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Assume M(S) ≥ 2 and Q!. We investigate the Structure of E/Op(E).
For L ∈ L define L◦ = L◦Op(L). In this section we assume

Hypothesis 0.1 [hypothesis e structure theorem]

(ES1) M(S) ≥ 2 and Q!.

(ES2) P ∈ P(S) and P 6≤ C̃.

(ES3) P◦/Op(P ) ∼= SL2(q), q a power of 2.

(ES4) YP is a natural module for P/Op(P ).

(ES5) NP (S ∩ P◦) ≤ C̃.

(ES6) 〈Y E
P 〉 is abelian.

(ES7) 0p(〈P,E〉) = 1.

Some remarks on this assumptions. (ES7) follows from E! but not from Q! (example
(Ln(q). (ES2) to (ES5) follow from P ! theorem. But ¬P ! have currently been treated only
for YM ≤ Q.

Let L = NG(P ◦) and H = E(L ∩ C̃).
By (ES7) Op(〉H,L〈) = 1. By part (a) of the preceeding lemma we can apply the

amalgam method to (H,L). Let Γ0 = Γ(G;L,H) and Γ the connected component of Γ
containing L and H. For α ∈ Γ. If α = Lg define Eα = P g◦ , if α = Hg define Eα = (EQ)g,
C̃α = C̃g and Q∗α = Qg.

Lemma 0.2 [basic es] Let (α, β) be adjacent vertices with α ∼ H

(a) Gα = EαGαβ and Gβ = EβGαβ.

(c) CU (Yβ) = QαQβ = QaQ
∗
β = Qαβ ∈ Sylp(Lα), where U ∈ Sylp(Gαβ).

(d) Gαβ = NGα(Qαβ)

(e) Yαβ = Yβ = [Yα, x] for all x ∈ Qαβ \Qα.
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(f) Let Ṽβ = Vβ/Yβ. Then CGβ (Ṽβ) ∩ CGβ (Yβ) = Qβ In particular Gαβ contains a point
stablizer for Gβ on Ṽβ.

Proof: By edge transitivity we may assume that α = L and β = H. By (ES5), and the
Frattini Argument, L = P◦(L∩ C̃) = P◦(L∩H). By definition of H, H = (H ∩L)E. Thus
(a) holds.

Note that YH∩L ≤ YH and so the definition of E implies [YH , E] = 1 . Since L = (L∩H)E
we get YH∩L = YH . Let T = S ∩ P ◦. Since NP (T ) is a maximal subgroup of L we get
NP (T ) = H ∩ L and Op(H ∩ L) = T . Since YH∩L ≤ YL and YP is a natutal module for
P◦ we see that YH = YH∩L = CYL(T ) = Ω1Z(T ) and CS(YH) = T . Also since Q � Op(P ),
Op(H)Op(L)/Op(L) is a non-trivial subgroup of T/Op(L) normalized by H ∩ L. Thus
Op(H)Op(L) = T .

For (f) let D = CH(Ṽ ) ∩ CH(YH). Since [YL, Op(H)] = YH , Op(H) ≤ D. Note that
Op(D) centralizes YP and so [P ◦, Op(D) ≤ Op(P ). Since Op(D) = Op(Op(D)Op(P )] we get
P ◦ ≤ NG(Op(D)). Since also H normalizes Op(D) we conclude that Op(D) = 1, D is a
p-group and D = Op(H)

Gαβ = NG(Qαβ)
Suppose that NG(T ) 6≤ L. Put M = 〈NG(T ), P◦T 〉. If Op(M) = 1 then pushing up

SL2(q) and Ω1Z(P ◦) = 1 gives [Op(P ), Op(P )] ≤ YP . By ES6, V = 〈ZHP 〉 ≤ Op(L). Thus
V is normal in H and L, a contradiction. The last equality in (e) follows since YP is a the
natural module. 2

The following is not needed in the FF -module argumnet:
CGβ (x̃) ≤ Gαβ for all x ∈ Yα \ Yβ.
For (g) let D∗ = CH(x̃) and D = CH(x), T acts transitively on the coset YHx, D∗ =

DT . Let x ∈ Y l
H for some l ∈ L. Then D ≤ CG(x) and by Q!, D ≤ NG(Ql). Thus

D ≤ NG(〈Q,Ql〉 = NG(P ◦) = L. 2 2

Let (α, α′) be a critical pair. Let β = α+ 1 and α− 1 ∈ ∆(a) with α− 1 6= β.

Lemma 0.3 [b¿2]

(a) b > 2.

(b) α ∼ H.

(b) b is odd.

b > 2 follows from (ES6) and α ∼ H follows from YH ≤ YL. Suppose that b is even. The
by 0.2 Yβ = [Yα, Yα] = Yα′−1. Hence by ??(c), Eβ = Eα′−1. Since b > 3, Vα−1 ≤ Qβ and
Vα−1 ≤ NG(Q∗β) = NG(Q∗α′−1). Thus

Vα−1 ≤ NGα−2(Qα′−2Q
∗
α′−1) = NGα′−2

(Qα−2α−1) = Gα−2α−1
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As Vα−1 ≤ Qβ, [Vα−1, Eβ] is a p-group and so Vα−1 ≤ Qα′−1 ≤ Qα′−1α′ and hence
[Vα−1, Yα′ ] ≤ Yα′−1 = Yβ ≤ Yα. Hence Yα′ normalizes Vα−1, a contradiction. Thus b is odd.
2

Lemma 0.4 [offender on Vbeta] One of the following holds

1. There exists 1 6= A ≤ Qαβ/Qβ such A is an offender on Ṽβ.

2. b = 3 and there exists an non-trivial Gαβ invariant subgroup A of Qαβ/Qβ such that
A is a quadratic 2F -offender on Ṽβ.

Proof: If Yβ ∩ Yα′ 6= 1, then ??(c) implies Eβ = Eα′ , a contradiction since [Yβ, Eβ] is a
p-group, but [Vβ, Eα′ ] is not. Hence

Step 1 [zbza] Yβ ∩ Yα′ = 1

Hence by 0.2 [Vβ ∩Qα′ , Vα′ ∩Qβ] ≤ Yβ ∩ Yα′ = 1 and we proved

Step 2 [vqvq] [Vβ ∩Qα′ , Vα′ ∩Qβ] = 1

Suppose now that b = 3. Since Qα′ acts transitively on 4(α + 2) \ {α′} get Gα+2α′ =
Gβα+2α′Qα′ . Hence VβQα′ is normal in Gα+2α′ . Also [Vα′ , Vβ, Vβ] ≤ [Vβ, Vβ = 1. Since
Gα+2 is doubly transitive on 4(α+ 2),

VβQα′/Qα′ = |Vα′/Vα′ ∩Qβ)

Let δ ∈ 4(β). Then no subgroup of Qβ is an over-offender on Zδ. This together with Step
2 implies

Vα′ ∩Qβ/CVα′∩Qα′−1
(Vβ) ≤ |Vβ/CVβ (Vα′ ∩Qβ)| ≤ |Vβ/Vβ ∩Qα′ | = |VβQα′/Qα′ |

By the lasy two displayed equations, Vβ is a 2F offender on Ṽα′ . So Case 2. of the
lemma holds.

So we may assume from now on

Step 3 b > 3.

Suppose that Vα′ ≤ Qβ.
Then by Step 2 [Vα′ , Yα ∩ Qα′ = 1. By 0.2f [Vα′ , Zα] 6= 1 and since Yα is a natural

module for Eα and since Vα′ ≤ Eα we get

|Vα′/CVα′ (Yα′) ≤ q = |Yα/CYαVα′ |

Thus 1. holds in this case.
So we may assume that for all critcial pairs:
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Step 4 [sym] Vα′ 6≤ Qβ and the situation is symmetric in β and α′.

If [Vβ, Vα′ ∩Qβ] = 1 = [Vα′ , Vβ ∩Qα′ ], then again (1) holds. So we may assume

Step 5 [vvqa] Yβ = [Yβ, Yα′ ∩Qβ] ≤ Vα′ or Yα′ ≤ [Yα′ , Yβ ∩Qα′ ] ≤ Yβ

By symmetry in α, α′ we may assume

Step 6 [vvq] Yβ = [Vβ, Vα′ ∩Qβ] ≤ Vα′ .

Pick µ ∈ 4(β) and t ∈ Vα′ ∩ Qβ with [Zµ, t] 6= 1. Then µ 6= α + 2 and by Step 2 ,
Zµ 6≤ Qα′ and we may assume that µ = α. Hence

Step 7 [vbq] There exists t ∈ Vα′ ∩Qβ with [Zα, t] 6= 1. In particular, t 6∈ Qα

Note that

Step 8 [O2G] Op(Eα) ≤ 〈Qα−1, t〉.

By Step 2 and Step 7 we have |VβQα′/Qα′ | ≥ |YαQα′/Qα′ | = |Yα/CYα(t)| ≥ q. We
record

Step 9 [vbqa] |VβQα′/Qα′ | ≥ q.

We next show:

Step 10 If [Vα−1, Vα′−2] = 1 then 1. holds.

Suppose [Vα−1, Vα′−2] = 1. Then Vα−1 ≤ Qα′−2∩Qα′−1. Put A = Vα−1∩(VβQα′). Then
A ≤ Vβ(VβVα−1 ∩Qα′) ≤ Vβ(Qα′−1 ∩Qα′). Thus by 0.2

[A, t] ≤ [Vβ, t][Qα′−1 ∩Qα′ , t] ≤ YβYα′ .
Let X be maximal in A with [X, t] ≤ Yβ. As |Yα′ | = q we have |A/X| ≤ q. Since

Y ∗β ≤ X, t normalizes X. By 0.2, [XZa, Qα−1] ≤ [Vα−1, Qα−1] = Yα−1 ≤ XZα. So by
Step 8 , Op(Eα) normalizes XZα. Since Op(Eα) is transitively on 4(α) we conclude that
XZα ≤ Dα :=

⋂
δ∈4(α) Vδ. Put a = |Vα−1/A|. Then |Vα−1Da/Da| ≤ |Vα−1/A||A/X| ≤ aq.

Hence

|VβDa/Dα| ≤ aq.
Note that Vα−1 ≤ Qα′−2 ∩ Qα′−1 ≤ Gα′ . Since Dα′−1 ≤ Vα′−2 we conclude from

|VβDa/Y Dα| ≤ qa and edge-transitivity that

|Vα′/CVα′ (Vα−1Vβ)| ≤ |Vα′Dα′−1/Dα′−1| = |VβDa/Dα| ≤ aq.
On the otherhand by definition of a, an isomorphism theorem and Step 9

|Vα−1VβQα′/Qα′ | = |Vα−1VβQα′/VβQα′ ||VβQα′/Qα′ | ≥ aq.
By the last two equations 1. holds. So we may assume from now on that
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Step 11 [va-1va-2] [Vα−1, Vα′−2] 6= 1

Suppose that Vα′−2 ≤ Qa−1. Then by Step 4 , Vα−1 ≤ Qα′−2. Note that by Step 8 ,
CYα−1(t) = 1. Thus

1 6= [Vα−1, Vα′−2] ≤ Yα−1 ∩ Yα′−2 ≤ CYα−1(t) = 1

a contradiction to Step 11 . Thus

Step 12 [va-1qa-1] Vα′−2 � Qα−1

By Step 4 we get

Step 13 [va-1qa-2] Vα−1 6≤ Qα′−2

Since b > 3, t centralizes [Vα′−2 ∩Qα−1, Vα−1]. and so

[Vα′ − 2 ∩Qα−1, Vα−1] = CYα−1(t) = 1

Thus by Step 5 and ?? that Yα′−2 = [Vα−1 ∩ Qα′−2Vα′−1] ≤ Vα−1. Hence there exists
1 6= x ≤ Yα′−2 ∩ Vα−1.

Note that t centralizes x and [x,Qα−1 ≤ Yα−1 ≤ Yα. So by Step 8 , Op(Eα) normalizes
the coset xYα.

Suppose that [x,Qα] 6= 1. Let R = Op(Eα) and D = [Qα, R]. Since CYα(R) = 1, the
Three Subgroup Lemma implies [x,D] 6= 1. Since R normalizes [x,D] we get [x,D] = Yα.
Thus D acts transitively on Yαx and so by the Frattini argument, R = CR(x)D. Since
x ∈ Yα′−2, Q! implies CR(x) ≤ C̃α′−2. Also since [Eα′−2, Qα′−2] ≤ Q∗α′−2 and Eα′−2 acts
transitively on 4α′ − 2 we have

t ∈ V (2)
α′−1 ∩Qα′−2 ≤ (V (2)

α′−1 ∩Qα′−2)Q∗α′−2 = (V (2)
α′−3 ∩Qα′−2)Q∗α′−2 ≤ (Qα ∩ C̃α′−2)Q∗α′−2

The right hand side of this equation is p-group normalized by CR(x) and so 〈tCR(x)〉Qα/Qα
is a p-group. But this contradicts t ∈ Qαβ \Qα and Op(Eα) ≤ CR(x)Qα.

Thus [x,Qα] = 1, and so x ∈ Ω1Z(Qα) = Yα. Since [x, t] = 1 we conclude x ∈ Yβ. Since
also x ∈ Yα′−2 we conclude that Eα′−2 ≤ C̃β

Since b > 3,

Vα−1 ≤ V (2)
α Q∗β = V

(2)
α+2Q

∗
β ≤ (Qα′−2 ∩ C̃β)Q∗β

The right hand side is a p-group normalized by Eα′−2 and we obtain a contradiction to Step
13 . 2

Theorem 0.5 (The abelian E-Structure Theorem) [abelian es] Assume Hypothesis
0.1 ( and maybe that there exists a unique P̃ ∈ P(ES) with P̃ � NG(P ◦)).) Let V = 〈Y E

P 〉
and Ṽ = V/[V,Op(E)]. Then
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Proof:
Gαβ = NG(Qαβ)
Suppose that NG(T ) 6≤ L. Put M = 〈NG(T ), P◦T 〉. If Op(M) = 1 then pushing up

SL2(q) and Ω1Z(P ◦) = 1 gives [Op(P ), Op(P )] ≤ YP . By ES6, V = 〈ZHP 〉 ≤ Op(L). Thus
V is normal in H and L, a contradiction. The last equality in (e) follows since YP is a the
natural module.

CGβ (x̃) ≤ Gαβ for all x ∈ Yα \ Yβ.
For (g) let D∗ = CH(x̃) and D = CH(x), T acts transitively on the coset YHx, D∗ =

DT . Let x ∈ Y l
H for some l ∈ L. Then D ≤ CG(x) and by Q!, D ≤ NG(Ql). Thus

D ≤ NG(〈Q,Ql〉 = NG(P ◦) = L. 2

Let G be a group of local characteristic p. We say that G has rank 2, provided that
there exists P, P̃ ∈ P(S) such that P̃ ≤ ES and 〈P, P̃ 〉 /∈ L. We say that H has rank at
least three if G has neither rank 1 nor rank 2.

The next lemma shows how P̃ ! can be used to obtain information about E/Op(E).

Lemma 0.6 [unique component in e] Suppose E!, P !, P̃ uniqueness and that G has
rank at least three. Let L = NG(P ◦) and H = (L ∩ C̃)E.

(a) NG(T ) ≤ L for all Op(H ∩ L) ≤ T � S.

(b) There exists a unique P̃ ∈ PH(S) with P̃ � L. Moreover, P̃ ≤ ES.

(c) P̃ /Op(P̃ ) ∼ SL2(q).pk.

(d) H = K(L ∩H), L ∩H is a maximal subgroup of H and Op(H ∩ L) 6= Op(H).

(e) H has a unique p-component K.

(f) Let Z0 = CYP (S ∩ P ◦) and V = 〈Y H
P 〉. Then Z0 � V and V ≤ Q ≤ Op(H).

(g) Let D = CH(K/Op(K). Then D is the largest normal subgroup of H contained in L
and D/Op(H) is isomorphic to a section of the Borel subgroup of Aut(SL2(q)

(h) Let V = V/Z0. Then

(ha) [V ,Op(H)] = 1

(hb) CH(V ) ≤ D and CH(V ) ∩ CH(Z0) = Op(H).

(hc) Let 1 6= X ≤ YP /Z0. Then NH(X) ≤ H ∩ L.

(hd) H ∩ L contains a point-stabilizer for H on V .

Proof:
By E!, Op(〈L,H〉) = 1 and so E 6≤ L. Since {P} = {P◦(S) and NG(S) ≤ C̃, NG(S) ≤

NG(P ) ≤ L. Since E = 〈PES , NE(S) > there exists P̃ ∈ PES(S) with P̃ � L. Since rank
G is at least three, 〈P, P̃ 〉 ∈ L and so by P̃ !, P̃ is uniquely determined.
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Let T be as in (a). It follows easily from P ! that QOp(L) is a Sylow p subgroup of
P ◦Op(L). Since QOp(L) ≤ Op(H∩L) ≤ T we conclude that T is a Sylow p-subgroup of TP ◦.
Suppose that M := 〈P ◦T,NG(T )〉 6 inL. Then by Pushing up ?? and Q! P ∼ q2SL2(q).
Since 〈P, P̃ 〉 ∈ L we get P̃ ≤ NG(YP ) and ??(dd) gives the contradiction P̃ ≤ NG(P ◦) = L.
Thus M ∈ L. If P̃ ∈M , then T � P̃ and so Op(P ◦) ≤ Op(P̃ ), a contradiction to (P̃ − 2b).
Hence P̃ �M . By the uniqueness of P̃ and since S ≤M , M ≤ L. Thus (a) holds.

Let P ∗ ∈ PH(S) with P ∗ � L. Suppose that P̃ 6 P̃ . Then P ∗ � ES and so S ∩ E ≤
Op(P ∗) Since EOp(H ∩ L) is normalized by E(L ∩H) = H we get Op(H ∩ L) ≤ Op(P ∗).
Thus by (a) P ∗ ≤ L, a contradiction. So (b) holds. (a) is obvious.

Let H ∩ L < M ≤ H. Then M � L and so P̃ ≤M . Let R ∈ P(H)(S). If R = P̃ , then
R ≤ M , if R 6= P̃ , then R ≤ L and again R ≤ M . Since also NH(S) ≤ H ∩ L ≤M we get
M = H. By (a) Op(H ∩ L) 6= Op(H).

Let N be a normal subgroup of H minimal with respect to N 6≤ L. By the uniqeness of
P̃ , P̃ ≤ NS. Hence Op(P̃ ) ≤ N and since Op(P̃ ) � L, N = 〈Op(P̃ )H〉 ≤ E. Next let F be
the largest normal subgroup of H contained in L. Then [Op(H ∩L), F ] ≤ Op(H ∩L)∩F ≤
Op(F ) ≤ Op(H). Note that [Op(H), N ] is normal in N(H ∩L) = N and so [Op(H), N ] = N
and we conclude that [N,F ] ≤ Op(H). In particular F ∩N/Op(N) ≤ Z(N/Op(N).

Suppose that N is solvable. Then the mimimality of N implies that N/Op(N) is a
r-group for some prime r 6= p. In particular H ∩N < NN (H ∩N) and the maximality of
H ∩ N implies H ∩ N � H. Thus H ∩ N ≤ F . Suppose that S does not act irreducible
on N/H ∩ N . The by coprime action there exists an S-invarinat R ≤ N with R 6≤ L and
Op(P̃ ) � R. Then by (b) RS ≤ L, a contradiction. So S acts irreducible on N/H∩N . Thus
N = (H ∩N)Op(P̃ ) and N = [N,Op(H)] ≤ Op(P̃ ). Note that 〈P ◦, N〉 is normalizes by P ◦,
H ∩L and N and so by 〈L,H〉, it follows that Op〈P ◦, N〉 = 1 and so also Op(〈P, P̃ 〉 = 1, a
contradiction.

Thus N is not solvable and so the product of p-components.
Let K1 be a p-component of N . By minimality of N , N = 〈KH∩L

1 〉 If S does not act
tranisitively on the p-components of N , we can choose K1 such that Op(P̃ ) � KS

1 〉. But then
K1 ≤ L, a contradiction. Thus N = 〈KS

1 〉. Suppose that K1∩ P̃ lies in the unique maximal
subgroup of P̃ containing S. Since K1 ∩ P̃ is subnormal in P̃ the structure of P̃ implies
[K1∩P̃ , S] is a p-group. Thus K1 6= N and K1∩P̃ is a p-group. Hence N∩S�Op(P̃ ). Since
NN (N ∩S)/N ∩S is a p-group we conclude from coprimes action that N ∩L projects onto
NK1(N ∩S)F/F . Thus [K1∩L)F,NK1(N ∩S)] ≤ [K1∩L)F,N ∩L] ≤ L. Conjugation with
S yields [N ∩L,NN (N ∩S) ≤ N ∩L. Thus H = 〈P̃ , L〉 ≤ NH(N ∩L) and so N ∩L = F ∩L.
Since L contains a Sylow p-subgroup of N , we conclude that NF/F is a p′-group. Let r be
a prime divividing the order of NF/F and R/F an S-invariant Sylow p-subgroup of NF/F .
Then RS is not contained in L and so P̃ ≤ RS. Thus P̃ = is a {r, p} group and r is unique.
Thus NF/F is a r-group, a contradiction.

We proved that K1∩P̃ is not contained in the unique maximal subgroup of P̃ containing
S. Since [K1 ∩ P̃ , (K1 ∩ P̃ )g is a p-group for all g ∈ P̃ \NH(K1) the structure of P̃ implies
Op(P̃ ) � K1. Thus S ≤ NH(K1) and so N = K1. Thus (e) is proved.
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By P ! uniqueness Z0 is normal in C̃ and [Z0, Q] = 1. Since YP is a natural module for
P ◦ we get [YP , Q] ≤ [V,Op(H) ≤ [V,OP (L ∩H)] ≤ Z0. So YP acts trivial an all factors of
1 ≤ Z0 ≤ Q and since C is of characteristic p, YP ≤ Q. This proves (f) and (ha).

To prove (g) note that N 6≤ D and so by uniqueness of N , D ≤ L and so D ≤ F . But
as seen above F ≤ D and so D = F . Let D0 be maximal in D with [P ◦, D0] ≤ Op(P ◦)].
Then H and P ◦ normalize Op(D0) and so Op(D0) = 1. Thus D0 is a p-group and (g) holds.

Note that CH(V ) ≤ NH(YP )∩H∩L and So CH(V ) ≤ D. Let R = Op(CH(V )∩CH(Z0)).
Then R) centralizes YP and [R,P ◦] ≤ CP ◦(YP ) = Op(P ◦) ≤ Op(H ∩ L). But R is normal
in H ∩L and so R = Op(R) = Op(ROp(H ∩L). Thus H and P ◦ both normalizes R and so
R = 1. Hence (hb) holds.

Let e ∈ YP \Z0 with eZ0 ∈ X. Let g ∈ NH(X). Since H∩L acts transitively on YP \Z0,
there exists h ∈ H ∩ L with egh = e. Let t ∈ P ◦ with e ∈ Zt0. Then [e,Qt] = 1 and so
gh ≤ C̃t. Thus gh ∈ NG(〈Q,Qt〉 = NG(P ◦) = L. Hence g ∈ L and (hc) holds.

(hd) follows from (hc). 2

1 The Small World Theorem

Given Q! and P ∈ P◦(S). We say that b = 2 for P if b > 1 for P and 〈Y E〉
P is not abelian.

If neither b = 1 nor b = 2 for P we say that b is at least three for P .

Theorem 1.1 (The Small World Theorem) [the small world theorem] Suppose E!
and let P ∈ P◦(S). Then one of the following holds:

1. G has rank 1 or 2.

2. b = 1 or b = 2 for P .

3. A rank three sitiation described below.

Proof: Assume that G has rank at least three and that b is at least three. In the excep-
tional case of the P !-theorems ( ?? and ?? one easily sees that b = 2 for P . Thus P ! holds.
Also in the exceptionell case of the P̃ ! Theorem ?? one gets b = 2 for P . Thus (strong) P̃ !
holds. We proved

Step 1 [ P! and wP!] P ! and P̃ ! hold.

0.6 gives us a good amount of information about E. We use the notation introduced in
0.6.

Since 〈H,L〉 /∈ L, we can apply the amalgam method to the pair (H,L). A non-trivial
argument shows

Step 2 [offender on V] One of the following holds:
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1. Op(H ∩ L)/Op(H) contains a non-trivial quadratic offender on Ṽ .

2. There exists a non-trivial normal subgroup A of H∩L/Op(H∩L) and normal subgroups
YP ≤ Z1 ≤ Z2 ≤ Z3 ≤ V of H ∩ L such that:

(a) A and V/Z3 are isomorphic as FpCH∩L(YP )-modules.

(b) |Z3/Z2| ≤ |A|.
(c) [V ,A] ≤ Z2 ≤ CV (A). In particular, A is a quadratic 2F -offender.

(d) [x,A] = YP for all x ∈ Z3 \ Z2.

(e) Z1 is a natural SL2(q)-module for P̃ ∩ CH(Z0).

Using ?? and ?? (and the Z∗-theorem to deal with the case |A| = 2) it is not too difficult
to derive

Step 3 [e-structure] K/Op(K) ∼= SLn(q), (n ≥ 3), Sp2n(q)′,(n ≥ 2) or G2(q)′,( p = 2).
Moreover, if W is a maximal submodule of V , then V/W is the natural module for K/Op(K)
and H ∩ L contains a point-stabilizer on V/W .

Let M ∈M(〈P, P̃ 〉) with M◦ maximal.
Suppose first that M◦ 6≤ 〈P, P̃ 〉. Then by the Structure Theorem ?? M◦/Op(M◦) ∼=

SLn(q), n ≥ 4 or Sp2n(q), n ≥ 3. Moreover,

R := Op(M◦ ∩ C̃ ≤ Op(P̃ )M∩ eC ≤ K

In the case of Sp2n(q) we have R/Op(R) ∼= Sp2n−2(q)′. So Step 3 implies K/Op(K) ∼=
Sp2m(q) and R ≤ H ∩ L, a contradiction.

Thus M◦/Op(M◦) ∼= SLn(q) and R/Op(R) ∼= SLn−1(q). Let R∗ be a parabolic subgroup
of KS minimal with RS < R∗. Then R∗ ∩ K/Op(R∗ ∩ K) ∼= SLn(q) or Sp2n−2(q). Let
M∗ = 〈M◦S,R∗〈. Since

R∗ ≤ 〈Op(P̃ )R
∗〉S ≤ (M∗)◦S

the maximality of M◦ implies that M∗ /∈ L.
Now M∗ has a geometry of type An or C2n with all its residues classical we conclude

that M∗ has a normal subgroup SLn+1(q) or Sp2n(q). But this contradicts the assumption
that V is abelian.

(Remark: One does not have to identify M∗ first to obtain this contradiction. Indeed
an easy geometric argument shows that M∗ has rank at most three on M∗/M∗ ∩ C̃. But
then V abelian gives the contradiction 〈ZM∗0 〉 abelian . )

We conclude that M◦ ≤ 〈P, P̃ 〉. Let P ∗ be the unique elemenent of PKS(S) with
P ∗ � NG(Op(P̃ )). By maximality of M◦ we obtain 〈P, P̃ , P ∗〉 /∈ L.

This is rank three situation eluded to in (c). 2
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Lemma 1.2 [quadratic normal point stabilizer theorem] Let H be a finite group and
V a faithful irreducible FpH-module. Let P be a point stabilizer for H on V and A ≤ P .
Suppose that

(i) F ∗(H) is quasi simple and H = 〈AH〉

(ii) A� P and |A| > 2.

(iii) A acts quadratically on V .

Then one of the following holds:

1. H ∼= SLn(q), Sp2n(q),or G2(q) and V is the natural module. Moreover,

2. p = 2, H is a group of Lie Typ in char p, and H is contained in a long root subgroup
of H.

3. Who knows
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