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Assume M(S) > 2 and @Q!. We investigate the Structure of E/O,(E).
For L € L define L, = L°0O,(L). In this section we assume

Hypothesis 0.1 [hypothesis e structure theorem]
ES1) M(S) > 2 and Q!.

ES2) P e P(S) and P £ C.

ES3) P,/O,(P) = SLa(q), q a power of 2.

ES5) Np(SNP,) < C.

ES6

(
(ES2)
(ES3)
(ES4) Yp is a natural module for P/O,(P).
(ES5)
(ES6) (YY) is abelian.

(ES7) 0

ES7) 0,((P, E)) = 1.

Some remarks on this assumptions. (ES7) follows from E! but not from Q! (example
(Ln(q). (ES2) to (ES5) follow from P! theorem. But —P! have currently been treated only
for Y < Q.

Let L = Ng(P°) and H = E(LNC).

By (ES7) O,()H,L() = 1. By part (a) of the preceeding lemma we can apply the
amalgam method to (H,L). Let I'y = I'(G; L, H) and I" the connected component of I'
containing L and H. For a € I'. If a = Lg define F, = = PY, if « = Hg define E, = (EQ)Y,
Co = C9 and QF, = Q9.

Lemma 0.2 [basic es] Let (o, 3) be adjacent vertices with o ~ H

a

(a) Go = EaGaﬁ and Gﬁ = E@Gaﬂ.
(c) Cu(Yp) = QaQp = QuQf = Qap € Syl,(La), where U € Sylp(Gap).
(d) Gap = NG, (Qap)

) Y

(€) Yap =Yg = [Ya,z] for allz € Qup \ Qa-



f) Let V3 = V3/Yy. Then Ca Vi) N Ca.(Yg) = Qg In particular G,g contains a point
B Bl Lp e p\Vp s\ 1p B B
stablizer for Gg on V.

Proof: By edge transitivity we may assume that « = L and 8 = H. By (ES5), and the
Frattini Argument, L = P,(LNC) = P,(L N H). By definition of H, H = (H N L)E. Thus
(a) holds.

Note that Yynr, < Yz and so the definition of E implies [Yz, E] = 1. Since L = (LNH)E
we get Yynr = Y. Let T = SN P°. Since Np(T) is a maximal subgroup of L we get
Np(T) =HNL and Op(HNL)=T. Since Ygnr, < Y7, and Yp is a natutal module for
P, we see that Yy = Yynr = Cy, (T) = QZ(T) and Cs(Yy) = T. Also since Q £ Op(P),
Op(H)O,(L)/Op(L) is a non-trivial subgroup of 7/O,(L) normalized by H N L. Thus
O,(H)O,(L)=T.

For (f) let D = Cy(V) N Cy(Yy). Since [Y1,,O0,(H)] = Yu, Op(H) < D. Note that
OP(D) centralizes Yp and so [P°,OP(D) < Op(P). Since OP(D) = OP(OP(D)O,(P)] we get
P° < Ng(OP(D)). Since also H normalizes OP(D) we conclude that OP(D) = 1, D is a
p-group and D = O,(H)

Gap = Na(Qap)

Suppose that Ng(T) £ L. Put M = (Ng(T), P.T). If O,(M) = 1 then pushing up
SLsy(q) and Q1Z(P°) = 1 gives [O,(P),0P(P)] < Yp. By ES6, V = (ZH) < O,(L). Thus
V is normal in H and L, a contradiction. The last equality in (e) follows since Yp is a the
natural module. O

The following is not needed in the F'F-module argumnet;:

Cgy(7) < Gop for all x € Yy, \ V.

For (g) let D* = Cy (%) and D = Cy(z), T acts transitively on the coset Ygz, D* =
DT. Let z € Y}, for some I € L. Then D < Cg(z) and by Q!, D < Ng(Q'). Thus
D < Ng({Q, Q") = Ng(P°) = L. O O

Let (o, ) be a critical pair. Let § =a+1 and « — 1 € A(a) with a — 1 # 3.
Lemma 0.3 [b;2]
(a) b>2.
(b) a~ H.
(b) b is odd.

b > 2 follows from (ES6) and o ~ H follows from Yy < Y7. Suppose that b is even. The
by 0.2 Y3 = [Y,,Y,] = Yy _1. Hence by ??(c), Eg = Eq—1. Since b > 3, Vo1 < Qp and
Va-1 < Na(Qp) = Na(QF, ). Thus

a’'—1

Va—1 < Ng, ,(Qu—2Qp_1) = Ni,, ,(Qa—20-1) = Ga—2a-1



As Vo1 < Qg, [Va—1,Ep] is a p-group and so Vo—1 < Qu—1 < Qu—1o and hence
Va—1,Yw] < Yy_1 =Yg <Y,. Hence Y, normalizes V,_1, a contradiction. Thus b is odd.
Od

Lemma 0.4 [offender on Vbeta] One of the following holds
1. There exists 1 # A < Qap/Qp such A is an offender on %

2. b =3 and there exists an non-trivial Gog invariant subgroup A of Qn5/Qs such that
A is a quadratic 2F -offender on V.

Proof: If Y3NY, # 1, then ?7(c) implies Eg = E,/, a contradiction since [Yg, E3] is a
p-group, but [V, E./] is not. Hence

Step 1 [zbza] YsNY, =1
Hence by 0.2 [VgN Qu, Vor NQp] < YgNYy =1 and we proved

Step 2 [vqvq] [V NQu, Ve NQp] =1

Suppose now that b = 3. Since Q. acts transitively on A(a + 2) \ {a'} get Goio0r =
GBat20/Qor- Hence V3Q. is normal in Gaqoa. Also [V, Vs, Vg] < [V, Vg = 1. Since
Ga+2 is doubly transitive on A(a + 2),

VBQa’/Qa’ = |Va’/Va’ N Qﬂ)
Let § € A(3). Then no subgroup of Qg is an over-offender on Z5. This together with Step
2 implies

Vo NQs/Cv.inq,,_,(Vs) < |V5/Cvy(Var N Qp)| < [V5/Ve N Qur| = [VQur /Qu|

By the lasy two displayed equations, V3 is a 2F offender on ‘N/O/. So Case 2. of the
lemma holds.
So we may assume from now on

Step 3 b > 3.

Suppose that V,» < Qg.
Then by Step 2 [V, Yo N Qun = 1. By 0.2f [V, Zy] # 1 and since Y, is a natural
module for E, and since V,, < E, we get

‘Vo//CVa/ (Yo/) <qg= ‘Ya/CYaVa/’

Thus 1. holds in this case.
So we may assume that for all critcial pairs:



Step 4 [sym] V, £ Qg and the situation is symmetric in 3 and o/ .

If [V3, Ve NQpl =1 = [V, V3N Qy], then again (1) holds. So we may assume
Step 5 [vvqa] Yz =[Y3, Yy NQp] < Vy or Yy <[Yu,YgNQuy] <Ys

By symmetry in a, o/ we may assume
Step 6 [vvq] Y5 = [V3, Var N Qp] < V.

Pick p € A(B) and t € Vy N Qp with [Z,,t] # 1. Then p # a + 2 and by Step 2 ,
Z, £ Qn and we may assume that y = o. Hence

Step 7 [vbq] There exists t € Voy N Qp with [Zy,t] # 1. In particular, t € Qq

Note that
Step 8 [02G] OP(E,) < (Qa—1,t).

By Step 2 and Step 7 we have |V3Quw/Qu| > |YaQu/Qu| = |Yo/Cy,(t)| > q. We
record
Step 9 [vbqa] |[V3Qa/Qur| = ¢.

We next show:
Step 10 If [Vo—1,Va o] =1 then 1. holds.

Suppose [Vo—1, Vor—2] = 1. Then Vo1 < Qu—2NQu—1. Put A =V, 1N(V3Qy ). Then
A< V3(VgVac1 NQu) < V3(Qa—1 N Qy ). Thus by 0.2

[A,t] < [V3,t][Qu—1 N Qu» t] < Y3Yy.

Let X be maximal in A with [X,¢] < Y. As |Y,| = ¢ we have |[A/X| < ¢. Since
Y; < X, t normalizes X. By 0.2, (X Za, Qa—1] < [Va—1,Qa-1] = Yau1 < XZ,. So by
Step 8 , OP(E,) normalizes X Z,. Since OP(E,) is transitively on A(«) we conclude that
XZo < Do = sen(a) Vo- Put a = [Va1/A|. Then |Vo1Da/Da| < [Va-1/A[|A/X]| < ag.
Hence

|VsDo/Dqo| < ag.
Note that Vo1 < Qu—o N Qu—1 < Gy . Since Dy_1 < Vy_o we conclude from
|VsD,/Y Dy| < ga and edge-transitivity that
‘Va’/CVa/(Va—lvﬁ)‘ < ’Va’Da’—l/Da’—1’ = |VﬁDa/Da‘ < aq.
On the otherhand by definition of a, an isomorphism theorem and Step 9

Va-1VaQu /Qur| = [Va-1VaQu /VQu [|V5Qur /Qur| > ag.

By the last two equations 1. holds. So we may assume from now on that



Step 11 [va-1va-2] [Vo—1, Vo] #1

Suppose that V9 < Qqu—1. Then by Step 4 , Vo_1 < Qn—_2. Note that by Step 8 ,
Cy, , (t) = 1. Thus

1% Va1, Viroo] < Va1 N Yo < Cy._,(t) =1
a contradiction to Step 11 . Thus
Step 12 [va-1qa-1] Vs £ Qa—1
By Step 4 we get
Step 13 [va-1qa-2] V,—1 £ Qo2
Since b > 3, t centralizes [Vy_o N Qa—1, Va—1]. and so

[Vo/ — 2N Qa-1, Va—l] = CYaq(t) =1

Thus by Step 5 and ?? that Yy o = [Voe1 N Qu—2Var—1] < Va—1. Hence there exists
1#£2 <Yy oNV4_1.

Note that ¢ centralizes z and [z, Qq—1 < Yo—1 < Y,. So by Step 8 , OP(E,) normalizes
the coset =Y.

Suppose that [z,Q.] # 1. Let R = OP(E,) and D = [Qq, R]. Since Cy,(R) = 1, the
Three Subgroup Lemma implies [z, D] # 1. Since R normalizes [z, D] we get [z, D] =Y,
Thus D acts transitively on Y,z and so by the Frattini argument, R = Cr(z)D. Since

x € Yoo, Q! implies Cr(x) < Cy—2. Also since [Ey_2,Qu—2] < QF,_, and Ey_o acts
transitively on Ao’ — 2 we have

teV? NQuw o< (VP NQuw 2)Q% o= (VN Qu 2)Q% 5 < (Qun Cor2)Q s

The right hand side of this equation is p-group normalized by Cg(x) and so (t“FN)Q, /Qq
is a p-group. But this contradicts t € Qs \ Qo and OP(E,) < Cr(z)Qa.
Thus [z,Qa] =1, and so x € 1Z(Qn) = Y. Since [z,t] = 1 we conclude x € Y. Since

also x € Y,y_9 we conclude that E,_o < Cg
Since b > 3,

Voo < VQ, = V205 < (Qu-2n Cs) Q5

The right hand side is a p-group normalized by E,/_s and we obtain a contradiction to Step
13 . O

Theorem 0.5 (The abelian E-Structure Theorem) [abelian es| Assume Hypothesis
0.1 (_and maybe that there exists a unique P € P(ES) with P & Ng(P°)).) Let V = (YE)
and V =V/[V,0p(E)]. Then



Proof:

Gap = Nc(Qap)

Suppose that Ng(T) £ L. Put M = (Ng(T), P.T). If O,(M) = 1 then pushing up
SLy(q) and 2 Z(P°) = 1 gives [O,(P),O0P(P)] < Yp. By ES6, V = (ZH) < O,(L). Thus
V is normal in H and L, a contradiction. The last equality in (e) follows since Yp is a the
natural module.

Cgy(T) < Gop for all z € Yy \ V.

For (g) let D* = Cy(z) and D = Cyg(x), T acts transitively on the coset Ygx, D* =
DT. Let z € Y}, for some | € L. Then D < Cg(z) and by Q!, D < Ng(Q'). Thus
D < Ng({Q, Q") = Ng(P°) = L. O

Let G be a group of local characteristic p. We say that G has rank 2, provided that
there exists P, P € P(S) such that P < ES and (P, P) ¢ L. We say that H has rank at
least three if G has neither rank 1 nor rank 2.

The next lemma shows how P! can be used to obtain information about E/O,(E).

Lemma 0.6 [unique component in e] Suppose E!, P!, P uniqueness and that G has

rank at least three. Let L = Ng(P°) and H = (LNC)E.
) Na(T) <L for all O,(HNL)<T<S.
) There exists a unique P € Pg(S) with P £« L. Moreover, P < ES.
) P/Oy(P) ~ SLz(q).p"
(d) H=K(LNH), LNH is a mazimal subgroup of H and Op(H N L) # O,(H).
) H has a unique p-component K.
) Let Zo = Cy, (SN P°) and V = (YE). Then Zp <AV and V < Q < O,(H).
)

Let D = Cy(K/Oy(K). Then D is the largest normal subgroup of H contained in L
and D/Oy,(H) is isomorphic to a section of the Borel subgroup of Aut(SLy(q)

(h) LetV =V/Zy. Then

(ha) [V, Op(H)] =1

(hb) Cy(V ) <D and Cy(V)NCry(Zy) = O,(H).
(he) Let 1 # X <Yp/Zy. Then Ng(X) < HNL.

(hd) H N L contains a point-stabilizer for H on V.

Proof:

By E!, O,((L,H)) = 1 and so E £ L. Since {P} = {P°(S) and Na(S) < C, Na(S) <
Ng(P) < L. Since E = (Pgs, Ng(S) > there exists P € Pgs(S) with P £ L. Since rank
G is at least three, (P, P> € L and so by P!, Pis uniquely determined.



Let T be as in (a). It follows easily from P! that QO,(L) is a Sylow p subgroup of
P°Op(L). Since QO,(L) < O,(HNL) < T we conclude that T'is a Sylow p-subgroup of T'P°.
Suppose that M := (P°T,Ng(T)) /nL. Then by Pushing up ?? and Q! P ~ ¢*SLs(q).
Since (P, P) € £ we get P < Ng(Yp) and 77(dd) gives the contradiction P< Ng(P°) = L.
Thus M € £. If P € M, then T < P and so O »(P°) < Op(P P), a contradiction to (P — 2b).
Hence P « M. By the uniqueness of P and since S < M, M < L. Thus (a) holds.

Let P* € Py(S) with P* £ L. Suppose that P /P. Then P* £ ES and so SNE <
Op(P*) Since EO,(H N L) is normalized by E(L N H) = H we get O,(H N L) < O,(P¥).
Thus by (a) P* < L, a contradiction. So (b) holds. (a) is obvious.

Let HNL < M < H. Then M £ L and so P < M. Let R € P(H)(S). If R = P, then
R<M,if R+# ]3, then R < L and again R < M. Since also Ny (S) < HNL < M we get
M = H. By (a) Op,(HNL) # O,(H).

Let N be a normal subgroup of H minimal with respect to N' £ L. By the unigeness of
P, P < NS. Hence OP(P) < N and since OP(P )£ L, N= (OP(P)H) < E. Next let F be
the largest normal subgroup of H contained in L. Then [O,(HNL),F] < O,(HNL)NF <
Op(F) < Op(H). Note that [O,(H), N]is normal in N(HNL) = N and so [O,(H),N|] =N
and we conclude that [N, F| < O,(H). In particular F'N N/O,(N) < Z(N/Op(N).

Suppose that N is solvable. Then the mimimality of N implies that N/Op(N) is a
r-group for some prime r # p. In particular H N N < Ny(H N N) and the maximality of
H NN implies HNN < H. Thus H N N < F. Suppose that S does not act irreducible
on N/H N N. The by coprime action there exists an S-invarinat R < N with R £ L and
Or(P) £ R. Then by (b) RS < L, a contradiction. So S acts irreducible on N/HNN. Thus
N = (HNN)O?(P) and N = [N,O,(H)] < O(P). Note that (P°, N) is normalizes by P°,
HNLand N and so by (L, H), it follows that O,(P°, N) =1 and so also O,(({P, P)=1,a
contradiction.

Thus N is not solvable and so the product of p-components.

Let K7 be a p-component of N. By minimality of N, N = (K{! ﬂL) If S does not act
tranisitively on the p-components of N, we can choose K such that OP(P) £ K7) ). But then
K1 < L, a contradiction. Thus N = (K?). ‘Suppose that K N P lies in the unique maximal
subgroup of P containing S. Since K; N P is subnormal in P the structure of P implies
[K1NP,S]isap-group. Thus K; # N and K, NP is a p-group. Hence NNS<LO,(P ) Since
Ny(NNS)/NNS is ap-group we conclude from coprimes action that N N L projects onto
N, (NNS)F/F. Thus [K1NL)F, N, (NNS)] < [K1NL)F, NNL] < L. Conjugation with
S yields [NNL, Ny(NNS) < NOL. Thus H = (P, L) < Ng(NNL) andso NNL = FNL.
Since L contains a Sylow p-subgroup of N, we conclude that NF/F is a p’-group. Let r be
a prime divividing the order of NF/F and R/F an S-invariant Sylow p-subgroup of NF/F.
Then RS is not contained in L and so P < RS. Thus P = is a {r, p} group and r is unique.
Thus NF/F is a r- group, a contradiction.

We proved that K1M P is not contained in the unique maximal subgroup of P containing
S Slnce [K, N P, (K, N P)9is a p-group for all g € P\ Ny (K,) the structure of P implies

P) £ K;. Thus S < Ng(K;) and so N = K. Thus (e) is proved.



By P! uniqueness Z; is normal in C and [Z0,Q] = 1. Since Yp is a natural module for
P° we get [Yp, Q] < [V,0,(H) < [V,Op(LNH)] < Zy. So Yp acts trivial an all factors of
1 < Zp <@ and since C is of characteristic p, Yp < Q. This proves (f) and (ha).

To prove (g) note that N £ D and so by uniqueness of N, D < L and so D < F. But
as seen above F' < D and so D = F. Let Dy be maximal in D with [P°, Dg] < O,(P°)].
Then H and P° normalize OP(Dy) and so OP(Dy) = 1. Thus Dy is a p-group and (g) holds.

Note that Cy (V) < Ng(Yp)NHNL and So Cy(V) < D. Let R = OP(Cy(V)NCr(Zp)).
Then R) centralizes Yp and [R, P°] < Cpo(Yp) = Op(P°) < Op(H N L). But R is normal
in HN L and so R = OP(R) = OP(RO,(H NL). Thus H and P° both normalizes R and so
R = 1. Hence (hb) holds.

Let e € Yp\ Zp with eZy € X. Let g € Ny (X). Since HN L acts transitively on Yp \ Zp,
there exists h € H N L with e9" = e. Let t € P° with e € Z§. Then [¢,Q!] = 1 and so
gh < C'. Thus gh € Ng((Q, Q") = Ng(P°) = L. Hence g € L and (hc) holds.

(hd) follows from (hc). O

1 The Small World Theorem

Given Q! and P € P°(S). We say that b = 2 for P if b > 1 for P and <YPE> is not abelian.
If neither b = 1 nor b = 2 for P we say that b is at least three for P.

Theorem 1.1 (The Small World Theorem) [the small world theorem]| Suppose E!
and let P € P°(S). Then one of the following holds:

1. G has rank 1 or 2.
2.b=1o0rb=2 for P.

3. A rank three sitiation described below.

Proof: Assume that G has rank at least three and that b is at least three. In the excep-
tional case of the P!-theorems ( 77 and 77 one easily sees that b = 2 for P. Thus P! holds.
Also in the exceptionell case of the P! Theorem ?? one gets b = 2 for P. Thus (strong) P!
holds. We proved

Step 1 [ P! and wP!] P! and P! hold.

0.6 gives us a good amount of information about E. We use the notation introduced in
0.6.

Since (H, L) ¢ L, we can apply the amalgam method to the pair (H,L). A non-trivial
argument shows

Step 2 [offender on V] One of the following holds:



1. O,(HNL)/O,(H) contains a non-trivial quadratic offender on V.

2. There exists a non-trivial normal subgroup A of HNL/O,(HNL) and normal subgroups
Yp <7, <7y < Z3<V of HNL such that:

(a) A and V/Z3 are isomorphic as F,Crunr(Yp)-modules.
(b) [Zs/Z2| < |Al.

)
)
(c) [V,A] < Z5 < CV(A). In particular, A is a quadratic 2F -offender.
)
)

(d) [®, Al =Yp for all x € Z3\ Zs.
(e) Z1 is a natural SLy(q)-module for PN Cy(Zy).

Using 7?7 and ?? (and the Z*-theorem to deal with the case |A| = 2) it is not too difficult
to derive

Step 3 [e-structure] K/O,(K) = SLy,(q), (n > 3), Span(q)’,(n > 2) or Ga2(q)',(p = 2).
Moreover, if W is a mazimal submodule of V, then V/W is the natural module for K/O,(K)
and H N L contains a point-stabilizer on VW .

Let M € M((P, P)) with M° maximal.
Suppose first that M° £ (P, P). Then by the Structure Theorem ?? M°/O,(M°) =
SL,(q),n >4 or Spa,(q), n > 3. Moreover,

R:=0"(M°NC <OP(P)M€ < K

In the case of Spa,(q) we have R/Op(R) = Span—2(q)’. So Step 3 implies K/O,(K) =
Spam(q) and R < H N L, a contradiction.

Thus M°/O,(M°) =2 SLy,(q) and R/O,(R) =2 SL,,—1(q). Let R* be a parabolic subgroup
of KS minimal with RS < R*. Then R* N K/Op(R* N K) = SLy,(q) or Span—2(q). Let
M* = (M°S, R*(. Since

R* < (OP(P)R')S < (M*)°S

the max1mahty of M° implies that M* ¢ L.

Now M* has a geometry of type A, or Cs, with all its residues classical we conclude
that M* has a normal subgroup SL,+1(q) or Spa,(¢). But this contradicts the assumption
that V' is abelian.

(Remark: One does not have to identify M* first to obtain this contradiction. Indeed
an easy geometric argument shows that M™* has rank at most three on M*/M* N C. But
then V abelian gives the contradiction (Z}!") abelian . )

We conclude that M° < (P, P). Let P* be the unique elemenent of PKS(S) with
P* £ Ng(OP(P)). By maximality of M° we obtain (P, P, P*) ¢ L.

This is rank three situation eluded to in (c). O



Lemma 1.2 [quadratic normal point stabilizer theorem]| Let H be a finite group and
V' a faithful irreducible Fp,H-module. Let P be a point stabilizer for H on V and A < P.
Suppose that

(i) F*(H) is quasi simple and H = (AH)
(i) AP and |A| > 2.
(iii) A acts quadratically on V.
Then one of the following holds:

1. H = SL,(q), Span(q),or G2(q) and V is the natural module. Moreover,

2. p=2, H is a group of Lie Typ in char p, and H is contained in a long root subgroup
of H.
3. Who knows
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