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1 Introduction

Let G be a finite group and p a prime dividing the order of G. We say that G has charac-
teristic p if CG(Op(G)) ≤ Op(G) and we say that G has local characteristic p if all p-local
subgroups of G have characteristic p. This paper is part of the project to classify all finite
groups of local characteristic p. The classification is divided into two main part: The E-
uniqueness case (E!) and the non E-uniqueness case (¬E!). To explain these cases we need
to introduce some notation:

Let G be a finite group of local characteristic p,
S ∈ Sylp(G).
Z = Ω1Z(S),
L = {L ≤ G | CG(Op(L)) ≤ Op(L)},
M is set of maximal elements of L;
If T is a set of subgroups of G and H ≤ G, then T (H) = {T ∈ T | H ≤ T} and

TH = {T ∈ T | T ≤ H}.
We say that T ∈ L is a uniqueness subgroup of G if T is contained in a unique maximal

p-local of G, that is if |M(T )| = 1.
For L ∈ L let YL be the the largest p-reduced normal subgroup of G ( see 4.1).
For H a finite group, F∗p(H) is defined by F∗p(H)/Op(H) = F∗(H/Op(H)).
C̃ is a maximal p-local containing NG(Z) (in symbols: C̃ ∈M(NG(Z))).
E = Op(F∗p(CC̃(YC̃))).
E! now means that E is a uniqueness subgroup and ¬E! means that E is contained in

at least two different maximal p-locals of G.

2 Some unnecessary comments on groups of parabolic char-
acteristic p

Let G be a finite group and p a prime dividing the order of p. A subgroup P of G is
called a parabolic if it contains a Sylow p- subgroup of G. A parabolic P is called a local
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parabolic if Op(P ) 6= 1. A parabolic is called regular, if it contains the normalizer of Sylow
p-subgroup. G is of (regular) parabolic characteristic p if all (regular) local parabolics
are of characteristic p. We eventually hope to extend the classification of groups of local
characteristic p to the groups of regular parabolic characteristic p.

The Monster and the Baby Monster are example of groups which are of parabolic char-
acteristic 2, but not of local characteritic 2. J1 is a group which is of regular parabolic
characteristic 2, but not of parabolic characteristic 2.

3 An unnecessary section on bricks

Definition 3.1 Let G be a finite group. A brick of G is a perfect subnormal subgroup B
of G such that B has a unique maximal normal subgroup MB. Bri(G) denotes the sets of
all bricks of G.

Lemma 3.2 [minimal subnormal supplement] Let G be a finite group and D a normal
subgroup of G with G/D perfect.

(a) There exists a the unique minimal subnormal supplement B = B(G,D) to D in G.

(b) B is normal in G

(c) If G/D is simple, then B is the unique brick of G with B 6≤ D. Moreover [B,D] ≤
MB = B ∩D.

(d) If G is perfect, then G = BD∞.

Proof: (a) Let B1 and B2 be minimal subnormal supplements to D in G. We need to
show that B1 = B2. If G = Bi for some i this is obvious. So we may assume that Bi ≤Mi

for a proper normal subgroup Mi of G. Then G = MiD. Put M = [M1,M2]. Since G/D is
perfect, G = [G,G]D = [M1D,M2D]D = MD. By induction theee exists a unique minimal
supplement B to M ∩ D in M . Since G = MD and M ≤ Mi, Mi = M(D ∩Mi and so
Mi = B(D ∩Mi. By induction B = B(Mi, D ∩Mi) = Bi and thus B1 = B2.

(b) Let g ∈ G. The also Bg is a minimal subnormal supplement to D in G and so
B = Bg by the uniqueness of B.

(c) Let M be a normal subgroup of B. Suppose that M 6≤ D. The MD/D �BD/D =
G/D. Since G/D is simple, G = MD and so the minimality of B implies M = B. Thus
B∩D is the unique maximal normal subgroup of G and B is a brick. Let B̃ be any brick of
G with B̃ 6≤ D. Then B̃D/D is a non-trivial subnormal subgroup of the simple G/D and
so B̃D = G. Thus B ≤ B̃. Moreover, B̃/B̃∩D is simple and so B̃∩D = MB̃. In particular
B 6≤MB̃ and so B = B̃.

(d) Since G/B is perfect and G/B = DB/B we get G/D = D∞B/B. 2

Proposition 3.3 [bricks and subnormal subgroups] Let B be a brick of the finite group
G and N � �G. Then either B ≤ N or N normalizes B and [B,N ] ≤MB.
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Proof: If N = G, B ≤ N . So we may assume that N is contained in a maximal normal
subgroup D of G. If B ≤ D we are done by induction. So suppose that B 6≤ D. Then by
3.2 D = B(G,D) and [B,N ] ≤ [B,D] ≤MB. 2

Lemma 3.4 [products of bricks] Let B1 and B2 be bricks of the finite group G. Then
〈B1, B2〉 = B1B2 and exactly one of the following holds.

1. B1 = B2

2. B1 ≤MB2,

3. B2 ≤MB1.

4. [B1, B2] ≤MB1 ∩MB2.

Proof: If B1 6≤ B2 and B2 6≤ B1 then by 3.3 [B1, B2] ≤ MB1 ∩MB2 . So we may assume
B1 ≤ B2. But then B1 = B2 or B1 ≤ MB2 . So one of (1)-(4) holds. Since Bi is perfect its
easy to see that at most one of (1)-(4) can hold. Moreover in all four cases, 〈B1, B2〉 = B1B2.
2

Lemma 3.5 [Ginfty] Bri(G) = Bri(G∞) and G∞ =
∏
B∈Bri(G)B.

Proof: Note that a brick of G∞ is a brick of G and all bricks of G are contained in G∞.
Thus Bri(G) = Bri(G∞). Let D be a maximal normal subgroup of G∞ Then by 3.2 there
exists a brick B with G∞ = BD∞. By induction D∞ is the products of its bricks. So also
G∞ is the products of its bricks. 2

4 The Largest p-reduced normal subgroup

Let L be a finite group of characteritic p. An elementary abelian normal subgroup V of
L is called p-reduced if any normal subgroup of G which acts unipotently on V has to act
trivially. Note that this is equivalent to Op(L/CL(V )) = 1.

Lemma 4.1 [YL] Let L be a finite group of characteritic p and S ∈ Sylp(L)

(a) There exists a unique maximal p-reduced normal subgroup YL of L.

(b) Let R ≤ L and X a p-reduced normal subgroup of R. Then 〈XL〉 is a p-reduced normal
subgroup of L. In particular, YR ≤ YL.

(c) Let SL = CS(YL) and Lf = NG(SL). Then L = Lf CL(YL), SL = Op(Lf ) and
YL = Ω1Z(SL).
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(d) YS = Ω1Z(S), ZL := 〈Ω1Z(S)L〉 is p-reduced for L and Ω1Z(S) ≤ ZL ≤ YL.

Proof: (a) Let YL be the subgroup generated by the p-reduced normal subgroups of L.
Let N be a normal subgroup acting unipotently on YL. Then N also acts unipotently on
all the generators of YL. Hence N centralizes all the generators of YL and so YL. Thus YL
is p-reduced.

(c) Let Y = 〈XL〉 and C = CL(Y ). Let N/C = Op(L/C). Then N = (N ∩ S)C and in
particular, N = (N ∩ L)C. As X is p reduced, N ∩ L centralizes X. The same is true for
C and so also for N . Since N is normal in L and Y = 〈XL〉, N centralizes Y . Thus N = C
and Y is p-reduced.

(b) Put C = CL(YL). By Frattini, L = LfC. Since Op(L/C) = 1 we conclude Op(Lf ) ≤
C Hence Op(Lf ) ≤ C ∩ S = SL and so Op(Lf ) = SL). Let X = Ω1(Z(SL)). Then clearly
YL ≤ X and Lf normalizes Y . Put Y = 〈Y L〉 = 〈Y C〉. Clearly X is p-reduced for SL and
so by (b) applied to C, Y is p-reduced for C. Let N be a normal subgroup of L acting
unipotently on Y . Since YL ≤ Y and YL is p-reduced for L, N ≤ C. As Y is p-reduced for
C, N centralizes C and so Y is p-reduced for L. By maximality of YL we get Y ≤ YL. But
YL ≤ X ≤ Y and so YL = X = Y .

(d) Clearly S centralizes YS and so YS ≤ Ω1Z(S). Also Ω1Z(S) is p-reduced for S and
so Ω1Z(S) ≤ YS . Thus Ω1Z(S) = YL. The remaining parts now follow from (b). 2

Lemma 4.2 [YL and subnormal subgroups] Let L be of characteristic p and K a sub-
normal subgroup of L.

(a) YL ∩K and [YL,Op(K)] are p-reduced for K

(b) [YL,Op(K)] ≤ YL ∩K = YL ∩ YK ≤ YK .

(c) CK(YK) = CK([YL,Op(K)]) = CK(YL ∩ YK) = CK(YL).

Proof:
Note that Op(K) = Op(KYL) and so [YL,Op(K)] ≤ YL ∩ Op(K) ≤ YL ∩K. Let D be

the largest normal subgroup of K acting unipotently on [YL,Op(K)]. Since K acts acts
unipotently on YL/[YL,Op(K) we get that D is unipotent on YL. Since D is subnormal in L
and YL is p-reduced, D centralizes YL, YL∩K and [YL,Op(K)]. Thus YL∩K and [YL,Op(K)]
are p-reduced, D = CK([YL,Op(K). Thus (a) and (b) hold and for (c) it remains to show
that CK(YL) ≤ CK(YK).

For this we may assume by induction on the subnormal length that K is normal in
L. Then also YK is normal in L. Let V be a normal subgroup of L contained in YK
which is minimal with respect to CK(V ) = CK(YL). Then Op(K/CK(V ) = 1 and V is
p-reduced for K. Let D be the largest normal subgroup of L acting unipotently on V .
Then [K,D] ≤ K ∩ D ≤ CL(V ). Put W = CV (D). Since D/Op(D) is a p-group, the
P × Q-Lemma implies CK(W )/CK(V ) is a p-group. Hence CK(W ) = CK(V ) = CK(YK).
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The minimality of V yields V = W . So D centralizes V and V is p-reduced for L. Thus
V ≤ YL and

CK(YL) ≤ CK(V ) = VK(YK).

2

5 The Kieler Lemma and Point Stabilizers

Lemma 5.1 [Kieler Lemma for modules] Let G be a finite group L a subnormal sub-
group of G, p a prime and S ∈ Sylp(G). Let V be a GF (p)G module. Then

CL(CV (S)) = CL(CV (S ∩ L)).

Proof: Without loss L is normal in G and G = LS. Also CV (S) ≤ CV (S ∩ L) and
replacing G by CG(CV (S) we may assume that CV (S) ≤ CV (G). For T ∈ L/L ∩ S and
v ∈ CV (L ∩ S) define vT = vt for any t ∈ T . Note that this is independ from the choice of
t ∈ T ( Also we slightly are abusing notation as vT usually is define as {vt | t ∈ T}. Define

π : CV (S ∩ L)→ V, v →
∑

T∈L/S∩L
vT

Let v ∈ CV (S ∩ L) and l ∈ L. Then

π(vl) =
∑

T∈L/S∩L
vT l

Since T → T l is a bijection of S/S ∩ L we conclude π(vl) = π(v) and so Imπ ≤ CV (L).
Also if v ∈ CV (L) then π(v) = mv where m = |L/L ∩ S|. L ∩ S is a Sylow p-subgroup of
L. Thus p does not devide m and π|CV (L) is one to one. We conclude that

CV (S ∩ L) = kerπ ⊕ CV (L).

Let s ∈ S the map T → T s is a bijection of L/S ∩ L and thus

π(v)s =
∑

T∈L/S∩L
vTs =

∑

T∈L/S∩L
= (vs)T

s
= π(vs)

and we conclude that kerπ is S-invariant. Suppose that kerπ 6= 0, then also Ckerπ(S) 6= 0,
but thus contradicts CV (S) ≤ CV (L) and CV (L) ∩ ker pi = 0. Hence kerπ = 0 and so
CV (S ∩ L) = CV (L). Thus

CL(CV (S ∩ L) = L = CL(CV (S))

and the lemma is proved. 2
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Proposition 5.2 (Kieler Lemma) [kieler lemma] Let G be a group of local charac-
teritic p, L a subnormal subgroup of G and S ∈ Sylp(G). Then

CL(Ω1Z(S)) = CL(Ω1Z(S ∩ L))

Proof: By induction G/L we may assume that L is normal subgroup of G and G = LS.
Put Z = Ω1Z(S) and Y = Ω1Z(S ∩ L). Since S normalizes O(L), L ∩ Z 6= 1. Note
that L ∩ Z ≤ Ω1Z(S ∩ L). So S, CL(Z) and CL(Y ) are all contained in CG(L ∩ Z) we
may assume that G = CG(L ∩ Z). Since G is of local characteristic p, we now get that
G is of characteristic p. Let V = Ω1Z O(L)Z. Since Op(L) ≤ S, Z ≤ CG(Op(L)) and so
[Z,L] ≤ CG(Op(L)) ∩ L. Thus [V,L] ≤ Ω1Z O(L)) and V is an elementary abelian normal
p-subgroup of G. Note that V = Ω1Z Op(L))⊕X for some X ≤ Ω1Z and so by a theorem
of Gaschütz, V = Ω1Z Op(L)⊕ A for some normal subgroup A of G. But then [A,G] = 1,
A ≤ Ω1Z(G) and so Z = (V ∩ Z)A = (Z ∩ L)A. By assumption Z ∩ L ≤ Z(G) and thus
Z = Ω1Z(G) = CV (G). Also CV (S ∩ L) = Y A and so CL(Y ) = CL(CV (S ∩ L)). The proof
is now completed by 5.1. 2

Definition 5.3 Let G be a finite group, p a prime and S ∈ Sylp(G). Then

PG(S) := Op
′
(CG(Ω1Z(S))).

and
Pstp(G) = { PG(S) | S ∈ Sylp(G)}.

The group PG(S) is called a point stabilizer of G.

Lemma 5.4 [alternative definition of PG(S)] Let G be a finite group, p a prime, S ∈
Sylp(G) Then

PG(S) = 〈T ∈ Sylp(G) | Ω1Z(T ) = Ω1Z(S)〉.

Proof: Let T ∈ Sylp(G) with Ω1Z(T ) = Ω1Z(S). Then clearly T ≤ PG(S). Conversely if
T ∈ Sylp(CG(Ω1Z(S), then [Ω1Z(S), T ] = 1, Ω1Z(S)T is a p-group and so Ω1Z(S) ≤ Ω1Z(T )
and so Ω1Z(T ) = Ω1Z(S). Since PG(S) is just the group generated by the Sylow p-subgroups
of CG(Ω1Z(S)), the lemma is proved. 2

Lemma 5.5 [sylow subgroups and subnormal subgroups] Let G be a finite group,
A1 and A2 subnormal subgroups of G and p a prime and S ∈ Sylp(G).

(a) Ai ∩ S is a Sylow p-subgroup of Ai.

(b) For i = 1, 2 let Si be a Sylow p-subgroup of Ai. Then 〈S1, S2〉 contains a Sylow
p-subgroup of 〈A1, A2〉.
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(c) 〈A1, A2〉 ∩ S = 〈A1 ∩ S,A2 ∩ S〉.

Proof: (a) is well known [?].
(b) By induction on |G/A1||G/A2|. In particular we may assume that G = 〈A1, A2〉. If

Ai = G for some i, (b) holds. So we may assume that Ai lies in a maximal normal subgroup
Mi of G. Let {1, 2} = {i, j} and Bi = 〈Ai, Aj ∩Mi. Then Bi ≤ Mi and by induction
〈Si, Sj ∩Mj contains a Sylow p-subgroup Ti of Bi. If A1 6= B1 or A2 6= B2 the by induction
〈T1, T2〉 contains a Sylow p-subgroup of G. But

〈T1, T2〉 ≤ 〈〈S1, S2 ∩M1〉, 〈S2, S1 ∩M2〉〉 ≤ 〈S1, S2〉
and (b) holds. So suppose that A1 = B1 and A2 = B2. Then A2 ∩ M1 ≤ A1 and

A1 ∩M2 ≤ A1. Thus

A1 ∩M2 = A1 ∩A2 = A2 ∩M1

.
Snce Ai∩Mj is normal in Ai we conclude that A1∩A2 is normal in G〈A1∩A2. Replacing

G by G/A1 ∩A2 we may assume that A1 ∩A2 = 1.
Since G = 〈A1, A2〉 = AiMj we have Ai ∼= Ai/A1 ∩A2 = Ai/Ai ∩Mj

∼= G/Mj and so Ai
is simple.

Suppose that A1 is perfect. Then A1 is a component and since A1 6≤ A2, we get ( see
for example 3.3) [A1, A2] = 1. Clearly (b) holds in this case. So we may assume that for
i = 1 and i = 2, Ai is an ri group for some prime p. Hence Ai ≤ Ori(G). If r1 6= r2 we get
again get [A1, A2] = 1. If r1 = r2 6= p, then G is a p′ group and (b) holds. Suppose finally
that r1 = r2 = p. Then Ai = Si and G = 〈S1, 〉S2. So (b) holds in all cases.

(c) By (a) and (b) both 〈S ∩ A1, S ∩ A2〉 and 〈A1, A2〉 ∩ S are Sylow p-subgroups of
〈A1, A2〉. Since the first of these groups is contained in the second, they are equal. 2

Lemma 5.6 [point stabilizers and subnormal subgroups] Let G be a finite group of
local characteristic p, A1 and A2 subnormal subgroups of G, A = 〈A1, A2〉, and S ∈ Sylp(G).

(a) Op′(Ai ∩ PG(S) = PAi(S ∩Ai).
(b) Let S ∈ Sylp(G). Then

PA(S ∩A) = 〈PA1(S ∩A1),PA2(S ∩A2)〉.

(c) For i = 1, 2 let Pi be a point stabilizer of Ai. Then 〈P1, P2〉 contains a point stabilizer
of A.
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Proof:
(a) Let L = Ai. By the Kieler Lemma 5.2, CL(Ω1Z(S)) = CL(Ω1Z(S ∩ L). Thus

PL(S ∩ L) = Op′(CL(Ω1Z(S))) = Op′(L ∩ PG(S).

(b) Let T be a Sylow p-subgroup of PA(S ∩A). By (a) T ∩Ai ≤ PAi(S ∩Ai). Hence by
5.5

T = 〈T ∩A1, T ∩A2〉 ≤ 〈PA1(S ∩A1),PA2(S ∩A2)〉.
So (b) holds.
(c) Let H = 〈P1, P2〉. Note that Pi contains a Sylow p-subgroup Si of Ai and so by 5.5,

H contains a Sylow p-subgroup T of A. Then T ∩ Ai = Sgii for some gi ∈ H ∩ Ai and so
PAi(T ∩Ai)) = Pgii ≤ H. Hence by (b)

PA(T ) = 〈PA1(T ∩A1),PA2(T ∩A2) ≤ H.
So PA(T ) is a point stabilizer of A contained in H. 2

The following example show that under the assumtions of the previous lemma one might
have:

CA(Ω1Z(S ∩A) 6= 〈CA1(Ω1Z(S ∩A1)),CA2(Ω1Z(S ∩A2))〉
Indeed let q be a power of p with q > 2, D = Ω+

4 (q) and V the natural module for
D. Then D = D1 ◦ D2 with Di

∼= Sl2(q). Let G = V o D and Ai = V Di. The Ai
is normal in G and G = A = A1A2. Let S ∈ Sylp(G). Then it is easy to verify that
CAi(Ω1Z(S ∩Ai)) = S ∩Ai and so

CA1(Ω1Z(S ∩A1)),CA2(Ω1Z(S ∩A2))〉 = S

On the otherhand CG(Ω1Z(S)) is cylic of order q − 1.
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