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1 Introduction

Let G be a finite group and p a prime dividing the order of G. We say that G has charac-
teristic p if Cq(Op(G)) < O,(G) and we say that G has local characteristic p if all p-local
subgroups of G have characteristic p. This paper is part of the project to classify all finite
groups of local characteristic p. The classification is divided into two main part: The E-
uniqueness case (E!) and the non E-uniqueness case (—E!). To explain these cases we need
to introduce some notation:

Let G be a finite group of local characteristic p,

S € Syl (G).

Z = MZ(9),

£—{L<C|Ca(0,(L)) < Oy(L)},

M is set of maximal elements of L;

If 7 is a set of subgroups of G and H < G, then T(H) = {T € 7 | H < T} and
Ty ={TeT|T<H}

We say that T' € L is a uniqueness subgroup of & if T' is contained in a unique maximal
p-local of G, that is if |M(T)| = 1.

For L € L let Y7, be the the largest p-reduced normal subgroup of G ( see 4.1).

For H a finite group, F,(H) is defined by F;(H)/ Op(H) = F*(H/ O,(H)).

C' is a maximal p-local containing Ng(Z) (in symbols: C' € M(Ng(Z))).

E = O"(Fy(Ca(Ye)).

FE! now means that E is a uniqueness subgroup and —FE! means that £ is contained in
at least two different maximal p-locals of G.

2 Some unnecessary comments on groups of parabolic char-
acteristic p

Let G be a finite group and p a prime dividing the order of p. A subgroup P of G is
called a parabolic if it contains a Sylow p- subgroup of G. A parabolic P is called a local
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parabolic if O,(P) # 1. A parabolic is called regular, if it contains the normalizer of Sylow
p-subgroup. G is of (regular) parabolic characteristic p if all (regular) local parabolics
are of characteristic p. We eventually hope to extend the classification of groups of local
characteristic p to the groups of regular parabolic characteristic p.

The Monster and the Baby Monster are example of groups which are of parabolic char-
acteristic 2, but not of local characteritic 2. Jy is a group which is of regular parabolic
characteristic 2, but not of parabolic characteristic 2.

3  An unnecessary section on bricks

Definition 3.1 Let G be a finite group. A brick of G is a perfect subnormal subgroup B
of G such that B has a unique mazimal normal subgroup Mp. Bri(G) denotes the sets of
all bricks of G.

Lemma 3.2 [minimal subnormal supplement]| Let G be a finite group and D a normal
subgroup of G with G /D perfect.

(a) There exists a the unique minimal subnormal supplement B = B(G, D) to D in G.
(b) B is normal in G

(c) If G/D is simple, then B is the unique brick of G with B £ D. Moreover [B, D] <
Mp=BnND.

(d) If G is perfect, then G = BD®.

Proof: (a) Let B; and By be minimal subnormal supplements to D in G. We need to
show that By = Bs. If G = B; for some i this is obvious. So we may assume that B; < M;
for a proper normal subgroup M; of G. Then G = M;D. Put M = [M;, Ms]. Since G/D is
perfect, G = [G,G]D = [M1D, MsD]D = M D. By induction theee exists a unique minimal
supplement B to M N D in M. Since G = MD and M < M;, M; = M(D N M; and so
M; = B(D n M;. By induction B = B(M;, D N M;) = B; and thus B; = Bs.

(b) Let ¢ € G. The also BY is a minimal subnormal supplement to D in G and so
B = BY by the uniqueness of B.

(c) Let M be a normal subgroup of B. Suppose that M £ D. The MD/D < BD/D =
G/D. Since G/D is simple, G = M D and so the minimality of B implies M = B. Thus
BN D is the unique maximal normal subgroup of G and B is a brick. Let B be any brick of
G with B £ D. Then BD /D is a non-trivial subnormal subgroup of the simple G/D and
so BD = G. Thus B < B. Moreover, B/BDD is simple and so BND = Mg. In particular
B £ Mg and so B = B.

(d) Since G/B is perfect and G/B = DB/B we get G/D = D*B/B. O

Proposition 3.3 [bricks and subnormal subgroups| Let B be a brick of the finite group
G and N 4 <G. Then either B < N or N normalizes B and [B,N] < Mp.
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Proof: If N =G, B < N. So we may assume that N is contained in a maximal normal
subgroup D of G. If B < D we are done by induction. So suppose that B £ D. Then by
3.2 D=B(G,D) and [B,N] < [B,D] < Mp. O

Lemma 3.4 [products of bricks| Let By and By be bricks of the finite group G. Then
(B1, B2) = B1By and exactly one of the following holds.

1. B = By

2. By < Mp,,

3. By < Mp,.

4. [By, Bo) < Mp, N Mp,.

Proof: If By £ By and By £ B; then by 3.3 [By, Bo] < Mp, N Mp,. So we may assume
B; < By. But then By = By or By < Mp,. So one of (1)-(4) holds. Since B; is perfect its
easy to see that at most one of (1)-(4) can hold. Moreover in all four cases, (B1, Ba) = B Ba.
O

Lemma 3.5 [Ginfty] Bri(G) = Bri(G*™) and G* = [[pep,ic) B

Proof: Note that a brick of G* is a brick of G and all bricks of G are contained in G*°.
Thus Bri(G) = Bri(G*). Let D be a maximal normal subgroup of G Then by 3.2 there
exists a brick B with G* = BD*. By induction D> is the products of its bricks. So also
G is the products of its bricks. O

4 The Largest p-reduced normal subgroup

Let L be a finite group of characteritic p. An elementary abelian normal subgroup V of
L is called p-reduced if any normal subgroup of G which acts unipotently on V has to act
trivially. Note that this is equivalent to O,(L/Cr(V)) = 1.

Lemma 4.1 [YL] Let L be a finite group of characteritic p and S € Syl,(L)
(a) There exists a unique mazximal p-reduced normal subgroup Y7, of L.

(b) Let R < L and X a p-reduced normal subgroup of R. Then (X) is a p-reduced normal
subgroup of L. In particular, Yr < Y7.

(c) Let Sp = Cs(Yr) and LY = Ng(Sp). Then L = LyCr(Yr), S, = Op(L) and
Y, =W Z(Sy).
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(d) Ys = WZ(S), Zp := (NZ(S)F) is p-reduced for L and 17Z(S) < Zp, < Yr.

Proof: (a) Let Y7, be the subgroup generated by the p-reduced normal subgroups of L.
Let N be a normal subgroup acting unipotently on Yz. Then N also acts unipotently on
all the generators of Y;. Hence N centralizes all the generators of Y7, and so Y7. Thus Y7,
is p-reduced.

(c) Let Y = (X)) and C = CL(Y). Let N/C = O,(L/C). Then N = (N N S)C and in
particular, N = (NN L)C. As X is p reduced, N N L centralizes X. The same is true for
C and so also for N. Since N is normal in L and Y = (X), N centralizes Y. Thus N = C
and Y is p-reduced.

(b) Put C = Cp(Yy). By Frattini, L = L/C. Since O,(L/C) = 1 we conclude Op(Ls) <
C Hence Oy(Ly) < CNS =S and so Oy(Ly) = Sr). Let X = Q;(Z(SL)). Then clearly
Y, < X and Ly normalizes Y. Put Y = (Y1) = (Y©). Clearly X is p-reduced for Sy, and
so by (b) applied to C, Y is p-reduced for C. Let N be a normal subgroup of L acting
unipotently on Y. Since Y7, <Y and Y}, is p-reduced for L, N < C. As Y is p-reduced for
C, N centralizes C and so Y is p-reduced for L. By maximality of Y7, we get Y < Y. But
Yp<X<YandsoY,=X=Y.

(d) Clearly S centralizes Ys and so Yg < Q;Z(S). Also QZ(S) is p-reduced for S and
so 2 Z(S) <Ys. Thus Z(S) = Yr. The remaining parts now follow from (b). O

Lemma 4.2 [YL and subnormal subgroups| Let L be of characteristic p and K a sub-
normal subgroup of L.

(a) YL N K and [Yr,OP(K)] are p-reduced for K
(b) Y2, OP(K)| <YL, NK =Y, NYk < Yk.
(c) Cx(Yk) = Cxg([Yr,OP(K)]) = Ck (YL NYk) = Cx (Y1)

Proof:

Note that OP(K) = OP(KYr) and so [Y7,OP(K)] < YL NOP(K) <Yr N K. Let D be
the largest normal subgroup of K acting unipotently on [Y7, OP(K)]. Since K acts acts
unipotently on Y7, /[Y7, OP(K) we get that D is unipotent on Y7. Since D is subnormal in L
and Y7, is p-reduced, D centralizes Y, Y, NK and [Y7,, OP(K)]. Thus Y,NK and [Y7,, OP(K)]
are p-reduced, D = Ck([Yr,OP(K). Thus (a) and (b) hold and for (c) it remains to show
that CK(YL) S CK(YK)

For this we may assume by induction on the subnormal length that K is normal in
L. Then also Yk is normal in L. Let V be a normal subgroup of L contained in Y
which is minimal with respect to Cx (V) = Ck(Yr). Then O,(K/Ck(V) = 1 and V is
p-reduced for K. Let D be the largest normal subgroup of L acting unipotently on V.
Then [K,D] < KND < CL(V). Put W = Cy(D). Since D/O,(D) is a p-group, the
P x @-Lemma implies Cx(W)/Ck (V) is a p-group. Hence Cx(W) = Cg(V) = Ck(Yk).
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The minimality of V yields V = W. So D centralizes V' and V is p-reduced for L. Thus
|4 < YL and

CK(YL) < CK(V) = VK(YK).

5 The Kieler Lemma and Point Stabilizers

Lemma 5.1 [Kieler Lemma for modules] Let G be a finite group L a subnormal sub-
group of G, p a prime and S € Syl,(G). Let V be a GF(p)G module. Then

CL(Cv(5)) = CL(Cv (SN L)).

Proof: Without loss L is normal in G and G = LS. Also Cy(S) < Cy(S N L) and
replacing G by Cg(Cy (S) we may assume that Cy(S) < Cy(G). For T'€ L/L NS and
v € Cy(LNS) define v = vt for any t € T.. Note that this is independ from the choice of
t € T ( Also we slightly are abusing notation as v’ usually is define as {v’ | t € T'}. Define

m:Cy(SNL)—V,uv— Z v?
TeL/SNL

Let v € Cy(SNL) and [ € L. Then
m(v!) = Z v
TeL/SnL

Since T — T is a bijection of S/S N L we conclude 7(v') = 7(v) and so Im7 < Cy(L).
Also if v € Cy /(L) then 7(v) = mv where m = |L/L N S|. LN S is a Sylow p-subgroup of
L. Thus p does not devide m and ¢, (1) is one to one. We conclude that

Cy(SNL)=kerm & Cy(L).
Let s € S the map T'— T* is a bijection of L/S N L and thus
W(U)S _ Z UTS _ Z _ (US)T‘S _ 7T(US)

TeL/SNL TeL/SNL
and we conclude that ker 7 is S-invariant. Suppose that ker m # 0, then also Cye, (S) # 0,
but thus contradicts Cy(S) < Cy (L) and Cy (L) Nkerpi = 0. Hence kerm = 0 and so
Cy(SNL)=Cy(L). Thus

Cr(Cy(SNL)=L=Cr(Cy(9))

and the lemma is proved. O
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Proposition 5.2 (Kieler Lemma) [kieler lemma] Let G be a group of local charac-
teritic p, L a subnormal subgroup of G and S € Syl (G). Then

CLIMZ(S)) = CL(MZ(SN L))

Proof: By induction G/L we may assume that L is normal subgroup of G and G = LS.
Put Z = QZ(S) and Y = QZ(S N L). Since S normalizes O(L), LN Z # 1. Note
that LN Z < UZ(SNL). SoS, Cp(Z) and Cp(Y) are all contained in Cg(L N Z) we
may assume that G = Cg(L N Z). Since G is of local characteristic p, we now get that
G is of characteristic p. Let V = ZO(L)Z. Since O,(L) < 5, Z < Cg(Op(L)) and so
[Z,L] < Cq(Op(L)) N L. Thus [V,L] < QZO(L)) and V is an elementary abelian normal
p-subgroup of G. Note that V = QZ0,(L)) & X for some X < 1Z and so by a theorem
of Gaschiitz, V = QZ0O,(L) @ A for some normal subgroup A of G. But then [A,G] =1,
A< NZ(G)and so Z = (VNZ)A = (ZnNL)A. By assumption Z N L < Z(G) and thus
Z =M7Z(G) =Cy(G). Also Cy(SNL)=YAand so Cr(Y) =Cr(Cy(SNL)). The proof
is now completed by 5.1. O

Definition 5.3 Let G be a finite group, p a prime and S € Syl,(G). Then
Pg(S) = O (Ca(nZ(9))).

and

Pst,(G) = { Pa(S) | S € Syl,(G)}.
The group Pc(S) is called a point stabilizer of G.

Lemma 5.4 [alternative definition of PG(S)] Let G be a finite group, p a prime, S €
Syl,(G) Then

Pa(S) = (T € Syl (G) | UZ(T) = D Z(S)).

Proof: Let T € Syl,(G) with Q4 Z(T) = 0 Z(S). Then clearly T < Pg(S). Conversely if
T € Syl,(Ca(1Z(S), then [ Z(S),T] = 1, 4 Z(S)T is a p-group and so HZ(S) < NZ(T)
and so Q1 Z(T) = Q1 Z(S). Since Pg(S) is just the group generated by the Sylow p-subgroups
of Cq(1Z(S5)), the lemma is proved. O

Lemma 5.5 [sylow subgroups and subnormal subgroups| Let G be a finite group,
Ay and Az subnormal subgroups of G and p a prime and S € Syl (G).

(a) A; NS is a Sylow p-subgroup of A;.

(b) For i = 1,2 let S; be a Sylow p-subgroup of A;. Then (S1,S2) contains a Sylow
p-subgroup of (Aj, Aa).
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(C) <A1,A2> ns = <A1 NS, Ay ﬂS>

Proof: (a)is well known [?].

(b) By induction on |G/A;1||G/As|. In particular we may assume that G = (A4, Ag). If
A; = G for some i, (b) holds. So we may assume that A; lies in a maximal normal subgroup
M; of G. Let {1,2} = {Z,j} and B; = <Ai,A]’ N M;. Then B; < M; and by induction
(Si, SN M; contains a Sylow p-subgroup T; of B;. If Ay # By or Ay # By the by induction
(Th,T5) contains a Sylow p-subgroup of G. But

<T1,T2> < <<51,SQ N M1>, <52,Sl N M2>> < <Sl,52>

and (b) holds. So suppose that A1 = By and Ay = Bs. Then As N M; < A; and
A1 N My < Ay. Thus

AiNMy=A1NAy = AN M;

Snce A;NM; is normal in A; we conclude that A; N A is normal in G{A;NAs. Replacing
G by G/A; N As we may assume that A; N Ay = 1.

Since G = <A1,A2> = A,LM] we have A; = Az/Al NAy = AZ/AZQM] = G/MJ and so A;
is simple.

Suppose that A; is perfect. Then A; is a component and since A; £ Ay, we get ( see
for example 3.3) [A;, A2] = 1. Clearly (b) holds in this case. So we may assume that for
i=1and =2, A; is an r; group for some prime p. Hence A; < O,,(G). If 1 # ro we get
again get [Ay, Ag] = 1. If 1y = ry # p, then G is a p’ group and (b) holds. Suppose finally
that 11 = ro = p. Then A; = S; and G = (S1,)S2. So (b) holds in all cases.

(c) By (a) and (b) both (SN A;,S N As) and (A;, A2) N S are Sylow p-subgroups of
(A1, Ag). Since the first of these groups is contained in the second, they are equal. O

Lemma 5.6 [point stabilizers and subnormal subgroups]| Let G be a finite group of
local characteristic p, Ay and Az subnormal subgroups of G, A = (A1, Ag), and S € Syl (G).

(a) OF'(4; NPg(S) = P4, (SN A).
(b) Let S € Syl,(G). Then

PA(SNA) = (P4, (SN A, Pa,(SN As)).

(¢) Fori=1,2 let P; be a point stabilizer of A;. Then (Py, Py) contains a point stabilizer
of A.
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Proof:
(a) Let L = A;. By the Kieler Lemma 5.2, CL(Z(S)) = Cr(€4Z(SN L). Thus

PL(SNL)=O0F(CL(Z(S))) = O” (L N P(S).

(b) Let T" be a Sylow p-subgroup of P4(SNA). By (a) TNA; < Py, (SNA;). Hence by

5.9
T = <TﬂA1,Tﬂ A2> < <PA1(SﬂA1),PA2(SﬂA2)>.

So (b) holds.

(c) Let H = (P, P»). Note that P; contains a Sylow p-subgroup S; of A; and so by 5.5,
H contains a Sylow p-subgroup T of A. Then T'N A; = S for some g; € H N A; and so
P4, (TN A;)) =P% < H. Hence by (b)

PA(T)=(Pa,(TNA),Pa,(TNA) < H.

So P4(T) is a point stabilizer of A contained in H. O

The following example show that under the assumtions of the previous lemma one might
have:

Ca(UZ(SNA)#(Ca (UZ(SNAL)),Ca, (Z(SNAr)))

Indeed let ¢ be a power of p with ¢ > 2, D = Qi(q) and V the natural module for
D. Then D = D; o Dy with D; = Sla(q). Let G = V x D and A; = VD;. The A4;
is normal in G and G = A = A;Az. Let S € Syl,(G). Then it is easy to verify that
Ca,(NZ(SNA;)) =SNA; and so

Ca, (NMZ(SNAL),Ca(UZ(SN A2))) =S

On the otherhand Cg(21Z(5)) is cylic of order ¢ — 1.
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