The E-Uniqueness Theorem

Ulrich Meierfrankenfeld Bernd Stellmacher Gernot Stroth

April 7, 2002

1 Introduction

Let G be a finite group and p a prime dividing the order of G. We say that G has characteristic p if $C_G(O_p(G)) \leq O_p(G)$ and we say that G has local characteristic p if all p-local subgroups of G have characteristic p. This paper is part of the project to classify all finite groups of local characteristic p. The classification is divided into two main part: The Euniqueness case (E!) and the non E-uniqueness case ($\neg E$!). To explain these cases we need to introduce some notation:

Let G be a finite group of local characteristic p,

 $S \in \operatorname{Syl}_{p}(G).$ $Z = \Omega_{1}Z(S),$ $\mathcal{L} = \{L \leq G \mid C_{G}(O_{p}(L)) \leq O_{p}(L)\},$ $\mathcal{M} \text{ is set of maximal elements of } \mathcal{L};$

If \mathcal{T} is a set of subgroups of G and $H \leq G$, then $\mathcal{T}(H) = \{T \in \mathcal{T} \mid H \leq T\}$ and $\mathcal{T}_H = \{T \in \mathcal{T} \mid T \leq H\}.$

We say that $T \in \mathcal{L}$ is a uniqueness subgroup of G if T is contained in a unique maximal p-local of G, that is if $|\mathcal{M}(T)| = 1$.

For $L \in \mathcal{L}$ let Y_L be the largest *p*-reduced normal subgroup of G (see 4.1). For H a finite group, $F_p^*(H)$ is defined by $F_p^*(H)/O_p(H) = F^*(H/O_p(H))$. \tilde{C} is a maximal *p*-local containing $N_G(Z)$ (in symbols: $\tilde{C} \in \mathcal{M}(N_G(Z))$).

 $E = \mathcal{O}^p(\mathcal{F}_p^*(\mathcal{C}_{\tilde{C}}(Y_{\tilde{C}}))).$

E! now means that E is a uniqueness subgroup and $\neg E!$ means that E is contained in at least two different maximal p-locals of G.

2 Some unnecessary comments on groups of parabolic characteristic p

Let G be a finite group and p a prime dividing the order of p. A subgroup P of G is called a *parabolic* if it contains a Sylow p- subgroup of G. A parabolic P is called a *local*

parabolic if $O_p(P) \neq 1$. A parabolic is called regular, if it contains the normalizer of Sylow *p*-subgroup. *G* is of (regular) parabolic characteristic *p* if all (regular) local parabolics are of characteristic *p*. We eventually hope to extend the classification of groups of local characteristic *p* to the groups of regular parabolic characteristic *p*.

The Monster and the Baby Monster are example of groups which are of parabolic characteristic 2, but not of local characteristic 2. J_1 is a group which is of regular parabolic characteristic 2, but not of parabolic characteristic 2.

3 An unnecessary section on bricks

Definition 3.1 Let G be a finite group. A brick of G is a perfect subnormal subgroup B of G such that B has a unique maximal normal subgroup M_B . Bri(G) denotes the sets of all bricks of G.

Lemma 3.2 [minimal subnormal supplement] Let G be a finite group and D a normal subgroup of G with G/D perfect.

- (a) There exists a the unique minimal subnormal supplement B = B(G, D) to D in G.
- (b) B is normal in G
- (c) If G/D is simple, then B is the unique brick of G with $B \not\leq D$. Moreover $[B, D] \leq M_B = B \cap D$.
- (d) If G is perfect, then $G = BD^{\infty}$.

Proof: (a) Let B_1 and B_2 be minimal subnormal supplements to D in G. We need to show that $B_1 = B_2$. If $G = B_i$ for some i this is obvious. So we may assume that $B_i \leq M_i$ for a proper normal subgroup M_i of G. Then $G = M_i D$. Put $M = [M_1, M_2]$. Since G/D is perfect, $G = [G, G]D = [M_1D, M_2D]D = MD$. By induction there exists a unique minimal supplement B to $M \cap D$ in M. Since G = MD and $M \leq M_i$, $M_i = M(D \cap M_i)$ and so $M_i = B(D \cap M_i)$. By induction $B = B(M_i, D \cap M_i) = B_i$ and thus $B_1 = B_2$.

(b) Let $g \in G$. The also B^g is a minimal subnormal supplement to D in G and so $B = B^g$ by the uniqueness of B.

(c) Let M be a normal subgroup of B. Suppose that $M \not\leq D$. The $MD/D \trianglelefteq BD/D = G/D$. Since G/D is simple, G = MD and so the minimality of B implies M = B. Thus $B \cap D$ is the unique maximal normal subgroup of G and B is a brick. Let \tilde{B} be any brick of G with $\tilde{B} \not\leq D$. Then $\tilde{B}D/D$ is a non-trivial subnormal subgroup of the simple G/D and so $\tilde{B}D = G$. Thus $B \leq \tilde{B}$. Moreover, $\tilde{B}/\tilde{B} \cap D$ is simple and so $\tilde{B} \cap D = M_{\tilde{B}}$. In particular $B \not\leq M_{\tilde{B}}$ and so $B = \tilde{B}$.

(d) Since G/B is perfect and G/B = DB/B we get $G/D = D^{\infty}B/B$.

Proposition 3.3 [bricks and subnormal subgroups] Let B be a brick of the finite group G and $N \trianglelefteq \trianglelefteq G$. Then either $B \le N$ or N normalizes B and $[B, N] \le M_B$.

Proof: If N = G, $B \leq N$. So we may assume that N is contained in a maximal normal subgroup D of G. If $B \leq D$ we are done by induction. So suppose that $B \not\leq D$. Then by 3.2 D = B(G, D) and $[B, N] \leq [B, D] \leq M_B$.

Lemma 3.4 [products of bricks] Let B_1 and B_2 be bricks of the finite group G. Then $\langle B_1, B_2 \rangle = B_1 B_2$ and exactly one of the following holds.

- 1. $B_1 = B_2$
- 2. $B_1 \leq M_{B_2}$,
- 3. $B_2 \leq M_{B_1}$.
- 4. $[B_1, B_2] \leq M_{B_1} \cap M_{B_2}$.

Proof: If $B_1 \not\leq B_2$ and $B_2 \not\leq B_1$ then by 3.3 $[B_1, B_2] \leq M_{B_1} \cap M_{B_2}$. So we may assume $B_1 \leq B_2$. But then $B_1 = B_2$ or $B_1 \leq M_{B_2}$. So one of (1)-(4) holds. Since B_i is perfect its easy to see that at most one of (1)-(4) can hold. Moreover in all four cases, $\langle B_1, B_2 \rangle = B_1 B_2$. \Box

Lemma 3.5 [Ginfty] $Bri(G) = Bri(G^{\infty})$ and $G^{\infty} = \prod_{B \in Bri(G)} B$.

Proof: Note that a brick of G^{∞} is a brick of G and all bricks of G are contained in G^{∞} . Thus $Bri(G) = Bri(G^{\infty})$. Let D be a maximal normal subgroup of G^{∞} Then by 3.2 there exists a brick B with $G^{\infty} = BD^{\infty}$. By induction D^{∞} is the products of its bricks. So also G^{∞} is the products of its bricks.

4 The Largest *p*-reduced normal subgroup

Let L be a finite group of characteritic p. An elementary abelian normal subgroup V of L is called p-reduced if any normal subgroup of G which acts unipotently on V has to act trivially. Note that this is equivalent to $O_p(L/C_L(V)) = 1$.

Lemma 4.1 [YL] Let L be a finite group of characteritic p and $S \in Syl_p(L)$

- (a) There exists a unique maximal p-reduced normal subgroup Y_L of L.
- (b) Let $R \leq L$ and X a p-reduced normal subgroup of R. Then $\langle X^L \rangle$ is a p-reduced normal subgroup of L. In particular, $Y_R \leq Y_L$.
- (c) Let $S_L = C_S(Y_L)$ and $L^f = N_G(S_L)$. Then $L = L_f C_L(Y_L)$, $S_L = O_p(L^f)$ and $Y_L = \Omega_1 Z(S_L)$.

(d) $Y_S = \Omega_1 Z(S), Z_L := \langle \Omega_1 Z(S)^L \rangle$ is p-reduced for L and $\Omega_1 Z(S) \leq Z_L \leq Y_L$.

Proof: (a) Let Y_L be the subgroup generated by the *p*-reduced normal subgroups of *L*. Let *N* be a normal subgroup acting unipotently on Y_L . Then *N* also acts unipotently on all the generators of Y_L . Hence *N* centralizes all the generators of Y_L and so Y_L . Thus Y_L is *p*-reduced.

(c) Let $Y = \langle X^L \rangle$ and $C = C_L(Y)$. Let $N/C = O_p(L/C)$. Then $N = (N \cap S)C$ and in particular, $N = (N \cap L)C$. As X is p reduced, $N \cap L$ centralizes X. The same is true for C and so also for N. Since N is normal in L and $Y = \langle X^L \rangle$, N centralizes Y. Thus N = C and Y is p-reduced.

(b) Put $C = C_L(Y_L)$. By Frattini, $L = L^f C$. Since $O_p(L/C) = 1$ we conclude $O_p(L_f) \leq C$ Hence $O_p(L_f) \leq C \cap S = S_L$ and so $O_p(L_f) = S_L$). Let $X = \Omega_1(Z(S_L))$. Then clearly $Y_L \leq X$ and L_f normalizes Y. Put $Y = \langle Y^L \rangle = \langle Y^C \rangle$. Clearly X is p-reduced for S_L and so by (b) applied to C, Y is p-reduced for C. Let N be a normal subgroup of L acting unipotently on Y. Since $Y_L \leq Y$ and Y_L is p-reduced for L, $N \leq C$. As Y is p-reduced for C, N centralizes C and so Y is p-reduced for L. By maximality of Y_L we get $Y \leq Y_L$. But $Y_L \leq X \leq Y$ and so $Y_L = X = Y$.

(d) Clearly S centralizes Y_S and so $Y_S \leq \Omega_1 \mathbb{Z}(S)$. Also $\Omega_1 \mathbb{Z}(S)$ is *p*-reduced for S and so $\Omega_1 \mathbb{Z}(S) \leq Y_S$. Thus $\Omega_1 \mathbb{Z}(S) = Y_L$. The remaining parts now follow from (b). \Box

Lemma 4.2 [YL and subnormal subgroups] Let L be of characteristic p and K a subnormal subgroup of L.

(a) $Y_L \cap K$ and $[Y_L, O^p(K)]$ are p-reduced for K

(b)
$$[Y_L, \mathcal{O}^p(K)] \leq Y_L \cap K = Y_L \cap Y_K \leq Y_K$$

(c) $C_K(Y_K) = C_K([Y_L, O^p(K)]) = C_K(Y_L \cap Y_K) = C_K(Y_L).$

Proof:

Note that $O^p(K) = O^p(KY_L)$ and so $[Y_L, O^p(K)] \leq Y_L \cap O^p(K) \leq Y_L \cap K$. Let D be the largest normal subgroup of K acting unipotently on $[Y_L, O^p(K)]$. Since K acts acts unipotently on $Y_L/[Y_L, O^p(K)]$ we get that D is unipotent on Y_L . Since D is subnormal in Land Y_L is p-reduced, D centralizes $Y_L, Y_L \cap K$ and $[Y_L, O^p(K)]$. Thus $Y_L \cap K$ and $[Y_L, O^p(K)]$ are p-reduced, $D = C_K([Y_L, O^p(K)]$. Thus (a) and (b) hold and for (c) it remains to show that $C_K(Y_L) \leq C_K(Y_K)$.

For this we may assume by induction on the subnormal length that K is normal in L. Then also Y_K is normal in L. Let V be a normal subgroup of L contained in Y_K which is minimal with respect to $C_K(V) = C_K(Y_L)$. Then $O_p(K/C_K(V) = 1 \text{ and } V$ is p-reduced for K. Let D be the largest normal subgroup of L acting unipotently on V. Then $[K, D] \leq K \cap D \leq C_L(V)$. Put $W = C_V(D)$. Since $D/O_p(D)$ is a p-group, the $P \times Q$ -Lemma implies $C_K(W)/C_K(V)$ is a p-group. Hence $C_K(W) = C_K(V) = C_K(Y_K)$.

The minimality of V yields V = W. So D centralizes V and V is p-reduced for L. Thus $V \leq Y_L$ and

$$C_K(Y_L) \le C_K(V) = V_K(Y_K).$$

5

5 The Kieler Lemma and Point Stabilizers

Lemma 5.1 [Kieler Lemma for modules] Let G be a finite group L a subnormal subgroup of G, p a prime and $S \in Syl_p(G)$. Let V be a GF(p)G module. Then

$$C_L(C_V(S)) = C_L(C_V(S \cap L)).$$

Proof: Without loss L is normal in G and G = LS. Also $C_V(S) \leq C_V(S \cap L)$ and replacing G by $C_G(C_V(S)$ we may assume that $C_V(S) \leq C_V(G)$. For $T \in L/L \cap S$ and $v \in C_V(L \cap S)$ define $v^T = v^t$ for any $t \in T$. Note that this is independ from the choice of $t \in T$ (Also we slightly are abusing notation as v^T usually is define as $\{v^t \mid t \in T\}$. Define

$$\pi: \mathcal{C}_V(S \cap L) \to V, v \to \sum_{T \in L/S \cap L} v^T$$

Let $v \in C_V(S \cap L)$ and $l \in L$. Then

$$\pi(v^l) = \sum_{T \in L/S \cap L} v^{Tl}$$

Since $T \to Tl$ is a bijection of $S/S \cap L$ we conclude $\pi(v^l) = \pi(v)$ and so $\operatorname{Im} \pi \leq C_V(L)$. Also if $v \in C_V(L)$ then $\pi(v) = mv$ where $m = |L/L \cap S|$. $L \cap S$ is a Sylow *p*-subgroup of L. Thus *p* does not devide *m* and $\pi|_{C_V(L)}$ is one to one. We conclude that

$$C_V(S \cap L) = \ker \pi \oplus C_V(L).$$

Let $s \in S$ the map $T \to T^s$ is a bijection of $L/S \cap L$ and thus

$$\pi(v)^{s} = \sum_{T \in L/S \cap L} v^{Ts} = \sum_{T \in L/S \cap L} = (v^{s})^{T^{s}} = \pi(v^{s})$$

and we conclude that ker π is S-invariant. Suppose that ker $\pi \neq 0$, then also $C_{\ker \pi}(S) \neq 0$, but thus contradicts $C_V(S) \leq C_V(L)$ and $C_V(L) \cap \ker pi = 0$. Hence ker $\pi = 0$ and so $C_V(S \cap L) = C_V(L)$. Thus

$$C_L(C_V(S \cap L) = L = C_L(C_V(S))$$

and the lemma is proved.

Proposition 5.2 (Kieler Lemma) [kieler lemma] Let G be a group of local characteritic p, L a subnormal subgroup of G and $S \in Syl_p(G)$. Then

$$C_L(\Omega_1 Z(S)) = C_L(\Omega_1 Z(S \cap L))$$

Proof: By induction G/L we may assume that L is normal subgroup of G and G = LS. Put $Z = \Omega_1 Z(S)$ and $Y = \Omega_1 Z(S \cap L)$. Since S normalizes O(L), $L \cap Z \neq 1$. Note that $L \cap Z \leq \Omega_1 Z(S \cap L)$. So S, $C_L(Z)$ and $C_L(Y)$ are all contained in $C_G(L \cap Z)$ we may assume that $G = C_G(L \cap Z)$. Since G is of local characteristic p, we now get that G is of characteristic p. Let $V = \Omega_1 Z O(L) Z$. Since $O_p(L) \leq S$, $Z \leq C_G(O_p(L))$ and so $[Z, L] \leq C_G(O_p(L)) \cap L$. Thus $[V, L] \leq \Omega_1 Z O(L)$ and V is an elementary abelian normal p-subgroup of G. Note that $V = \Omega_1 Z O_p(L) \oplus X$ for some $X \leq \Omega_1 Z$ and so by a theorem of Gaschütz, $V = \Omega_1 Z O_p(L) \oplus A$ for some normal subgroup A of G. But then [A, G] = 1, $A \leq \Omega_1 Z(G)$ and so $Z = (V \cap Z)A = (Z \cap L)A$. By assumption $Z \cap L \leq Z(G)$ and thus $Z = \Omega_1 Z(G) = C_V(G)$. Also $C_V(S \cap L) = YA$ and so $C_L(Y) = C_L(C_V(S \cap L))$. The proof is now completed by 5.1.

Definition 5.3 Let G be a finite group, p a prime and $S \in Syl_p(G)$. Then

$$\mathbf{P}_G(S) := O^{p'}(\mathbf{C}_G(\Omega_1 \mathbf{Z}(S))).$$

and

$$\operatorname{Pst}_p(G) = \{ P_G(S) \mid S \in \operatorname{Syl}_p(G) \}.$$

The group $P_G(S)$ is called a point stabilizer of G.

Lemma 5.4 [alternative definition of PG(S)] Let G be a finite group, p a prime, $S \in Syl_p(G)$ Then

$$P_G(S) = \langle T \in \operatorname{Syl}_n(G) \mid \Omega_1 Z(T) = \Omega_1 Z(S) \rangle.$$

Proof: Let $T \in \operatorname{Syl}_p(G)$ with $\Omega_1 Z(T) = \Omega_1 Z(S)$. Then clearly $T \leq \operatorname{P}_G(S)$. Conversely if $T \in \operatorname{Syl}_p(\operatorname{C}_G(\Omega_1 Z(S), \operatorname{then} [\Omega_1 Z(S), T] = 1, \Omega_1 Z(S) T \text{ is a } p\text{-group and so } \Omega_1 Z(S) \leq \Omega_1 Z(T)$ and so $\Omega_1 Z(T) = \Omega_1 Z(S)$. Since $\operatorname{P}_G(S)$ is just the group generated by the Sylow *p*-subgroups of $\operatorname{C}_G(\Omega_1 Z(S))$, the lemma is proved. \Box

Lemma 5.5 [sylow subgroups and subnormal subgroups] Let G be a finite group, A_1 and A_2 subnormal subgroups of G and p a prime and $S \in Syl_p(G)$.

- (a) $A_i \cap S$ is a Sylow p-subgroup of A_i .
- (b) For i = 1, 2 let S_i be a Sylow p-subgroup of A_i . Then $\langle S_1, S_2 \rangle$ contains a Sylow p-subgroup of $\langle A_1, A_2 \rangle$.

(c) $\langle A_1, A_2 \rangle \cap S = \langle A_1 \cap S, A_2 \cap S \rangle$.

Proof: (a) is well known [?].

(b) By induction on $|G/A_1||G/A_2|$. In particular we may assume that $G = \langle A_1, A_2 \rangle$. If $A_i = G$ for some i, (b) holds. So we may assume that A_i lies in a maximal normal subgroup M_i of G. Let $\{1,2\} = \{i,j\}$ and $B_i = \langle A_i, A_j \cap M_i$. Then $B_i \leq M_i$ and by induction $\langle S_i, S_j \cap M_j$ contains a Sylow *p*-subgroup T_i of B_i . If $A_1 \neq B_1$ or $A_2 \neq B_2$ the by induction $\langle T_1, T_2 \rangle$ contains a Sylow *p*-subgroup of G. But

$$\langle T_1, T_2 \rangle \le \langle \langle S_1, S_2 \cap M_1 \rangle, \langle S_2, S_1 \cap M_2 \rangle \rangle \le \langle S_1, S_2 \rangle$$

and (b) holds. So suppose that $A_1 = B_1$ and $A_2 = B_2$. Then $A_2 \cap M_1 \leq A_1$ and $A_1 \cap M_2 \leq A_1$. Thus

$$A_1 \cap M_2 = A_1 \cap A_2 = A_2 \cap M_1$$

Since $A_i \cap M_j$ is normal in A_i we conclude that $A_1 \cap A_2$ is normal in $G \langle A_1 \cap A_2$. Replacing G by $G/A_1 \cap A_2$ we may assume that $A_1 \cap A_2 = 1$.

Since $G = \langle A_1, A_2 \rangle = A_i M_j$ we have $A_i \cong A_i / A_1 \cap A_2 = A_i / A_i \cap M_j \cong G / M_j$ and so A_i is simple.

Suppose that A_1 is perfect. Then A_1 is a component and since $A_1 \not\leq A_2$, we get (see for example 3.3) $[A_1, A_2] = 1$. Clearly (b) holds in this case. So we may assume that for i = 1 and i = 2, A_i is an r_i group for some prime p. Hence $A_i \leq O_{r_i}(G)$. If $r_1 \neq r_2$ we get again get $[A_1, A_2] = 1$. If $r_1 = r_2 \neq p$, then G is a p' group and (b) holds. Suppose finally that $r_1 = r_2 = p$. Then $A_i = S_i$ and $G = \langle S_1, \rangle S_2$. So (b) holds in all cases.

(c) By (a) and (b) both $\langle S \cap A_1, S \cap A_2 \rangle$ and $\langle A_1, A_2 \rangle \cap S$ are Sylow *p*-subgroups of $\langle A_1, A_2 \rangle$. Since the first of these groups is contained in the second, they are equal. \Box

Lemma 5.6 [point stabilizers and subnormal subgroups] Let G be a finite group of local characteristic p, A_1 and A_2 subnormal subgroups of G, $A = \langle A_1, A_2 \rangle$, and $S \in Syl_p(G)$.

- (a) $\operatorname{O}^{p'}(A_i \cap \operatorname{P}_G(S) = \operatorname{P}_{A_i}(S \cap A_i).$
- (b) Let $S \in Syl_n(G)$. Then

$$P_A(S \cap A) = \langle P_{A_1}(S \cap A_1), P_{A_2}(S \cap A_2) \rangle.$$

(c) For i = 1, 2 let P_i be a point stabilizer of A_i . Then $\langle P_1, P_2 \rangle$ contains a point stabilizer of A.

Proof:

(a) Let $L = A_i$. By the Kieler Lemma 5.2, $C_L(\Omega_1 \mathbb{Z}(S)) = C_L(\Omega_1 \mathbb{Z}(S \cap L))$. Thus

$$\mathsf{P}_L(S \cap L) = \mathsf{O}^{p'}(C_L(\Omega_1 \mathsf{Z}(S))) = \mathsf{O}^{p'}(L \cap \mathsf{P}_G(S)).$$

(b) Let T be a Sylow p-subgroup of $P_A(S \cap A)$. By (a) $T \cap A_i \leq P_{A_i}(S \cap A_i)$. Hence by 5.5

$$T = \langle T \cap A_1, T \cap A_2 \rangle \le \langle \mathcal{P}_{A_1}(S \cap A_1), \mathcal{P}_{A_2}(S \cap A_2) \rangle.$$

So (b) holds.

(c) Let $H = \langle P_1, P_2 \rangle$. Note that P_i contains a Sylow *p*-subgroup S_i of A_i and so by 5.5, H contains a Sylow *p*-subgroup T of A. Then $T \cap A_i = S_i^{g_i}$ for some $g_i \in H \cap A_i$ and so $P_{A_i}(T \cap A_i) = P_i^{g_i} \leq H$. Hence by (b)

$$\mathbf{P}_A(T) = \langle \mathbf{P}_{A_1}(T \cap A_1), \mathbf{P}_{A_2}(T \cap A_2) \leq H.$$

So $P_A(T)$ is a point stabilizer of A contained in H.

The following example show that under the assumtions of the previous lemma one might have:

$$C_A(\Omega_1 Z(S \cap A) \neq \langle C_{A_1}(\Omega_1 Z(S \cap A_1)), C_{A_2}(\Omega_1 Z(S \cap A_2)) \rangle$$

Indeed let q be a power of p with q > 2, $D = \Omega_4^+(q)$ and V the natural module for D. Then $D = D_1 \circ D_2$ with $D_i \cong \operatorname{Sl}_2(q)$. Let $G = V \rtimes D$ and $A_i = VD_i$. The A_i is normal in G and $G = A = A_1A_2$. Let $S \in \operatorname{Syl}_p(G)$. Then it is easy to verify that $C_{A_i}(\Omega_1 Z(S \cap A_i)) = S \cap A_i$ and so

$$C_{A_1}(\Omega_1 Z(S \cap A_1)), C_{A_2}(\Omega_1 Z(S \cap A_2))) = S$$

On the other hand $C_G(\Omega_1 Z(S))$ is cylic of order q-1.

References

[BBSM] The Big Book of Small Modules