The E-Uniqueness Theorem

Ulrich Meierfrankenfeld
Bernd Stellmacher
Gernot Stroth

April 7, 2002

1 Introduction

Let G be a finite group and p a prime dividing the order of G. We say that G has characteristic p if $\mathrm{C}_{G}\left(\mathrm{O}_{p}(G)\right) \leq \mathrm{O}_{p}(G)$ and we say that G has local characteristic p if all p-local subgroups of G have characteristic p. This paper is part of the project to classify all finite groups of local characteristic p. The classification is divided into two main part: The E uniqueness case (E !) and the non E-uniqueness case ($\neg E$!). To explain these cases we need to introduce some notation:

Let G be a finite group of local characteristic p,
$S \in \operatorname{Syl}_{p}(G)$.
$Z=\Omega_{1} \mathrm{Z}(S)$,
$\mathcal{L}=\left\{L \leq G \mid \mathrm{C}_{G}\left(\mathrm{O}_{p}(L)\right) \leq \mathrm{O}_{p}(L)\right\}$,
\mathcal{M} is set of maximal elements of \mathcal{L};
If \mathcal{T} is a set of subgroups of G and $H \leq G$, then $\mathcal{T}(H)=\{T \in \mathcal{T} \mid H \leq T\}$ and $\mathcal{T}_{H}=\{T \in \mathcal{T} \mid T \leq H\}$.

We say that $T \in \mathcal{L}$ is a uniqueness subgroup of G if T is contained in a unique maximal p-local of G, that is if $|\mathcal{M}(T)|=1$.

For $L \in \mathcal{L}$ let Y_{L} be the the largest p-reduced normal subgroup of G (see 4.1).
For H a finite group, $\mathrm{F}_{p}^{*}(H)$ is defined by $\mathrm{F}_{p}^{*}(H) / \mathrm{O}_{p}(H)=\mathrm{F}^{*}\left(H / \mathrm{O}_{p}(H)\right)$.
\tilde{C} is a maximal p-local containing $\mathrm{N}_{G}(Z)$ (in symbols: $\tilde{C} \in \mathcal{M}\left(N_{G}(Z)\right)$).
$E=\mathrm{O}^{p}\left(\mathrm{~F}_{p}^{*}\left(\mathrm{C}_{\tilde{C}}\left(Y_{\tilde{C}}\right)\right)\right)$.
E ! now means that E is a uniqueness subgroup and $\neg E$! means that E is contained in at least two different maximal p-locals of G.

2 Some unnecessary comments on groups of parabolic characteristic p

Let G be a finite group and p a prime dividing the order of p. A subgroup P of G is called a parabolic if it contains a Sylow p - subgroup of G. A parabolic P is called a local
parabolic if $\mathrm{O}_{p}(P) \neq 1$. A parabolic is called regular, if it contains the normalizer of Sylow p-subgroup. G is of (regular) parabolic characteristic p if all (regular) local parabolics are of characteristic p. We eventually hope to extend the classification of groups of local characteristic p to the groups of regular parabolic characteristic p.

The Monster and the Baby Monster are example of groups which are of parabolic characteristic 2 , but not of local characteritic $2 . J_{1}$ is a group which is of regular parabolic characteristic 2 , but not of parabolic characteristic 2 .

3 An unnecessary section on bricks

Definition 3.1 Let G be a finite group. A brick of G is a perfect subnormal subgroup B of G such that B has a unique maximal normal subgroup $M_{B} . \operatorname{Bri}(G)$ denotes the sets of all bricks of G.

Lemma 3.2 [minimal subnormal supplement] Let G be a finite group and D a normal subgroup of G with G / D perfect.
(a) There exists a the unique minimal subnormal supplement $B=\mathrm{B}(G, D)$ to D in G.
(b) B is normal in G
(c) If G / D is simple, then B is the unique brick of G with $B \not \leq D$. Moreover $[B, D] \leq$ $M_{B}=B \cap D$.
(d) If G is perfect, then $G=B D^{\infty}$.

Proof: (a) Let B_{1} and B_{2} be minimal subnormal supplements to D in G. We need to show that $B_{1}=B_{2}$. If $G=B_{i}$ for some i this is obvious. So we may assume that $B_{i} \leq M_{i}$ for a proper normal subgroup M_{i} of G. Then $G=M_{i} D$. Put $M=\left[M_{1}, M_{2}\right]$. Since G / D is perfect, $G=[G, G] D=\left[M_{1} D, M_{2} D\right] D=M D$. By induction theee exists a unique minimal supplement B to $M \cap D$ in M. Since $G=M D$ and $M \leq M_{i}, M_{i}=M\left(D \cap M_{i}\right.$ and so $M_{i}=B\left(D \cap M_{i}\right.$. By induction $B=\mathrm{B}\left(M_{i}, D \cap M_{i}\right)=B_{i}$ and thus $B_{1}=B_{2}$.
(b) Let $g \in G$. The also B^{g} is a minimal subnormal supplement to D in G and so $B=B^{g}$ by the uniqueness of B.
(c) Let M be a normal subgroup of B. Suppose that $M \not \leq D$. The $M D / D \unlhd B D / D=$ G / D. Since G / D is simple, $G=M D$ and so the minimality of B implies $M=B$. Thus $B \cap D$ is the unique maximal normal subgroup of G and B is a brick. Let \tilde{B} be any brick of G with $\tilde{B} \not \leq D$. Then $\tilde{B} D / D$ is a non-trivial subnormal subgroup of the simple G / D and so $\tilde{B} D=G$. Thus $B \leq \tilde{B}$. Moreover, $\tilde{B} / \tilde{B} \cap D$ is simple and so $\tilde{B} \cap D=M_{\tilde{B}}$. In particular $B \not \leq M_{\tilde{B}}$ and so $B=\tilde{B}$.
(d) Since G / B is perfect and $G / B=D B / B$ we get $G / D=D^{\infty} B / B$.

Proposition 3.3 [bricks and subnormal subgroups] Let B be a brick of the finite group G and $N \unlhd \unlhd G$. Then either $B \leq N$ or N normalizes B and $[B, N] \leq M_{B}$.

Proof: If $N=G, B \leq N$. So we may assume that N is contained in a maximal normal subgroup D of G. If $B \leq D$ we are done by induction. So suppose that $B \not \leq D$. Then by $3.2 D=\mathrm{B}(G, D)$ and $[B, N] \leq[B, D] \leq M_{B}$.

Lemma 3.4 [products of bricks] Let B_{1} and B_{2} be bricks of the finite group G. Then $\left\langle B_{1}, B_{2}\right\rangle=B_{1} B_{2}$ and exactly one of the following holds.

1. $B_{1}=B_{2}$
2. $B_{1} \leq M_{B_{2}}$,
3. $B_{2} \leq M_{B_{1}}$.
4. $\left[B_{1}, B_{2}\right] \leq M_{B_{1}} \cap M_{B_{2}}$.

Proof: If $B_{1} \not \leq B_{2}$ and $B_{2} \not \leq B_{1}$ then by $3.3\left[B_{1}, B_{2}\right] \leq M_{B_{1}} \cap M_{B_{2}}$. So we may assume $B_{1} \leq B_{2}$. But then $B_{1}=B_{2}$ or $B_{1} \leq M_{B_{2}}$. So one of (1)-(4) holds. Since B_{i} is perfect its easy to see that at most one of (1)-(4) can hold. Moreover in all four cases, $\left\langle B_{1}, B_{2}\right\rangle=B_{1} B_{2}$.

Lemma 3.5 [Ginfty] $\operatorname{Bri}(G)=\operatorname{Bri}\left(G^{\infty}\right)$ and $G^{\infty}=\prod_{B \in \operatorname{Bri}(G)} B$.
Proof: Note that a brick of G^{∞} is a brick of G and all bricks of G are contained in G^{∞}. Thus $\operatorname{Bri}(G)=\operatorname{Bri}\left(G^{\infty}\right)$. Let D be a maximal normal subgroup of G^{∞} Then by 3.2 there exists a brick B with $G^{\infty}=B D^{\infty}$. By induction D^{∞} is the products of its bricks. So also G^{∞} is the products of its bricks.

4 The Largest p-reduced normal subgroup

Let L be a finite group of characteritic p. An elementary abelian normal subgroup V of L is called p-reduced if any normal subgroup of G which acts unipotently on V has to act trivially. Note that this is equivalent to $\mathrm{O}_{p}\left(L / \mathrm{C}_{L}(V)\right)=1$.

Lemma 4.1 [YL] Let L be a finite group of characteritic p and $S \in \operatorname{Syl}_{p}(L)$
(a) There exists a unique maximal p-reduced normal subgroup Y_{L} of L.
(b) Let $R \leq L$ and X a p-reduced normal subgroup of R. Then $\left\langle X^{L}\right\rangle$ is a p-reduced normal subgroup of L. In particular, $Y_{R} \leq Y_{L}$.
(c) Let $S_{L}=C_{S}\left(Y_{L}\right)$ and $L^{f}=N_{G}\left(S_{L}\right)$. Then $L=L_{f} \mathrm{C}_{L}\left(Y_{L}\right), S_{L}=O_{p}\left(L^{f}\right)$ and $Y_{L}=\Omega_{1} Z\left(S_{L}\right)$.
(d) $Y_{S}=\Omega_{1} \mathrm{Z}(S), Z_{L}:=\left\langle\Omega_{1} \mathrm{Z}(S)^{L}\right\rangle$ is p-reduced for L and $\Omega_{1} \mathrm{Z}(S) \leq Z_{L} \leq Y_{L}$.

Proof: (a) Let Y_{L} be the subgroup generated by the p-reduced normal subgroups of L. Let N be a normal subgroup acting unipotently on Y_{L}. Then N also acts unipotently on all the generators of Y_{L}. Hence N centralizes all the generators of Y_{L} and so Y_{L}. Thus Y_{L} is p-reduced.
(c) Let $Y=\left\langle X^{L}\right\rangle$ and $C=\mathrm{C}_{L}(Y)$. Let $N / C=\mathrm{O}_{p}(L / C)$. Then $N=(N \cap S) C$ and in particular, $N=(N \cap L) C$. As X is p reduced, $N \cap L$ centralizes X. The same is true for C and so also for N. Since N is normal in L and $Y=\left\langle X^{L}\right\rangle, N$ centralizes Y. Thus $N=C$ and Y is p-reduced.
(b) Put $C=\mathrm{C}_{L}\left(Y_{L}\right)$. By Frattini, $L=L^{f} C$. Since $O_{p}(L / C)=1$ we conclude $O_{p}\left(L_{f}\right) \leq$ C Hence $O_{p}\left(L_{f}\right) \leq C \cap S=S_{L}$ and so $\left.O_{p}\left(L_{f}\right)=S_{L}\right)$. Let $X=\Omega_{1}\left(Z\left(S_{L}\right)\right)$. Then clearly $Y_{L} \leq X$ and L_{f} normalizes Y. Put $Y=\left\langle Y^{L}\right\rangle=\left\langle Y^{C}\right\rangle$. Clearly X is p-reduced for S_{L} and so by (b) applied to C, Y is p-reduced for C. Let N be a normal subgroup of L acting unipotently on Y. Since $Y_{L} \leq Y$ and Y_{L} is p-reduced for $L, N \leq C$. As Y is p-reduced for C, N centralizes C and so Y is p-reduced for L. By maximality of Y_{L} we get $Y \leq Y_{L}$. But $Y_{L} \leq X \leq Y$ and so $Y_{L}=X=Y$.
(d) Clearly S centralizes Y_{S} and so $Y_{S} \leq \Omega_{1} \mathrm{Z}(S)$. Also $\Omega_{1} \mathrm{Z}(S)$ is p-reduced for S and so $\Omega_{1} \mathrm{Z}(S) \leq Y_{S}$. Thus $\Omega_{1} \mathrm{Z}(S)=Y_{L}$. The remaining parts now follow from (b).

Lemma 4.2 [YL and subnormal subgroups] Let L be of characteristic p and K a subnormal subgroup of L.
(a) $Y_{L} \cap K$ and $\left[Y_{L}, \mathrm{O}^{p}(K)\right]$ are p-reduced for K
(b) $\left[Y_{L}, \mathrm{O}^{p}(K)\right] \leq Y_{L} \cap K=Y_{L} \cap Y_{K} \leq Y_{K}$.
(c) $\mathrm{C}_{K}\left(Y_{K}\right)=\mathrm{C}_{K}\left(\left[Y_{L}, \mathrm{O}^{p}(K)\right]\right)=\mathrm{C}_{K}\left(Y_{L} \cap Y_{K}\right)=\mathrm{C}_{K}\left(Y_{L}\right)$.

Proof:

Note that $\mathrm{O}^{p}(K)=\mathrm{O}^{p}\left(K Y_{L}\right)$ and so $\left[Y_{L}, \mathrm{O}^{p}(K)\right] \leq Y_{L} \cap \mathrm{O}^{p}(K) \leq Y_{L} \cap K$. Let D be the largest normal subgroup of K acting unipotently on $\left[Y_{L}, \mathrm{O}^{p}(K)\right]$. Since K acts acts unipotently on $Y_{L} /\left[Y_{L}, \mathrm{O}^{p}(K)\right.$ we get that D is unipotent on Y_{L}. Since D is subnormal in L and Y_{L} is p-reduced, D centralizes $Y_{L}, Y_{L} \cap K$ and $\left[Y_{L}, \mathrm{O}^{p}(K)\right]$. Thus $Y_{L} \cap K$ and $\left[Y_{L}, \mathrm{O}^{p}(K)\right]$ are p-reduced, $D=C_{K}\left(\left[Y_{L}, \mathrm{O}^{p}(K)\right.\right.$. Thus (a) and (b) hold and for (c) it remains to show that $C_{K}\left(Y_{L}\right) \leq C_{K}\left(Y_{K}\right)$.

For this we may assume by induction on the subnormal length that K is normal in L. Then also Y_{K} is normal in L. Let V be a normal subgroup of L contained in Y_{K} which is minimal with respect to $C_{K}(V)=C_{K}\left(Y_{L}\right)$. Then $\mathrm{O}_{p}\left(K / C_{K}(V)=1\right.$ and V is p-reduced for K. Let D be the largest normal subgroup of L acting unipotently on V. Then $[K, D] \leq K \cap D \leq C_{L}(V)$. Put $W=C_{V}(D)$. Since $D / \mathrm{O}_{p}(D)$ is a p-group, the $P \times Q$-Lemma implies $C_{K}(W) / C_{K}(V)$ is a p-group. Hence $C_{K}(W)=C_{K}(V)=C_{K}\left(Y_{K}\right)$.

The minimality of V yields $V=W$. So D centralizes V and V is p-reduced for L. Thus $V \leq Y_{L}$ and

$$
C_{K}\left(Y_{L}\right) \leq C_{K}(V)=V_{K}\left(Y_{K}\right)
$$

5 The Kieler Lemma and Point Stabilizers

Lemma 5.1 [Kieler Lemma for modules] Let G be a finite group L a subnormal subgroup of G, p a prime and $S \in \operatorname{Syl}_{p}(G)$. Let V be a $G F(p) G$ module. Then

$$
\mathrm{C}_{L}\left(\mathrm{C}_{V}(S)\right)=\mathrm{C}_{L}\left(\mathrm{C}_{V}(S \cap L)\right)
$$

Proof: Without loss L is normal in G and $G=L S$. Also $\mathrm{C}_{V}(S) \leq \mathrm{C}_{V}(S \cap L)$ and replacing G by $\mathrm{C}_{G}\left(\mathrm{C}_{V}(S)\right.$ we may assume that $\mathrm{C}_{V}(S) \leq \mathrm{C}_{V}(G)$. For $T \in L / L \cap S$ and $v \in \mathrm{C}_{V}(L \cap S)$ define $v^{T}=v^{t}$ for any $t \in T$. Note that this is independ from the choice of $t \in T$ (Also we slightly are abusing notation as v^{T} usually is define as $\left\{v^{t} \mid t \in T\right\}$. Define

$$
\pi: \mathrm{C}_{V}(S \cap L) \rightarrow V, v \rightarrow \sum_{T \in L / S \cap L} v^{T}
$$

Let $v \in \mathrm{C}_{V}(S \cap L)$ and $l \in L$. Then

$$
\pi\left(v^{l}\right)=\sum_{T \in L / S \cap L} v^{T l}
$$

Since $T \rightarrow T l$ is a bijection of $S / S \cap L$ we conclude $\pi\left(v^{l}\right)=\pi(v)$ and so $\operatorname{Im} \pi \leq \mathrm{C}_{V}(L)$. Also if $v \in \mathrm{C}_{V}(L)$ then $\pi(v)=m v$ where $m=|L / L \cap S| . L \cap S$ is a Sylow p-subgroup of L. Thus p does not devide m and $\left.\pi\right|_{\mathrm{C}_{V}(L)}$ is one to one. We conclude that

$$
\mathrm{C}_{V}(S \cap L)=\operatorname{ker} \pi \oplus \mathrm{C}_{V}(L)
$$

Let $s \in S$ the map $T \rightarrow T^{s}$ is a bijection of $L / S \cap L$ and thus

$$
\pi(v)^{s}=\sum_{T \in L / S \cap L} v^{T s}=\sum_{T \in L / S \cap L}=\left(v^{s}\right)^{T^{s}}=\pi\left(v^{s}\right)
$$

and we conclude that $\operatorname{ker} \pi$ is S-invariant. Suppose that $\operatorname{ker} \pi \neq 0$, then also $\mathrm{C}_{\mathrm{ker}} \pi(S) \neq 0$, but thus contradicts $\mathrm{C}_{V}(S) \leq \mathrm{C}_{V}(L)$ and $C_{V}(L) \cap \operatorname{ker} p i=0$. Hence ker $\pi=0$ and so $\mathrm{C}_{V}(S \cap L)=\mathrm{C}_{V}(L)$. Thus

$$
\mathrm{C}_{L}\left(\mathrm{C}_{V}(S \cap L)=L=\mathrm{C}_{L}\left(\mathrm{C}_{V}(S)\right)\right.
$$

and the lemma is proved.

Proposition 5.2 (Kieler Lemma) [kieler lemma] Let G be a group of local characteritic p, L a subnormal subgroup of G and $S \in \operatorname{Syl}_{p}(G)$. Then

$$
\mathrm{C}_{L}\left(\Omega_{1} \mathrm{Z}(S)\right)=\mathrm{C}_{L}\left(\Omega_{1} \mathrm{Z}(S \cap L)\right)
$$

Proof: By induction G / L we may assume that L is normal subgroup of G and $G=L S$. Put $Z=\Omega_{1} \mathrm{Z}(S)$ and $Y=\Omega_{1} \mathrm{Z}(S \cap L)$. Since S normalizes $\mathrm{O}(L), L \cap Z \neq 1$. Note that $L \cap Z \leq \Omega_{1} \mathrm{Z}(S \cap L)$. So $S, \mathrm{C}_{L}(Z)$ and $\mathrm{C}_{L}(Y)$ are all contained in $\mathrm{C}_{G}(L \cap Z)$ we may assume that $G=\mathrm{C}_{G}(L \cap Z)$. Since G is of local characteristic p, we now get that G is of characteristic p. Let $V=\Omega_{1} \mathrm{ZO}(L) Z$. Since $\mathrm{O}_{p}(L) \leq S, Z \leq C_{G}\left(\mathrm{O}_{p}(L)\right)$ and so $[Z, L] \leq C_{G}\left(\mathrm{O}_{p}(L)\right) \cap L$. Thus $\left.[V, L] \leq \Omega_{1} \mathrm{ZO}(L)\right)$ and V is an elementary abelian normal p-subgroup of G. Note that $\left.V=\Omega_{1} \mathrm{ZO}_{p}(L)\right) \oplus X$ for some $X \leq \Omega_{1} \mathrm{Z}$ and so by a theorem of Gaschütz, $V=\Omega_{1} \mathrm{Z}_{p}(L) \oplus A$ for some normal subgroup A of G. But then $[A, G]=1$, $A \leq \Omega_{1} \mathrm{Z}(G)$ and so $Z=(V \cap Z) A=(Z \cap L) A$. By assumption $Z \cap L \leq Z(G)$ and thus $Z=\Omega_{1} \mathrm{Z}(G)=C_{V}(G)$. Also $\mathrm{C}_{V}(S \cap L)=Y A$ and so $\mathrm{C}_{L}(Y)=\mathrm{C}_{L}\left(C_{V}(S \cap L)\right)$. The proof is now completed by 5.1.

Definition 5.3 Let G be a finite group, p a prime and $S \in \operatorname{Syl}_{p}(G)$. Then

$$
\mathrm{P}_{G}(S):=O^{p^{\prime}}\left(\mathrm{C}_{G}\left(\Omega_{1} \mathrm{Z}(S)\right)\right) .
$$

and

$$
\operatorname{Pst}_{p}(G)=\left\{P_{G}(S) \mid S \in \operatorname{Syl}_{p}(G)\right\}
$$

The group $\mathrm{P}_{G}(S)$ is called a point stabilizer of G.
Lemma 5.4 [alternative definition of $\mathbf{P G}(\mathbf{S})$] Let G be a finite group, p a prime, $S \in$ $\operatorname{Syl}_{p}(G)$ Then

$$
\mathrm{P}_{G}(S)=\left\langle T \in \operatorname{Syl}_{p}(G) \mid \Omega_{1} \mathrm{Z}(T)=\Omega_{1} \mathrm{Z}(S)\right\rangle
$$

Proof: Let $T \in \operatorname{Syl}_{p}(G)$ with $\Omega_{1} \mathrm{Z}(T)=\Omega_{1} \mathrm{Z}(S)$. Then clearly $T \leq \mathrm{P}_{G}(S)$. Conversely if $T \in \operatorname{Syl}_{p}\left(\mathrm{C}_{G}\left(\Omega_{1} \mathrm{Z}(S)\right.\right.$, then $\left[\Omega_{1} \mathrm{Z}(S), T\right]=1, \Omega_{1} \mathrm{Z}(S) T$ is a p-group and so $\Omega_{1} \mathrm{Z}(S) \leq \Omega_{1} \mathrm{Z}(T)$ and so $\Omega_{1} \mathrm{Z}(T)=\Omega_{1} \mathrm{Z}(S)$. Since $\mathrm{P}_{G}(S)$ is just the group generated by the Sylow p-subgroups of $\mathrm{C}_{G}\left(\Omega_{1} \mathrm{Z}(S)\right)$, the lemma is proved.

Lemma 5.5 [sylow subgroups and subnormal subgroups] Let G be a finite group, A_{1} and A_{2} subnormal subgroups of G and p a prime and $S \in \operatorname{Syl}_{p}(G)$.
(a) $A_{i} \cap S$ is a Sylow p-subgroup of A_{i}.
(b) For $i=1,2$ let S_{i} be a Sylow p-subgroup of A_{i}. Then $\left\langle S_{1}, S_{2}\right\rangle$ contains a Sylow p-subgroup of $\left\langle A_{1}, A_{2}\right\rangle$.
(c) $\left\langle A_{1}, A_{2}\right\rangle \cap S=\left\langle A_{1} \cap S, A_{2} \cap S\right\rangle$.

Proof: (a) is well known [?].
(b) By induction on $\left|G / A_{1}\right|\left|G / A_{2}\right|$. In particular we may assume that $G=\left\langle A_{1}, A_{2}\right\rangle$. If $A_{i}=G$ for some i, (b) holds. So we may assume that A_{i} lies in a maximal normal subgroup M_{i} of G. Let $\{1,2\}=\{i, j\}$ and $B_{i}=\left\langle A_{i}, A_{j} \cap M_{i}\right.$. Then $B_{i} \leq M_{i}$ and by induction $\left\langle S_{i}, S_{j} \cap M_{j}\right.$ contains a Sylow p-subgroup T_{i} of B_{i}. If $A_{1} \neq B_{1}$ or $A_{2} \neq B_{2}$ the by induction $\left\langle T_{1}, T_{2}\right\rangle$ contains a Sylow p-subgroup of G. But

$$
\left\langle T_{1}, T_{2}\right\rangle \leq\left\langle\left\langle S_{1}, S_{2} \cap M_{1}\right\rangle,\left\langle S_{2}, S_{1} \cap M_{2}\right\rangle\right\rangle \leq\left\langle S_{1}, S_{2}\right\rangle
$$

and (b) holds. So suppose that $A_{1}=B_{1}$ and $A_{2}=B_{2}$. Then $A_{2} \cap M_{1} \leq A_{1}$ and $A_{1} \cap M_{2} \leq A_{1}$. Thus

$$
A_{1} \cap M_{2}=A_{1} \cap A_{2}=A_{2} \cap M_{1}
$$

Snce $A_{i} \cap M_{j}$ is normal in A_{i} we conclude that $A_{1} \cap A_{2}$ is normal in $G\left\langle A_{1} \cap A_{2}\right.$. Replacing G by $G / A_{1} \cap A_{2}$ we may assume that $A_{1} \cap A_{2}=1$.

Since $G=\left\langle A_{1}, A_{2}\right\rangle=A_{i} M_{j}$ we have $A_{i} \cong A_{i} / A_{1} \cap A_{2}=A_{i} / A_{i} \cap M_{j} \cong G / M_{j}$ and so A_{i} is simple.

Suppose that A_{1} is perfect. Then A_{1} is a component and since $A_{1} \not \leq A_{2}$, we get (see for example 3.3) $\left[A_{1}, A_{2}\right]=1$. Clearly (b) holds in this case. So we may assume that for $i=1$ and $i=2, A_{i}$ is an r_{i} group for some prime p. Hence $A_{i} \leq \mathrm{O}_{r_{i}}(G)$. If $r_{1} \neq r_{2}$ we get again get $\left[A_{1}, A_{2}\right]=1$. If $r_{1}=r_{2} \neq p$, then G is a p^{\prime} group and (b) holds. Suppose finally that $r_{1}=r_{2}=p$. Then $A_{i}=S_{i}$ and $G=\left\langle S_{1},\right\rangle S_{2}$. So (b) holds in all cases.
(c) By (a) and (b) both $\left\langle S \cap A_{1}, S \cap A_{2}\right\rangle$ and $\left\langle A_{1}, A_{2}\right\rangle \cap S$ are Sylow p-subgroups of $\left\langle A_{1}, A_{2}\right\rangle$. Since the first of these groups is contained in the second, they are equal.

Lemma 5.6 [point stabilizers and subnormal subgroups] Let G be a finite group of local characteristic p, A_{1} and A_{2} subnormal subgroups of $G, A=\left\langle A_{1}, A_{2}\right\rangle$, and $S \in \operatorname{Syl}_{p}(G)$.
(a) $\mathrm{O}^{p^{\prime}}\left(A_{i} \cap \mathrm{P}_{G}(S)=\mathrm{P}_{A_{i}}\left(S \cap A_{i}\right)\right.$.
(b) Let $S \in \operatorname{Syl}_{p}(G)$. Then

$$
\mathrm{P}_{A}(S \cap A)=\left\langle\mathrm{P}_{A_{1}}\left(S \cap A_{1}\right), \mathrm{P}_{A_{2}}\left(S \cap A_{2}\right)\right\rangle .
$$

(c) For $i=1,2$ let P_{i} be a point stabilizer of A_{i}. Then $\left\langle P_{1}, P_{2}\right\rangle$ contains a point stabilizer of A.

Proof:
(a) Let $L=A_{i}$. By the Kieler Lemma 5.2, $C_{L}\left(\Omega_{1} \mathrm{Z}(S)\right)=C_{L}\left(\Omega_{1} \mathrm{Z}(S \cap L)\right.$. Thus

$$
\mathrm{P}_{L}(S \cap L)=\mathrm{O}^{p^{\prime}}\left(C_{L}\left(\Omega_{1} \mathrm{Z}(S)\right)\right)=\mathrm{O}^{p^{\prime}}\left(L \cap \mathrm{P}_{G}(S)\right.
$$

(b) Let T be a Sylow p-subgroup of $\mathrm{P}_{A}(S \cap A)$. By (a) $T \cap A_{i} \leq P_{A_{i}}\left(S \cap A_{i}\right)$. Hence by 5.5

$$
T=\left\langle T \cap A_{1}, T \cap A_{2}\right\rangle \leq\left\langle\mathrm{P}_{A_{1}}\left(S \cap A_{1}\right), \mathrm{P}_{A_{2}}\left(S \cap A_{2}\right)\right\rangle
$$

So (b) holds.
(c) Let $H=\left\langle P_{1}, P_{2}\right\rangle$. Note that P_{i} contains a Sylow p-subgroup S_{i} of A_{i} and so by 5.5 , H contains a Sylow p-subgroup T of A. Then $T \cap A_{i}=S_{i}^{g_{i}}$ for some $g_{i} \in H \cap A_{i}$ and so $\left.\mathrm{P}_{A_{i}}\left(T \cap A_{i}\right)\right)=\mathrm{P}_{i}^{g_{i}} \leq H$. Hence by (b)

$$
\mathrm{P}_{A}(T)=\left\langle\mathrm{P}_{A_{1}}\left(T \cap A_{1}\right), \mathrm{P}_{A_{2}}\left(T \cap A_{2}\right) \leq H\right.
$$

So $P_{A}(T)$ is a point stabilizer of A contained in H.
The following example show that under the assumtions of the previous lemma one might have:

$$
\mathrm{C}_{A}\left(\Omega_{1} \mathrm{Z}(S \cap A) \neq\left\langle\mathrm{C}_{A_{1}}\left(\Omega_{1} \mathrm{Z}\left(S \cap A_{1}\right)\right), \mathrm{C}_{A_{2}}\left(\Omega_{1} \mathrm{Z}\left(S \cap A_{2}\right)\right)\right\rangle\right.
$$

Indeed let q be a power of p with $q>2, D=\Omega_{4}^{+}(q)$ and V the natural module for D. Then $D=D_{1} \circ D_{2}$ with $D_{i} \cong \mathrm{Sl}_{2}(q)$. Let $G=V \rtimes D$ and $A_{i}=V D_{i}$. The A_{i} is normal in G and $G=A=A_{1} A_{2}$. Let $S \in \operatorname{Syl}_{p}(G)$. Then it is easy to verify that $\mathrm{C}_{A_{i}}\left(\Omega_{1} \mathrm{Z}\left(S \cap A_{i}\right)\right)=S \cap A_{i}$ and so

$$
\left.\mathrm{C}_{A_{1}}\left(\Omega_{1} \mathrm{Z}\left(S \cap A_{1}\right)\right), \mathrm{C}_{A_{2}}\left(\Omega_{1} \mathrm{Z}\left(S \cap A_{2}\right)\right)\right\rangle=S
$$

On the otherhand $\mathrm{C}_{G}\left(\Omega_{1} \mathrm{Z}(S)\right)$ is cylic of order $q-1$.

References

[BBSM] The Big Book of Small Modules

