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Section 0: Notation, terminology, and quadratic action

All groups considered here are understood to be finite.

Let X be a group, and let V be a group on which X acts. We write

η(X,V )

for the number of chief factors in any X-chief series through V on which the action of
X is non-trivial. If V0 is a subgroup of V , and Y is an element or a subgroup of X, we
write

CV (Y mod V0)

for the set of elements v of V such that [v, Y ] ≤ V0.
Suppose further that V is an FpX-module for some prime p. We say that V is an

F1-module (resp. a quadratic F2-module, resp. a quadratic F2∗- module) for
X if there exists a subgroup A of X such that [V,A,A] = 1 6= [V,A], and such that
|A/CA(V )||CV (A)| ≥ |V | (resp. |A/CA(V )|2|CV (A)| ≥ |V |, resp. |A/CA(V )|2|CV (A)| >
|V |). Such a subgroup A is then said to be a quadratic F1-offender (resp. F2-offender,
resp. F2∗-offender).

When there is a need to be more precise, we employ the notation, due, as far as I
know, and in one form or another, to Stellmacher, as follows. Assuming that there exists
a non-identity subgroup of X which acts quadratically on V , we define r(X,V ) to be
the smallest real number r such that there exists a non-identity subgroup A of X with
[V,A,A] = 0 and with |A/CA(V )|r|CV (A)| = |V |. We then set

A(X,V ) = {A ≤ X : A 6= 1, [V,A,A] = 0, and |A/CA(V )|r(X,V )|CV (A)| = |V |}.

Typeset by AMS-TEX
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Lemma 0.1. Let X be a finite group, p a prime, and V a faithful FpX-module. Let A and
K be subgroups of X, such that 1 6= K = Op(K) = [K,A], and such that [V,A,A] = 0.
Assume also that A ∈ A(A, V ), and set W = [V,K]. Then CA(K) = CA(W ), and for
any complement A0 to CA(K) in A we have r(A0,W ) ≤ r(A, V ).

Proof. By quadratic action, we have [V, 〈AK〉, CA(K)] = 0, and since K = [K,A] ≤ 〈AK〉
we then have [W,CA(K)] = 0. Now [V,CA(W ),K] = 0, and the Three Subgroups Lemma
then yields CA(W ) = CA(K).

Choose a complement A0 to CA(K) in A, and set r = r(A, V ). Suppose that
|A0|r|CW (A0)| < |W |. We then have

|V | = |A|r|CV (A)| = |A0|r|CA(W )|r|CW (A)||CV (A)/CW (A)|

< |CA(W )|r|CV (A)/CW (A)||W | = |CA(W )|r|W + CV (A)|
≤ |CA(W )|r|CV (CA(W ))|.

this is contrary to the assumption that A lies in A(A, V ), so in fact |A0|r|CW (A0)| ≥ |W |,
and the lemma is proved. �

Section 1: P and H
These notes are intended as a preliminary draft of a more extensive work. We assume

familiarity with some of the notation and basic concepts associated with the project
initiated by Meierfrankenfeld, on groups of characteristic p-type. We begin with a finite
group G, a prime p, and a Sylow p-subgroup S of G. The following condition is assumed,
throughout.

1.0. For any subgroup L of G containing S, with Op(L) 6= 1, we have CL(Op(L)) ≤
Op(L).

For any subgroup L of G, we denote by YL the p-reduced core of L. That is, YL is
the (uniquely determined) normal p-subgroup Y of L such that Op(L/CL(YL)) = 1, and
which is largest for this condition. Here are the general properties of the p-reduced core
that we will require.

Lemma 1.1. Let X be a group with CX(Op(X)) ≤ Op(X).
(a) We have YX ≤ Ω1(Z(Op(X))), and if X/Op(X) acts faithfully on Ω1(Z(Op(X)))

then YX = Ω1(Z(Op(X))).
(b) If X ≤ X∗, where CX(Op(X∗)) ≤ Op(X∗), then YX ≤ YX∗ .
We set Z = Ω1(Z(S)), we set C = CG(Z), and we choose a maximal p-local subgroup

C̃ of G containing C. Further, we set E = Op(F ∗p (CG(Y eC))).
For X a group and R a Sylow p-subgroup of X, we denote by P∗X(R) the set of all

subgroups P of X such that R is contained in a unique maximal subgroup of P , and
satisfying also the condition that R is not a normal subgroup of P . We set PX(R) =
{P ∈ P∗X(R) : Op(P ) 6= 1}. We shall write P for PG(S).
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Lemma 1.2. For any finite group X and Sylow subgroup R of X, we have X =
〈P∗X(R)〉NX(R), and if Op(X) 6= 1 then X = 〈PX(R)〉NX(R).

Henceforth, all groups under consideration will be subgroups of our fixed finite group
G. For any subgroup X of G and p-subgroup R of X we denote by LX(R) the set of
subgroups L of X containing R, with Op(L) 6= 1. We write L for LG(S).

At this point we may state the hypotheses under which we will be working. One of
these is that whenever it is inconvenient to do otherwise, we assume that the non-abelian
simple sections of elements of L are alternating groups, groups of Lie type, or may be
found among the twenty-six “sporadic” groups. We shall make use of this “K-group”
hypothesis when we have quadratic action by a group of order bigger than 2 or, at one
point (see 3.3, below), to identify simple groups with dihedral or semi-dihedral Sylow
2-subgroups.

1.3 Main Hypothesis.

(1) CL(Op(L)) ≤ Op(L) for any L ∈ L.
(2) C̃ is the unique maximal p-local subgroup of G containing E.
(3) There is a unique member P of P such that P � C̃. Moreover, setting P 0 =
〈Op(C̃)P 〉, we have the following.

(a) P 0S = P .
(b) P 0/Op(P 0) ∼= SL(2, q) for some power q of p, and Yp = YP 0 is a natural

SL(2, q)-module for P 0.
(c) CYP (S ∩ P 0) E C̃.

(4) There is at most one member P1 of P such that 〈P, P1〉 ∈ L and such that YP is
not normal in P1. Moreover, if such a P1 exists then, setting L = 〈P, P1〉 and
L0 = 〈Op(C̃)L〉, we have the following.

(a) L = L0S.
(b) L0/CL0(YL) ∼= SL(3, q) or Sp(4, q), and YL = YL0 is a natural module for

L0/CL0(YL).
(5) There exists P̃ ∈ PES(S) such that 〈P, P̃ 〉 /∈ L.
(6) We have YP ≤ Op(C̃), and if L is as in (4) then also YL ≤ Op(C̃).

From the outset, we fix P̃ as in 1.3(5) so that, first, the group H := 〈P ∩ C̃, P̃ 〉 is as
small as possible, and then, subject to this condition, so that P̃ is as small as possible.
Then 〈P,H〉 /∈ L.

Our goal is to determine all groups G satisfying the above Hypothesis. In this
preliminary set of notes we will fall far short of this goal. For one thing, we will only be
dealing, at present, with the case “b ≥ 3” (where b is a parameter to be defined later),
and we leave the case b ≤ 2 (which, by 1.3(6) amounts to b = 2) for a second installment.
For another thing, we will be content in these notes (so far) to obtain suitable p-local
information about G, from which the actual identification of G will follow at a later
stage. We mention that, in the case of p = 2, we expect to be able to use (perhaps
“steal” would be a better word) large portions of the relevant parts of the “Quasithin”
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Project of Aschbacher and Smith, in determining the group G from the local data. In
fact, Michael and Steve should really by writing up the stuff I need as a separate paper,
as far as I’m concerned. In these notes as they are, we only aim at the following.

Theorem A. Assume b ≥ 3. Then either (NH(P )P,H) is a weak BN -pair, or there
are two maximal 2-local subgroups of G having the “same general structure” as maximal
2-local subgroups in the Rudvalis simple group. In particular, in the latter case, we have
|S| = 214.

In fact, in the case where (NH(P )P,H) is not a weak BN -pair we can show that
|G| = |Ru|. But, as mentioned, we expect to follow Aschbacher and Smith in their
approach to the construction of Ru from the materials at their hands.

In the remainder of this section we will develop basic properties of P and H, and of
the coset graph which they determine.

Lemma 1.4. Let K be a subgroup of H containing S. Then one of the following holds.
(i) 〈K,P ∩H〉 = H.
(ii) K ≤ NG(YP ).

(iii) K = 〈NK(YP ), P1〉, where P1 ∈ PK(S) and P1 is the unique element of P
satisfying the conditions in 1.3(4).

Proof. Immediate from 1.3(4) and from the minimality of H. �
Lemma 1.5. We have

NP ((S ∩ P 0)QP )) = NP (S ∩ P 0) = P ∩ C̃ = P ∩H,

and P ∩H is the unique maximal subgroup of P containing S.

Proof. We have NP (S) ≤ P ∩C̃ by the E-uniqueness condition 1.3(2). The P -uniqueness
condition in 1.3(3), together with 1.1, shows that P ∩ C̃ is a maximal subgroup of P
containing S. But 1.3(3b) shows that NP (S ∩ P 0) is maximal in P . As P ∈ P, 1.5
follows. �

In all that follows, set H0 = 〈Op(P̃ )H〉. Let us also set

QP = Op(P ), and QH = Op(H).

Further, set
V = 〈(YP )H〉, Ṽ = V/YH , and H = H/CH(Ṽ ).

Lemma 1.6. We have YP = Ω1(Z(QP )) and YH = CYP (S ∩ P 0) = CYP (Op(P ∩H)).

Proof. We have YP ≤ Ω1(Z(QP )), by 1.1(a). But 1.3(3) shows that CP (Ω1(QP )) = QP ,
so the first part of 1.6 follows from the maximality of YP among the p-reduced subgroups
of P .

We have H = H0(P ∩ P̃ ), and 1.3(5) shows that H0 ≤ E. Set Q = Op(C̃). Then
Q ≤ QH , and so YH ≤ Ω1(Z(Q))) by 1.1. As [Y eC , E] = 1, the Thompson P × Q
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Lemma shows that also [Ω1(Z(Q)), E] = 1, and so [YH ,H0] = 1. Thus H/CH(YH) ∼=
(P ∩ C̃)/CP∩ eC(YH). It now follows (from the definition of YH) that YH ≤ Z(Op(P ∩ C̃)).
Setting Z0 = CYP (S ∩ P 0), we have Z0 = Ω1(Z(Op(P ∩ C̃))), and we conclude from
1.1(a) that YH ≤ Z0. On the other hand, we observe that YP∩ eC = Z0, and so Z0 ≤ YH
by 1.1(b). This yields the second part of 1.6. �

Lemma 1.7. We have NG(YP ) ≤ NG(O2(P )).

Proof. Set N = NG(YP ). As P is transitive on (YP )], we have N = CN (z)P for any
z ∈ Z]. Then 〈(O2(CG(z)))N 〉 = 〈(O2(CG(z)))P 〉 ≥ 〈(O2(C̃))P 〉 = O2(P )O2(C̃). It
follows that O2(P ) is normal in N . �

Lemma 1.8. Let g ∈ P −H, and set R = (QH)g. Then CV (R) = (YH)g.

Proof. Set U = CV (R)YP . Then U is QP -invariant, and we have [U,R][U,QH ] = YP .
Thus U E P and [U,Op(P )] = YP . Assume that U 6= YP and let U0 be a normal subgroup
P contained in U , with |U0/YP | = p. As YP = Ω1(Z(QP )) we have [U0, QP ] = YP , and
then QP /CQP (U0) is isomorphic to YP as modules for P . As [R,QP ] ≤ R ∩ QP ≤
CQP (U0), it follows that R acts trivially on YP , so R ≤ QP . As QH � QP , by 1.3(3), we
have a contradiction. �

Lemma 1.9. Let H1 be a subgroup of H containing P̃ , and set R = QP ∩Op(H1). Then
R is normal in neither P nor H1.

Proof. Set U = Ω1(Z(Op(C̃))). It is then a fundamental fact, concerning E, that [U,E] =
1. (See Lemma — in the P -Uniqueness paper, for example.)

Set W = Ω1(Z(R)) and set W1 = Ω1(Z(Op(H1))). As Op(P̃ ) ≤ E we have H0 ≤ E,
and so Op(H1) ≤ E, and [U,Op(H1)] = 1. But W1 ≤ U , so [W1, O

p(H1)] = 1. Suppose
that R is normal in H1. The Thompson P ×Q Lemma then yields [W,Op(H1)] = 1. As
YP ≤ W , by 1.3(6), we obtain YP E 〈P, P̃ 〉, whereas P̃ 〉 /∈ L by assumption. Thus R is
not normal in H1. In particular, Op(H1) � QP .

Suppose next that R is normal in P , and set P0 = 〈Op(H1)P 〉. We have Op(C̃) ≤
Op(H1), and we have Op(C̃) ≤ Op(P ∩H) and Op(C̃) � Op(P ) by 1.3(3a). It follows that
Op(H1) ∩Op(P ∩H) is invariant under P ∩H, and that Op(H1) is a Sylow p-subgroup
of P0. Then P = P0S. As YP E 〈P, P̃ 〉 /∈ L, no non-identity characteristic subgroup
of Op(H1) is normal in P0. Further, as Z(P ) = 1 we have also Z(P0) = 1, and then
the Pushing Up Theorem of Niles [Ni] or of Stellmacher [St1] implies that QP = YP .
As YP ≤ QH by 1.3(6), and since P ∩H acts irreducibly on Op(P ∩H)/QP , it follows
that QH = Op(P ∩ H), and that QH is the product of any two H-conjugates of YP in
QH . If p = 2 then all of the involutions in QH lie in two conjugates of YP , so that
|H : NH(YP )| ≤ 2. But YP E S, so YP E H in this case, contrary to 〈P,H〉 /∈ L. Thus p
is odd.

Recall the standard notation: V = 〈(YP )H〉 and Ṽ = V/YH . Here we have found that
V = QH . Set Λ = Aut(V )/CAut(V )(Ṽ ). It is well known [REFERENCE ?] that, in odd
characteristic, Ṽ admits the structure of a 2-dimensional vector space over Fq, in such
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a way that Λ is isomorphic to the associated group of all semilinear transformations.
Denote by Λ the quotient of Λ by the scalar transformations, and let Λ0 be the linear
subgroup of Λ. Thus Λ0

∼= PGL(2, q).
Let D be a Hall p′-subgroup of P ∩H, and denote by D the image of D in Λ. Thus D

is cyclic of order q− 1, and since D ∩Z(Op(P ) mod QP ) 6= 1 the irreducible D-modules
YP /YH and V/YP are non-isomorphic. Thus, the image of D in Λ intersects the set of
scalar transformations trivially, and so D is isomorphic to D. Further, as D acts regularly
on YP /YH , D acts linearly on Ṽ , and so D is a cyclic subgroup of Λ0 of order q − 1.

As P̃ ∈ P, we have QH 6= S. As QH = CS(YH) it follows that H0QH/QH is a
p′-group and that S induces a non-identity group of Galois automorphisms on Λ0 and
on Ṽ . In particular we have q − 1 > 5, and then the only p′-subgroups of Λ0 containing
D are contained in the normalizer of D. As D leaves invariant only two 1-dimensional
Fq-subspaces of Ṽ we again arrive at |H : NH(YP )| ≤ 2. As p is odd, P̃ has no subgroups
of index 2, and thus P̃ ≤ NH(YP ). As 〈P, P̃ 〉 /∈ L, we have a contradiction at this point.
Thus R is not normal in P .

�

Corollary 1.10. We have [QP , Op(P )] � Op(P̃ ). �

Lemma 1.11. We have

(a) [V,QH ] = YH .
(b) [CH(Ṽ ), S ∩Op(P )] ≤ QH .
(c) Op(H)QH/QH is a central extension of Op(H)) by the p′- group CH(Ṽ )/QH .

Lemma 1.12. Suppose that some element of QH induces a transvection on a non-central
chief factor for P in QP . Then q = p.

Proof. �

We now form the coset graph

Γ = Γ(P,H).

Thus, Γ is the bipartite graph whose vertices are the right cosets of P and the right
cosets of H, with adjacency of vertices given by non-empty intersection. The stabilizer
in G of a vertex Pg, for g ∈ G, is then the conjugate P g of P (and similarly for vertices
Hg). In this way we speak of a vertex α of Γ being of type P (resp. H) if α is of the
form Pg (resp. Hg) for some g ∈ G. An edge of Γ consists of an un-ordered pair {α, β}
of adjacent vertices. If α = Pg and β = Hg then the stabilizer in G of the edge {α, β}
is (P ∩H)g.

For any vertex δ of Γ, we denote by ∆(δ) the set of vertices of Γ which are adjacent
to δ. For any integer n ≥ 1, we denote by ∆(n)(δ) the set of all vertices γ such that
d(δ, γ) ≤ n, where d is the natural metric on Γ. We also set G(n)

δ = G∆(n)(δ); the
point-wise stabilizer in G of ∆(n)(δ).
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For any vertex δ of Γ we set

Yδ = YGδ , and Qδ = Op(Gδ).

For β a vertex of type H we set

Vβ = 〈Yβ : δ ∈ ∆(β)〉 and Gβ = Gβ/CGβ (Vβ/Yβ).

and for α a vertex of type P we set

Wα = 〈Vβ : β ∈ ∆(α)〉.

Further, for α of type P we set

Dα = ∩β∈∆(α)Vβ .

We assume that the reader of these notes has a good deal of familiarity and, indeed,
facility, with the so-called amalgam method. In particular, we do not wish to develop
the notion of critical pair, for the uninitiated, at this time. For a critical pair (α, α′),
the distance b = d(α, α′) is an invariant of Γ, which we denote by b(Γ) or by b(P,H). A
path of length b from α to α′ will be called a critical path.

The following result is so basic to what follows that it will most often be used without
explicit reference. Recall that a group X is said to be p-closed if Op(X) is a Sylow
subgroup of X.

Lemma 1.13. Let δ be a vertex of Γ.

(a) If α is of type P then G
(1)
α is p-closed, and Op(G

(1)
α = Qα.

(b) If β is of type H then C
G

(1)
β

(Yβ) is p-closed, and Op(CG(1)
β

(Yβ)) = Qβ.

Proof. Set RP = ∩{(P ∩H)g}g∈P and RH = ∩{(P ∩H)g}g∈H . The Frattini argument
yields P = NP (S ∩ RP )RP , and since P ∈ P we then have P = NP (S ∩ RP ). Thus
S ∩RP = QP , and we have (a).

Set T = S ∩ CRH (YH). Then H = NH(T )CRH (YH). But CP∩H(YH) = Op(P ∩H),
as follows from 1.3(3) and from the characterization of YH given in 1.6. Thus T E H, so
T = QH , and we have (b). �
Lemma 1.14. Let (κ, λ, µ) be a a path of length 2 in Γ. Then Qκ∩Qλ ≤ [Qλ, Op(Gλ)]Qµ.

Proof. Set R = [Qλ, Op(Gλ](Qλ ∩ Qµ). Then R E Gλ. As Gλ is transitive on ∆(λ) we
then have Qκ ∩Qλ ≤ R. �
Lemma 1.15. Let (α, β, · · · , α′) be a critical path in Γ.

(a) If b is even then b ≥ 2 and [Yα, Yα′ ] = Yβ = Yα′−1.
(b) If b is odd then b ≥ 3 and Yβ ∩ Yα′ = 1.

Proof. �
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Lemma 1.16. Let (β, γ, δ) be a path of length 2 in Γ, with δ of type P . Then Qβ(Gβ ∩
Gδ) = Gβ ∩Gγ .

Proof. Set P = δ and H = β, and let g ∈ P so that γ = βg. Notice that the
induced action of P on ∆(δ) is equivalent to the natural doubly transitive permutation
representation of P on the cosets of P ∩ H. The two- point stabilizer D := Gβ ∩ Gγ
therefore has the property that Op(P ∩H)D = P ∩H. But Op(P ∩H) = QPQH , as D
acts irreducibly on Op(P ∩H)/QH . As QP ≤ D, the lemma follows. �

Recall that for α of type P we have set Dα = ∩β∈∆(α)Vβ .

Lemma 1.17. Let α be a vertex of Γ of type P , let σ and λ be distinct neighbors of α,
and set Q∗α = (Qσ ∩Qα)(Qα ∩Qλ). Then the following hold.

(a) Vσ ∩ Vλ = Dα.
(b) [Dα, O

p(Gα)] = Yα.
(c) Q∗α E Gα, and [Qα, Op(Gα)] ≤ Q∗α.

Lemma 1.18. Suppose that b is odd, and let (α, β, · · · , α′) be a critical path in Γ.
Suppose that Vα′ � Qβ, and suppose that [Vβ ∩ Qα′ , Vα′ ] = [Vβ , Vα′ ∩ Qβ ] = 1. Then
either Vα′ is an F1-offender on Vβ/Yβ, or Vβ is an F1-offender on Vα′/Yα′ .

.

Section 2: Stellmacher’s Basic Amalgam Lemmas

For the remainder of this paper we shall assume:

Hypothesis 2.0. We have b ≥ 3.

Lemma 2.1. Assume that b is even, b ≥ 4, and let (α, β, · · · , α′) be a critical path in
Γ. Let β′ ∈ ∆(α′)− {α′ − 1}. Then Vβ′ fixes the path (β, · · · , α′), Vβ′ � Gα, and Vβ′ is
a quadratic F -offender on Ṽβ.

Proof. As b is even, 1.15(a) yields:

(1) [Yα, Yα′ ] = Yβ = Yα′−1.

Then Yα′ = Yα′−1Yβ′ , and so [Yα, Yβ′ ] 6= 1. In particular, we have Yβ′ 6= Yα+3. As
Vα+3 ≤ Qβ′ and Vβ′ ≤ Qα+3, it now follows from 1.11(a) that

(2) [Vα+3, Vβ′ ] = 1.

Observe that Yβ+1 = Yα′−1Yα+3 by (1). Then Vβ′ ≤ CGβ+1(Yβ+1) and so

(3) Vβ′ ≤ Qβ+1 ≤ Gβ .

Notice that V ′β ∩Qβ E 〈Yα, Qβ′〉 ≥ Op(Gα′). Then Vβ′ ∩Qβ ≤ Dα, and so

(4) |Vβ′/Dα′ | ≤ |Vβ′Qβ/Qβ |.
8



Notice also that, by (2), we have [Dα+2, Vβ′ ] = 1, and so (4) yields

|Vβ/CVβ (Vβ′)| ≤ |Vβ/Dα+2| = |Vβ′/Dα′ | ≤ |Vβ′Qβ/Qβ |.

But |Ṽβ/CfVβ (Vβ′)| ≤ |Vβ/CVβ (Vβ′)|, so we have shown that either Vβ′ is an F -offender

on Ṽβ or Vβ′ ≤ Qβ . Thus, it remains to show that Vβ′ acts quadratically on Ṽβ
and that Vβ′ � Gα. The required quadratic action follows from the observation that
[Vβ , Vβ′ , Vβ′ ] ≤ [Wα′ , Vβ′ ] ≤ Yα′−1 = Yβ . So assume that we have Vβ′ ≤ Gα. Then
[Yα, Vβ′ ] ≤ Yβ = Yα′−1 ≤ Vβ′ , whence

Vβ′ E 〈Yα, Gβ′〉 = 〈Yα, Gα′ ∩Gβ′ , Gβ′〉 = 〈Gα′ , Gβ′〉.

As Op(〈P,H〉) = 1, we have a contradiction, and the lemma is proved. �

Here is a “QRC”-argument that will be used in the proof of lemma 2.3. It was shown
to me by Ulrich M.

Lemma 2.2. Let V be a p-group, and let {Zi}1≤i≤n be a collection of normal subgroups
of V which together generate V . Let s > 0 be a positive real number, and let B be a
p-group acting on V . Assume that each Zi is B-invariant, and assume that

|Zi/CZi(D)| ≥ |D/CD(Zi)|s

for every subgroup D of B. Then |V/CV (B)| ≥ |B/CV (B)|s.
Proof. Set B1 = B and, inductively, set Bi+1 = CBi(Zi), 1 ≤ i ≤ n. Then Bn+1 =
CB(V ), and

|Bi/Bi+1|s = |Bi/CBi(Zi)|s ≤ |Zi/CZi(Bi)|.
Then

|B/CB(V )|s =
n∏

i=1

|Bi/CBi(Zi)|s ≤
n∏

i=1

|Zi/CZi(Bi)|.

But also
|Zi/CZi(Bi)| = |ZiCV (Bi)/CV (Bi)| ≤ |CV (Bi+1)/CV (Bi)|

and so we get

n∏

i=1

|Zi/CZi(Bi)| ≤
n∏

i=1

|CV (Bi+1)/CV (Bi)| = |V/CV (B)|.

Thus |V/CV (B)| ≥ |B/CV (B)|s. �
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Lemma 2.3. Assume that we have b ≥ 3,and assume also that Ṽ is not an F1-module
for H via an F1-offender contained in Op(Op(P ))Op(H). Then b is odd, and there exists
a critical path π = (α, β, · · · , α′) such that Vα′ � Qβ, and such that one of the following
holds.

(i) Vβ is a quadratic F2∗-offender on Ṽα′ and Yα′ � Vβ,
(ii) Vβ is a quadratic F2∗-offender on Ṽα′ and b = 3, or

(iii) Vβ is a quadratic F2-offender on Ṽα′ , Vα′ is a quadratic F2-offender on Ṽβ, and
b = 3.

Proof. By 2.1, b is odd. Fix a critical path π = (α, β, · · · , α′) and suppose first that
Vα′ ≤ Qβ . Then |Vα′/CVα′ (Yα)| ≤ q. Here Yα ≤ Op(Op(Gα′−1))Qα′ , so |Yα/CYα(Ṽα′)| <
|Ṽα′/CgVα′ (Yα)|, by hypothesis. Thus, we have Yα/(Yα ∩ Qα′)| < q. [Yα ∩ Qα′ , Vα′ ] ≤
Yβ ∩ Yα′ = 1, by 1.15(b), and then [Yα, Vα′ ] = 1 as Yα is a natural module for Gα. But
Yα � Qα′ , so we have a contradiction. Thus:

(1) Vα′ � Qβ .

Notice that the proof of (1) involved also a proof of:

(2) Yα ∩Qα′ = Yβ .

Further, it follows from 1.11(a) that we have

(3) [Vβ ∩Qα′ , Vα′ ∩Qβ ] = 1.

Since Vβ and Vα′ act quadratically on each other, Vβ is not an F -offender on Ṽα′ , and
Vα′ is not an F -offender on Ṽβ . Therefore

(4) [Vβ ∩Qα′ , Vα′ ] 6= 1 or [Vα′ ∩Qβ , Vβ ] 6= 1.

As (α′, α′−1, · · · , β) is a pre-critical path, by (1), we may assume, by (4) and symmetry,
that [Vβ , Vα′ ∩Qβ ] 6= 1,. Thus, we have [Vβ , Vα′ ∩Qβ ] = Yβ , and Yβ ≤ Vα′ .

Let δ ∈ ∆(β) with [Yδ, Vα′ ∩ Qβ ] 6= 1. Then (3) shows that Yδ � Qα′ , and we may
therefore take δ = α. Choose t ∈ Vα′∩Qβ with [Yα, t] 6= 1, and choose α−1 ∈ ∆(α)−{β}.
Then:

(5) 〈Qα−1, t〉 ≥ Op(Gα).

Suppose next that [Vα−1, Vα′−2] = 1. Then Vα−1 ≤ Qα′−2 ∩ Qα′−1. Set A = Vα−1 ∩
VβQα′ . Then

A ≤ Vα−1Vβ ∩ VβQα′ = Vβ(Vα−1Vβ ∩Qα′) ≤ Vβ(Qα′−1 ∩Qα′)
and so [A, t] ≤ [Vβ , t][Qα′−1 ∩Qα′ , t] ≤ YβYα′ .

Set X = CA(t mod Yβ). Then |A/X| ≤ q, and X E 〈Qα−1, t〉 as YβYα−1 ≤ X. As
Op(Gα) is transitive on ∆(α), (5) then implies that X ≤ Dα. But also [Dα, t] ≤ [Vβ , t] ≤
Yβ , so in fact
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(6) X = Dα.

We now have
|Vα′/CVα′ (Vα−1Vβ)| ≤ |Vα′/Dα′−1|

= |Vα−1/Dα| = |Vα−1/A||A/X| ≤ |Vα−1VβQα′/VβQα′ |q.
But also

|Vα−1VβQα′/Qα′ | = |Vα−1VβQα′/VβQα′ ||Vβ/(Vβ ∩Qα′)| ≥ |Yα/Yα ∩Qα′ | = q,

and so we obtain |Vα−1VβQα′/Qα′ | ≥ |Vα′/CVα′ (Vα−1Vβ)|. Thus Vα−1Vβ is an F -offender
on Ṽα′ , contrary to hypothesis. Thus

(7) [Vα−1, Vα′−2] 6= 1.

If now Vα−1 ≤ Qα′−2 then we may apply the result (1) to the pre-critical path (α′ −
2, · · · , α − 1) and obtain Vα′−2 ≤ Qα−1. Then (7) yields Yα−1 = Yα′−2, and then
Yα = Yα′−2Yβ ≤ CG(Vα′), which is contrary to the case. Thus:

(8) Vα−1 � Qα′−2.

Suppose now that we have b > 3. Then [Vα′−2, Vα′ ] = 1, and so Yα−1 � Vα′−2. Since
both (α − 1, · · · , α′ − 2) and (α′ − 2, · · · , α − 1) are pre-critical paths, we are free to
replace (β, · · · , α′ − 2) by one of these, obtaining either Yβ � Vα′ or Yα′ � Vβ . But in
fact Yβ ≤ Vα′ as [Vβ , Vα′ ∩Qβ ] 6= 1, so we have shown:

(9) If b > 3 then Yα′ � Vβ and [Vα′ , Vβ ∩Qα′ ] = 1.

Suppose that |VβQα′/Qα′ | ≤ |Vα′Qβ/Qβ |. Then (9) yields

|Ṽβ/CfVβ (Vα′)| ≤ |Vβ/CVβ (Vα′)| = |Vβ/(Vβ ∩Qα′)| ≤ |Vα′Qβ/Qβ |

and Vα′ is an F -offender on Ṽβ , contrary to assumption. Thus:

(10) If b > 3 then |VβQα′/α′| > |Vα′Qβ/qb|.
Notice that 2.2 applies to our situation, with s = 1, V = Vβ , B = Vα′ ∩Qβ , and with

{Zi}1≤i≤n = {Yδ}δ∈∆(β). We therefore have

(11) |Vβ/CVβ (Vα′ ∩Qβ)| ≥ |(Vα′ ∩Qβ)/CVα′ (Vβ)|.
If now |VβQα′/Qα′ | > |Vα′Qβ/Qβ | then

|Vα′/CVα′ (Vβ)| = |Vα′Qβ/Qβ ||(Vα′ ∩Qβ)/CVα′ (Vβ)| <

|VβQα′/Qα′ ||Vβ/CVβ (Vα′ ∩Qβ)| ≤ |VβQα′/Qα′ ||Vβ/(Vβ ∩Qα′)| = |VβQα′/Qα′ |2.
This shows:
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(12) If b > 3 then Vβ is a quadratic F2∗-offender on Ṽα′ .

Suppose next that we have b = 3. If also |VβQα′/Qα′ | ≥ |Vα′Qβ/Qβ | then the
argument for (12) shows that Vβ is a quadratic F2-offender on Ṽα′ , while if |VβQα′/Qα′ | ≤
|Vα′Qβ/Qβ | then Vα′ is a quadratic F2-offender on Ṽβ . Alternatively, if |VβQα′/Qα′ | <
|Vα′Qβ/Qβ | then Vα′ is a quadratic F2∗-offender on Ṽβ . In this way we obtain the
lemma. �
Lemma 2.4. In outcome (iii) of 2.3 we have QβVα′ E Gβ ∩Gβ+1.

Proof. Immediate from 1.16. �

Section 3: Quadratic modules

This section contains detailed results on quadratic F2-modules and F2∗-modules.
Some of these results are stated without proof.

Hypothesis 3.1. X is a finite group with Op(X) = 1, and such that every non-abelian
simple section of X is an alternating group, a group of Lie type, or one of twenty-six
“sporadic” groups. Further, we are given a faithful FpX-module V .

Proposition 3.2. Assume hypothesis 3.1, with p = 2, and let t be an involution in X.
Assume that F ∗(X) is quasisimple, and that X = 〈tX〉. Assume further that |V/CV (t)| ≤
4. Then one of the following holds.

(i) There is a fours group E in X with t ∈ E and with [V,E,E] = 0.
(ii) A Sylow 2-subgroup of X is dihedral or semi-dihedral.

Proof. To be provided. �

Remark: The proof of 3.2 does not require that the simple sections of X be of “known”
type. The “known” simple groups with dihedral or semi-dihedral Sylow 2-subgroups are
the groups L2(r), r odd; L3(r), r ≡ 3 (mod 4); U3(r), r ≡ 1 (mod 4); Alt(7); and M11.
Using this, we may obtain the following result.

Proposition 3.3. Assume hypothesis 3.1. Let X, t, and V be as in 3.2, and set K =
F ∗(X). Assume that there does not exist a fours group E in X, containing t, and such
that [V,E,E] = 0. Then either X ∼= Alt(5) and V is the O−4 (2)-module for X, or else
X ∼= Sym(5) and V is the ΓL(2, 4)- module for X. In the latter case there exists a fours
group in K acting quadratically on V .

Proof. To be provided. �
Corollary 3.4. Assume hypothesis 3.1. Let K be a component of X and let A ≤ X
be a quadratic F2-offender on V , with [K,A] 6= 1, and set L = 〈KA〉. Then one of the
following holds.

(i) There exists a subgroup B of LA, acting quadratically on some non-trivial L-
invariant section of V and acting faithfully on L, such that |B| > 2.
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(ii) p = 2, K = L ∼= SL(2, 4), and |A/CA(K)| = 2.
(iii) p = 2, K 6= L, and K ∼= SL(2, 2n) for some n.

Proof. Suppose that (i) is false, and let A0 be a complement to CA(K) in A. Then
|A0| = 2. Suppose that K is A-invariant. Then 0.1 implies that A0 induces either a
transvection or a 2-transvection on [V,K], and then 3.3 yields (ii). So assume that K is
not A-invariant. Theorem 3 in [Chermak] then yields (iii). �
Proposition 3.5. Assume hypothesis 3.1. Set K = F ∗(X), and assume that K is
quasisimple. Then one of the following holds.

(i) K/Z(K) is of Lie type in characteristic p.
(ii) p = 2 and K/Z(K) is an alternating group.

(iii) p = 2 and K/Z(K) is isomorphic to U4(3).
(iv) p = 2 and K/Z(K) is isomorphic to a sporadic group

Proof. For p = 2 this is a consequence of the work [MS1] of Meierfrankenfeld and Stroth
on quadratic fours groups in groups of Lie type, with some help from 3.3. For p >
3 one may appeal to work on so-called quadratic pairs by Thompson, Betty Salzberg
[Sa], or by Timmesfeld [Ti]. The case of quadratic pairs for p = 3 was investigated by
Meierfrankenfeld in unpublished notes. The author of these notes will produce a paper on
quadratic pairs for p = 3, more than sufficient for the purposes here, someday, soon. �
Proposition 3.6. Assume hypothesis 3.1. Let S be a Sylow p-subgroup of X, and assume
that S is contained in a unique maximal subgroup of X. Assume further that V is a
quadratic F2-module for X. Let K be a component of X, set U = [V,K], and set
Ũ = U/CU (K). Then one of the following holds.

(i) K ∼= SL(2, pn) and every constituent for K in Ũ is a natural module for K.
There are at most two such constituents.

(ii) K ∼= SU(3, pn) and U is a natural module for K.
(iii) K ∼= Ω −

4 (pn) and U is a natural orthogonal module for K.
(iv) p = 2, K ∼= Sz(2n), and Ũ is a natural module for K.
(v) p = 2, K ∼= SL(3, 2n) (resp. Sp(4, 2n)), and Ũ is the direct sum of a natural

module and its dual (resp. a natural module and its contragredient), for K.
Moreover, there exists an element of NS(K) which induces a polarity on the
standard Coxeter diagram for K and which interchanges the two irreducible K-
submodules of Ũ .

(vi) p = 2, K ∼= Alt(2n+1), and every non-trivial constituent for K in U is a natural
module (derived from the permutation module) for K. There are at most two
such constituents.

(vii) p = 2, K ∼= Alt(9), and Ũ is isomorphic to a spin module for K, of dimension 8.

Proposition 3.7. In Proposition 3.6, suppose that V is a quadratic F2∗-module for X.
Then one of the following holds.

(i) K ∼= SL(2, pn) and Ṽ is a natural module for K.
13



(ii) p = 2, K ∼= SL(2, 2n), and there exists a quadratic F2∗-offender A in X such
that 〈KA〉 ∼= Ω +

4 (2n), and U is a natural orthogonal module for 〈KA〉.
(iii) p = 2, K ∼= Ω −

4 (2n), U is a natural orthogonal module for K, and K contains
no quadratic F2∗-offender on U .

(iv) p = 2, K ∼= SL(3, 2n), and Ũ is the direct sum of a natural module and its dual,
for K. Moreover, there exists an element of NS(K) which induces a polarity on
the standard Coxeter diagram for K and which interchanges the two irreducible
K-submodules of Ũ .

(v) p = 2, K ∼= Alt(2n+1), and Ũ is a natural module (derived from the permutation
module) for K.

Moreover, if V is an F1-module for X then either (i) or (v) holds.

Proposition 3.8. In Proposition 3.5, suppose that there is a component K1 of X,
distinct from K, such that [V,K,K1] 6= 0. Then KK1

∼= Ω +
4 (pn), and [V,K] = [V,K1].

Moreover, K1 is the unique such component of X distinct from K.

Proposition 3.9. Assume hypothesis 3.1, and assume that X = RA, where R = [R,A]
is a normal p′-subgroup of X, and where |A| = p and |V/CV (A)| ≤ p2. Assume also that
V = [V,R]. Then one of the following holds.

(i) X ∼= SL(2, 2) and |V | = 4 or 16.
(ii) R is elementary abelian of order 9, |A| = 2, and |V | = 16.

(iii) X is isomorphic to the commutator subgroup of SU(3, 2), and V is a natural
SU(3, 2)-module for X, of order 64.

(iv) X is dihedral of order 10, and |V | = 16.
(v) X ∼= SL(2, 3) and |V | = 9 or 81.
(vi) R is a commuting product of two quaternion groups, and |V | = 81.

Proposition 3.10. Assume hypothesis 3.1. Let X = RA, with A a p-group and with
R = [R,A] a normal p′-subgroup of X. Assume that A is a quadratic F2-offender on
V . Denote by D the set of non-identity subgroups D of X such that D = [CR(B), A] for
some maximal subgroup B of A. Then R is the direct product of the elements of D, and
[V,R] is the direct sum of the subspaces [V,D], D ∈ D. Further, for any D ∈ D and for
any a ∈ A− CA(D), the triple (D, 〈a〉, [V,D]) satisfies the hypothesis of 3.8, in place of
(R,A, V ). Moreover, A is generated by its elements a such that |V/CV (a)| ≤ p2.

Proposition 3.11. Assume hypothesis 3.1, with X solvable. Let S be a Sylow p-subgroup
of X, and assume that S is contained in a unique maximal subgroup of X. Assume further
that V is a quadratic F2-module V for X. Then p = 2 or 3, and there exists an S-
transitive set K = {K1 · · ·Kr} of subgroups of Op′(X) such that Op′(X) = K1×· · ·×Kr,
with [V,Op′(X)] = [V,K1]⊕ · · · ⊕ [V,Kr], and such that one of the following holds for al
i.

(i) Ki
∼= Op(SL(2, p)) and [V,Ki] is a natural module or a direct sum of two natural

modules for Ki.
(ii) Ki

∼= Op(O +
4 (p)) and [V,Ki] is a natural orthogonal module for Ki.

14



(iii) p = 2, Ki is cyclic of order 5, and |[V,Ki]| = 16.
(iv) p = 2, Ki

∼= O2(SU(3, 2)), and |[V,Ki]| = 64.

The next two results come from joint work with Christopher Parker. The reader may
wish to recall some of the notation from 1.2.

Lemma 3.12. Assume hypothesis 3.1, and assume that X = DP0 where D is a normal
r-subgroup of X for some prime r, and where P0 ∈ P∗X(S) for some Sylow p-subgroup
S of X. Assume further that Op(P0) � CP0(D) and that there exists an element t of S
such that [V, t, t] = 0 and such that |V/CV (t)| ≤ p2. Assume also that V = 〈CV (S)X〉.
Then p = 2 and the following hold.

(a) |V/CV (t)| = 4.
(b) [D, t] is a direct factor of D of order 3, and |[V, [D, t]]| = 16.
(c) Let h be an element of odd order in P0 −D, with ht = h−1, and set D∗ = D〈h〉.

Then 〈tD∗〉 ∼= SU(3, 2)′, and |[V, [D∗, t]]| = 64.

Proof. We have [D, t] 6= 1 as [D,Op(P0)] 6= 1. Then the quadratic action of t implies
that p = 2 or 3. If p = 3 then there is a subgroup K = 〈tK〉 of P with K ∼= SL(2, 3)
and with O2(K) * Φ3(P ). On the other hand, if p = 2 then the Baer-Suzuki Theorem
implies that there is a subgroup K = 〈tK〉 of P with K dihedral of twice odd order,
and with O2′(K) * Φ2(P ). Fix K as above, for the two cases, and put J = Op′(K),
R = [D, t], and R∗ = [DJ, t]. Suppose first that t is a transvection on V , or that R∗

is cyclic. Then 3.9 shows that R∗ = J , contrary to [D, t] 6= 1. We conclude that t is
a 2-transvection and that R∗ is non-cyclic. Then 3.9 implies that R∗ ∼= 32 or 31+2 if
p = 2, or a commuting product of two copies of Q8 if p = 3. Moreover, in the case that
R∗ ∼= 31=2, we have [Z(R∗), t] = 1, and thus in any case we have R〈t〉 ∼= SL(2, p).

Now CD(t) centralizes R and normalizes R∗. Suppose p = 3. Then R and J
are the unique normal quaternion subgroups of R∗, and so CD(t) normalizes J . But
the centralizer in Aut(J) of t is 〈t〉, so CD(t) centralizes J , and thus J centralizes
[D, t]CD(t) = D. As 〈JP0〉 contains O3(P0), we have a contradiction at this point,
and so p = 2. Now suppose that R∗ ∼= 32. There is then precisely one cyclic subgroup
J1 of R∗ satisfying R∗ = R × J1 and with |[V, J1] = |[V,R]|. (Here it should be noted
that |[V,R]| may be either 4 or 16.) Then J1 is D-invariant, so J1 centralizes D, and
then also O2(P0) centralizes D, as in the case p = 3. So we conclude at this point that
R∗ ∼= 31+2. Here [V,R∗] is a natural SU(3, 2)-module for R∗〈t〉, as is shown by 3.9, and
the Lemma thereby follows. �

Lemma 3.13. Assume hypothesis 3.1, and assume that all of the following conditions
hold.

(1) F ∗(X) is an r-group for some prime r, r 6= p.
(2) X ∈ P∗X(S) for a Sylow p-subgroup S of X.
(3) We have V = 〈CV (S)X〉.
(4) There exists a non-identity element t of S, acting quadratically on V , such that
|[V, t]| ≤ p2.
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Set D = 〈[Or(X), T ]X〉, and denote by B the set of all maximal subgroups B of D such
that CV (B) 6= 0. Then p = 2, r = 3, D is elementary abelian, and X/D induces the full
symmetric group on B, with t inducing a transposition.

Proof. Set T = tX and set H = 〈T 〉. Then 3.11 implies that p = 2, and 3.12(b) in
particular implies that D is an elementary abelian 3-group, with F (X) = D×CF (X)(H).
As X ∈ P∗X(S), by assumption, we have also H ≥ O2(X).

Set V = V/CV (D), and let R be a Sylow 2-subgroup of the pre-image in X of
O2(X/CX(V )). Suppose that R 6= 1. As Op(X) = 1 and X ∈ P∗X(S), the frattini
argument then yields O2(X) ≤ CX(V ), contrary to D 6= 1. Thus R = 1, and we may
therefore replace V with V and replace X by X/CX(V ) while retaining the hypotheses
of the lemma. So, we may assume to begin with that CV (D) = 0.

Write [D, t] = 〈d〉, and notice that 3.12(c) implies that [V, d] = [V, d, CD(t)], while
3.12(b) yields |[V, d]| = 16. It follows that there are hyperplanes I and J of D with
It = J and with [V, d] = CV (I) × CV (J). As t is a 2-transvection on V , it then follows
that t acts trivially on B − {I, J}. Thus:

(1) t acts as a transposition on B.

We also record:

(2) We have [V, d] = CV (I)×CV (J), where I and J are the two elements of B which are
interchanged by t.

Denote by F the set of fixed-points for H on B, and set W = 〈CV (B) : B ∈ B − F〉.
Then W is X-invariant, and (2) shows that W ≥ [V,H] ≥ [V,D0] = V . Then B = B−F ,
and so

(3) H has no fixed-points on B.

Now (1) and (3) together imply that X acts transitively on B. As X = SH, it follows
that S is transitive on the set of H-orbits in B. As 〈t〉 is normal in S, by assumption,
we conclude that H has just one such orbit. Thus

(4) H is transitive on B.

It now follows from (1) and (4) that X induces the full symmetric group on B. �

Section 4: The structure of H, with b ≥ 3

Recall from Hypothesis 2.0 that we have b ≥ 3.
We begin this section by considering the case where H is solvable. As always, we set

H = H/CH(Ṽ ), and we set H0 = 〈Op(P )H〉.
Lemma 4.1. Assume that H is solvable and that P is not. Then the following hold.

(a) H0 is an r-group, where {p, r} = {2, 3}.
(b) [Φp(H0), S ∩Op(P )] ≤ Op(H).
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(c) H acts irreducibly on H0/Φp(H0).
(d) (P ∩H)Φp(H0) is the unique maximal subgroup of H containing P ∩H.
(e) Let A be a subgroup of S ∩ Op(P ) such that A is elementary abelian, and let
XA denote the set of elements g ∈ H0 such that |A/CA(g mod Op(H))| = p and
such that for any a ∈ A with [g, a] 6= 1, we have H = 〈a, (P ∩ H)g〉. Then
H0 = 〈XA〉CH0(A mod Op(H)).

Proof. Let H1 be a normal subgroup of H0 such that H1(P ∩H) is a proper subgroup of
H. By our minimal choice of H, we have 〈P, P0〉 ∈ L for any P0 ∈ PH1(S). For any such
P0, P0 is solvable, by assumption, and since P is non-solvable it follows from 3.1(4) that
P0 ≤ NG(Op(P )). As also Op(P ) is invariant under NG(S), by P -Uniqueness (i.e. by
1.3(3)) we conclude from 1.2 that H1 ≤ NG(Op(P )). But Op(Op(P ) ∩H) = S ∩Op(P ),
so [H1, S ∩ Op(P )] ≤ Op(H1). In particular, by taking H1 = Φp(H0)(P ∩H) we obtain
(b).

As P̃ ∈ P and P̃ is solvable, S acts irreducibly on Op(P̃ )/Φp(Op(P̃ )). As S∩Op(P ) �
Op(P̃ ), by 1.10, it follows that Op(P̃ ) = [Op(P̃ ), S ∩Op(P )], and so also H0 = [H0, 〈(S ∩
Op(P ))H〉]. Thus, there does not exist a normal subgroup H1 of H which lies properly
between Φp(H0) and H0, and we obtain (c). Now (d) is an immediate consequence of
(c), as is the fact that H0 is an r-group for some prime r. Then (a) follows from the
quadratic action on Ṽ given by 2.3.

Let A be as in (e), and set U = [H0/Φ(H0), A]. Assume that U 6= 1. As A is
elementary abelian, we have U = 〈u ∈ U : |A/CA(u)| = p. Let g ∈ H0 such that g
is incident with an element u of U with |A/CA(u)| = p, and let a ∈ A − CA(u). Then
〈ag, P ∩ H〉 ≥ 〈[a, g], P ∩ H〉 = H, as a consequence of (d). Further, (b) implies that
[g, CA(u)] ≤ [CH(Ṽ ), CA(u)]. Since [CH(Ṽ ), S ∩ Op(P )] ≤ Op(H), by 1.11(b), we see
that [g, CA(u)] ≤ Op(H), and thus g ∈ XA. This yields (e). �
Lemma 4.2. If H is solvable then so is P .

Proof. Assume false, so that H is solvable and P is not. Then 4.1(a) implies that q > p.
Define r as in 4.1, so that H0 is an r-group. Let (α, β, · · · , α′) be a critical path in

Γ, and suppose first that b is odd. Then Yβ ∩ Yα′ = 1, by 1.15(b). Take H = α′ and
P = α′− 1, and set A = Vβ . We have A ≤ (S ∩Op(P ))QH , by 1.14. For any h ∈ H such
that [A, h] ≤ QH we have A ≤ (α′ − 1)h. As A � QH it then follows from 4.1(e) that
there exists g ∈ H0 and a hyperplane A0 of A such that [A0, g] ≤ QH and such that, for
any a ∈ A−A0, we have H = 〈a, (P ∩H)g〉. Setting µ = (α′ − 1)g, we then have:

(1) There exists µ ∈ ∆(α′) such that |A : A∩Gµ| = p and such that 〈a,Gα′ ∩Gµ〉 = Gα′

for any a ∈ A−Gµ.

In particular, (1) implies that for any a ∈ A − Gµ we have [a, Yµ] 6= 1. Write A0 for
A ∩Gµ.

Suppose that Yµ ≤ Qβ . Then [A, Yµ] = Yβ . As [A0, Yµ] ≤ Yα′ , we then have A0 =
CA(Yµ), and thus |A/CA(Yµ)| = p. But p < q, from which it now follows that [Yδ, Yµ] = 1
for all δ ∈ ∆(β). This is contrary to [A, Yµ] 6= 1, so we conclude that Yµ � Qβ .
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By analogy with (1), we may now choose δ ∈ ∆(β) so that:

(2) |Yµ : Yµ ∩Gδ| = p, and Gβ = 〈Gδ ∩Gβ , b〉 for any b ∈ Yµ −Gδ.
Now [Yδ ∩ Gµ, Yµ ∩ Gδ] ≤ Yβ ∩ Yα′ = 1, and as p < q we then have [Yδ, Yµ ∩ Gδ] = 1
and [Yδ ∩Gµ, Yµ] = 1. But [Yδ, Yµ] 6= 1, as follows from (2), so Yδ � Gµ. Then (1) yields
Gα′ = 〈Yδ, Gα′ ∩Gµ〉, and we obtain Qα′ ∩Qµ = CQα′ (Yµ ∩Gδ) E Gα′ , contrary to 1.9.
This contradiction shows that b is even.

We now have [Yα, Yα′ ] = Yβ = Yα′−1. Also, as b > 2 by assumption, we have b ≥ 4.
Let A now denote Wα. Then [A, Yβ ] = 1. As A ≤ Qα′−3 ≤ Gα′−2, and as Yα′−2 =
Yα′−3Yα′−1 = Yα′−3Yβ , we have A ≤ Qα′−2, and so A ≤ Gα′−1. We observe also that
Φ(A) ≤ Yα ≤ Qα′−1. If A ≤ Qα′−1 then [A, Yα′ ] = [Yα, Yα′ ] ≤ Yα. But η(Gα, A) ≥ 2,
as Vβ is not normal in Gα. Thus A � Qα′−1. By analogy with (1) and (2) we may then
choose λ ∈ ∆(α′ − 1) so that:

(3) |A : A ∩Gλ| = p, and Gα′−1 = 〈a,Gα′−1 ∩Gλ〉 for any a ∈ A−Gλ.

Set A0 = A ∩ Gλ. Then [A0, Yλ] ≤ Yα′−1 ≤ Yα. By 1.12, no element of Qβ − Qα
induces a transvection on A/Yα, so we have Yλ ≤ Qα. We observe that, as a consequence
of (3), Yλ is not A-invariant, and so [A, Yλ] � Yβ . As Yλ ≤ Qβ we have [Vβ , Yλ] ≤ Yβ ,
so we may fix δ ∈ ∆(α) − {β} with [Vδ, Yλ] � Yβ . In particular, we have [Vδ, Yλ] 6= 1,
while Yλ ≤ Qα ≤ Gδ. As YδYβ = Yα we have [Yδ, Yα′ ] 6= 1, and so Yδ � Vα′−1. Then
Yδ � [Vδ, Yλ], so [Vδ, Yλ ∩ leqQδ] = 1. In particular, we have Yλ � Qδ, and by analogy
with (1) we may fix γ ∈ ∆(δ) so that |Yλ : Yλ ∩Gγ | = p and so that Gδ = 〈Gγ ∩Gδ, Yλ〉.
Then [Yγ , Yλ] 6= 1. But [Yγ , Yλ∩Gγ ] = 1 as Yδ � Vα′−1. As p < q it follows that Yγ � Gλ,
and then (3) yields 〈Yγ , Gα′−1∩Gλ〉 = Gα′−1. Then Qα′−1∩Qλ = CQα′−1

(Yλ) E Gα′−1,
again contrary to 1.9. This contradiction completes the proof of 4.2. �

Lemma 4.3. Assume that b ≥ 3 and that F ∗p (H) = Fp(H). Then H is solvable, P is
solvable, and either p = 2 or (NH(P )P,H) is a weak BN -pair in characteristic 3.

Proof. Set D = Fp(H), X = Op(P̃ ), and R = Op(Op(P ))QH . As always, set H =
H/CH(Ṽ ). Suppose first that X ≤ D. Then H = (P ∩ C̃)D, H is solvable, and 4.2
implies that P is solvable. By 2.3 there exists a subgroup A of R such that A is a non-
identity quadratic F2-offender on Ṽ . Set R0 = 〈AP∩H〉, and suppose that R0 ≤ Op(P̃ ).
As [Op(P̃ ), Op(P̃ )] is a p- subgroup of Fp(H), we then have R0QH E 〈Op(P̃ ), P∩H〉 = H,
contrary to A � QH . Thus we may assume to begin with that A � Op(P̃ ).

Suppose that p 6= 2. As A acts non-trivially on D, DA involves SL(2, p), so we obtain
p = 3, P̃ is a {2, 3}-group, and D is a 2-group. As P is solvable we get also q = 3,
and P ∩H = S〈t〉 where t is an involution satisfying [S, t] ≤ R. Set L = 〈AH〉, and set
L0 = O3(L). Then 3.10 shows that L0 can be written as L0 = K1 · · ·Ks, where each
Ki is a normal quaternion subgroup of L, and where |[Ṽ ,Ki]| = 9 or 81. Denote by L1

the inverse image in L0 of Z(L0). Thus L1 is an elementary abelian 2-group, and it then
follows from “P1- uniqueness (i.e. from 1.2 and 1.3(4)) that L1 ≤ NG(YP ).

Suppose s = 1. As X ≤ L0 we then have H ∼= GL(2, 3) and (NH(P )P,H) is a weak
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BN -pair. Thus, we may assume that s > 1. Notice that CL1(ỸP ) centralizes Ṽ , as
Ṽ = 〈(ỸP )L0〉. Thus L1 acts faithfully on ỸP , and since |ỸP | = 3 we then have s = 2,
Z(K1) = Z(K2), and Ṽ = [Ṽ , D] is a natural O+

4 (3)-module for H. Here |A| = 3 and
|Ṽ /CeV (A)| = 9, so 2.3 shows that b = 3, and if (α, β, γ, α′) is a critical path in Γ then
Vβ is a quadratic F2-offender on Ṽα′ . But VβQα′ is normal in (Gβ ∩ Gα′)Qα′ , and one
may observe that (Gβ ∩ Gα′)Qα′ = Gγ ∩ Gα′ = P ∩H. But A is not normal in P ∩H
since t interchanges K1 and K2. This contradiction proves that either the lemma holds
holds or:

(1) We have X � D.

We may now assume that (1) is the case. If D ≤ NH(R) then [D,R] ≤ QH , and
then 1.10 yields [D,O

p
(H)] = 1. This implies that Op(H) ≤ D, contrary to (1), so we

conclude that D � NH(R). In particular, D � NG(Op(P )). Minimality of H implies
that 〈P, P1〉 ∈ L for any P1 ∈ PDS(S), and then P1-Uniqueness (1.2 and 1.3(4)) yields
q = 2 or 3. Notice that, by 3.10, A is generated by elements a such that |Ṽ /CeV (a)| ≤ p2.
Then 3.12 yields p = 2, whence also q = 2 and P ∩ H = S. Thus H = P̃ , and D is a
3-group, with |[D,R]| = 3. Then |R| = 2, so R = A and |[Ṽ , R]| ≤ 4. We now appeal
to 3.13, and find that H/D is a symmetric group of degree 2n + 1 for some n, and that
RD/D is generated by a transposition. Then NH(R)D is not maximal in H. This is
contrary to P1-Uniqueness, and the lemma is thereby proved. �

Lemma 4.4. Suppose that F ∗p (H) 6= Fp(H). Then H = (P ∩H)Ep(H), and Op(P̃ ) ≤
Ep(H). Moreover, H acts transitively on its set of p-components.

Proof. Let K be a p-component of H, and set L = 〈KH〉. Suppose that Op(P̃ ) � L.
Then S ∩ L E P̃ , and since P ∩ H0 = Op(P ∩ H) we have also S ∩ L E P ∩ H. Thus
S ∩ L E H, and L is a p′-group.

As L ≤ H0 we have [L,H0] � QH , and so [L,Op(P̃ )] � QH . Set R = Op(Op(P )). As
R � Op(P̃ ), by 1.10, [L,R] is not a p-group. Then 1.4 shows that L = 〈NL(R)〉P1 where
P1 ∈ PLS(S), and where P1 involves SL(2, q). As L is a p′-group we then have q ≤ 3,
|P1 : NP1(R)| ≤ 4, and P 1 ∩ L is an r-group, where {p, r} = {2, 3}. Further, a Frattini
Argument implies that S normalizes a Sylow subgroup of L for every prime divisor of
|L|, so 1.4 now yields |L : NL(R)| ≤ 4. As no non-abelian simple group has a subgroup
of index less than 5, we have a contradiction. Thus Op(P̃ ) ≤ L, and then L = H0. This
yields the lemma. �

In the following lemma there is some non-standard notation. For a group X we write
Zp(X) for the complete pre-image in X of Z(X/Op(X)).

Lemma 4.5. Suppose that H is non-solvable. Then the following hold.

(a) Op(P̃ ) is a product of p-components of H.
(b) If K is any p-component of H then K/Zp(K) ∈ Lie(p) or p = 2 and K/Z2(K)

is an alternating group Alt(2n + 1), n ≥ 3.
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Proof. As H is non-solvable, 4.3 implies that F ∗p (H) 6= Fp(H), and the preceding lemma
then yields H = (P ∩H)Ep(H), with Op(P̃ ) ≤ Ep(H).

Set T = CS(YH). Then T is a Sylow p-subgroup of TH0, and T ≥ Op(Op(P ))QH .
Recall the notation given in section 0, and set r = r(T, Ṽ ) and A = AF∗(T, Ṽ ). Further,
set T0 = 〈A〉. Notice that, by 2.3, we have r ≤ 2. As T0 � QH , we have T0 � Op(P̃ ),
and therefore we may fix A ∈ A with A � Op(P̃ ). As F ∗p (H0) = Ep(H0) we may choose
a p-component K of H such that [K,A] 6= 1. Then H0 = 〈KH〉, by 4.4.

Set L = 〈K,A〉, and suppose first that K ∼= SL(2, pn) for some n. Then (ii) holds,
and we may assume that (i) is false. Then S ∩Ep(H) E P̃ . As CP∩H(YH) = Op(P ∩H),
a Frattini Argument then shows that S∩Ep(H) E H, which is absurd. Thus, the lemma
holds in this case, and we may assume henceforth that K is not isomorphic to SL(2, pn).
Then 3.4 implies that L = KA, K is invariant under 〈AH〉, and there exists a subgroup B
of L with |B| > 2, such that B acts faithfully on K and quadratically on some non-trivial
L-invariant section of Ṽ . Then 3.5 shows yields:

(1) We have K/Z(K) ∈ Lie(p), or else p = 2 and K/Z((K)) is isomorphic to Alt(m) for
some m, or to U4(3), or a sporadic group.

Set X = Op(P̃ )(S ∩ Ep(H)). As Op(P̃ ) ≤ 〈AH〉, K is X- invariant, and indeed every
p-component of H is X-invariant. We may therefore assume that K has been chosen so
that S ∩ K � Op(X). Then Op(P̃ ) ≤ [Op(P̃ ), S ∩ K] ≤ K. Set X1 = (S ∩ K)Op(P̃ )
and set N = NP∩H(K). As we have already seen, (ii) follows from (i) via 3.6, so we
may assume that K 6= X1. Denote by M the set of maximal subgroups of K containing
X1, and let M ∈ M. As H0QH = Ep(H) = 〈X1, P ∩H〉 we have K = 〈(M)N 〉. Thus,
K has an automorphism φ which fixes a Sylow p-subgroup of K, and which moves a
maximal subgroup of K containing that Sylow p-subgroup. In the case of the sporadic
groups listed in (1), with p = 2, there is no such automorphism, as one may check using
[Aschbacher].

Suppose that p = 2 and K/Z(K) ∼= U4(3). Then M/Z(K) is of the form 24 : Alt(6),
and |N : NN (M)| = 2. The two maximal subgroups of M containing Z(K)(S ∩K) are
invariant under all automorphisms of K which fix S∩K, so we conclude in this case that
X1 is N -invariant. But K = 〈(X1)N 〉, and so we have a contradiction in this case.

If p = 2 and K is an alternating group Alt(m) then N ≤ S, and we again have
K = 〈(X1)N 〉 = X1, for a contradiction. Thus, we are now reduced to the case where
K is a group of Lie type in characteristic p. We shall say that a subgroup P 0 of K is
“parabolic” if P0 ≥ Z(K mod CH(Ṽ )) and P 0/Z(K) is a parabolic subgroup of K/Z(K)
in the ordinary sense. Thus, M is a maximal parabolic subgroup of K, and as M is
not N -invariant it follows that some element of N induces a non-trivial automorphism
on the Coxeter diagram associated with K. Let M0 be a parabolic subgroup of M
which is minimal subject to containing X1. Then K = 〈(M0)N 〉. As P̃ ∈ P, it follows
from inspection of the various Coxeter diagrams that M0 is in fact a minimal parabolic
subgroup of K, that M0 = M is uniquely determined, and that K/Z(K) is of Lie rank
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2. Then S normalizes M0, so p is odd, and K/Z(K) is isomorphic to L3(pn) or G2(3n)
for some n. Moreover, we have |N : NN (M)| = 2.

Set D = NH(S ∩ Ep(H)), and suppose next that D ≤ NH(Op(P )). Let N1 be a Hall
p′-subgroup of N . Then [D∩K,N1] ≤ P ∩K ≤ Op(P ∩H)∩K, and thus N1 acts trivially
on the group I = (D∩K)/(S∩K). But in fact, any automorphism of K which acts non-
trivially on the diagram for K also acts non-trivially on I, so we have a contradiction
in this case. Thus D � NH(Op(P )). Then 1.4 shows that there exists P1 ∈ PDS(S)
such that 〈P, P1〉 ∈ L, with P1 � NH(Op(P1)). Set J = 〈P, P1〉. By 1.3(4) we have
J/CJ(YJ ) ∼= SL(3, q) or Sp(4, q), and since D is solvable, by 1.11(b), we conclude that
q = 3, P1/O3(P1) ∼= SL(2, 3), and |P ∩H : S| = 2. As O3(P̃ ) ≤ K, K is S-invariant, and
we may now conclude that N = P ∩H and that QHK = Ep(H). Then E(H)S/E(H)
may be identified with a subgroup of Out(K) covered by field automorphisms. It follows
that [I, S] ≤ S ∩ K. As [P 1, S] is not a p-group, we have a final contradiction at this
point, proving 4.5. �
Lemma 4.6. There is then a unique maximal subgroup of H containing P ∩H.

Proof. Immediate from 4.5 and 4.3. �
For the remainder of this section, denote by M the unique maximal subgroup of H

containing P ∩H, and set N = NH(YP ). Also set R = Op(Op(P ))QH , set r = r(R, Ṽ ),
and fix A ∈ A(R, Ṽ ).

Lemma 4.7. Let K be a p-component of H. Then K/Z(K) is of Lie type in characteristic
p. Moreover, the Lie rank of K is at most 2, and if equal to 2 then p = 2 and
K/Z(K) ∼= L3(2n) or Sp(4, 2n) for some n.

Proof. Evidently N ≤M . Suppose first that this inclusion is proper. Set M0 = Op(M ∩
H0). Then M = (P ∩ H)M0, and so M0 � NG(YP ). As M0S is a proper subgroup
of H, we have 〈P, P1〉 ∈ L for every P1 ∈ PM0S(S), and the P1!-Theorem then says
that there is a unique P1 ∈ PM0S(S) such that P1 � NG(YP ), and moreover, we have
Op(P1/Op(P1)) ∼= SL(2, q)′. Suppose now that a p-component K of H is of Lie type
in characteristic p. Then M0/Op(M0) is abelian, and hence q = 2, P ∩ H = S, H =
〈P̃ , P ∩H〉 = P̃ , and the lemma holds. In view of —- we may therefore assume that p = 2
and that K ∼= Alt(2n + 1) for any 2-component K of H. If n ≥ 4 then M0S is generated
by the elements of PM0S(S) − {P1}, by —-, and M = N in that case. Thus, we have
n = 3, and M0

∼= Alt(8) ∼= L4(2). Again, P1! implies that q = 2 and then that H = P̃ .
Then S acts transitively on the set of 2-components of H, and since P1/O2(P1) ∼= L2(2)
it follows that there is just one 2-component in H.

Suppose that a∗ < 2. Then —- shows that [Ṽ ,K] is the irreducible permutation
module for K. Then C[eV ,K](S ∩ K) = C[eV ,K](M0), and this group is of order 2. But

also Ṽ = 〈(ỸP )K〉, where |ỸP | = 2, so it follows that YP is M0-invariant in this case. We
conclude from —- that a∗ = 2, b = 3, and A may be chosen so that A is normal in N .
Here N ∩M0 is a maximal parabolic subgroup M1 of M0, and inspection of these then
shows that A = O2(M1) (of order 8 or 16). Now — shows that there is no F2-module
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for K on which A is a quadratic F2-offender. By this contradiction, we may assume
henceforth that M = N .

Then —- shows that p = 2, K is isomorphic to Alt(2n + 1) for some n, n ≥ 3,
and we have M = N . But one may observe that O2(M ∩ H0) = O2(H), and hence
CS(Z0) = O2(H). But this means that S ∩H0 = O2(H), which is evidently untrue. �
Lemma 4.8. Assume that H is non-solvable. Then there are normal subgroups Li of
H0 and subgroups Vi of V , 1 ≤ i ≤ s, such that

(1) H0 = L1 · · ·Ls,
(2) [Li, Lj ] ≤ QH for all i 6= j,
(3) Vi = [V, Li], and [Ṽi, Lj ] = 1 for all i 6= j,
(4) Set L = L1 and set W = V1/CV1(L). Assume that the indexing has been chosen

so that [L,A] 6= 1, let A0 be a complement in A to CA(L), and set r0 = r(A0,W ).
Then one of the following holds.

(a) L is isomorphic to SL(2, pn), and W is a natural module for L.
(b) r0 = 2, L ∼= SU(3, pn) or Sz(pn), and W is a natural module for L.
(c) r0 = 2, L ∼= SL(2, pn), and W involves two non-trivial constituents for the

action of L, each of which is a natural module.
(d) r0 = p = 2, L ∼= Sp(4, 2n)′ and W is the direct sum of a natural and a

contragredient module for L.
(e) p = 2, L ∼= SL(3, 2n) and W is the direct sum of a natural and a dual

module for L.
(f) L ∼= Ωε4(pn) and W is a natural orthogonal module for L.

(5) Ṽ = Ṽ1 · · · ṼrCeV (H0A).

Proof. Choose K so that [K,A] 6= 1, and with K ≤ P̃ . Set L = [K,A] and W = [V, L].
Then 0.1 says that CA(L) = CA(W̃ ) and that r(A0, W̃ ) ≤ r(A, Ṽ ) for any complement
A0 to CA(K) in A. In particular, we have r(A0, W̃ ) ≤ 2. Fix an irreducible K-submodule
Û of Ŵ , and denote by X the product of all of the p-components of H which are not
contained in L.

Suppose first that L 6= K, and let a ∈ A0 with K 6= Ka. Then Û ∩ (Û)a = 1, and so,
in particular, we have |W̃/CfW (a)| > 4. Then |A0| 6= 2, and we may appeal to Theorem
3 of [PG(V )-paper] for the structure of LA0 and of W̃ . Thus, p = 2, L ∼= Ω +

4 (2n) for
some n, and W̃ is a direct sum of natural orthogonal modules for L. As r(A0, W̃ ) ≤ 2,
one easily determines that η(L, W̃ ) = 1, and thus [W̃ ,X] = 1.

Suppose next that L = K, and set K∗ = NS(K)K. Suppose that η(K∗, W̃ ) > 1. Then
3.— says that K ∼= SL(2, pn), that η(K, W̃ ) = 2, and that the K-irreducible constituents
of Ŵ are natural SL(2, pn)-modules for K. It follows from —– that there exists at most
one p-component K1 of X such that [W̃ ,K1] 6= 1, and that if such a p-component K1

exists, then KK1
∼= Ω +

4 (pn) and W̃ is a natural orthogonal module for KK1.
If η(K∗, W̃ ) = 1 then also η(K, W̃ ) = 1 and [W̃ ,X] = 1. With 3.— , the lemma now

follows �
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Lemma 4.9. Suppose that H is non-solvable, and suppose that M 6= N . Set U =
〈(YP )M 〉. Then q = 2, H = P̃ , |YP | = 4, and |U | = 8.

Proof. As M 6= N , and since M = (M ∩H0)(P ∩H), it follows from 1.4 that there exists
P1 ∈ P(McapH0)S(S) such that 〈P, P1〉 ∈ L, and such that Op(P1/Op(P1)) is isomorphic
to the commutator subgroup of SL(2, q). On the other hand, (M ∩H0)/Op(M ∩H0) is
abelian, by inspection of the set of outcomes in 4.8(4). Thus q = 2, P ∩ H = S, and
H = P̃ . Set J = 〈P, P1〉. Then 1.3(4) says that J/CJ (YJ) is isomorphic to L3(2) or
Sp(4, 2), and that YJ is a natural module for J/CJ(YJ). Then |U | = 8. �

Lemma 4.10. Assume that H is non-solvable, let K be a p-component of H, and set
V̂ = V/CV (H0). Then one of the following holds.

(i) K is the unique p-component of H, M = N , K ∼= SL(2, q) or Sz(q), and V̂ is a
natural module for K. Moreover, if K ∼= Sz(q) then b = 3.

(ii) q = 2 and K ∼= L3(2) or Alt(6).
(iii) q = 2, M 6= N , H ∼= Sym(5), and V̂ is a natural ΓL(2, 4)-module for H.
(iv) q = 2, M = N , b = 3, H ∼= Alt(5) or Sym(5), and V̂ is an Ω −

4 (2)-module for
H.

Proof. Set U = 〈(YP )M 〉 and set Mi = Op(M ∩ Li), 1 ≤ i ≤ s. If M1 = 1 then it follows
from 4.8(4) that L ∼= L3(2) or Alt(6), so that outcome (ii) of the lemma holds in this
case. We may therefore assume that M1 6= 1.

Suppose first that [U,M1] = 1. Then [U,Op(M ∩ H0)] = 1, and since M = (M ∩
H0)(P ∩H) it follows that YP is M -invariant. Further, as CeV (M ∩H0) 6= CeV (H0), and
since M1 6= 1, it follows that 4.8(4)(f) holds with pn = 2 and with ε = −1. Here R is
M -invariant, by 1.7, so we have A ≤ H0QH , and then r0 = 2. As r0 ≤ r, by 0.1, 2.3 now
implies that b = 3. Thus (iv) holds, and we may assume henceforth that [U,M1] 6= 1.

Suppose next that we have s > 1, and then suppose further that there exists an element
z in ([U,M1]∩ YP )− YH . Then QP ∩QH = CQH (z) is invariant under 〈P ∩H,L2〉 = H,
contrary to 1.9. Thus [Ũ ,M1]∩ ỸP = 1. This yields U 6= YP , and then 4.9 yields |Ũ | = 4.
Since [Ũ ,M1] 6= 1 we obtain Ũ ≤ V1, contrary to s > 1. We have therefore shown that
s = 1.

As P∩H acts irreducibly on ỸP , and as YP is not normal in H, we have CYP (Op(H)) =
YH . Thus |ŶH | = |ỸH | = q. Further, we have [YP , S∩L] ≤ YH , since S∩L ≤ Op(P ∩H).

Suppose that L ∼= SL(2, pn) and that V̂ is a natural module for L. Supposing that
M = N , we obtain q = pn, and so (i) holds. On the other hand, suppose that M 6= N .
Then q = 2, H = P̃ , |Ũ | = 4 and L ∼= SL(2, 4), by 4.9. Further, there exists P1 ∈ PM (S),
and therefore H ∼= Sym(5). Thus (iii) holds in this case, and we may assume henceforth
that the pair (L, V̂ ) does not consist of SL(2, pn) and a natural module. In particular, b
is then odd, as follows from 2.1 and 3.9.

Fix a critical path (α, β, · · · , α′), and take H = β and P = β + 1. As b is odd,
1.15(b) yields Yβ ∩ Yα′ = 1. Setting V0 = V ∩ Qα′ , and taking A = Vα′ , we then have
[V0, A ∩QH ] = 1.
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Suppose next that |Yα/(Yα∩Qα′)| < q. Then A∩Qβ centralizes Yα. AsM is the unique
maximal subgroup of H containing P ∩ H, we may choose a vertex δ ∈ ∆(α′) so that
〈Yα, Gα′ ∩Gδ〉 = Gα′ . Suppose further that |Yδ/(Yδ ∩Qβ)| < q. Then CQα′ (Yδ ∩Qβ) =
Qα′ ∩ Qδ which is then normal in Gα′ , contrary to 1.9. By symmetry, we may then
assume:

(1) |Yα/(Yα ∩Qα′)| ≥ q.
Suppose next that r = 2. Then 2.3 implies b = 3, and 1.16 implies that A is normal

in P ∩ H. Suppose that L ∼= SU(3, pn), Sz(2n), or SL(2, pn), as in 4.8(4b) or 4.8(4c).
The quadratic action of Vβ on Vα′/Yα′ then yields |V/V0| ≤ pn, and then q ≤ pn by (1).
Here [V0, A] ≤ Yα′ ≤ YP . The condition q ≤ pn then eliminates the possibility that Ŵ
is a 3-dimensional unitary module over Fp2n , and shows that |ŶP | = pn. If H0

∼= Sz(2n)
we then have outcome (i) of the lemma. So assume that L ∼= SL(2, pn) and (as stated
in 4.8(4c)) that V̂ involves two natural modules for L. Then |[V̂ , A]| ≥ p2n, and thus
[V,A] � YP . Then also V ∩ A � YP . On the other hand, we have [V ∩ A,QP ] =
[V ∩A, (QP ∩QH)A] ≤ [V,QH ] = YH , and by symmetry we have also [V ∩A,QP ] ≤ Yα′ .
As Yβ ∩ Yα′ = 1, we have thus shown that V ∩ A ≤ Ω1(Z(QP )), which is to say that
V ∩A ≤ YP . This contradiction eliminates the case 4.8(4c).

Suppose next that L is an orthogonal group Ωε4(pn), and that V/CV (H0) is a natural
orthogonal module. Further, assume that A ≤ L. Then r = 2 and, as we have seen,
b = 3 and A is normal in P ∩ H. Quadratic action yields |A| ≤ pn. Further, we have
|CeV (S ∩ L)| = pn, and so q ≤ pn. Set W = Yα′/CYα′ (O

p(Gα′)), and denote by W0 the
image of A ∩ QH in W . Then |W/W0| ≤ pn and |[W0, V ]| ≤ q. It follows that q = pn

and that |A| = q. Suppose q = 2. As H is non-solvable we then have ε = −1 and
L ∼= Alt(5). Here ỸP centralizes M , so 1.7 yields M = N , and we have thus returned to
outcome (iv) of the lemma. We may therefore assume that q > 2, and then M = N by
4.9. Observe that there exists a subgroup X of CM (YP ) with |X| = q− ε. It follows that
[Op(P ), X] ≤ QP . Since A = V g for some g ∈ Op(P ), A is then X-invariant. It follows
that ε = +1.

As P̃ contains a p-component of H, by 4.5(a), there exists an element f of P ∩ H
such that f interchanges the two p-components of H. If p is odd then 1.16 shows that f
may be chosen in Gβ ∩ Gα′ , so that f normalizes A. But for p odd the only quadratic
subgroups of L are contained in components of L, so we now conclude that p = 2.
Then f may be chosen to induce an Fq-transvection on V̂ , centralizing ŶP in particular.
Then f ∈ O2(P ∩ H) = QPQH , so we may take f ∈ QP . Then f normalizes A, and
indeed [A, f ] ≤ [A,QP ] ≤ A ∩ QH , since ’ [W,QP ] = [W,O2(Gγ ∩ Gα′)] is the unique
3-dimensional Fq-subspace of W which is invariant under QP . Thus [A, f ] = 1.

Let D be a subgroup of P ∩H of order q−1. Then D acts regularly on ŶP , and hence
D acts as a group of inner automorphisms of L. By 1.16 we may take D to normalize A.
We recall however that A is also invariant under a subgroup X of M of order q− 1, such
that X centralizes ŶP . It follows that A is normal in M . But the only proper M -invariant
subgroups of S ∩L are contained in components of L, so we have a contradiction at this

24



point.
We are reduced to the case where A � L. Then [M,A] is not a p-group. We recall

however that A ≤ R and that N normalizes R. Thus M 6= N , and 4.9 yields q = 2
and |U | = 8. As YP is not normal in M we then have Û 6= ŶP , and so |Û | = 4. This
implies that 2n = 4. Also, we note that [YP , A] = 1, A acts as a group of F4-linear
automorphisms of V̂ , and hence |A : A ∩H| = 2. Then also |A| ≤ 8. By symmetry we
have also |V/V0| ≤ 8

Suppose that |A| > 2, and let a be a non-identity element of A∩L. Then |CbV (a)| = 16,
and since [V0, A] ≤ Yα′ , of order 2, it follows that |V/V0| ≥ 8. Again by symmetry, we
conclude that |A| = 8 and that |A ∩ L| = 4 But CbV (a) = CbV (b) for any non-identity
element b of A∩L, and this is inconsistent with [V̂0, A] being of order at most 2, and with
|V̂ /V̂0| < 16. We therefore conclude that |A| = 2, and also, by symmetry, |V/V0| = 2.
Then A induces an F4-transvection on V̂ , and similarly for V on W . As V0 and A∩QH are
index-2 subgroups of V and A, respectively, we obtain [V0, A] = Yα′ and [V,A∩QH ] = YH .
Now 2.3 implies that b = 3.

As A is F4-linear on V̂ , and as [V,A] ≥ YH , we have |[V,A]| ≥ 8. Now [V̂ , QP ] is the
unique QP -invariant 3-dimensional subspace of V̂ , and is therefore equal to CbV (A). Thus
[V,QP , A] ≤ CV (Op(H)). But also [V,QP , A] ≤ [V0, A] ≤ Yα′ , and since YP = YHYα′ we
have [Yα′ , Op(H)] 6= 1. Thus [V,QP , A] = 1, and symmetry yields also [A,QP , V ] = 1.
Then [A, V ] ≤ Ω1(Z(QP )), by the Three Subgroups Lemma, and so [A, V ] ≤ YP . As
|[A, V ]| > 4 we have a contradiction, and have thereby succeeded in ruling out the case
given by 4.8(4f).

It remains now to consider the cases where p = 2 and L ∼= SL(3, 2n) or Sp(4, 2n),
with n > 1. Here (1) implies that |ỸP | > 2 and so M = N . Thus ỸP is invariant under
a Borel subgroup of L, as well as being invariant under an element of S which induces a
diagram automorphism on L. It follows that ỸP covers CbV (S∩L), and so |ŶP | = 22n. But
O2(P ∩H) acts transitively on ŶP while preserving any non-trivial irreducible L-invariant
section of V̂ . This is contrary to η(L, V ) = 2, so we have succeeded in eliminating cases
(4d) and (4e) of 4.8. The proof of 4.10 is thereby complete. �

Section 5: Two special cases

Our goal in this section is to show that outcomes (ii) and (iv) in lemma 4.10 can not
occur.

Lemma 5.1. Suppose that q = 2, and let K be a 2-component of H. Then K is not
isomorphic to L3(2) or to Alt(6).

Proof. Suppose false. Choose a critical path (α, β, · · · , α′) in Γ, and take H = β and
P = β + 1. Notice that Ṽ is not an F1-module for H, as follows from 3.7, and then
2.1 implies that b is odd. Note also that we have Gβ ∩ Gβ+1 = P ∩H = S, and hence
H = P̃ .
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Denote by K the set of 2-components of H, and write K = {K1, · · · ,Ks}. For any i,
1 ≤ i ≤ s, set Vi = [V,Ki]. Then 4.8 shows that we have Ṽ = CeV (H0) × Ṽ1 × · · · × Ṽr,
and Ṽi is the direct sum of two non-isomorphic modules for Ki, each of dimension 3 if
K ∼= L3(2), or 4 if K ∼= Alt(6). We recall also that NS(Ki) contains an element which
induces a diagram automorphism on Ki (viewed as a group of Lie type in characteristic
2) and which interchanges the two irreducible submodules of Ṽi.

Suppose first that we have b ≥ 5. By 2.3 we may then assume that Vα′ is a quadratic
F2∗-offender on Ṽβ , and further that Yβ � Vα′ , while Yα′ ≤ Vβ . In particular, 4.8 and
0.1 show that Ki

∼= L3(2) for all i.
Fix a 2-component K of H such that [K,Vα′ ] 6= 1, and set VK = [V,K]. As Vα′

acts quadratically on Ṽβ we have |Vα′/CVα′ (K)| ≤ 4. As Yβ � Vα′ we have also
[VK , CVα′ (K)] = 1. Thus |Ṽα′/CgVα′ (VK)| ≤ 4. But also |[ṼK , Vα′ ] ≥ 4 as η(K,VK) = 2,

and so VK � Qα′ . It now follows that |VK/(VK ∩Qα′)| = 2 and that |Ṽα′/CgVα′ (VK)| = 4.

Further, we have Vα′ ≤ CH(K)K.
Let Ũ1 and Ũ2 be the two K-submodules of ṼK of order 8, with the indexing chosen

so that Vα′ projects modulo CH(K) to the unipotent radical of the stabilizer of a point
in Ũ1 and of a line in Ũ2. Set U0 = VK ∩ Qα′ . As we have seen, Ũ0 is a hyperplane of
ṼK , and [Ũ0, Vα′ ] = Ỹα′ , of order 2. Then Ũ0 = Ũ1 × [Ũ2, Vα′ ], and Ỹα′ ≤ U1. Now K is
uniquely determined among the 2-components of H by the condition that Yα′ lie inside
VK . Thus [H0, Vα′ ] = K, and K ≥ Vα′ . In particular, we now have |Vα′/CVα′ (Vβ)| = 4.
Then also |Vβ/(Vβ ∩ Qα′)| = 2, and [O2(Gα′), Vβ ] contains a unique 2-component L of
Gα′ .

Set Xβ = 〈(Wα)Gβ 〉. As b ≥ 5 we have [Wα, Xβ ,Wα] ≤ [Wα,Wα] = 1. Also [Vβ , Xβ ] =
1 and so, recalling that Yα′ ≤ Vβ , we have [Yα′ , Xβ ] = 1. By the definition of b, we have
Xβ ≤ Gα′−2, and Xβ centralizes Yα′−2Yα′ = Yα′−1. Since P ∩ H = S is maximal in
H, it now follows that Xβ ≤ Qα′−1, and so Xβ ≤ Gα′ . Then L is Xβ-invariant. Set
Gα′ = Gα′/CGα′ (Ṽα′). As [Wα, Xβ ,Wα] = 1, where also Φ(Wα) = 1, it follows that
either

(i) |Wα/CWα(L)| = 2, or

(ii) |Xβ/CXβ (L)| ≤ 8.

Set VL = [Vα′ , L], and suppose that (i) holds. Then Wα = CWα(L)Vβ , and hence

[VL,Wα] ≤ Yα′ [VL, Vβ ] ≤ Vβ ≤Wα.

and hence Wα E 〈Gα, VL〉. But VK = (VK ∩ Qα′)Yα, so |[Yα, VL]| ≥ 4, and thus VL �
Gα. Then 〈Gα, VL〉 = 〈Gα, Gβ〉, contrary to O2(〈P,H〉) = 1. Thus (ii) holds. Then
|Xβ/CXβ (L)Vβ | ≤ 4. But [CXβ (L)Vβ , VL] ≤ Vβ , so Xβ/Vβ is an F1-module for Gβ via
the action of VL. (Indeed, we have |VL/CV L(Vβ)| = 4.) As Gβ has no F1-modules, we
conclude that [Xβ , O

2(Gβ)] ≤ Vβ , so that Wα E Gβ , again contrary to O2(〈P,H〉) = 1.
This proves:
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(1) b = 3.

Set γ = β+1. By 1.16 we have QβVα′ E Gβ∩Gγ , and quadratic F2-action then implies
that Vα′ = Z(S∩H0). As b = 3, 1.17 implies that [Vβ , Vα′ ] ≤ Dγ and that [Dγ , Gγ ] ≤ Yγ ,
where we recall from section 1 that Dγ denotes ∩{Vδ}δ∈∆(γ). Thus [Ṽ , Z(S ∩H0), S] is
of order at most 2. As S acts transitively on the set K of 2-components of H, it follows
that |K| = 1.

Write V0 for Vβ ∩ Qα′ and set V̂ = V/CV (H0). Suppose that H0
∼= Alt(6). Then

|V/V0| = 4 and |[V0, Vα′ ]| ≤ 2. Further, we have V0 E Qβ(Gβ ∩G′α) = S, by 1.16, which
implies that V̂0 intersects each of the two irreducible H0-submodules of V̂ in a hyperplane.
But then |[V̂0, Vα′ ]| > 2, and we have a contradiction. As Vα′ E S we conclude:

(2) H ∼= Aut(L3(2)) and, setting A = Vα′ , we have A = Z(S).

Observe that [V,A] ≥ YβYα′ = Yγ = YP . As V = 〈(YP )H0〉 and as A ≤ H0, it follows
that Ṽ = [Ṽ ,H0]. That is:

(3) CV (H0) = YH .

Choose λ ∈ ∆(α) − {β}, and set Q∗α = (Qλ ∩ Qα)(Qα ∩ Qβ). Then Q∗α E Gα, and
[O2(Gα), O2(Gα)] ≤ Q∗α. As usual, set Dα = ∩{Vδ}δ∈∆(α). We then claim:

(4) [Dα, Gα] = Yα.

Indeed, setting X = 〈(Qβ)Gα〉, we have [Dα, X] = Yα and Q∗α ≤ X. There is a natural
embedding of Qα/CQα(Dα) into Hom(Dα/Yα, Yα), and so Qα/CQα(Dα) is isomorphic
to a direct sum of natural modules for Gα/Qα. Thus Qα = CQα(Dα)[Qα, O2(Gα)] =
CQα(Dα)Q∗α, and this proves (4).

Notice that ỸP = CeV (S). Notice further that CeV /eYP (S) = CeV (S ∩ H0)/ỸP . As
Dα/YP centralizes S, by (4), we then have:

(5) |Dα/Yα| ≤ 2.

Next, since Yα does not induce a transvection on Ṽα′ we obtain |Vα′/CVα′ (Yα)| ≥ 4.
We may then choose an element t ∈ Vα′ ∩ Qβ − Qα. Now CVλ(t)Yα E 〈Qλ, t〉, and
〈Qλ, t〉 ≥ O2(Gα). Therefore CVλ(t)Yα ≤ Vλ∩Vβ . Further, we have Vλ∩Vβ E O2(Gα)Qβ ,
so that Vλ ∩ Vβ = Dα. With (5) we then have:

(6) |CVλ(t)Yα| ≤ 8, and CVλ(t)Yα ≤ Dα.

On the other hand we have |Vλ/(Vλ ∩ Gα′)| ≤ 4, so Vλ/(Vλ ∩ Qα′)| ≤ 16, and so
|Vλ/CVλ(t)| ≤ 32. As Yα � CG(t) we then have |Vλ/CVλ(t)Yα| ≤ 16, and as |Vλ| = 27 we
conclude from (6) that |CVλ(t)Yα| = 8, that CVλ(t)Yα = Dα, and that equality holds in
each step in achieving this calculation. In particular, we have [Vλ ∩Qα′ , t] 6= 1, and so

(7) [Vλ ∩Qα′ , t] = Yα′ .
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Similarly, we have Vλ ∩Gγ � Qγ . Choose t′ ∈ (Vλ ∩Gγ)−Qγ . By symmetry, we have
CVα′ (t

′)Yγ = Dγ , and [Vα′ ∩Qλ, t′] = Yλ. Now

Vα′ ∩Qλ ≤ Vα′ ∩Gλ ≤ CVα′ (Yλ) ≤ [Vα′ , Gγ ∩Gα′ ]

= [Vα′ , Qγ ] ≤ [Wγ , Qγ ].

As t′ ∈ Gγ we then have [t′, Vα′ ∩Qλ] ≤ [Wγ , Qγ ], and so Yλ ≤ [Wγ , Qγ ].
For any δ ∈ ∆(γ) we have VδQα′/Qα′ ≤ Z((Gδ ∩ Gα′)/Qα′), and so WγQα′/Qα′ ≤

Z((Gδ ∩Gα′)/Qα′). Then [Wγ , Qγ ] ≤ Qα′ , and so Yα ≤ Qα′ . As (α, α′) is a critical pair,
we have a final contradiction, which then completes the proof of 5.1. �

Lemma 5.2. [Outcome (iv) of lemma 4.10 is out]

Proof. To be provided. (It is in fact very easy, and very short. Maybe set it inside
4.10.) �

Section 6: The Rudvalis Case

We begin by warning the reader that we shall often write Z for YH .

This section is concerned with outcome (iii) of lemma 4.10. We begin with two lemmas
on modules for L3(2).

Lemma 6.1. Let V be a module for L over F2, where L ∼= L3(2). Assume that there
exists a parabolic subgroup P of L and an element x of V such that V = 〈xL〉 and
dim(〈xP 〉) = 2. Then η(L, V ) ≤ 2.

Proof. Set S = CP (x). Then S is a Sylow 2-subgroup of L, and so S is contained in a
(proper) parabolic subgroup P1 of L, P1 6= P . Set U = 〈xP 〉 and set U1 = 〈xP1〉. Let W
be a maximal L-submodule of V .

Observe that dim(U1) ≤ 3. Suppose first that U1 = 〈x〉. Then |xL| = 7 and so
dim(V ) ≤ 7. As any non-trivial L-module has dimension at least 3, we have η(L, V ) ≤ 2
in this case. Suppose next that dim(U1) > 1, and let y be an element (possibly 0) of
CU1(P1). If y /∈W for any choice of W then V = 〈yL〉 and, again, we obtain dim(V ) ≤ 7
and η(L, V ) ≤ 2. As dim(CU1(P1)) ≤ 1 we may therefore take CU1(P1) ≤ W . Setting
V = V/W , barV is then an irreducible L-module, with dim(〈xP 〉) = dim(〈xP1〉) =
2. There are only four isomorphism classes of irreducible F2L-modules, and the given
conditions identify V as the adjoint module (which is also the Steinberg module) for L.
In particular V is projective, so W = 0, and η(L, V ) = 1. �

Lemma 6.2. Take L = L3(2) and let W = sl(3, 2) be the F2L-module consisting of
three-by-three matrices of trace zero. Then L has exactly six orbits on the set of non-zero
vectors of W . We may denote these orbits by On, n = 2, 3, 4, 6, 7, 8, where n is the
cardinality of CL(wn), wn a representative of On. The elements wn may be taken as
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follows.

w2 =




0 0 1
0 0 0
1 0 0


 w3 =




0 1 0
0 0 1
1 0 0


 w4 =




0 1 0
0 0 1
0 0 0




w6 =




0 0 0
0 1 0
0 0 1


 w7 =




0 1 0
0 0 1
1 1 0


 w8 =




0 0 1
0 0 0
0 0 0




Proof. To determine the cardinalities of the centralizers, notice that w3 and w7 are
elements of L3(2) of order 3 and 7, respectively, and that w4 + I and w8 + I are elements
of order 4 and 2, respectively. A slight knowledge of centralizers in L3(2) thus yields
|CL(wi)| for i = 3, 4, 7, 8. For w2 and w6, some straightforward matrix computation is
called for. One observes that the summation of all the numbers 168/n, n = 2, 3, 4, 6, 7, 8,
is equal to |W | − 1. �
Lemma 6.3. Suppose that H is non-solvable and that NH(YP ) is not a maximal subgroup
of H. Then q = 2, |S| = 214, and the following hold.

(a) H/O2(H) ∼= Sym(5), and Ṽ is the ΓL(2, 4) module for H/O2(H). Further,
CH(V )/V is a trivial module for O2(H) of order 4, and O2(H)/CH(V ) is isomorphic
to V/Z as modules for H.

(b) Let P1 be the maximal subgroup of H containing S, and set L = 〈P, P1〉. Then
L/O2(L) ∼= L3(2), Φ(O2(L)) = YL, YL is a natural L3(2)-module for L/O2(L),
and O2(L)/YL is the adjoint module for L/O2(L).

Proof. By 4.10, we have q = 2, H0 is a 2-component of H, H is isomorphic to Sym(5),
and V/CV (H0) is a natural ΓL(2, 4)-module for H. Thus NH(YP ) has index 3 in the
maximal subgroup M of H containing P ∩H, and |〈(YP )M 〉| = 8. Observe that M ∈ P.
For this reason we shall henceforth write P1 for M .

Set L = 〈P, P1〉. Then 1.3(4) shows that L/CL(YL) is isomorphic to L3(2), or Sp(4, 2),
with YL a natural L3(2)-module or a natural Sp(4, 2)-module for L. Form the coset graph
Γ∗ = Γ(L,H), and set b∗ = b(L,H). Take α = L and β = H.

For the remainder of this section, take V = Vβ = 〈(YP )H〉 and set W = Wβ = 〈(YL)H〉.
Then Vδ and Wδ are defined for any conjugate δ of β in Γ∗. Also, set U = Uα, β =
〈(YP )P1〉. Then conjugation defines Uλ, µ for any edge {λ, µ} of Γ∗.

Notice that since |V | > |YL|, YL ∩ V is a proper P1-invariant subspace of V . Then
YL ∩ V = U . Further, as YP � Z(O2(H)) we have also U � Z(O2(H)). Then
O2(H)O2(L)/O2(L) is a non-trivial subgroup of O2(P1)/O2(L), and in the case that
L/CL(YL) is isomorphic to Sp(4, 2) it follows thatO2(H)O2(L)/O2(L) is not the transvection
subgroup of order 2 in O2(P1)/O2(L). Thus, in any case we have:

(1) [O2(H), O2(P1)] � O2(L).

We now assume that we have:
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Case A. L/CL(YL) ∼= Sp(4, 2).

Notice that, in this case, (1) implies that [YL, O2(H)] = [YLV,O2(H)] = U . As U is
not normal in H it then follows that YLV is not normal in H, and so YLV 6= W . Thus:

(2) η(H,W ) ≥ 2.

We also note the following.

(3) There is a unique element element t ofO2(P1)/O2(L) such that t induces a transvection
on YL. Moreover, we have [YL, t] = YH .

Suppose next that YlV E L. As |YLV/YL| = |V/(YL ∩ V )| = 4, we then have
[V,O2(L)] ≤ YL. But evidently [V,O2(P1)] = V � YL. Thus:

(4) YLV is not normal in L, and if V ≤ O2(L) then η(L, 〈V L〉) ≥ 2.

Fix a critical path (α, β, · · · , α′) in Γ∗, and suppose first that b∗ is odd. Then b∗ ≥ 3,
by 1.3(6). [OR MAYBE BY AN ARGUMENT TO BE SUPPLIED LATER].

Suppose that Vα′ ≤ Qβ . Then [Vβ , Vα′ ] ≤ Yβ , where Yβ is of order 2. As V/Z is a
ΓL(2, 4)-module for H, no element of H acts as a transvction on V/Z, and so Vβ ≤ Qα′ .
Then [Vβ , Vα′ ] ≤ Yβ ∩ Yα′ , and so [Vβ , Vα′ ] = 1, by 1.15(b). Then Vα′ centralizes the
hyperplane Yα ∩ Vβ of Yα, and so |Vα′/CVα′ (Yα)| ≤ 2. This is contrary to Yα � Qα′ , so
we conclude that Vα′ � Qβ . In particular, (α′, · · · , β) is a pre-critical path, and so also
Vβ � Qα′ , by symmetry.

Notice that Vβ ≤ Qα′−1 ≤ O2(Gα′−1 ∩ Gα′). For any element x of O2(P1) − O2(H)
we have [V, x]Z = U , so now [Vβ , Vα′ ]Yα′ = Uα′−1,α′ . For the same reason, we have also
[Wβ , Vα′ ]Yα′ = Uα′−1,α′ . In view of (2), it follows that Vα′ acts as a transvection group
on Wβ/Vβ . But vap ≤ O2(Gβ ∩Gβ+1) ≤ O2(H)O2(H), and since no element of SL(2, 4)
induces a transvection on any SL(2, 4)-module over F2, we have a contradiction at this
point. We conclude that b∗ is even, b∗ ≥ 2.

Let P0 = (P1)g be an L-conjugate of P1 such that (P0 ∩ P1)/O2(L) ∼= SL(2, 2). (The
existence of such a conjugate P0 of P1 can be read off easily from a picture of the B2

root system.) One then has 〈t, P1〉 = L for any t ∈ O2(P0) ∨2 (L). By edge-transitivity
on Γ∗ we may then fix a vertex λ ∈ ∆(α′) such that:

(5) 〈Gα′ ∩Gλ, t〉 = Gα′ , for any t ∈ O2(Gα′−1 ∩Gα′)−Qα′ .
We next show:

(6) Yβ = Yα′−1.

In order to prove (6), suppose first that [Vβ , Yα′ ] 6= 1. As yap ≤ Qβ we then have
[Vβ , Yα′ ] = Yβ , and so Vβ induces a transvection group on Yα′ . Then (2) yields [Vβ , Yα′ ] =
Yα′−1, and so (6) holds in this case. So assume that [Vβ , Yα′ ] = 1. Then CYα(Yα′) =
Yα ∩ Vβ is a hyperplane of Yα, whence also CYα′ (Yα) is a hyperplane of Yα′ . Then (3)
yields [Vβ , Yα′ ] = Yβ = Yα′−1, and (6) holds in any case.
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The next step will be to show:

(7) We have b∗ = 2.

Assume that (7) is false, so that b∗ ≥ 4. Suppose that [Yβ+1,Wλ] 6= 1. There is then
a critical pair (β + 1, µ) with µ ∈ ∆(λ). Applying (6) to this critical pair, we obtain
Yβ+2 = Yλ, and then CG(Yλ) ≥ 〈Yα, Gλ〉. But (5) then yields CG(Yλ) ≥ 〈Gα′ , Gλ〉,
contrary to 〈L,H〉 /∈ L. We therefore conclude that [Yβ+1,Wλ] = 1.

Now Wλ ≤ Qβ+1 ≤ Gβ . Since Yα′ ≤ Qβ we have |[Vβ , Yα′ ]| ≤ 2, and then |Vβ/(Vβ ∩
Qα′)| ≤ 2. Suppose that Vλ � Qβ . Then [Vβ , Vλ]Yβ = Uβ,β+1 ≥ [Vβ ,Wλ]. Since O2(P1)
contains no transvections on W/V , it follows that Vβ ∩ Gλ ≤ Qλ. As [Yα, Yλ] 6= 1, as
we have seen, we have Yλ � Vβ , and then [Vβ ∩ Qλ, Vλ] = 1. Thus Vλ centralizes a
hyperplane of Vβ , and so Vλ ≤ Qβ .

We now have [Vβ , Vλ] ≤ Yβ = Yα′−1 ≤ Yα′ . If Vβ � Gλ it then follows from (5) that
Yα′Vλ is normal in Gα′ , contrary to (4). Thus Vβ ≤ Gλ, and since |Vβ , Vλ]| ≤ 2 we
obtain Vβ ≤ Qλ and [Vβ , Vλ] ≤ Vβ ∩ Yλ. We have already seen that [Yα, Yλ] 6= 1, so in
fact [Vβ , Vλ] = 1. Then Vλ induces a transvection on Yα, and [ya, Vλ] = Yβ ≤ Yα′ . This
again yields Yα′Yλ E Gα′ , contrary to (4), and completing the proof of (7).

Since [YL, O2(P1)] ≤ V , we now have [Yα, Yα′ ] ≤ Yα ∩ Vβ ∩ Yα′ . But (Yα ∩ Vβ)/Yβ
and (Yα′ ∩ Vβ)/Yβ are two different 1-dimensional F4-subspaces of V/Z (different since
Gα ∩Gβ 6= Gβ ∩Gα′ , by maximality of P1 in H). Therefore [Yα, Yα′ ] = Yβ . This yields:

(8) [Wβ ,Wb] = Yβ .

Further, Yα ∩ Vβ is the hyperplane of Yα which centralizes Wβ . The normal closure of
Yα ∩ Vβ in Gβ is Vβ , so we have:

(9) [Vβ ,Wβ ] = 1.

Applying (9) at λ, we have [Yα′ , Vλ] = 1, so Vλ ≤ Qα′ ≤ Gβ . Suppose Vλ ≤ Qβ . Then
[Vβ , Vλ] ≤ Yβ , and since Vβ ≤ Qα′ ≤ Gλ we get Vβ ≤ Qλ and [Vβ , vl] ≤ Yβ ∩ Yλ = 1. As
in the proof of (7), we then have [Yα, Vλ] = Yβ and Yα′Vλ E Gα′ , contrary to (4). We
therefore conclude that Vλ � Qβ .

As b∗ = 2 we have Wλ � Qα′ . Let t ∈Wλ−Qα′ . Then [Vβ , (Vβ)t] ≤ Vβ∩(Vβ)t∩Yα′ =
(Vβ ∩Yα′)∩ (Vβ ∩Yα′)t. By our choice of λ in (5), we have O2(Gα′ ∩Gλ)∩Gβ = Qα′ , so
t /∈ Gβ . As t induces a transvection on Vα′ , by (8), we then have Yα′ = CYα′ (t)Yβ and
(Vβ ∩Yα′)∩ (Vβ ∩Yα′)t = CVβ∩Yα′ (t) is of order 4. Then CVβ∩Yα′ (t) = [Vβ , Vλ] ≤ Vλ, and
so we have shown that [Vβ , (Vβ)t] ≤ Vλ. But [Wλ, Vβ ] = [(Wλ ∩ Gβ)〈t〉, Vβ ] ≤ Vβ(Vβ)t,
and so [Wλ, Vβ , Vβ ] ≤ [Vβ , (Vβ)t] ≤ Vλ. As |[Vβ , Vλ]| > 2 we have Vβ � Qλ, and we have
shown that Vβ acts quadratically on Wλ/Vλ.

Set W0 = Wλ ∩Qα′ . Then |Wλ/W0| = 2 and we have [Vβ ,W0] ≤ Uβ,α′ = [Vβ , Vλ]Yβ .
Setting Ŵλ = Wλ/Vλ, we then see that Vβ acts on Ŵλ, with |[Ŵ0, Vβ ]| ≤ 2. It follows
that Ŵλ involves no natural ΓL(2, 4)-module for Gα′ , and then quadratic action implies
that |Vβ/CVβ (Ŵλ)| = 2. Thus Vβ ∩ Qλ is a hyperplane of Vβ . We have seen that
[Vβ , Vλ] = Vβ ∩ Yα′ ∩ Vλ is of order 4, so Yβ � [Vβ , Vλ] and Yλ � [Vβ , Vλ]. Then
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[Vβ ∩ Qλ, Vλ] = 1, which yields Vλ ≤ Qβ and a final contradiction in Case A. Thus, we
are reduced to

Case B: L/CL(YL) ∼= L3(2).

We may begin by observing that in this case we have U = YL ≤ V = W . In particular,
W is abelian, and so b∗ ≥ 3.

Suppose that b∗ is even. As Vβ ≤ Qα′−1 and Vα′−1 ≤ Qβ , we have [Vβ , Vα′−1] =
[Yα, Yα′ ] = Yβ = Yα′−1. As CL(Z) = P1 ≤ H we have Yβ 6= Yβ+2, and so b∗ ≥ 6.

Set X = 〈(Vβ)Gα〉. As V is not normal in L we have X 6= Vβ and so η(Gα, X) > 1.
Now X ≤ Qα′−3 ≤ Gα′−2, and [X,Yα′−1] = [X,Yβ ] = 1. It follows that X ≤ Gα′−1. If
X ≤ Qα′−1 then [X,Vα′−1] ≤ Yβ ≤ Yα, contrary to η(Gα, X) > 1. Thus X � Qα′−1.
But X ≤ O2(Gα′−1 ∩ Gα′−1) ≤ O2(Gα′−1)O2(Gα′−1), and since Sylow 2-subgroups of
O2(H) are TI-sets it follows that X � Gα′ .

Next, observe that Vλ ≤ Qβ+2 ≤ Gβ+1, and [Yβ , Vλ] = [Yα′−1, Vλ] = 1, so Vλ ≤ Gβ . If
Vλ ≤ Qβ then [Vλ, Vβ ] ≤ Yβ ≤ Yα′ ≤ Vλ, and then Vλ E 〈Vβ , Gα′ ∩Gλ〉 = Gα′ , whereas
V is not normal in L. Thus Vλ � Qβ , and it follows that CVβ (Vλ) = Yβ+1, of index 4 in
Vβ .

As L/O2(L) ∼= L3(2) we have O2(P1) ∩ (P1)g � O2(L) for any g ∈ L. As Vβ ≤
O2(Gα′−1 ∩ Gα′ , and as vb � Gλ by definition of λ, we then have |Vβ/(Vβ ∩ Gλ)| = 2.
Now [Vβ ∩ Qλ, Vλ] ≤ Vβ ∩ Yλ. But yl is not centralized by Gα′ , so [Vβ , Yλ] 6= 1, and
so [Vβ ∩ Qλ, Vλ] = 1. Thus Vβ ∩ Qλ = CVβ (Vλ) which, we have seen, has index 4 in
Vβ . We may then conclude that Vβ ∩ Gλ � Qλ. This yields [Vβ ∩ Gλ, Vλ]Yλ = Yα′ . As
Yα′−2 ∩Yα′ = Yα′−1, of order 2, we have [Vβ ∩Gλ, Vλ] � Yα′−2. Now X centralizes Yα′−2

and, as b∗ ≥ 6, X centralizes Vβ . As no element of H induces a transvection on V/Z we
have the desired contradiction at this point. That is:

(10) b∗ is odd.

[AS BEFORE, ASSUME FROM GLOBAL HYPOTHESIS or 1.3(6) THAT b∗ 6= 1.]
As Vβ does not induce a transvection on Vα′/Yα′ we have Vα′ � Qβ , and since Vα′ ≤

O2(Gβ)O2(Gβ) we get also Vα′ � Gα.
Suppose that Yα′ ≤ Vβ . As Yα′−1 = [Vβ , Vα′ ]Yα′ , we then have Yα′−1 ≤ Vβ . Set

X = Xα = 〈(Vβ)Gα〉, and assume now that b∗ ≥ 5. Then X ≤ Qα′−3 ≤ Gα′−2,
and X centralizes Yα′−3Yα′−1 = Vα′−2. We then have X ≤ Qα′−1 ≤ Gα′ , and so
[X,Vα′ ] ≤ Yα′−1Vβ ≤ X. Thus X is normal in 〈Gα, Vα′〉, and since Vα′ � Gα we get
X normal in Gβ , contrary to 〈L,H〉 /∈ L. We may now conclude that yap � Vβ . As
also (α′, · · · , β) is a pre-critical path, we obtain also Yβ � Vα′ , by symmetry. Then
|Vα′/(Vα′ ∩Qβ)| = |Vβ/(Vβ ∩Qα′)| = 4.

Set D = 〈(X)Gβ 〉. Then D ≤ Qβ and indeed [D,Vβ ] = 1. Set F = [Vβ , Vα′ ]. Then
F is a complement to Yα′ in Yα′−1, contained in CVα′−2

(D). As D does not induce a
transvection on Vα′−2/Yα′−2 we get D ≤ Qα′−2 ≤ Gα′−1. As D ≤ O2(Gα′−2 ∩ Gα′−1),
we have |D/(D ∩Gα′)| ≤ 2. As X is not normal in Gβ we have η(Gβ , X) ≥ 2, and then
|D/CD(Vα′)| ≥ 16, and |[D,Vλ]| ≥ 16. Then D � Gα′ . Suppose that D is abelian. Then
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Yα′ � D, so that D ∩ Qα′ ≤ CD(Vα′), and then since a Sylow 2-subgroup of Gα′/Qα′
is non-abelian of order 8 we get |D/CD(Vα′)| < 16. This contradiction shows that D is
non-abelian, and so b∗ = 5. Then F ≤ Yβ+1∩Yβ+3 = Yβ+2, which is contrary to |F | = 4.
Thus, we have shown:

(11) b∗ = 3.

Set γ = β + 1, so that also γ = α′ − 1. Here Vα′ � Qβ since Vβ is not a transvection
group on Vα′/Yα′ .

We have
Vβ ∩ Vα′ ≥ Yγ [Vβ , Vα′ ] E 〈Qβ , Qα′〉Qγ = Gγ .

Suppose that |Vβ | > 32. That is, suppose that there are non-trivial fixed points for H
on V/Z. Since V = 〈(YL)H〉 where YL = [YL, P1], it then follows that |CV/Z(H0)| = 2
or 4, and that V = [V,H]. Thus, V/Z is an indecomposable module for H0, and we
have |V/[V,O2(P1)]| = |V/[V, x]YL| = 4 for any element x of O2(P1) − O2(H). Thus
|Vβ/[Vβ , Vα′ ]Yγ | = 4, and since [Vβ , Vα′ ]Yγ ≤ Vα′ it follows that Yγ is a proper subgroup
of Vβ ∩Vγ . [SHORTER ARGUMENT FOR THIS ?] Let y ∈ Vβ ∩Vα′ with [y,O2(Gβ)] =
1 and with Yγ〈y〉 normal in Gβ ∩ Gγ . Then Yγ〈y〉 is normal in 〈Qβ , Qα′〈Qγ = Gγ ,
and y centralizes [Qγ , O2(Gβ ∩ Gγ)]. But the commutator map defines a pairing of
〈y〉×O2(H)/CO2(H)(y) onto YL, as y /∈ YL = Ω1(Z(O2(L))), and so y does not centralize
any conjugate of O2(P1) in L. This contradiction shows that, in fact, we have |V | = 32,
and V/Z is irreducible for H.

Observe that |Qβ/(Qβ ∩ Qγ | ≤ 4, and that [Qβ ∩ Qγ , Vα′ ] ≤ [Qγ , Vα′ ] ≤ Yγ ≤ Vβ .
Since no element of Alt(5) induces a transvection on any F2-module for Alt(5), it follows
that η(H,O2(H)/V ) ≤ 1. Set Q = O2(H) and set R = CQ(V ). If [Q,O2(H)] ≤ R then
V ≤ Z(Q) by the Thompson P ×Q Lemma, whereas [V,O2(H)] ≥ [YL, O2(H)] = Z, by
(1). Thus η(H,O2(H)/V ) = 1, and [R,O2(H)] = V . The commutator map defines a
pairing of Q/R× V/Z onto Z, so Q/R is isomorphic to the dual of V/Z as a module for
H. We record the results so far as follows.

(12) Both V/Z and O2(H)/CH(V ) are natural ΓL(2, 4)-modules for H/O2(H), and
[CH(V ), O2(H)] = V .

For any vertex δ of Γ and for any positive integer n, define G(n)
δ to be the point-wise

stabilizer in Gδ of all the vertices at distance at most n from δ. Observe that Yα∩G(4)
α = 1

as b∗ = 3. As Yα = YL = Ω1(Z(O2(L))), we then have G(4)
α = 1. In a similar vein,

observe that since [Qα, Vβ , Qα] ≤ [Yα, Qα] = 1, we have [Qα, Qα] ≤ CQα(Xα) by the
Three Subgroups Lemma, and so [Qα, Qα] ≤ G(3)

α . We note also that CGβ (Vβ) = G
(2)
β .

Let us write QL for O2(L), and QH for O2(H). Write X = Xα. Then QL = (QL ∩
QH)X. Now (O2(L) ∩O2(H))/CH(V ) is a 1-dimensional F4-subspace of QH/CH(V ) as
seen in (12). As QHX = O2(P1) it then follows that QL ∩QH = (X ∩QH)CH(V ). Thus

Qδ = (Qα ∩Qδ)X = G
(2)
δ X
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for all δ ∈ ∆(α), and we have the following result.

(13) Qα = ∩δ∈∆(α)CQα(Vδ)X

We now have

[G(3)
α , Qα] =

⋂

δ∈∆(α)

[G(3)
α , CQδ(Vδ)X] =

⋂

δ∈∆(α)

[G(3
α ), G(2

δ )]

≤
⋂

δ∈∆(α)

[G(2)
δ , G

(2)
δ ] ≤

⋂

δ∈∆(α)

G
(3)
δ ≤ G(4)

α = 1.

This shows:

(14) We have G(3)
α = Yα.

Suppose next that there exists an element h ∈ CH(O2(H))−Z. We may then choose
h so that [H,h] = Z. By (12) we have h ∈ CH(V ), and then [h,X] ≤ [O2(L), X] ≤ YL.
As CYL(O2(H)) = Z we then have [h,X] ≤ Z. For any µ ∈ ∆(α) we have h ∈ Gµ, and
since no element of Gµ induces a transvection on Vµ/Yµ we further have h ∈ Qµ. But
then [Vµ, h] ≤ Yµ 6= Yα = Z, and so [Vµ, h] = 1. Thus h ∈ G(3)

α , and so h ∈ Yα by (14).
As CYL(O2(H)) = Z we have a contradiction. This proves:

(15) CH(O2(H)) = Z.

Here is a further consequence of (13). Namely, we have

[Qα, Qβ ] ≤ [G(2)
β X,Qβ ] ≤ [G(2)

β , Qβ ]X = [CH(V ), QH ]X.

But (15) implies that CH(V )/Z is abelian, so CH(V )/V is abelian, and we then have
[CH(V ), QH ] ≤ V , by (12). We then conclude that [Qα, Qβ ] ≤ X, and so X ≥
[QL, O2(L)]. As X = 〈V L〉, where V = [V,O2(P1)], we then have X = [QL, O2(L)].
On the other hand, 6.1 shows that η(L,X/YL) ≤ 2. If X involves no Steinberg module
for L/O2(L) it follows that η(P1, X/YL) = 2 and that η(P1, O2(P1)) = 4. But it is evident
from the structure of H that η(P1, O2(P1)) = 5. Thus X has a constituent W which
is a Steinberg module for L/O2(L). Then η(P1,W ) = 3 and it follows that W is the
unique non-trivial constituent for L in X/YL. Projectivity of W now yields W = X/YL.
As X = [QL, O2(L)] it follows that also QL = CQL(X)X. But CQL(X) = G

(3)
α ≤ X by

(14). Thus:

(16) QL/YL is a Steinberg module for L/O2(L), and |S| = 214.

Finally, we observe from |S| that |CH(V )/V | = 4. This completes the proof of lemma
6.3. �
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Lemma 6.4. Set W = QL/YL, identify W with sl(3, 2), and identify L/QL with L3(2),
with action on W given by matrix conjugation. Let the orbits for L on W −{0} be given
as in 6.2. For any x ∈ QL, write x̂ for the image of x in W . Then |x| ≤ 2 if x ∈ YL or
if x̂ ∈ O7 ∪ O8, and otherwise |x| = 4.

Proof. We have maps S : W −→ YL and B : W ×W −→ YL, given by squaring and
commutation, respectively. Then, for any x and y in QL, we have

(1) S(x̂+ ŷ) = S(x̂) + S(ŷ) + B(x̂, ŷ).

We shall also identify YL with a natural SL(3, 2)-module, written additively.
Let t ∈ V −YL with [t, S] ≤ YL. Then 〈t̂〉 = CW (S). We take S to induce conjugation

by upper triangular matrices on W . Adopting the notation of 6.2, we then have t̂ = w8.
As Φ(V ) = 1, and as S is constant on L-orbits, we see that S is trivial on O8.

As S(w7) is invariant under CL(w7) (which is of order 7) it follows that S(w7) =
(0, 0, 0), and thus S is trivial on O7.

Denote by t̂′ the transpose of t̂. The set of all matrices in W whose lower-left entry is
0 is the unique maximal S-invariant subspace of W , and it therefore contains CQL(t)/YL.
It follows that B(t̂, t̂′) 6= (0, 0, 0). Then S(w2) = S(t̂ + t̂′) 6= (0, 0, 0), by (1). Thus, S is
non-trivial on O2.

Next, observe that w3 + t̂ ∈ O7. (To see this, either check that, as an invertible
matrix, w3 + t̂ is of order 7, or observe that conjugation of w3 + t̂ by w3 yields w7.) Then
(0, 0, 0) = S(w3 + t̂) = S(w3) + B(w3, t̂). But evidently w3 does not lie in the unique
maximal S-invariant subspace of W , so B(w3, t̂) 6= (0, 0, 0), and so S is non-trivial on
O3. Further, as S(w3) is invariant under CL(w3) we obtain S(w3) = (1, 1, 1). For the
same reason, we have S(w′3) = (1, 1, 1), where w′3 is the transpose of w3.

We next check that w′3 + w6 ∈ O7. (Indeed, one observes that w′3 + w6 is the square
of the matrix w7.) Suppose that S(w6) = (0, 0, 0). Then (0, 0, 0) = S(w′3 + w6) =
S(w′3)+B(w′3, w6), and thus B(w′3, w6) = (1, 1, 1). Thus B(w′3, w6) is invariant under any
element g of L whose matrix for the L-action on W is given by w′3. The matrix of g2 is
then w3, and setting u = (w6)g and v = (w6)g

2
, we have w6 = u+ v. Then

(1, 1, 1) = B(w′3, w6) = B(w′3, u+ v) = B(w′3, u) + B(w′3, v)

= B(w′3, w6)g + B(w′3, w6)g
2

= (1, 1, 1) + (1, 1, 1) = (0, 0, 0).

This contradiction shows that, in fact, S is non-trivial on O6.
It only remains to treat O4. For this, define matrices y and g as follows.

y =




0 0 0
0 0 0
1 1 0


 g =




0 1 0
1 1 0
0 0 1




Then yg = w′2, and we have w4 = y + w7. Further, we have

(w7)g =




1 1 1
1 1 0
1 0 0



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and hence B(y, w7) 6= (0, 0, 0). Now S(w4) = S(y+w7) = B(y, w7), and so S is non-trivial
on O4. �

Corollary 6.5. Set R = CH(V ), and let x be an element of order 3 in P1. Then
R = CR(x)V , and CR(x) is a quaternion group.

Proof. As V is a natural ΓL(2, 4)-module for H/QH , we have V = [V, x]Z. By 6.3(a),
R/V centralizes O2(H), so R = CR(x)V with CR(x) ∩ V = Z, and with |CR(x)| = 8.
We have R ≤ QL since P1/QL ∼= Sym(4). As CR(x) − YL = CR(x) − Z, it now follows
from 6.4 that CR(x)− YH consists entirely of elements of order 4, and hence that CR(x)
is a quaternion group. �

Proposition 6.6. Both L and H are maximal 2-local subgroups of G.

Proof. Let L∗ be a 2-local subgroup of G containing L. Suppose first that QL properly
contains O2(L∗). Then O2(L∗) = YL and thus CL(O2(L∗)) � O2(L∗), contrary to the
Main Hypothesis concerning L(S). Thus O2(L∗) = QL. But then L∗ = CL∗(YL)L, and
CL∗(YL)/QL is of odd order, centralized by 〈QL〉 (where we recall that Q denotes O2(C̃)).
Thus, we have L∗/QL = L/QL)×O2,2′(L)/QL. As L acts irreducibly on QL/YL, it then
follows that L∗ = L.

Now let H∗ be a 2-local subgroup of G containing H. Suppose first that O2(H∗)
does not contain [QH , O2(H)]. Then O2(H∗) ≤ CH(V ), and since H∗ is 2-constrained
we have V properly contained in O2(H∗). The preceeding lemma then shows that
V = Ω1(Z(O2(H∗))) and that Z = Φ(O2(H∗). Then H∗ = CH∗(V )H, as Sym(5)
is maximal among subgroups of L4(2) having a Sylow 2-subgroup of order 8. Now
CH∗(V ) ≤ CG(YL) ≤ L, by what has already been proved, and then CH∗(V ) ≤ P1 ≤ H.
Thus, we may assume that [QH , O2(H)] ≤ O2(H∗). But this yields V = Z(O2(H∗)),
and Z = [V,O2(H∗)], with the result, as just argued, that H = H∗. �

[NOW COMES THE HARD PART: IDENTIFYING Ru. I have some notes which
yield |Ru|. Better yet, I have Michael’s notes which do the same thing, with a clever idea
for avoiding some of the computation required for a strict applicaion of the Thompson
order formula. He also tells how to get an amalgam for 2F4(2) from (H,L), and with
|G| (and much of the local structure for odd primes) in hand, one can obtain 2F4(2)
using a result of Bennett and Shpectorov. At that point, he produces Ru as a rank-3
permutation group.]

Section 7: The Solvable Case, p = 2, Part I

In this section we consider the case where p = 2 and where both P and H are solvable.
In particular, we then have q = 2, so that H = P̃ . Our treatment may be viewed as
a re-working of parts of Stellmacher’s N-Group Paper [St2] (specifically, sections 9 and
10). In the case b = 3, we will stick closely to the original (section 10).

This section and the next will be devoted to the proof of the following result.
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Theorem 7.0. Assume that b ≥ 3, q = 2, and H = P̃ is solvable. Then (P, P̃ ) is a
weak BN -pair. Moreover, we have b = 3, and P̃ /O2(P̃ ) is isomorphic to either SL(2, 2)
or Sz(2).

Remark: From the data given by the Theorem 7.1, we will recover the amalgam for M12

or Aut(M12) (when P̃ /O2(P̃ ) is isomorphic to SL(2, 2)), or the amalgam for the Tits
group or for 2F4(2) (when P̃ /O2(P̃ ) is isomorphic to Sz(2)). The actual construction of
these groups from the local data promises to be an interesting exercise. Or not: it being
likely that one has only to copy the relevant portions of the Aschbacher-Smith Opus.

Lemma 7.1. Denote by T the set of elements t of S such that |Ṽ /CeV (t)| = 2. Let T0 be
a subset of T , and put T0 = 〈T0〉. Suppose that YP ≤ [V, T0]YH . Then CV (O2(H)) = YH
and T0QH = 〈T 〉QH .

Proof. By assumption we have [V, T0] � YH , so T0 � QH . Set T = 〈T 〉. Then 3.11
implies that O2(H)T is a direct product of groups Ki, 1 ≤ i ≤ r, where Ki

∼= SL(2, 2)
and where |[Ṽ ,Ki]| = 4 for all i. It follows that [Ṽ , T ] ≤ [Ṽ , O2(H)], and thus YP ≤
[V,O2(H)]YH , by assumption. This shows that CV (O2(H)) = YH and that Ṽ is the
direct product of the fours groups [Ṽ ,Ki], 1 ≤ i ≤ r. Suppose that T0 is a proper subset
of T . Then [Ṽ , T 0] centralizes at least one of the groups Ki. As H = 〈Ki, S〉 for any
i, we then have YP E H, which one recognizes as a contradiction, and which proves the
lemma. �
Lemma 7.2. Suppose that there exists an element t of [QP , O2(P )]O2(H) such that
|Ṽ /CeV (t)| = 2. Then CH(Ṽ ) = O2(H).

Proof. Set N = CH(Ṽ ). As H ∈ P (or, more generally, by 1.11(b)) QH is a Sylow
2-subgroup of N . As N normalizes YP , 1.7 implies that N ≤ NG(O2(P )). Then [N, t] is
a 2-group, and thus [N, t] ≤ QH . Set Ĥ = H/QH .

Define subgroups Ki of H, 1 ≤ i ≤ s, as in the proof of Lemma 7.1. Then Ki = 〈ti, ai〉,
where |ai| = 3 and where ti ∈ S. As H ∈ P, S acts transitively on {Ki}1≤i≤s. Then
each ti is the image in H of a conjugate ti of t. Set Xi = [O2(H), ti]. As [N, ti] ≤ QH ,
it follows that |X̂i| = 3. In particular, we have [X̂i, X̂j ] = 1 for all i and j. Setting
T = 〈t1, · · · , ts〉, we now have [O2(Ĥ), T̂ ] elementary abelian of order 3s, and where
1 6= T̂ E Ŝ. But H ∈ P, so [O2(Ĥ), T̂ ] = O2(Ĥ). This completes the proof that
N = QH . �
Lemma 7.3. Let (ρ, σ, τ) be a path in Γ with σ of type P . Set D = Vρ∩Vτ , T = Qρ∩Qσ,
and assume:

(i) |Vτ/D| = 2, and
(ii) there exists t ∈ T −Qτ with [D, t] = 1.

Then H/O2(H) ∼= SL(2, 2), and |V | = 8.

Proof. We take S = Gσ ∩Gτ , and set Gτ = Gτ/CGτ (Vτ/Yτ ). Thus, we have S ∼= S/Qτ .
As S = QσQτ and T E Qσ, we then have T E Qσ = S.
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We have [D, t] = 1, by assumption, and thus t induces a transvection on Vτ/Yτ .
Proposition 3.11 then yields the structure of Vτ/Yτ as a module for the group X = 〈tGτ 〉.
Thus, X is a direct product of s copies of Sym(3) and, setting Ṽ = Vτ/Yτ , we have
Ṽ = CeV (O2(X))× V1 × · · · × Vs, where each Vi is an X-invariant fours group. As t ∈ T ,
T contains all the transvections in S. As [D,T ] ≤ Yρ, of order 2, it follows that s ≤ 2.
But also D̃ is S-invariant, as D E Qσ. If s = 2 (so that S is dihedral of order 8) this
condition uniquely determines the hyperplane D̃ of Ṽ , and one sees that in this case
|[D,T ]| > 2. Thus s = 1, and 8 ≤ |Vσ| ≤ 16.

Set W = CVτ (O2(Gτ )), and suppose that W � D. Then Vτ = WD, and so [Ṽ , T ] =
Ỹρ. In this case, Lemma 7.1 yields |V | = 8. On the other hand, suppose that W ≤ D,
and suppose further that W 6= Yσ. Set W1 = CVρ(O

2(Gρ)). We then have D = WW1

and W ∩ W1 6= 1. But O2(O2(Gτ )) � Qσ, as Qτ ∩ Qσ is not normal in Gρ. Then
[W ∩W1, O

2(Gσ)] = 1, which is contrary to Z(P ) = 1. This contradiction now shows
that |V | = 8 in any case. Now P/QP ∼= SL(2, 2), by Lemma 7.2. �
Lemma 7.4. Suppose that b is even. Then |V | = 8.

Proof. Fix a critical pair (α, α′) and a path π = (α, β, β+1, β+2, · · · , α′−1, α′) of length
b. Fix λ ∈ ∆(α′)−{α′− 1}. As b is even, we have Yβ = [Yα, Yα′ ] = [Yα, Yλ] = Yα′−1. As
Yβ 6= Yβ+2, we then have b ≥ 6. In particular, it then follows that [Vβ+2, Yα] = 1.

It will be convenient to establish, and to list, (and to prove) the following facts.

(1) [Vβ+2, Vλ] = 1.

(2) Vλ ≤ Gβ and Vλ � Qβ .

In order to prove (1) and (2), notice that we have [Yα, Yλ] 6= 1. As Vβ+2 ≤ Qλ, we have
[Vβ+2, Vλ] ≤ Yλ, while also [Vβ+2, Yα] = 1. This yields (1). Then [Yβ , Vλ] = 1, and so
Vλ ≤ Gβ . Supposing Vλ ≤ Qβ , we obtain [Yα, Vλ] = [Yα, Yλ] = Yα′−1 ≤ Vλ, and so
Vλ E 〈Yα, Gλ〉 = 〈Gα′ , Gλ〉, which contradicts our basic hypothesis that 〈P,H〉 /∈ L.
Thus (2) holds.

By Lemma 1.2 in [Bernd’s N-Groups] there exists g ∈ Vβ −Gλ with |Vλ/CVλ(g)| ≤ 4.
Set D = CVλ(g)Yλ. Then D E 〈g,Qλ〉. Thus D is invariant under O2(Gα′), and so
D ≤ Vα′−1 ∩ Vλ. Thus |Vλ/Vα′−1 ∩ Vλ| = 2, and so also |Vβ/Vβ ∩ Vβ+2| = 2. Now (1)
and (2) and Lemma 7.3 together yield |V | = 8. �

We now take up the case where b is odd.

Reminder. For any vertex δ of Γ and for any non-negative integer n, we set V (n)
δ =

〈Yγ : dist(γ, δ) ≤ n〉.
Lemma 7.5. Assume b odd, b ≥ 5. Let (ρ, σ, τ, λ) be a path of length 3 in Γ, with ρ of
type P (and σ of type H). Set B = V

(b−1)
ρ , and assume that there exists t ∈ B −Gσ(τ)

with |Wτ/CWτ (t)| ≤ 4. Then H/O2(H) ∼= SL(2, 2), and (P,H) is a weak BN -pair.

Proof. Set U = CVλ(t)Yλ, U∗ = U(Yλ)t, R = NQσ (U), and R∗ = NQσ (U∗). As t /∈
Gσ(τ), by assumption, we have Yλ � U , and so |Vλ/U | ≤ 2.
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Suppose first that Qσ ∩ Qτ � R. Then 〈UQσ∩Qτ 〉 = Vλ. Since (Yλ)t ≤ Vσ we then
have

〈(U∗)Qσ 〉Vσ = 〈UQσ 〉Vσ = 〈U (Qσ∩Qτ )Qσ 〉Vσ = 〈V Qσλ 〉Vσ = Wτ .

But this implies that Wτ is t-invariant, which is contrary to t /∈ Gσ(τ). We therefore
conclude that Qσ ∩Qτ ≤ R.

Suppose next that R � Qτ . Then O2(Gτ ) ≤ 〈R,Qλ〉, and hence U ≤ Dτ . Thus
|Vσ/Dτ | ≤ 2, and then 7.3 yields the conclusion of the lemma. Thus, we may assume
that R ≤ Qτ , and hence that R = Qσ ∩ Qτ . Then R is not t-invariant, by 1.9, and so
R 6= R∗. As |Qσ/(Qσ ∩Qτ )| = 2, we have thus shown:

(1) R∗ = Qσ, R = Qσ ∩Qτ , and U 6= U∗.

Let g ∈ R∗−R. As |U∗/U | = 2 we then have |U/(U ∩Ug)| = 2, and since |Vλ/U |/ ≤ 2
we obtain |Vλ/(Vλ ∩ (Vλ)g)| ≤ 4. As g /∈ Gλ, by (1), 1.17 yields

(2) |Vσ/Dτ | = |Vσ/Dρ| ≤ 4.

Recall that B denotes V (b−1)
ρ . For any vertex γ with dist(γ, ρ) ≤ b − 1 we have

[Yγ , Vδ] = 1 for some δ ∈ ∆(ρ), and thus [B,Dρ] = 1. Take P = ρ and H = σ, so that
S = Gρ ∩Gσ. We shall also write D for Dρ. We have t /∈ NG(Wτ ), so Wτ 6= VσCWτ (t).
As |Wτ/CWτ (t)| ≤ 4, by assumption, it then follows that |Vσ/CVσ (t)| = 2. In particular,
t induces a transvection on Ṽσ. As B E S, it now follows from 3.11 and from (2) that
H/QH ∼= SL(2, 2) or O+

4 (2), with Ṽ /CeV (O2(H)) a natural module for H/QH . In the
SL(2, 2)-case we are done, so we assume henceforth that H/QH is isomorphic to O+

4 (2).
We next show:

(3) Ṽ is a natural O+
4 (2)-module for H/QH .

Suppose (3) is false. Then CV (O2(H)) properly contains YH , and so there exists x ∈ V
with [x,H] = YH . As [B,D] = 1, it follows from (2) that x ∈ D, and then [x, P ] ≤ YP
by 1.17(b). Here x /∈ YP as YP is not normal in H. As YP = Ω1(Z(QP )) and as V is
elementary abelian, we then have [x,QP ] = YP and |S : CS(x)| > 2, for a contradiction.
This proves (3).

Notice that D is now identified as [V, S]YH , of order 8. Since |V/CV (t)| = 2, we then
have CS(D/YH) = O2(H)B, and QHB/QH = QH)CS(D)/QH is the subgroup of S/QH
induced by the elements of S/QH which induce transvections on Ṽ .

Set J = 〈(QP ∩ QH))P 〉. Then J ≥ [QP , O2(P )]. As D � YP we have QP /CP (D)
isomorphic to YP as modules for P , and so QP = CQP (D)J . As B ≤ J , this says
that J induces the whole of the action of QP on V/YH . Then, since S = QPQH), we
obtain S = QHJ . Translating this information to the edge (τ, λ), and setting Q∗τ =
(Qσ ∩ Qτ )(Qτ ∩ Qλ) we observe that Q∗τ is conjugate to J , by 1.17(c). We have thus
shown:

(4) Gτ ∩Gλ = Q∗τQλ = (Qσ ∩Qτ )Qλ.
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As U is normal in Qσ ∩Qτ , by (1), it now follows from (3) and (4) that

(5) U = [Vλ, Gτ ∩Gλ] = [Vλ, QτQλ].

Note that (5) also holds if λ is replaced by the vertex λ′ ∈ ∆(τ) − {σ, λ}, and U is
replaced by CVλ′ (t)Yλ′ . Set X = [Wτ , Qτ ]Vσ. Then X = 〈(U)Gτ 〉Vσ, by (5). It follows
that X is t-invariant, and so X E 〈t, Gσ ∩ Gτ 〉 = Gσ. Thus X ≤ Wδ for any δ ∈ ∆(σ),
and thus [Wτ , Qτ ] ≤ Wγ for every vertex γ at distance 2 from τ . For every such γ we
have [V (b−3)

γ ,Wγ ] = 1, and we obtain [Wτ , Qτ , V
(b−1)
τ ] = 1. Translating back to the edge

(ρ, σ), we then have [V,QH), B] = 1, and so B induces a transvection on V/Z. This is
contrary to B E S, and the lemma is thereby proved. �
Lemma 7.6. Suppose that H ∼= SL(2, 2). Then b 6= 5.

Proof. We’ll just copy this from [9.11 in Weak (B,N)-pairs of Rank 2]. �
For the remainder of this section we will assume that b is odd, b ≥ 5. (The case b = 3

will be taken up in the next section.) Under this assumption, it follows from 2.3 that
there is a subgroup A of [QP , O2(P )]O2(H) such that A is a quadratic F2∗-offender on
Ṽ . Then 3.11 implies that H0 is a direct product

H0 = L1 × · · ·Lr

where |Li| = 3 and where |[Ṽ , Li]| = 4 for all i, 1 ≤ i ≤ r. For each such i, set
Ṽi =

∏{[Ṽ , Lj ]}j 6=i, and set Ki = CH(Ṽi). (Thus, we have Ki = Li unless there exist
elements of H which induce transvections on Ṽ .) We set

K = {K1, · · · ,Kr}

and for any H-vertex δ = Hg of Γ we define Kδ to be Kg.
The parameter r will be fixed for the remainder of this section.

A path in Γ will always be understood to be non-empty, without stammering. For
any path π = (δ, · · · , δ′) in Γ, we write |π| for the length of π, and we write π for
the opposite path (δ′, · · · , δ). If γ and γ′ are vertices of π, with γ preceding γ′, then
π(γ, γ′) denotes the sub-path (γ, · · · , γ′) of π. If π′ is a path whose initial vertex is
incident with the terminal vertex of π, then we write π ◦ π′ to denote the path obtained
by concatenation of π and π′, in the given order. Let H(π) denote the set of H-vertices
of π which are not terminal vertices of π. Then, denote by S(π) the set of vertices δ in
H(π) which satisfy the following two conditions, for both ε = 1 and ε = −1.

(1) There exists K ∈ Kδ, and an element g of H such that either g is in K −CK(Ṽ ) or g
induces a transvection on Ṽ which inverts K, and such that δ+ ε is fused to δ− ε by gε.

(2) We have NGδ∩Gδ+ε(Yδ−ε) ≤ Gδ−ε.
We will refer to the group K in (1) as the linkage group for π at δ.

40



Lemma 7.7. Assume that b is odd, b ≥ 5.

(a) Let K ∈ K and let g ∈ K − CK(Ṽ ). Set T = NS((YP )g). Then there exists
g′ ∈ NK(T ) such that (YP )g = (YP )g

′
.

(b) Let (ρ, σ) be an edge of Γ with ρ of type P , σ of type H. Then Vσ = 〈Yτ : σ ∈
S(ρ, σ, τ)〉Yρ.

Proof. We have [Ṽ ,H0] the direct product of {[Ṽ ,Ki] : 1 ≤ i ≤ r}, and the action of H
on K induces an equivalent action on this set of subgroups of Ṽ . Let y ∈ YP −YH . Then
T centralizes both ỹ and ỹg, so T centralizes [ỹ, g], and therefore K is T -invariant. Let
φ be the endomorphism of [Ṽ ,H0] which restricts to the identity on [Ṽ ,K] and which
is the zero mapping on any [Ṽ ,Ki] for Ki 6= K. Then NS(K) centralizes also φ(ỹ), and
so T centralizes [Ṽ ,K]. Setting N = CH(Ṽ ), we now have [T,K] ≤ N . As T ≥ O2(H),
T is a Sylow 2-subgroup of NT , and the Frattini argument now shows that there exists
g′ ∈ NNT 〈g〉(T )−NT . This proves (a).

In order to prove (b), take ρ = P and σ = H. Set Vi = 〈(YP )Ki〉. Then V = V1 · · ·Vr,
and (b) then follows from (a). �

Lemma 7.8. Assume that b is odd, b ≥ 5. Let π = (ρ, σ, τ) be a path in Γ, with
σ ∈ S(π), and let A be an elementary abelian subgroup of Qρ. Assume that there exists
a ∈ A−Gτ with [Vσ, a, A] = 1. Then |A/A ∩Gτ | = 2.

Proof. Let K be the linkage group for π at σ, and let g ∈ K with τ = ρg. Identify
H with σ, and set N = CH(Ṽ ). Then [CA(K), g] ≤ N , and so CA(K) normalizes
Yτ . As σ ∈ S(π) we then have CA(K) ≤ Gτ , and it therefore suffices to show that
|A/CA(K)| ≤ 2. This follows from quadratic action, and from the structure of H0 and
of Ṽ given after 7.6. �

Lemma 7.9. Assume that b is odd, b ≥ 5. Let π = (δ, · · · , γ) be a path with δ of type P
and with γ of type H. There then exists µ ∈ ∆(γ) such that γ ∈ S(π ◦ (µ)). Moreover,
if (δ, γ) is a critical pair and |π| = b, then µ may be chosen so that Yδ � Gµ.

Proof. Take H = γ and take P = γ − 1, where γ − 1 denotes the vertex of π which
is adjacent to γ. Thus, we have S = Gγ−1 ∩ Gγ . Choose K ∈ K, with [K,Yδ] 6= 1 if
Yδ � Qγ . Set N = CH(Ṽ ), choose g ∈ K−N , and set m = (γ−1)g. Set T = NS(Yµ). By
Lemma 7(a) we may assume that g normalizes T , and hence that T ≤ Gµ ∩ (Gγ−1)g

−1
.

Thus γ ∈ S(π ◦ (µ)). Now suppose that Yδ � Qδ so that, by choice, [Yδ,K] � N . We
then have Yδ � T . Thus, Yδ � Gµ, and this completes the proof of the lemma. �

Lemma 7.10. Assume that b is odd, b ≥ 5. Let π = (δ, · · · , γ) be a path of length b− 1
with both δ and γ of type H. Suppose that Vδ � Qγ . There then exists λ ∈ ∆(δ) such
that (λ, γ) is a critical pair, and such that δ ∈ S((λ) ◦ π).

Proof. Immediate from Lemma 7.7(b). �
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Lemma 7.11. Assume that b is odd, b ≥ 5, and let π = (ρ, σ, τ, λ) be a path in Γ, with
σ ∈ S(π). Then the following hold.

(a) Yρ ∩ Vλ = Yσ.
(b) Wρ = 〈x ∈Wρ : |Vλ/CVλ(x)| ≤ 2〉.
(c) [Wρ,Wτ ] ∩ Yτ ≤ Yσ.

Proof. Suppose that (a) is false. As Yσ ≤ Vλ we then have Yρ ≤ Vλ, and thus [Yρ, Qλ] ≤
Yλ. As Gτ is 2-transitive on ∆(τ), there exists a vertex α at distance b− 2 from λ such
that (α, σ) is a critical pair. As σ ∈ S(π), we have ρ = τx for some x ∈ Gσ − Gτ , such
that x lies in the linkage group K for π at σ.

Take H = σ and take P = τ , so that S = Gσ ∩Gτ = QσQτ . Set R = 〈(Yα)Qτ . Then
[Yρ, R] ≤ [Vλ, R] = 1, and since σ ∈ S(π) we then have R ≤ Gρ. Notice that 1 6= R E S.
As S is transitive on K, we then have [R,K] 6= 1. Then H = 〈Sx, R〉, and we may
conclude that Qρ ∩ Qσ = CQσ (Yρ) is normal in H. This contradicts —, and so (a) is
proved.

Suppose next that (b) is false. Then Wρ � Qλ, and so b = 5. Choose γ ∈ ∆(ρ)
with Vγ 6= 〈x ∈ Gγ : |Vλ/CVλ(x)| ≤ 2〉. It then folows from Lemma 5(b) that there
exists δ ∈ ∆(γ) such that γ ∈ S(δ, γ, ρ) and such that, for some x ∈ Gδ, we have
|Vλ/CVλ(x)| > 2. Here Vλ ≤ Gγ , Vλ acts quadratically on Vγ , and Vλ � Gδ. In particular,
Vλ does not centralize the linkage group K for (δ, γ, ρ) modulo CGγ (Ṽγ). 7.6 then yields
|Vλ/Vλ∩Gδ| = 2, and then also [Yδ, Vλ∩Gδ] 6= 1. Thus, we have Yγ = [Yδ, Vλ∩Gδ] ≤ Vλ,
which contradicts (a).

Finally, suppose that (c) is false. Again, we have b = 5, as otherwise b ≥ 7 and
[Wρ,Wτ ] = 1. Write ∆(ρ) = {σ, γ, γ′} and ∆(τ) = {σ, λ, λ′}. If Wρ ≤ Qλ and [Wρ, Vλ] 6=
1 then [Vγ , Vλ][Vγ′ , Vλ] = Yλ. and so Yλ is contained either in Vγ or in Vγ′ , contrary to
(a). Thus, if Wρ � Qλ then [Wρ, Vλ] = 1. As [Wρ,Wτ ] 6= 1, we may then fix notation
(replacing λ by λ′, or γ by γ′, if necessary) so that Vγ � Qλ.

By Lemma 7.9 we may choose µ ∈ ∆(λ) so that λ ∈ S(τ, λ, µ), and so that Vγ � Gµ.
Suppose that Yµ ≤ Qγ . Then [Vγ , Yµ] = Yγ , and thus Yγ ≤ Vλ, which is contrary to (a).
We conclude that Yµ � Qγ , and then 7.9 implies that there exists δ ∈ ∆(γ) such that
γ ∈ S(δ, γ, ρ) and with Yµ � Gδ.

Suppose that [Wδ, Yλ] = 1. As σ ∈ S(π) we then have Wδ ≤ Qτ ≤ Gλ. As [Wδ, Vγ ] =
1, we have [Vλ, Vγ ,Wδ] = 1. Then |Wδ/Wδ ∩ Gµ| = 2, by Lemma 8, and then also
|Wδ/CWδ

(Yµ)| ≤ 4. Now 7.5 yields r = 1 and |V | = 8. Since also b = 5, we have a
contradiction to 7.6. We therefore conclude that [Wδ, Yλ] 6= 1. On the other hand, we
have Yλ ≤ Yτ ≤ Yσ[Wρ,Wτ ], by assumption in (c). Thus Yλ ≤ Yσ[Vγ ,Wτ ][Vγ′ ,Wτ ], and
so 1 6= [Yλ,Wδ] ≤ [Vγ′ ,Wτ ,Wδ].

By (b), above, bothWτ andWδ are generated by elements which centralize hyperplanes
of Vγ′ . Since WτWδ is contained in the 2-group Gρ ∩Gγ′ it follows that [Vγ′ ,Wτ ,Wδ] ≤
Yγ′ . Thus, [Yλ,Wδ] = Yγ′ . Write ∆(δ) = {γ, β, β′}. As Yλ ≤ Qδ we conclude that, up
to a possible permutation of {β, β′}, we have Yγ′ ≤ Vβ . But this contradicts (a), with
(ρ, γ, δ, β) in place of π. The proof of (c) is thereby complete. �
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Lemma 7.12. Assume that b is odd, b ≥ 5. There then exists a critical pair (α, α′), a
path π = (α, β, · · · , α′) of length b, and vertices µ ∈ ∆(α′)−{α′−1} and λ ∈ ∆(µ)−{α′}
such that the following hold.

(i) Both β and α′ are in S(π ◦ (µ)).
(ii) Yα is not contained in Gµ.

(iii) If Wµ � Gβ+1, then β + 2 ∈ S(π) and Yβ+2 � [Vβ+2,Wµ].

Proof. Suppose false, and choose a critical path π = (α, β, · · · , α′) so that |S(π)| is as
large as possible. Then β ∈ S(π) by 7.10 (applied to π(β, α′)). By 7.9, we may choose
µ ∈ ∆(α′)− {α′ − 1} so that α′ ∈ S(π ◦ (µ)) and so that Yα � Gµ.

As the lemma is assumed false, we have Wµ � Gb+1. Choose λ ∈ ∆(µ)−{α′} so that
Vλ � Gβ+1. Suppose next that Vβ+2 ≤ Qλ. Then [Vβ+2, Vλ] = Yλ, and since Vλ acts
non-trivially on Vβ+2/Yβ+2 we conclude that Yβ+2 � [Vβ+2, Vλ]. As the lemma is false,
we then have β + 2 /∈ S(π). Now set π0 = (λ, µ) ◦ π(α′, β + 2) and apply 7.10 to π0.
Thus, there exists γ0 ∈ ∆(λ)− {µ} such that (γ0, β + 2) is a critical pair and such that,
for π′ = (γ0) ◦ π0, we have λ ∈ S(π′). Notice however that |S(π′)| > |S(π)|, which is
contrary to our choice of π. We conclude that Vβ+2 � Qλ.

We now apply 7.10 to the path π1 = π(β + 2, α′) ◦ (µ, λ). Thus, there exists a vertex
γ1 ∈ ∆(β+2) such that (γ1, λ) is a critical pair, and such that, upon setting π∗ = (γ1)◦π1,
we have β + 2 ∈ S(π∗). Observe that |S(π∗)| ≥ |S(π)|. Thus, we may replace π by π∗,
and since α′ ∈ S(π∗) we then obtain α′−2 ∈ S(π). But then maximality of |S(π)| shows
that, to begin with, and before making the above replacement, we had α′ − 2 ∈ S(π).
By iteration it now follows that S(π) = {β, β + 2, · · · , α′ − 2}. Moreover, since the
lemma fails to hold for π∗, we have (prior to replacement) Yβ+2 ≤ [Vβ+2,Wµ], and thus
(after replacement) Yβ ≤ [Vβ ,Wα′−1] ≤Wα′−1. Lemma 7.11(c) then yields b > 5, so that
[Wα′−1,Wµ] = 1, whence [Yβ ,Wµ] = 1. But with β+2 ∈ S(π) we then have Wµ ≤ Qβ+1.
Thus Wµ ≤ Gβ+1 after all, and the lemma is proved. �

Proposition 7.13. Assume that b is odd, b ≥ 5. Then |V | = 8.

Proof. Assume that |V | > 8. Choose π and µ as in 7.12, and fix t ∈ Yα − Yβ . Suppose
first that Yβ ≤ [Vβ , Vα′ ]. Then Yβ ≤ Vα′ ≤ Wµ, and it then follows from 7.12 that
Wµ ≤ Gβ . Suppose that Wµ acts quadratically on Vβ , or that Vα′ � Gα. As β ∈ S(π),
7.8 then implies that |Wµ/Wµ ∩ Gα| ≤ 2, and so |Wµ/CWµ(t)| ≤ 4. As 7.5 then yields
r = 1, we conclude that Wµ is not quadratic on Vβ and that Vα′ ≤ Gα. In particular, it
follows that [Wµ, (Wµ)g] 6= 1 for some g ∈ Vβ , and so b = 5. Further, with Vα′ ≤ Gα we
have |Vα′/CVα′ (t)| = 2.

Now Vβ = (Vβ ∩Gµ)Yα, and Wm acts quadratically on the hyperplane Vβ ∩Gµ of Vβ .
It follows that the Wµ-orbits on Kβ are of length at most 2, and that |Wµ/Wµ∩Gα| ≤ 4.
Thus, we have shown that [t,Wµ,Wµ] 6= 1, and |Wµ/CWµ(t)| ≤ 8 in the case that
Yβ ≤ Vα′ ≤Wµ.

Suppose, on the other hand, that Yβ � [Vβ , Vα′ ]. Then [t, Vα′ ∩ Gα] = 1, and so
|Vα′/CVα′ (t)| = 2, as in the preceding case. Further, we have Vα′ � Qβ . Notice that
|Wµ/Wµ ∩ Gβ | ≤ 2, by 7.12. As [Vβ , Vα′ ,Wµ] = 1, 7.8 then yields |Wµ/Wµ ∩ Gα| ≤ 4,
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and so once again |Wµ/CWµ
(t)| ≤ 8. Moreover, we either have |Wµ/CWµ

(t)| ≤ 4 or
Yβ ≤ [t,Wµ∩Gα]. If now [t,Wµ,Wµ] = 1 we thus obtain [Yβ ,Wµ] = 1 and |Wµ/CWµ(t)| ≤
|Wµ/(Wµ ∩ Qα)| ≤ 4, again contrary to 7.5. We have thus shown that, in any case, we
have the following information.

(1) b = 5, [t,Wµ,Wµ] 6= 1, |Wµ/CWµ
(t)| = 8, and |Vα′/CVα′ (t)| = 2.

Set σ = µt, and observe that since t induces a transvection on Ṽα′ , we have α′ ∈
S(σ, α′, µ). Further, we have the following consequence of 7.2.

(2) α′ ∈ S(σ, α′, µ).

Suppose next that Wµ ≤ Qρ for all ρ ∈ ∆(σ). Then [Wµ,Wσ] ≤ Yσ, and then 7.11(c)
yields [Wµ,Wσ] ≤ Yα′ . For any ρ ∈ ∆(σ) − {α′} we then have [Vρ,Wµ] ≤]yr ∩ Yα′ = 1,
and so [Wµ,Wσ] = 1. This implies that [t,Wµ,Wµ] = 1, contrary to (1). We conclude
that there exists ρ ∈ ∆(σ) with Wµ � Qρ. Fix such a vertex ρ and set l = ρt. Then
Wσ � Qλ.

Notice that Wµ ∩Wσ ≥ CWµ(t)Vα′ . Then (1) yields:

(3) Wµ ∩Wσ is of index at most 4 in Wµ and in Wσ.

We note also that 7.11(b) yields the following.

(4) Wσ = 〈x ∈Wσ : |Vλ/CVλ(x)| ≤ 2〉.
Suppose that |Vλ/CVλ(Wσ)| = 2. Noting that Yλ � [Wσ, Vλ] by 7.11(c), we then

have |[Wσ, Vλ]| = 2. Set U = [Wσ, Vλ]. Since Qα′ ∩ Qµ is not normal in Gα′ , by 1.9,
where Gα′ = 〈Gσ ∩ Gα′ , Gα′ ∩ Gµλ〉, it follows that Qα′ ∩ Qµ 6= Qα′ ∩ Qσ, and hence
(Qα′ ∩ Qµ)(Qα′ ∩ Qσ) = Qα′ . In particular, Qα′ ∩ Qµ is transitive on ∆(σ) − {α′}.
As Wσ � Qλ we then have Vρ � Qλ, and so U = [Vρ, Vλ] is t- invariant. As U lies
in the center of Qα′ ∩ Qµ we then have [U,Qα′ ] = 1, and then 1.1(a) shows that U =
Yα′ . Lemma 7.1 then implies that |V | = 8, which is contrary to the hypothesis. Thus
|Vλ/CVλ(Wσ)| > 2.

Now (3) implies that Wµ = CWµ(Wσ)Vλ. Then [Wσ, Vλ] = [Wσ,Wµ] E Qα′ , and so
Yα′ ≤ [Wσ, Vλ], by 1.8. Then (4) and Lemma 1 imply that WσQλ/Qλ is of order 2r, and
(3) then yields r ≤ 2. As |V | > 8, Lemmas 1 and 2 now give:

(5) |V | = 32 and H/QH ∼= Ω+
4 (2).

For any edge (γ, δ) of Γ, with γ of type H, set T (γ, δ) = 〈g ∈ Gγ ∩Gδ : |[Vγ/Yγ , g]| ≤
2〉. For any vertices φ and ψ in ∆(α′), set F (φ, ψ) = [Wφ,Wψ]. Set F = F (σ, µ). We
have seen that |Wσ/CWσ (Vλ)| = 4, that Wσ is generated by CWσ (Vλ) together with two
elements that induce transvections on Vλ, and that [Wσ,Wµ] = [Wσ, Vλ] ≥ Yα′ . Thus
F is a fours group containing Yα′ , and we have FYλ/Yλ = [Vλ/Yλ, T (λ, µ)]. Setting
U = FYλ, it follows that U E Gµ ∩Gλ. But also F , and hence also U , is normal in Qα′ ,
and so U E Gµ. Then U ≤ Vα′ ∩ Vλ, and U has index 4 in Vλ. Since |Vλ/CVλ(Wσ| = 4,
it follows that U = Vα′ ∩ Vλ, and so U = Dα′ , by 1.17. Similarly, we have FYρ = Dσ,
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and 7.11(a) yields F = Dµ ∩Dσ.
Write Kα′ = {K1,K2} and define Xi = X

(i)
α′ to be the inverse image in Vα′ of

[Vα′/Yα′ ,Ki], (i = 1, 2). As U E Gµ we have U = [Vα′ , T (α′, µ)], and since Yλ � F it
follows that F ≤ Xi for some i. For definiteness, take F ≤ X1. Then [F,NS(X1)] ≤ Yα′ .
On the other hand we have U = FYλ = FYµ, and so [U,Qµ] = [F,Qµ] = Yµ. As
Dµ 6= Yµ, Qµ/CQµ(F ) is a fours group admitting non-trivial action by O2(Gµ). Setting
R = O2(O2(Gµ)), we then have [F,R] = Yµ, and thus R � NS(X1). As R E S, R/R∩Qα′
then contains a fours group.

Let us record these results.

(6) We have F (σ, µ) := [Wσ,Wµ] = Vρ ∩ Vα′ ∩ Vλ = [X1, T (α′, µ)].

(7) R/R ∩Qα′ contains a fours group, where R := O2(O2(Gµ)).

We have |∆(α′)| = 9, and we may identify ∆(α′) with the set of singular points in the
orthogonal space Vα′/Yα′ , for the action of Gα′ . Define a map

B : ∆(α′)×∆(α′) −→ F2

by the formula

B(φ, ψ) =
{

0, if [Wφ,Wψ] = 1
1, if [Wφ,Wψ] 6= 1.

We require the following elementary lemma (for which we need provide no proof).

Lemma 7.14. Let Ṽ be an O+
4 (2)-space with associated bilinear form B̃, let t be an

orthogonal transvection on Ṽ , and let x and v be singular points with x = xt and v 6= vt.
Then the following hold.

(a) B̃(v, vt) 6= 0.
(b) There exists a singular point y, with y 6= yt, and such that B̃(x, y) = 0.

Notice that S has two orbits on ∆(α′) − {µ}, each orbit being of length 4. Let
τ ∈ ∆(α′) with τ /∈ σS . Thus, we have τ = µg where g is an element of order 3
in Gα′ which is fixed-point-free on Vα′/Yα′ . For any δ ∈ ∆(τ) − {α′} one may then
observe that Vδ ∩ Vα′ ∩ Vλ = Yα′ , and then for any λ′ ∈ ∆(µ) we have [Vδ, Vλ′ ] ≤ Yα′ .
Lemma 7.1 then implies that [Vδ, Vλ′ ] = 1, and thus B(τ, µ) = 0. Since B(σ, µ) = 1,
where σ = µt, it follows from 7.13(a) that B is indeed the bilinear form associated with
the orthogonal space Vα′/Yα′ . Then 7.13(b) says that we may choose τ as above, with
B(α′ − 1, τ) = B(µ, τ) = 0, and with t /∈ Gτ . In particular, we have [Wτ , Vβ+2] = 1,
and so Wτ stabilizes the path π(β, α′). As t /∈ Gτ , 7.5 shows that |Wτ/CWτ (t)| ≥ 8.
Then |Wτ/Wτ ∩ Gα| = 4 (so that Wτ induces a non-quadratic fours group on Vβ/Yβ)
and [Yα,Wτ ∩ Gα] = Yβ . As t ∈ X(i)

β for some i, (i = 1 or 2), one may then compute
that [t,Wτ ] = [Vβ , Gβ ∩Gβ+1], and that [t,Wτ ,Wτ ] = Yβ+1. On the other hand, 7.13(a)
shows that [(Wτ )t,Wτ ] 6= 1, and so [t,Wτ ,Wτ ] = [(Wτ )t,Wτ ] = F (τ t, τ) ≤ Vα′ , of order
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4. Thus F (τ t, τ) = Yβ+1 ≤ Vα′ . This contradicts 7.11(a), thus completing the proof of
7.12. �

[THERE MUST BE AN EASIER ARGUMENT FOR 7.13]

Section 8: The solvable case, b = 3

Lemma 8.1. Suppose that P and H are solvable, with p = 2. Then b = 3, and one of
the following holds.

(i) H/O2(H) ∼= SL(2, 2) and |V | = 8.
(ii) H/O2(H) ∼= Sz(2) and |V | = 32.

(iii) H is isomorphic to a subgroup of ∼= O+
4 (2) of index at most 2, and |V | = 32.

(iv) O3(H) is extraspecial of order 27 and of exponent 3, and
( a) There exists P1 ∈ PH(S) such that O3(P 1) = Z(O3(H)) and such that
〈(YP )P1〉 is invariant under P .

( b) Ṽ is a natural SU(3, 2)-module for O2(H)O2(P 1).
( c) O2(H)O2(P 1) is isomorphic to a subgroup of SU(3, 2) of index at most

2.

Proof. Suppose b > 3. Then 7.12 yields |V | = 8 and H/O2(H) ∼= SL(2, 2). Now
[AN ARGUMENT EXTRACTED FROM THE WEAK BN-PAIRS PAPER] yields a
contradiction. Thus, we have b = 3. Set γ = β+ 1 = α′− 1, and take H = β and P = γ.
Denote by δ the unique element of ∆(γ)− {β, α′}.

As b > 2 we have V ≤ QP , and so 1.10 implies that [QH , O2(H)] � V . Thus, there is
at least one non-central chief factor X for H in QH/V .

Suppose first that Qβ ∩ Qγ ≤ VβQα′ . Then [Qβ ∩ Qγ , Vα′ ] ≤ VβYα′ = Vβ . As
|Qβ/(Qβ∩Qγ)| = 2, Vα′ induces a transvection on X. But Vα′Qβ E QβQγ = QHQP = S,
and it follows that H/CH(X) ∼= SL(2, 2). Then H/QH is dihedral of order 2·3m for some
m, m ≥ 1. As Ṽ is a quadratic F2-module for H, it follows from 3.11 that H ∼= SL(2, 2).
As Ṽ is the closure under H of ỸP , we then have |Ṽ | ≤ 8, and then 7.2 implies that
H/QH ∼= SL(2, 2). Suppose that |Ṽ | = 8. As P is doubly transitive on ∆(γ) we have
[Ṽ , Vδ] = [Ṽ , Vα′ ], and 7.1 implies that neither Yβ nor yd is contained in [vb, Vα′ ]. But
[Vβ , Vα′ ] E Qγ , so Yγ ∩ [Vβ , Vα′ ] 6= 1. Then Yγ ∩ [Vβ , Vα′ ] = Yβ . This contradicts 7.2,
applied to the action of Vβ on Vα′ , so we conclude that |V | = 8 and that outcome (i) of
the lemma holds. We may therefore assume that Qβ ∩Qγ � VβQα′ . Then also:

(1) Qγ ∩Qα′ � Vα′Qβ .

Set A = Vα′ . As [A,Qα′ ] = Yα′ ≤ Qβ , (1) yields:

(2) CS(A) � A.

Suppose that A is an F1-offender on Ṽ . Then 3.11 shows that A is generated by
transvections, and since A E S it follows that A contains all the transvections in S. This
contradicts (2), and so, in fact, A is not an F1-offender on Ṽ , and similarly V Qα′/Qα′
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is not an F1-offender on Vα′/Yα′ . Then by 1.18 and symmetry, we may assume that
[V ∩Qα′ , A] = Yα′ . We then have:

(3) There exists v ∈ Ṽ such that [v,A] = ỸP .

We note also that A is a quadratic F2-offender on Ṽ , by 2.3, and then 3.10 shows that
A is generated by 2-transvections.

By 3.11 there is an S-transitive collection D = {Di}1≤i≤r of subgroups D of H, such
that O2(H) = D1×· · ·×Dr, with [Ṽ , O2(H)] = [Ṽ , D1]×· · ·× [Ṽ , Dr], and such that Di

is isomorphic to Z3, Z5, or O3(SU(3, 2)). Set Ui = [Ṽ , Di]. The transitivity of S on D
then implies that there are non-identity elements ui of Ui such that ỸP = 〈u1 · · ·ur〉. On
the other hand, (3) shows that u1 · · ·ur = [v, a] for some v ∈ Ṽ and some 2-transvection a
in A. It follows that either r = 1 or that |Ui| = 4 and r = 2. In any case we have |A| = 2
and A induces a 2-transvection on [Ṽ , O2(H)], so (3) implies that [Ṽ , O2(H)] = Ṽ .

If r = 2 we have the desired outcome (iii) of the lemma, so we assume now that
r = 1. Then |O2(H)| > 3, by (2). Suppose that |O2(H)| = 5. Then (2) implies that
H ∼= Sz(2), while |V | = 32. Then also H/QH ∼= Sz(2), by 1.11(b), and we have outcome
(ii). Finally, suppose that O2(H) is an extraspecial group of order 27 and exponent 3,
with |Ṽ | = 64. Denote by H1 the inverse image in H of Z(O2(H)). Then 〈(YP )H1〉 is
of order 8, and 1.7 then shows that O2(P ) is not invariant under H1. By 1.4 there then
exists P1 ∈ PH1S(S) such that O2(P ) is not P1-invariant, and such that 〈P, P1〉 ∈ L.
Then O2(P 1) = Z(O2(H)).

Notice that O2(P 1) is a subgroup of index at most 2 in a quaternion group. Thus
|Ω1(Qγ)| = 2. For any two distinct vertices δ and δ′ in ∆(γ) we then have [Vδ, Vδ′ ] =
[Vδ,Ω1(Qγ)], and thus [Vδ, Vδ′ ] is Gγ-invariant. Thus [Vβ , Vα′ ] is invariant under both P
and P1, and (iv) holds. �
Lemma 8.2. Outcome (iv) of Lemma 8.1 does not hold.

Proof. Suppose false, and let P1 be as in 8.1(iv). Set L = 〈P, P1〉. As we have seen, we
have L ∈ L, and YP is not normal in L.

Form the amalgam Γ∗ = Γ(H,L) and set b∗ = b(H,L). It follows from 1.3(4) and from
8.1(iv) that |YL| = 8 and that L/O2(L) ∼= SL(3, 2). In particular, we have YL ≤ 〈(YP )H〉,
and so we have V = 〈(YL)H〉. Then b∗ ≥ 3, and since b∗ ≤ b we conclude that b∗ = 3.
We may then label a critical path (α, β, γ, α′), and we shall take H = β and L = γ, so
that P1 = Gβ ∩Gγ . For δ a vertex with stabilizer Hg we write Vδ for V g. We note that,
since L is doubly transitive on Y ]L, Gγ is doubly transitive on ∆(γ), and hence Gβ is
transitive on ∆(2)(β). In particular, any path of length 2 from β is a critical path.

Wishing to avoid needless repetition, we ask the reader to check that the argument at
the relevant point in the proof of 8.1, above, shows:

(1) |V/CV (Vα′)| = 4, CV (Vα′) = [V,O2(P1)], and [V, Vα′ ] = YL.

Set X = Xβ = 〈CVδ(V ) : δ ∈ ∆(2)(β)〉. Then Xα′ = Ω1(Xα′) and Xα′ ≤ Qγ ≤
O2(Gγ ∩ Gβ) = O2(P1). Here Ṽ is a natural SU(3, 2)-module for O2(H)O2(P1), and
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Ω1(O2(P 1)) is of order 2, so [Ṽ ,Xα′ ] ≤ [Ṽ , Vα′ ], and then [V,Xα′ ]YL. Thus [V,Xα′ ] ≤
Vα′ , and so also [X,Vα′ ] ≤ V , by symmetry. It follows that [X,O2(H)] ≤ V . Further, we
have [CQH (V ), Vα′ ] ≤ [Qγ , Vα′ ] ≤ CVα′ (V ), by (1), and so [CQH (V ), O2(H)] ≤ X. This
now shows:

(2) [CQH (V ), O2(H)] = V .

We have [V,QH ] = YH , so:

(3) QH/CQH (V ) is isomorphic to the dual of Ṽ as a module for H.

Set D = 〈[Vδ, Qγ ] : δ ∈ ∆(γ)〉. Then (1) shows that D ≤ X ∩Xα′ , so [D,Vα′ ] = 1,
and so V � D. As η(P1, V ) = 3, it follows from (2) that η(P1, D/YL) = 1. As (V ∩D)/YL
is a P1-invariant subgroup of D/YL of order 4, it follows that D/YL is an L-module of
order 8, dual to YL. Thus V ∩D is a hyperplane of D.

Set W = Wγ . Then D ≤ Ω1(Z(W )). We have CS(W ) ≤ CQH (V ), and since V �
CS(W ) we then have η(P1, CS(W )) = 2. Thus [CS(W ), O2(L)] = D. Suppose that there
exists an element x in QH such that [x,H] = YH . From (3) we have x ∈ CH(V ), so
x ∈ G(2)

γ ≤ Gα′ . As |[x, Vα′ ]| ≤ 2 we have x ∈ Qα′ , and since [x, Vα′ ] 6= Yα′ we conclude
that [x, Vα′ ] = 1. In this way we have x ∈ G

(4)
γ and, in particular, x ∈ CS(W ). Set

R = 〈xL〉. Then YL ≤ R ≤ 〈x〉D. As [x, P1] ≤ YH ≤ YL, and as CD/YL(P1) = 1, lemma
— [FROM J-MODULES PRELIM LEMMAS] implies that R/YL is of order 2. But then
[x,QL] = YL, contrary to |S/CS(x)| = 2. We conclude that no such element x exists,
and this yields the following result.

(4) CH(O2(H)) = YH .

Let d ∈ D − V . In particular, we have d ∈ CQH (V ). If [d,QH ] = YH then (2)
implies that there exists d′ ∈ V d such that [d′, O2(H)] = 1, and we contradict (4). Thus
[d,QH ] = V , and it follows from (3) that |[QL ∩QH , d]| ≥ 16. As [d,QL] ≤ YL, of order
8, we have a contradiction, and the lemma is proved. �

[THE REMAINDER OF THIS SECTION (AND THE NEXT SECTION) WILL BE A
CLOSE COPY OF BERND’S PAPER ON N-GROUPS, SECTION 10, TO PRODUCE
THE AMALGAM FOR M12, Aut(M12), the Tits group, OR 2F4(2). AFTER THAT,
IMITATE MICHAEL IN ORDER TO PRODUCE THE GROUPS.]
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