working in the residue of an element we can and
will identify x with Qx. If µ is a subgroup of order 3 of Fischer type in Qg8, then Mµ denotes the
subgroup as in 2.2, i.e, if µ ∈ Qg⊥3 then Mµ = 〈NMg

i
(µ) | i = 1, 2, 3, 8〉.

Let us pick an involution z from P ∗1 = O3,2(M1). Then by 3.3a CM1(z) ∼ 6.Suz.2. Let Ξ = ΞX

be the set of points of X such that x ∈ Ξ if and only z ∈ O2,3(Mx)). Let Ξ denote also the graph on
Ξ in which two points are adjacent if they are incident to a common quadric. It is clear that CX(z)
preserves Ξ as a whole as well as the adjacency relation on Ξ.

Lemma 4.1 Locally Ξ is the commuting graph ∆ of 3-central subgroups of order 3 in M̄1 ∼ Suz.2 as
in 1.4. Let Ω be a maximal clique in Ξ containing σ and H be the setwise stabilizer of Ω in CX(z).
Then |Ω| = 12 and there is a unique point α collinear to σ such that H = CMα(z). Moreover,
H ∼ 2.36.(2.Mat12), O3(H) = Pα ∩H, H induces the natural action of Mat12 on the vertices of Ω
and O3(H) is an irreducible GF (3)-module for H/O3(H)〈z〉 ∼ 2.Mat12.

Proof: Abusing the notation we denote by σ the point stabilized by M1 so that σ ∈ Ξ. By 1.3d
every quadric incident to σ contains besides σ exactly one point ε centralized by z and ε is not
collinear to σ. This means that the set Ξ(σ) of points adjacent to σ in Ξ is in a natural bijection
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with the set of quadrics incident to σ, i.e. with the vertices of the graph ∆ as in 1.4. Moreover, if
δ ∈ ∆ then there is a unique point centralized by z which maps onto δ under the homomorphism of
M1 onto M̄1. We will identify δ with this unique point. By definition if x and y are adjacent points
in Ξ then [Qx, Qy] = 1. Hence if δ1, δ2 ∈ Ξ(σ) are adjacent in Ξ, then the corresponding vertices of
∆ are adjacent. In particular a maximal clique in Ξ contains at most 12 vertices. We are going to
show that this bound is attained.

Let l be a line incident to σ and let σ, α, β and γ be all the points incident to l. Since z acts
fixed-point freely on P1/σ ∼ 312, we can choose our notation so that z inverts α and permutes
β and γ. So on every line incident to σ there is exactly one point which is inverted by z. Since
CM1(z)P1 = M1, CM1(z) permutes transitively the lines incident to σ and hence also the points
collinear to σ and inverted by z. This implies that CMα(z) permutes transitively the points collinear
to α and centralized by z.

Let Q8 denote a quadric incident to l and let ε be the point in Q8 other than σ centralized by z.
Then ε is collinear to exactly one point on l. We know that σ and ε are not collinear and since β
and γ are permuted by z, ε is collinear to α. Thus in every quadric incident to l besides σ there is
exactly one point collinear to α and centralized by z. By the diagram of X there are exactly 11 such
quadrics which correspond to a clique K of ∆. Let Ω = {σ} ∪ K and H be the setwise stabilizer
of Ω in CX(z). Since locally Ξ is ∆, K is a maximal clique in ∆, CM1(z) acts transitively on the
set of cliques in ∆ and since CX(z) is vertex-transitive on Ξ, we see that H acts transitively on
Ω. Since α is the only point which is collinear to every point in Ω, it is clear that H ≤ CMα

(z).
Since z acts fixed-point freely on P1/σ, CP∗1 (z) = σ × 〈z〉. By 1.4c and the Frattini argument
(H ∩M1)P ∗1 /P

∗
1 ∼ (Ml ∩M1)/P ∗1 ∼ 35.(2 ×Mat11). Since H ∩M1 induces the natural action of

Mat11 on the points in K, H induces on the points in Ω the natural action of Mat12. Thus O3(H) is
elementary abelian of order 36 generated by the 12 points in Ω and H/O3(H)〈z〉 ∼ 2.Mat12 induces
a non-trivial action on O3(H). By [MoAt] Mat12 does not have a faithful GF (3)-representation of
dimension less than or equal to 6 and the smallest faithful GF (3)-representation of 2.Mat12 has
dimension exactly 6. Thus we have shown that H ∼ 2.36.(2.Mat12) and by 3.3b H = CMα(z).

In what follows we will need the detailed information on the structure of 6-dimensional GF (3)-
modules of 2.Mat12 contained in the following lemma.

Lemma 4.2 Let H̄ ∼ 2.Mat12 and A be a faithful irreducible 6-dimensional GF (3)H̄-module. Then
the following assertions hold:

(a) H̄ has a unique orbit A of length 12 on the 1-spaces of A.

(b) Any five elements from A are linearly independent.

(c) H̄ has a unique orbit L of length less or equal to 12 on the hyperplanes of A. Moreover,
|L| = 12 and if L ∈ L then L contains no element from A.

(d) Let B the set of 1-spaces of A of the form 〈a1 + a2〉, where 〈a1〉 and 〈a2〉 ∈ A are different
elements of A. Then |B| = 132 and H acts transitively on B.

(e) If F ∈ B then there exist unique elements D1 and D2 in A with F ≤ D1 +D2. If L ∈ L and
F̃ is the 1-space in D1 +D2 different from D1, D2 and F , then F ≤ L if and only if F̃ 6≤ L;

(f) Define L ∈ L and B ∈ B to be incident if B ≤ L. Then (L,B) is a Steiner system of type
(5, 6, 12).

(g) Let T ⊂ L with |T | = 4 and put F =
⋂
T . Then F is a 2-subspace of A, all 1-spaces of F are

in B and NH(F )/CH(F ) ∼= GL2(3).
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Proof: Let X and Y be two non-conjugate subgroups in H̄ isomorphic to Mat11. Then every
proper subgroup of index at most 12 in H̄/Z(H̄) ∼= Mat12 is conjugate to the image of either X or
Y . Moreover, H̄ = 〈X,Y 〉 and X ∩Y ∼= L2(11). Let Z be one of the subgroups X, Y and X ∩Y . By
[MoAt] every faithful irreducible GF (3)Z-module is 5-dimensional. This means that Z normalizes
in A at most one 1-subspace and at most one 5-subspace. Suppose that A contains a 1-subspace
normalized by X and a 1-subspace normalized by Y . Then both these 1-spaces are normalized by
X ∩ Y and hence this is the same 1-space, normalized by the whole H̄ = 〈X,Y 〉, a contradiction to
the irreducibility of A. Applying the same argument to the module dual to A, we obtain that the
subspaces in A normalized by X and Y have different dimensions and we can choose our notation so
that X normalizes a 1-space D and Y normalizes a 5-space E. In this case A = D⊕E as a module
for X ∩ Y . Moreover, A := DH̄ is the only orbit of length 12 of H̄ on 1-spaces in A and L := EH̄ is
the only orbit of length 12 of H̄ on hyperplanes in A and (c) holds.

The actions induced by H̄ on A and L are two non-equivalent 5-transitive actions of Mat12.
Since A is irreducible, A spans A and so there is a set of six linearly independent elements in A.
Since H̄ induces on A a 5-transitive action, every set of five elements in A is linearly independent
and thus (b) holds.

Let D1 6= D2 ∈ A and let D1, D2, F , F̃ be the set of all 1-spaces in D1 + D2. Then F, F̃ ∈ B.
We are going to show that B satisfies the properties stated in (d) - (f). If there are Di, Dj ∈ A
with {i, j} 6= {1, 2} such that F is contained in Di + Dj then the set {Dk | k = 1, 2, i, j} of size
at most four in A would be linearly dependent, a contradiction to (b). Hence the pair {D1, D2}is
uniquely determined by F . Let L ∈ L. Since L is a hyperplane in A, its intersection with D1 +D2
is at least 1-dimensional. By (c) neither D1 nor D2 are in L, hence (e) follows. Moreover, F or F̃ is
contained in at least 6 elements of L. Since the action of H̄ on L is 5-transitive, we conclude that
the intersection of any five elements of L is in B. Let D be the set of elements in L containing F .
Suppose that |D| ≥ 7. Then by 5-transitivity of H̄ on L there exists h ∈ H̄ with |D ∩ Dh| ≥ 5 and
D 6= Dh. But then the intersection of the elements on D,D ∩Dh and Dh, respectively, are all equal
to F , a contradiction to D 6= Dh. Hence |D| ≤ 6 and both F and F̃ are contained in exactly six
elements of L. Thus (f) holds. As H̄ acts transitively on the blocks of any associate Steiner systems,
(d) follows.

By (f), T is incident to exactly four elements say B1, B2, B3, B4 of B. By the dual of (b), F
is a 2-space and so B1, B2, B3, B4 are exactly the 1-spaces of F . Since NH̄(T ) induces Sym(4) on
{B1, B2, B3, B4} we conclude get NH̄(F )/CH̄(F ) ∼= GL2(3).

By 4.1 and 1.4d two maximal cliques in Ξ are either disjoint or have intersection of size 1, 2 or 3.
Moreover, if C = CX is a geometry whose elements are maximal cliques, triangles, edges and vertices
of ΞX with respect to the incidence relation given by inclusion, then C corresponds to the following
diagram:

3
◦

9
◦ c∗

1
◦ c∗

1
◦.

The geometry C is connected precisely when Ξ is connected. Let σ = Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ Ω12 = Ω
be maximal flag in C. Then Ωi is a complete subgraph of size i in Ξ. Let Ci denote the stabilizer in
CX(z) of Ωi. Then

C1/〈z〉 ∼ 3.Suz.2, C2/〈z〉 ∼ 32.U4(3).D8,

C3/〈z〉 ∼ 33+4.[23].S4.S3, C12/〈z〉 ∼ 36.2.Mat12.

Consider the situation when X = M . By 3.3a z is of Conway type and CM (z) = C ∼ 21+24
+

.Co1.
Put R = O2(C).

Lemma 4.3 The graph ΞM is connected.

9
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Figure 2: Distribution diagram of Ψ.

Proof: Let A be the setwise stabilizer in CM (z) of the connected component of ΞM which contains
σ. Then A contains C1 ∼ 6.Suz.2. Let ε be a vertex adjacent to σ in ΞM . Then [σ, ε] = 1 and since
σ acts fixed-point freely on R/〈z〉, we have σR 6= εR. Since C1R is maximal in C, this means that
AR = C. Finally, C/〈z〉 does not split over R/〈z〉 and hence A = C and ΞM is connected.

The homomorphism χ : G→M induces morphisms G →M and CG → CM of geometries which
will be denoted by the same letter χ. Our goal is to show that the restriction of χ to the connected
component of CG containing σ is an isomorphism onto CM . This will immediately imply that the
setwise stabilizer in CG(z) of the connected component of CG maps isomorphicly onto C ∼ 21+24

+
.Co1.

An important role in the realization of this step will be played by a simply connected subgeometry
in G.

Let µ be a subgroup of Fischer type as in in section 2. Then k := σµ is a subgroup of order 9
in P1 which is not a line (so that k is as in 1.5b). Since z acts fixed-point freely on P1/Q1, as in
the proof of 4.1 we have a unique subgroup of order 3 in k which is normalized and inverted by z.
Hence we can and do choose µ so that z inverts µ. By 2.2 there is a subgroup Mµ ∼ 3.M(24) in X
which normalizes µ such that Mµ ∩Mi = NMi(µ) for i = 1, 2, 3 and 8. Let W = CMµ(z) and let Ψ
be the orbit of W on Ξ which contains σ.

Lemma 4.4 (a) |Ψ| = 2 688 and W/〈z〉 ∼ 22.U6(2).Sym(3) acts faithfully on Ψ;

(b) locally Ψ is the commuting graph Θ on the 3-central subgroups of order 3 in U5(2).2.

Proof: By 1.5b and since Mµ ∩M1 = NM1(µ), CMµ(z) ∩M1 ∼ 2.(3× U5(2)).2. By 3.2 and since z
is of Conway type and inverts µ, W ∼ 23.U6(2).Sym(3). Thus (a) holds.

For (b) we may by (a) assume that X = M . The subgroups of Fischer type in P1 normalized
by z, are permuted transitively by CM1(z) and hence Ψ contains a vertex x of Ξ if and only if µ is
contained in Px, or equivalently if x is contained in M(µ) and hence (b) follows.

Since Ψ is locally Θ, its maximal cliques have size 6 and two such cliques are either disjoint or
have intersection of size 1, 2 or 3. Define U to be a geometry whose elements are maximal cliques,
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triangle, edges and vertices of Ψ with the natural incidence relation. Since Ψ = Ξ∩M(µ), it is easy
to see that the diagram of U is the following.

3
◦

3
◦ c∗

1
◦ c∗

1
◦.

As follows from 4.4, the isomorphism type of U is independent on whether X = M or X = G,
since U is contained inM(µ) which is simply connected. It worth mentioning that U itself is simply
connected as proved in [Me] and that Ψ is distance-transitive with the distribution diagram given
on Figure 2.

5 A characterization of CM

It is not know whether the geometry CM is simply connected. In this section we establish a sufficient
condition for a covering of CM to be an isomorphism in terms of the subgeometry U and its images
under CM (z). Let R = O2(CM (z)) which is extraspecial of order 225. We start by defining the
folding C̄ of CM with respect to the action of R.

The kernel of the action of C = CM (z) on CM is 〈z〉 and since O2(Ci/〈z〉) = 1 for i = 1, 2, 3 and
12, the action of R/〈z〉 is fixed-point free. Let C̄ be the folding of CM with respect to the action of
R. This means that C̄ is a geometry whose elements are the orbits of R on CM with two such orbits
O1 and O2 incident if and only if an element from O1 is incident in CM to an element from O2. Since
R/〈z〉 acts fixed-point freely on CM , it is easy to see that if O1 and O2 are incident in C̄ then each
element from O1 is incident in CM to exactly one element from O2. Let Ξ̄ be the collinearity graph
of C̄ which is also the folding with respect to the action of R of the collinearity graph ΞM of CM .

We put C̄ = C/R and use the bar notation for the images in C̄ of subgroups of C. Then σ̄ is a
subgroup of order 3 in C̄ and NC̄(σ̄) ∼ 3.Suz.2 which is a maximal subgroup in C̄. This enables us
to identify the vertices of Ξ̄ with the Suzuki-type subgroups of order 3 in C̄ ∼ Co1. We will use the
following properties of the action of C̄ on Ξ̄.

Lemma 5.1 Let C̄ ∼= Co1, Ξ̄ be the set of Suzuki-type subgroups of order 3 in C̄, σ̄ ∈ Ξ̄ and
C̄(σ̄) = NC̄(σ̄) ∼ 3.Suz.2. Then C̄ acts primitively on Ξ̄ while C̄(σ̄) has 5 orbits on Ξ̄: {σ̄}, Ξ̄1(σ̄),
Ξ̄2(σ̄), Ξ̄3(σ̄) and Ξ̄4(σ̄) with lengths 1, 22 880, 405 405, 1 111 968 and 5 346, respectively. Let Ξ̄
denote also the graph on Ξ̄ invariant under the action of C̄, in which σ̄ is adjacent to the vertices
from Ξ̄1(σ̄). Let µ̄i ∈ Ξ̄i(σ̄) and B̄i = C̄(σ̄) ∩ C̄(µ̄i) for i = 1, 2, 3, 4. Then

(a) δ̄ ∈ Ξ̄ \ {σ̄} is adjacent to σ̄ in Ξ̄ if and only if [σ̄, δ̄] = 1, so that Ξ̄ is the folding of ΞM with
respect to the action of R; the distribution diagram of Ξ̄ is given on Figure 3;

(b) B̄1 ∼ 32.U4(3).22, locally Ξ̄ is the commuting graph ∆ of central subgroups of order 3 in
C̄(σ̄)/σ̄ ∼ Suz.2 ;

(c) B̄2 ∼ 21+6
− .U4(2).2 acts transitively on Ξ̄i(σ̄) ∩ Ξ̄1(µ̄2) for i = 1, 2 and 3, the subgraph induced

on Ξ̄1(µ̄2) ∩ Ξ̄1(σ̄) is the disjoint union of 40 copies of the complete 3-partite graph K4,4,4,
these copies are permuted primitively by B̄2/O2(B̄2) ∼ U4(2).2, 〈σ̄, µ̄2〉 ∼= SL2(3);

(d) B̄3 ∼ J2 : 2 × 2 acts primitively on Ξ̄1(µ̄3) ∩ Ξ̄i(σ̄) for i = 1, 4 and transitive for i = 2,
〈σ̄, µ̄3〉 ∼= Alt(5);

(e) B̄4 ∼ G2(4).2 acts primitively on Ξ̄1(µ̄4) ∩ Ξ̄i(σ̄) for i = 1 and 3, 〈σ̄, µ̄4〉 ∼= Alt(4) ;
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(f) the subgraph induced on Ξ̄1(µ̄i) ∩ Ξ̄1(σ̄) is empty for i = 3 and 4;

(g) each vertex from Ξ̄1(µ̄3) ∩ Ξ̄3(σ̄) is adjacent to a vertex from Ξ̄1(µ̄3) ∩ Ξ̄1(σ̄) or to a vertex
from Ξ̄1(µ̄3) ∩ Ξ̄2(σ̄)

Proof: The subdegrees, 2-point stabilizers B̄i of the action of C̄ on Ξ̄ and 〈σ̄, µ̄i〉 are well known
(cf. Lemma 49.8 in [As] or Lemma 2.22.1 (ii) in [ILLSS]). The distribution diagram on Figure 3 is
taken from [PS]. This diagram and the structure of B̄1 show that the subgraph induced on Ξ̄1(σ̄) is
isomorphic to the graph ∆ as in 1.4 and that C̄(σ̄) induces its full automorphism group. This means
that B̄1 acts transitively on Ξ̄1(µ̄1)∩ Ξ̄i(σ̄) for i = 1, 2, 3, 4 and hence for every vertex γ̄ at distance
2 from σ̄ in Ξ̄, C̄(σ̄)∩ C̄(γ̄) acts transitively on Ξ̄1(σ̄)∩ Ξ̄1(γ̄). Let χi be the permutational character
of C̄(σ̄) on the cosets of B̄iσ̄ for i = 1, 2 and 4. By Lemma 2.13.1 in [ILLSS] the inner product of
χ1 and χi is 5,3 and 2 for i = 1, 2 and 4, respectively. This implies the transitivity statements in
(c), (d) and (e). By [At] every action of B̄3 of degree 100 or 280 as well as every action of B̄4 of
degree 2 080 or 20 800 is primitive.

Let δ̄i ∈ Ξ̄1(σ̄) ∩ Ξ̄1(µ̄i) for i = 2, 3, 4, then since locally Ξ̄ is ∆, the distance from σ̄ to µ̄j in
the subgraph induced on Ξ̄1(δ̄i) is i. Hence the subgraph induced by Ξ̄1(µ̄i) ∩ Ξ̄1(σ̄) is empty for
i = 3 and 4, while for i = 2 it is locally K4,4 (compare 1.4e). It is well known and easy to check that
K4,4,4 is the only connected graph which is locally K4,4 and the structure of the subgraph induced
on Ξ̄1(µ̄2) ∩ Ξ̄1(σ̄) follows. Finally, every transitive action of B̄2 of degree 40 is primitive and has
O2(B̄2) in its kernel. Thus all statements except (g) are proved.

We will prove (g) with the roles of σ̄ and µ̄3 interchanged. For this we first determine the orbits
of B̄3 on Ξ̄1(σ). Let A = 〈σ̄, µ̄3〉. Then A ∼= Alt(5). Note that there exist exactly two elements
ρ ∈ Ξ̄ ∩ A such that 〈ρ, σ̄〉 ∼= Alt(4) and 〈ρ, µ̄3〉 ∼= Alt(5). Without loss µ̄4 is one of these two.
Put J = NB̄3

(µ̄4) = B̄4 ∩ B̄3. Then J is of index two in B̄3 and J ∼ J2.2. Put K := B̄4. Then
K ∼ G2(4).2.

As the main step in determining the orbits of B̄3 on Ξ̄1(σ̄) we compute the orbits of J by
decomposing the orbits of K. By (e) K acting on Ξ̄1(σ̄) has two orbits, Γ1 = Ξ̄1(σ̄) ∩ Ξ̄3(µ̄4) and
Γ2 = Ξ̄1(σ̄) ∩ Ξ̄1(µ̄4) with lengths 20 800 and 2 080, respectively, moreover if K1 and K2 are the
respective stabilizers, then K1 ∼ U3(3) : 2× 2 and K2 ∼ 3.L3(4).22. Consider the graph Σ with 416
vertices of valency 100 on which K acts as a rank 3 automorphism group ( see [BvL]). Then the
parameters of Σ are the following:

v = 416, k = 100, l = 315, λ = 36, µ = 20.

It follows from the list of maximal subgroups in K, that Γ1 can be identified with the set of edges of
Σ while J is the stabilizer in K of a vertex x of Σ. By well known properties of the action of K on
Σ [BvL] the orbit of J on the edge-set of Σ containing an edge {y1, y2} of Σ is uniquely determined
by the pair {d1, d2} where di is the distance from x to yi in Σ. This and the parameters of Σ given
above show that under the action of J the set of edges of Σ (identified with the set Γ1) splits into
four orbits Ω1, Ω2, Ω3 and Ω4 corresponding to the pairs of distances {0, 1}, {1, 1}, {1, 2} and {2, 2}
and having lengths 100, 1 800, 6 300 and 12 600, respectively. Let Ω5 = Ξ̄1(σ̄) ∩ Ξ̄1(µ̄3) and γ ∈ Ω5.
Note that J acts transitively on Ω5 and |Ω5| = 280. By (a) γ commutes with µ̄3. Thus γ ≤ J ≤ K ′
and so γ ∈ Γ2 and Ω5 is an orbit for J on Γ2. Let K2 be the stabilizer of γ in K. Then γ = O3(K2).
By (f) all 280 vertices adjacent to γ in the subgraph induced on Ξ̄1(σ̄) are in Γ1 and by (a) these 280
vertices are fixed by γ. Let Σ(γ) be the set of vertices in Σ fixed by γ. Comparing the permutation
characters of K on σ with the permutational character of K on Γ2, we see that K2 has exactly two
orbits on the vertex set of Σ. On one hand this means that under the action of J the set Γ2 splits
into two orbits namely Ω5 and an orbit Ω6 of length 1 800. On the other hand K2/γ ∼ L3(4).22 acts
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Figure 3: Distribution diagram of Ξ̄.

transitively on Σ(γ) and so |Σ(γ)| = 280 · |J||K2| = 56. Any transitive action of the latter group of
degree 56 is the rank 3 action on the vertex set of the Gewirtz graph which is strongly regular with
parameters

v = 56, k = 10, l = 45, λ = 0, µ = 2.

Hence we conclude that K2 acts transitively on the set of edges in Σ fixed by γ. Again since γ is
adjacent in Ξ̄ to exactly 280 vertices from Γ1 there are 280 edges in the subgraph of Σ induced on
Σ(γ) and hence this subgraph is the Gewirtz graph rather than its complement.

Note that Ωi, 1 ≤ i ≤ 6 are the orbits for J on Ξ̄1(σ̄). If B3 normalizes K ′ then K ′ centralizes
〈σ̄, µ̄B̄3

4 〉 = A and so K ′ ≤ B̄3, a contradiction. Since K ′ is generated by the elements of Γ2 = Ξ̄∩K
we conclude that B̄3 does not normalize Γ2. Thus some of the orbits of J must be fuzed by B̄3.
Since J is normal in B̄3, only orbits with the same lengths can fuse. Thus Ω2 ∪ Ω6 is a single orbit
of B̄3. The distribution diagram of Ξ̄ enables us to identify Ω5, Ω3, Ω2 ∪ Ω4 ∪ Ω6 and Ω1 with
Ξ̄1(σ̄) ∩ Ξ̄i(µ̄3) for i = 1, 2, 3 and 4, respectively. A vertex from Γ1 is adjacent to γ in Ξ̄ if and
only if the corresponding edge of Σ is fixed by γ. The parameters of the Gewirtz graph imply that
γ is adjacent to 10, 90 and 180 vertices from Ωi for i = 1, 3 and 4, respectively. Since every vertex
from Γ1 is adjacent to 28 = 280 · |Γ2|/|Γ1| vertices from Γ2 and every vertex from Ω3 is adjacent to
4 = 90 · |Ω5|/|Ω3| vertices of Ω5, we observe that a vertex v ∈ Ω3 is adjacent to 24=28-4 vertices
from Ω6. Since Ω2 and Ω6 are fuzed under B̄3 this means that v is also adjacent to 24 vertices
from Ω2. Hence every vertex from Ξ̄1(σ̄) ∩ Ξ̄3(µ̄3) = Ω2 ∪ Ω4 ∪ Ω6 is adjacent to a vertex from
Ξ̄1(σ̄) ∩ Ξ̄1(µ̄3) = Ω5 or a vertex from Ξ̄1(σ̄) ∩ Ξ̄2(µ̄3) = Ω3 (or both).

Let Ψ̄ be the image in Ξ̄ of the subgraph Ψ in Ξ as in 4.4. Since none of the 2-point stabilizers of
the action of C̄ on Ξ̄ involve U5(2), every vertex from the antipodal block containing σ maps onto
σ̄ and we have the following

Lemma 5.2 Let Ψ̄ be the image of Ψ in Ξ̄. Then Ψ̄ is the antipodal folding of Ψ which is a strongly
regular graph with parameters

v = 672, k = 176, l = 495, λ = 40, µ = 48.
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The image W̄ of W = CMµ
(z) in C̄ is isomorphic to U6(2).Sym(3).

Since locally Ψ̄ (as well as Ψ) is the commuting graph Θ of 3-central subgroups of order 3 in
U5(2).2 which is strongly regular, it is easy to see that in terms of 5.1 Ψ̄ ⊆ {σ̄} ∪ Ξ̄1(σ̄) ∪ Ξ̄2(σ̄).

Let % : C̃ → CM be a covering of CM such that there is a flag-transitive automorphism group
C̃ of C̃ which commutes with % and whose induced action on CM coincides with that of C/〈z〉. In
particular % can be the restriction to a connected component of CG of the morphism of CG onto CM
induced by the homomorphism χ : G→ M . In this case C̃ is the setwise stabilizer in CG(z)/〈z〉 of
that connected component. Let R̃ be the kernel of the natural homomorphism of C̃ onto C̄ ∼ C/R.
Let Ξ̃ be the collinearity graph of C̃ so that there is a natural morphism of Ξ̃ onto Ξ̄.

Let Ψ and W be as in 4.4. Let Ψ̄ be the image of Ψ in Ξ̄ and W̄ be the image of W in C̄. Let
Ψ̃ be a connected component of the preimage of Ψ under % and let W̃ be the stabilizer of Ψ̃ in the
preimage of W/〈z〉 in C̃.

Lemma 5.3 In the above notation Ψ̃ is isomorphic to Ψ, W̃ ∼W/〈z〉 ∼ 22.U6(2).Sym(3) and hence
W̃ ∩ R̃ is elementary abelian of order 22.

Proof: The result follows from 4.4 and the fact that Ψ is the collinearity graph of the geometry U
which is simply connected by [Me].

Let T̄ (σ̄) be the set of images of Ψ̄ under C̄ which contain σ̄. Equivalently we can define T̄ (σ̄)
to be the set of images of Ψ̄ under NC̄(σ̄). Let σ̃ be a preimage of σ̄ in C̃. Let T̃ (σ̃) be the set
of connected subgraphs Φ̃ such that σ̃ ∈ Φ̃ and Φ̃ maps onto some Φ̄ ∈ T̄ (σ̄). If Φ̃ ∈ T̃ (σ̃) and
Ũ := C̃(Φ̃) is the setwise stabilizer of Φ̃ in C̃, then by 5.3 O2(Ũ) = Ũ ∩ R̃ is of order 22. Let

R̃σ = 〈O2(C̃(Φ̃)) | Φ̃ ∈ T̃ (σ̃)〉.

Lemma 5.4 R̃σ = R̃.

Proof: Let Ξ̂ be the folding of Ξ̃ with respect to the orbits of R̃σ. This means that the vertices
of Ξ̂ are the orbits of R̃σ on the vertex set of Ξ̃ with the induced adjacency relation. Notice that
in the way it is defined Ξ̂ is not necessary vertex-transitive although every automorphism from C̃
stabilizing σ̃ can be realized as an automorphism of Ξ̂. Nevertheless eventually we will see that Ξ̂
is equal to Ξ̄ and in particular it is vertex-transitive. Since the vertices of Ξ̄ can be considered as
orbits of R̃ on Ξ̃ and R̃σ is contained in R̃, there is a covering ω : Ξ̂→ Ξ̄ and R̃σ = R̃ if and only if
ω is an isomorphism. Let σ̂ be the image of σ̃ in Ξ̂. Since R̃σ is normalized by the stabilizer C̃(σ̃)
of σ̃ in C̃, there is a subgroup Ĉ(σ̂) in the automorphism group of Ξ̂ which stabilizes σ̂ and maps
isomorphically onto C̄(σ̄) ∼ 3.Suz.2. We will identify Ĉ(σ̂) and C̄(σ̄). For δ̂ ∈ Ξ̂ let Ξ̂1(δ̂) be the
set of vertices adjacent to δ̂ in Ξ̂. Since ω is a covering, the subgraph induced on Ξ̂1(δ̂) is isomorphic
to ∆ and if δ̂ = σ̂ then Ĉ(σ̂) induces the full automorphism group of this subgraph. Hence Ĉ(σ̂)
has exactly three orbits, on the vertices at distance 2 from σ̂. We denote these orbits by Ξ̂i(σ̂), so
that ω(Ξ̂i(σ̂)) = Ξ̄i(σ̄) for 2 ≤ i ≤ 4. Let µ̂i ∈ Ξ̂i(σ̂) and B̂i be the stabilizer of µ̂i in Ĉ(σ̂). We
assume that there is a vertex µ̂1 ∈ Ξ̂1(σ̂), adjacent to µ̂i for 2 ≤ i ≤ 4 and that µ̂3 is adjacent to µ̂2
and µ̂4. Assuming also that ω(µ̂i) = µ̄i, we can consider B̂i as a subgroup in B̄i, 1 ≤ i ≤ 4. Notice
that B̂i acts transitively on the set Ξ̂1(σ̂) ∩ Ξ̂1(µ̂i). Since ω is a covering, the subgraph induced by
Ξ̂1(σ̂)∩ Ξ̂1(µ̂2) is union of m disjoint copies of K4,4,4 where 1 ≤ m ≤ 40. For Φ̃ ∈ T̃ (σ̃) the image Φ̂
of Φ̃ in Ξ̂ is isomorphic to Ψ̄ as in 5.2 and is contained in {σ̂} ∪ Ξ̂1(σ̂) ∪ Ξ̂2(σ̂). The parameters of
Ψ̄ imply that m ≥ 3. Since B̄2 acts primitively on the 40 copies of K4,4,4 as in 5.1c we have m = 40
and B̂2 = B̄2. By 5.1c B̂2 has three orbits on the vertices from Ξ̂1(µ̂2) with lengths 480, 5 120 and

14



17 280, moreover, these orbits are contained in Ξ̂i(σ̂) for i = 1, 2 and 3 respectively. In particular
B̂2 ∩ B̂3 has order order divisible by 27. By 5.1d the stabilizer in B̂3 of a vertex from Ξ̂1(σ̂)∩ Ξ̂1(µ̂2)
has order not divisible by 27 and so B̂3 ∩ B̂1 is a maximal subgroup of B̄3 not containing B̂2 ∩ B̂3.
Thus B̂3 = B̄3. Arguing similarly B̂3 ∩ B̂4 and B̂1 ∩ B̂4 are two different maximal subgroups of B̄4
and so B̂4 = B̄4. Let ρ̂ be a vertex adjacent to µ̂i for i = 2 or 4. By 5.1c,e ρ̂ is conjugate under
Ĉ(σ̂) to µ̂j for some 1 ≤ j ≤ 4, except maybe in the case where ρ̂ is adjacent to µ̂2 and ρ̂ maps onto
an element of Ξ̄2(σ̄). In the latter case we see from the distribution diagram of ∆ that such a ρ̂ can
already be found in the residue of µ1. Hence in any case a vertex adjacent to µ̂i for i = 2 or 4 is in
Ξ̂j(σ̂) for 1 ≤ j ≤ 4. Suppose that there is a vertex ν̂ which is adjacent to µ̂3 and whose distance
from σ̂ is 3. By 5.1g there must be a vertex in Ξ̂1(µ̂3) ∩ Ξ̂j(σ̂) for j = 1, or 2 which is adjacent to
ν̂. As we have seen above, this is impossible. Hence there are no vertices at distance 3 from σ̂ and
ω is an isomorphism.

Corollary 5.5 C̄ is the universal completion of the amalgam (C̄1, C̄2, C̄12, W̄ ).

6 Construction of the 2-locals

As above let G denote the universal completion of the amalgam (Mi | i = 1, 2, 3, 8) and χ be the
homomorphism of G onto M which is identical on this amalgam. We will consider the Mi’s as
subgroups both in M and G. The group G acts flag-transitively on the universal cover G ofM. The
points, lines, planes and quadrics in G and M are the cosets of M1, M2, M3 and M8 in G and M ,
respectively. We follow notation introduced in the beginning of Section 4, so that X stays for an
arbitrary completion of the amalgam which has M as an quotient.

Let σ = M1 viewed as a point stabilized by M1, d = M8 viewed as a quadric stabilized by M8, z
an involution from P ∗1 , C = CM (z) ∼ 21+24

+
.Co1 and R = O2(C). Our nearest goal is to construct

in CG(z) a subgroup C̃ which maps isomorphically onto C. As above let Ξ be the graph on the set
of points τ with z ∈ P ∗τ in which two points are adjacent if they are incident to a common quadric.
We will obtain C̃ as the stabilizer in CG(z) of the connected component of Ξ containing σ. Let Ω be
a maximal clique in Ξ containing σ, H be the setwise stabilizer of Ω in CX(z) and put A = O3(H).
Then by 4.1 H ∼ 〈z〉 × 36.2.Mat12, moreover there is a unique point α collinear to σ, and inverted
by z, such that H = CMα(z) and O3(H) = Pα ∩H. We use notation introduced in 4.2, so that A
and B are orbits of H̄ = H/〈A, z〉 on the set of subgroups of order 3 in A with lengths 12 and 132
respectively while L is the unique orbit of length 12 of H̄ on the set of hyperplanes of A. Then it is
straightforward to identify A with the vertices in Ω.

Let {σ, δ} be the edge of Ω incident to d. Then 〈σ, δ〉 = CQd(z). Besides σ and δ there are
two subgroups, say ρ and ρ′ of order 3 in CQd(z). These subgroups are of Fischer type, and lie in
the orbit B. Since ρ ≤ Pα we can define Mρ as in 2.2. Since CMd

(z) ∼ 2.32.U4(3).D8, we have
CMd

(z) ∩Mρ ∼ 2.32.U4(3).22. Moreover by 3.2 z is a 2-central involution in Mρ and

CMρ(z) ∼ (3× 21+12
+ ).3.U4(3).22.

Put C0 = CMρ(z) and R0 = O2(C0). Recall the choice of µ and the definition of W before
4.4. In particular σ, δ ≤ W and both σ and δ act non-trivially on O2(W ). Thus one of ρ and ρ′

centralizes O2(W ). We choose notation so that ρ centralizes O2(W ). Recall the definition of Ci,
i = 1, 2, 3, 12 before 4.3, where we choose Ω2 = {σ, δ}. So C1 = CMσ (z), C2 = CM{σ,δ}(z), and
C12 = H = CMα(z).
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Lemma 6.1 (a) R =
∏
L∈L CR(L);

(b) R0 =
∏
ρ≤L∈L CR(L).

Proof: The image in C/R ∼= Co1 of H is the full normalizer of the image of A which shows that
R0 ≤ R and R0 = CR(ρ). Note that [R/〈z〉, A] is a non-trivial GF (2)-module for H of dimension at
most 24. The restriction of this module to A is a direct sum of irreducible 2-dimensional modules
and the kernel of such a summand is a hyperplane. The hyperplanes appearing as kernels form a
union of orbits under H̄. By 4.2 there are no orbit of length less than 12 and L is the only orbit of
length 12. This implies (a). Since ρ acts fixed-point freely on R/R0, we have (b).

Proposition 6.2 C is the universal completion of the amalgam (C0, C1, C2, C12,W ) of subgroups
of C.

Proof: Let C̃ be the universal completion of the amalgam and as usual view the Ci and W has
subgroups of C̃. By 4.4b, C2 ∩W ∼ 32.U4(2).2 and so C2 ∩W normalizes no non-trivial 2-subgroup
of O2(C0/R0). Thus O2(W ) ≤ R0.

Since H ∩W ∼ 34+1.2.Sym(6) we conclude from 4.2 applied to the dual of A that (H ∩W )A =
NH(A∩W ) and that there exists unique elements L1 and L2 in L with L1 ∩L2 ≤ A∩W . Let U =
〈O2(W )A〉. Then U/〈z〉 is a subspace in R0/〈z〉 of dimension at least 4 centralized by CA(O2(W )).
Thus by 6.1b, CA(O2(W )) is the intersection of two members of L. Hence CA(O2(W )) = L1 ∩ L2,
U = CR0(L1)CR0(L2), ρ ≤ L1 ∩ L2 and |U | = 25.

Put V = CR0(L1). We conclude from 6.1(b) that NH∩C0(V ) ∼ 36.2.Sym(5). On the other hand
(H∩W )∞ is normal in (H∩W )A and so (H∩W )∞ centralizes all conjugates of O2(W ) under A. Thus
(H∩W )∞ ≤ NH(V ). It follows that NH(V ) = 〈NH∩C0(V ), (H∩W )∞〉 ∼ 36.2.Mat11. In particular,
H acts doubly transitive on the 12 elements of V H and since V V h ∼= 21+4

+ for h ∈ H ∩ C0 \NH(V )
we conclude that R̃ := 〈V H〉 ∼= 21+24

+ .
We claim that R̃ is normal in C̃. By definition H normalizes R̃. Moreover, R0 = 〈V H∩C0〉. Let

t ∈ H ∩ C2 \ C0. As C0 ∩ C2 is of index two in C2, t normalizes C0 ∩ C2. Also t permutes ρ and ρ′

and we conclude that R̃ = R0R
t
0 is normalised by R0, C0 ∩ C2 and t. Thus both C0 = R0(C0 ∩ C2)

and C2 = (C0 ∩ C2)〈t〉 normalize R̃. Since C1 = 〈C1 ∩ C2, C1 ∩H〉, R̃ is indeed normal in C̃.
Note that C̃/R̃ is a completion of the amalgam (C1R̃/R̃, C2R̃/R̃, C12R̃/R̃,WR̃/R̃). As O2(W ) ≤

R̃, we can apply 5.5 and conclude that C̃/R̃ ∼= C̄ ∼= Co1. Thus C̃ ∼ 21+24
+ .Co1 and since C is a

quotient of C̃, we obtain C̃ ∼= C

In view of the preceding proposition our nearest goal is to find such an amalgam inside of
G. The first part, namely finding the subgroups, is already accomplished. Indeed the groups
C0, C1, C2, , C12 = H and W had been defined for X, in particular for G and for M . It remains
to show that the pairwise intersections are the same when regarded as subgroups of G and M ,
respectively. The fact that the pairwise intersections between C1, C2, H and W are correct fol-
lows immediately from the definitions of these groups. Also H ≤ Mα and C2 ≤ Md. Since ρ is
perpendicular to Qα in Qd we conclude from 2.2 that C0 intersects C2 and H correctly. Moreover,
NC1(ρ) ≤ NMσ (ρ) ≤ NMσ (〈σδ〉) ≤Md and so C0 and C1 intersect correctly. It remains to check the
intersection C0 ∩W . As C0 ≤Mρ and W ≤Mµ this is accomplished by

Lemma 6.3 NMρ(µ) = Mρ ∩Mµ.

Proof: Let F = ρµ. Then F is a non-degenerated 2-space of ”plus”-type with respect to the
Md invariant quadratic form on Qd. Hence NMd

(ρ, µ′) ∼ 38.Ω−6 (3).2 and F/ρ is of type 3C in
Mρ/ρ ∼= M(24) (compare [At]). This shows that NMρ(µ) = NMd

(ρ, µ) ≤ NMd
(µ) ≤Mµ.
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Corollary 6.4 Let C̃ be the subgroup of G generated by C0, C1, C2,H and W . Then C̃ ∼ 21+24
+ .Co1

and C̃ is the normalizer of the connected component of Ξ containing σ.

We now proceed finding the remaining terms E4 and E8 (cf. Section 3) of the 2-local geometry
of M . Of the 3-local subgroups considered so far only the normalizers of Fischer type subgroups
contain a conjugate of E4. (This follows from the fact E4 centralizes all subgroups of odd order in
M which are normalized by E4.) This is not enough to reconstruct N as a subgroup of G and we are
forced to first locate a further 3-local subgroup of G containing E4. By 4.2g there exists a 2-space F
in A all of whose 1-spaces are in B and so of Fischer type. Moreover NH(F )/CH(F ) ∼= GL2(3) and
there exists L1, L2 in L with F ≤ L1 ∩ L2. Choose F so that ρ ≤ F and let δ be a further Fischer
type subgroup of F .

We are trying to locate subgroups of NG(F ) and for this we will produce a quadric d′ with
F ≤ Qd′ . Let z′ be an involution in H so that P ∗αz = P ∗αz

′, but Pαz 6= Pαz
′. Then by 3.3b

z′ = zr for some r ∈ Mα. Let A′ = Ar and Ω′ = Ωr. Since σi = CA′(Li) has 12-conjugates under
H ∩Hr ∼ 22.Mat12, σi ∈ Ω′. Thus {σ1, σ2} is an edge in Ω′ and there exists an unique quadric d′

adjacent to α, σ1 and σ2. In Qd′ we see that Qd′∩Pα = σ1σ2[Qd′∩Pα, z′] and [Qd′∩Pα, z′] has order
35. As [Qα, z′] = AQα and CAQα(σ1σ2) has order 35 we conclude that CAQα(σ1σ2) = [Qd′ ∩Pα, z′].
Hence F ≤ Qd′ .

Since all 1-spaces in F are of Fischer type, F is a non-degenerate 2-space of ”minus”-type in Qd′
and CMd′ (F ) ∼ 38.Ω+

6 (3). Since CMd′ (F ) ≤ Mρ we conclude [At] that F/ρ is of type 3A in Mρ/ρ,
which means that CMρ(F ) ∼ 32.PΩ+

8 (3). Let g be a point incident to d′ such that Qg is perpendicular
to F in Qd′ . Then Qg is centralized by a Sylow 3-subgroup of CMd′ (F ). Hence QgF/F is 3-central
in CMd′ (F )/F and so also 3-central in CMρ(F ). Thus CMρ(F ) ∩ NMρ(Qg) is a maximal subgroup
of CMρ(F ) different from CMd′ (F ). Hence

CMρ(F ) = 〈CMd′ (F ), CMρ(F ) ∩NMρ(Qg)〉 ≤ 〈NMd′ (δ), NMg (δ)〉 ≤Mδ.

Put T = CMρ(F ). We conclude that T = CMδ
(F ) and so NH(F ) normalizes T . Put MF =

TNH(F ). Then MF ∼ (32 × D4(3)).GL2(3) and in particular, MF maps isomorphically onto the
full normalizer of F in M .

Note that CMF
(z) = NH(F )CT (z) ⊆ HCMρ(z) ⊆ C̃. As z centralizes F , z ∈ O3(T ) = T ′ ∼=

D4(3). As NH(F ) induces the full group of outer automorphisms on T ′ and by [At] T ′ has a unique
class of involutions invariant under all automorphisms, z is 2-central in T ′. In particular, there exists
a pure Conway foursgroup E in T ′ with z ∈ E ≤ O2(CT ′(z)) ≤ O2(CMρ(z)) = R0 ≤ R̃. Let t be an
involution in E distinct from z. Then t = zg for some g ∈ T ′ ≤ Mρ ∩MF . Put C̃t = C̃g. Then by
conjugation of the corresponding statements for z we get CMρ(t) ≤ C̃t and CMF

(t) ≤ C̃t.

Lemma 6.5 CC̃(E) ≤ C̃t.

Proof: Put CE = CC̃(E). Then CE ∼ 22+11+22.Mat24. Moreover CE ∩ Mρ = NCE (ρ) and so
modulo O2(CE), CE ∩Mρ has shape 3.Sym(6). Similarly modulo O2(CE) the intersection CE ∩MF

is of shape 32.GL2(3). By [At] no proper subgroup of Mat24 has two such subgroups and thus
CE = 〈CE ∩Mρ, CE ∩MF 〉O2(CE). Since ρ has fixed points on any composition factor for CE on
O2(CE) this implies CE = 〈CE ∩Mρ, CE ∩MF 〉 ≤ C̃t.

Let E8 be a pure Conway type eights subgroup of T ′ such that E8 ≤ O2(CT ′(x)) for all 1 6=
x ∈ E8 and E ≤ E8. Put E4 = E and for i = 4, 8 put CEi =

⋂
1 6=x∈Ei C̃x. Then by 6.5 CEi =

CC̃(Ei). Moreover NT (Ei) normalizes CEi and induces on Ei its full automorphism group. Put
Ñ = CE4NT (E4) and L̃ = CE8NT (E8). Then χ maps the amalgam (C̃, Ñ , L̃) isomorphicly onto the
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amalgam (C,N,L) as in Section 3. Let M̃ be the group generated by C̃, Ñ and L̃. Then by 3.1 χ
maps M̃ isomorphicly onto M . Thus to complete the proof of 1.6 it remains to show that G = M̃ .
For this note first that Mρ is generated by its intersection with C̃ and Ñ . Moreover, M1 and M8

are both generated by their intersections with Mρ and C̃. Finally M1 and M8 generate G and so
G = M̃ and 1.6 is proved.
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