The Small World Theorem

Ulrich Meierfrankenfeld, Bernd Stellmacher

June 10, 2002

Assume $\mathcal{M}(S) \geq 2$ and Q!. We investigate the Structure of $E/O_p(E)$. For $L \in \mathcal{L}$ define $L_{\circ} = L^{\circ}O_p(L)$. In this section we assume

Hypothesis 0.1 [hypothesis e structure theorem]

(ES1) $\mathcal{M}(S) \ge 2$ and Q!.

(ES2) $P \in \mathcal{P}(S)$ and $P \not\leq \widetilde{C}$.

(ES3) $P_{\circ}/O_p(P) \cong SL_2(q), q \text{ a power of } 2.$

(ES4) Y_P is a natural module for $P/O_p(P)$.

(ES5)
$$N_P(S \cap P_\circ) \le C$$
.

(ES6) $\langle Y_P^E \rangle$ is abelian.

(ES7) $0_p(\langle P, E \rangle) = 1.$

Some remarks on this assumptions. (ES7) follows from E! but not from Q! (example $(L_n(q), (ES2) \text{ to } (ES5) \text{ follow from } P!$ theorem. But $\neg P!$ have currently been treated only for $Y_M \leq Q$.

Let $L = N_G(P^\circ)$ and $H = E(L \cap \tilde{C})$.

By (ES7) $O_p(\langle H, L \rangle) = 1$. By part (a) of the preceeding lemma we can apply the amalgam method to (H, L). Let $\Gamma_0 = \Gamma(G; L, H)$ and Γ the connected component of Γ containing L and H. For $\alpha \in \Gamma$. If $\alpha = Lg$ define $E_{\alpha} = P_{\circ}^{g}$, if $\alpha = Hg$ define $E_{\alpha} = (EQ)^{g}$, $\widetilde{C}_{\alpha} = \widetilde{C}^{g}$ and $Q_{\alpha}^{*} = Q^{g}$.

Lemma 0.2 [basic es] Let (α, β) be adjacent vertices with $\alpha \sim H$

(a)
$$G_{\alpha} = E_{\alpha}G_{\alpha\beta}$$
 and $G_{\beta} = E_{\beta}G_{\alpha\beta}$.

(c)
$$C_U(Y_\beta) = Q_\alpha Q_\beta = Q_a Q_\beta^* = Q_{\alpha\beta} \in \operatorname{Syl}_p(L_\alpha), \text{ where } U \in Syl_p(G_{\alpha\beta}).$$

(d)
$$G_{\alpha\beta} = N_{G_{\alpha}}(Q_{\alpha\beta})$$

(e) $Y_{\alpha\beta} = Y_{\beta} = [Y_{\alpha}, x]$ for all $x \in Q_{\alpha\beta} \setminus Q_{\alpha}$.

(f) Let $\widetilde{V}_{\beta} = V_{\beta}/Y_{\beta}$. Then $C_{G_{\beta}}(\widetilde{V}_{\beta}) \cap C_{G_{\beta}}(Y_{\beta}) = Q_{\beta}$ In particular $G_{\alpha\beta}$ contains a point stablizer for G_{β} on \widetilde{V}_{β} .

Proof: By edge transitivity we may assume that $\alpha = L$ and $\beta = H$. By (ES5), and the Frattini Argument, $L = P_{\circ}(L \cap \widetilde{C}) = P_{\circ}(L \cap H)$. By definition of $H, H = (H \cap L)E$. Thus (a) holds.

Note that $Y_{H\cap L} \leq Y_H$ and so the definition of E implies $[Y_H, E] = 1$. Since $L = (L\cap H)E$ we get $Y_{H\cap L} = Y_H$. Let $T = S \cap P^\circ$. Since $N_P(T)$ is a maximal subgroup of L we get $N_P(T) = H \cap L$ and $O_p(H \cap L) = T$. Since $Y_{H\cap L} \leq Y_L$ and Y_P is a natutal module for P_\circ we see that $Y_H = Y_{H\cap L} = C_{Y_L}(T) = \Omega_1 Z(T)$ and $C_S(Y_H) = T$. Also since $Q \nleq O_p(P)$, $O_p(H)O_p(L)/O_p(L)$ is a non-trivial subgroup of $T/O_p(L)$ normalized by $H \cap L$. Thus $O_p(H)O_p(L) = T$.

For (f) let $D = C_H(\tilde{V}) \cap C_H(Y_H)$. Since $[Y_L, O_p(H)] = Y_H$, $O_p(H) \leq D$. Note that $O^p(D)$ centralizes Y_P and so $[P^\circ, O^p(D) \leq O_p(P)]$. Since $O^p(D) = O^p(O^p(D)O_p(P)]$ we get $P^\circ \leq N_G(O^p(D))$. Since also H normalizes $O^p(D)$ we conclude that $O^p(D) = 1$, D is a p-group and $D = O_p(H)$

 $G_{\alpha\beta} = N_G(Q_{\alpha\beta})$

Suppose that $N_G(T) \not\leq L$. Put $M = \langle N_G(T), P_\circ T \rangle$. If $O_p(M) = 1$ then pushing up $SL_2(q)$ and $\Omega_1 \mathbb{Z}(P^\circ) = 1$ gives $[O_p(P), O^p(P)] \leq Y_P$. By ES6, $V = \langle Z_P^H \rangle \leq O_p(L)$. Thus V is normal in H and L, a contradiction. The last equality in (e) follows since Y_P is a the natural module.

The following is not needed in the FF-module argumnet:

 $C_{G_{\beta}}(\widetilde{x}) \leq G_{\alpha\beta}$ for all $x \in Y_{\alpha} \setminus Y_{\beta}$.

For (g) let $D^* = C_H(\tilde{x})$ and $D = C_H(x)$, T acts transitively on the coset $Y_H x$, $D^* = DT$. Let $x \in Y_H^l$ for some $l \in L$. Then $D \leq C_G(x)$ and by Q!, $D \leq N_G(Q^l)$. Thus $D \leq N_G(\langle Q, Q^l \rangle = N_G(P^\circ) = L$.

Let (α, α') be a critical pair. Let $\beta = \alpha + 1$ and $\alpha - 1 \in \Delta(a)$ with $\alpha - 1 \neq \beta$.

Lemma 0.3 [b;2]

- (a) b > 2.
- (b) $\alpha \sim H$.
- (b) b is odd.

b > 2 follows from (ES6) and $\alpha \sim H$ follows from $Y_H \leq Y_L$. Suppose that b is even. The by 0.2 $Y_{\beta} = [Y_{\alpha}, Y_{\alpha}] = Y_{\alpha'-1}$. Hence by ??(c), $E_{\beta} = E_{\alpha'-1}$. Since b > 3, $V_{\alpha-1} \leq Q_{\beta}$ and $V_{\alpha-1} \leq N_G(Q_{\beta}^*) = N_G(Q_{\alpha'-1}^*)$. Thus

$$V_{\alpha-1} \le N_{G_{\alpha-2}}(Q_{\alpha'-2}Q_{\alpha'-1}^*) = N_{G_{\alpha'-2}}(Q_{\alpha-2\alpha-1}) = G_{\alpha-2\alpha-1}$$

As $V_{\alpha-1} \leq Q_{\beta}$, $[V_{\alpha-1}, E_{\beta}]$ is a *p*-group and so $V_{\alpha-1} \leq Q_{\alpha'-1} \leq Q_{\alpha'-1\alpha'}$ and hence $[V_{\alpha-1}, Y_{\alpha'}] \leq Y_{\alpha'-1} = Y_{\beta} \leq Y_{\alpha}$. Hence $Y_{\alpha'}$ normalizes $V_{\alpha-1}$, a contradiction. Thus *b* is odd. \Box

Lemma 0.4 [offender on Vbeta] One of the following holds

- 1. There exists $1 \neq A \leq Q_{\alpha\beta}/Q_{\beta}$ such A is an offender on V_{β} .
- 2. b = 3 and there exists an non-trivial $G_{\alpha\beta}$ invariant subgroup A of $Q_{\alpha\beta}/Q_{\beta}$ such that A is a quadratic 2F-offender on $\widetilde{V_{\beta}}$.

Proof: If $Y_{\beta} \cap Y_{\alpha'} \neq 1$, then **??**(c) implies $E_{\beta} = E_{\alpha'}$, a contradiction since $[Y_{\beta}, E_{\beta}]$ is a *p*-group, but $[V_{\beta}, E_{\alpha'}]$ is not. Hence

Step 1 [zbza] $Y_{\beta} \cap Y_{\alpha'} = 1$

Hence by 0.2 $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'} \cap Q_{\beta}] \leq Y_{\beta} \cap Y_{\alpha'} = 1$ and we proved

Step 2 [**vqvq**] $[V_{\beta} \cap Q_{\alpha'}, V_{\alpha'} \cap Q_{\beta}] = 1$

Suppose now that b = 3. Since $Q_{\alpha'}$ acts transitively on $\triangle(\alpha + 2) \setminus \{\alpha'\}$ get $G_{\alpha+2\alpha'} = G_{\beta\alpha+2\alpha'}Q_{\alpha'}$. Hence $V_{\beta}Q_{\alpha'}$ is normal in $G_{\alpha+2\alpha'}$. Also $[V_{\alpha'}, V_{\beta}, V_{\beta}] \leq [V_{\beta}, V_{\beta} = 1$. Since $G_{\alpha+2}$ is doubly transitive on $\triangle(\alpha+2)$,

$$V_{\beta}Q_{\alpha'}/Q_{\alpha'} = |V_{\alpha'}/V_{\alpha'} \cap Q_{\beta})$$

Let $\delta \in \triangle(\beta)$. Then no subgroup of Q_{β} is an over-offender on Z_{δ} . This together with Step 2 implies

$$|V_{\alpha'} \cap Q_{\beta}/C_{V_{\alpha'} \cap Q_{\alpha'-1}}(V_{\beta}) \leq |V_{\beta}/C_{V_{\beta}}(V_{\alpha'} \cap Q_{\beta})| \leq |V_{\beta}/V_{\beta} \cap Q_{\alpha'}| = |V_{\beta}Q_{\alpha'}/Q_{\alpha'}|$$

By the lasy two displayed equations, V_{β} is a 2F offender on $\tilde{V}_{\alpha'}$. So Case 2. of the lemma holds.

So we may assume from now on

Step 3 b > 3.

Suppose that $V_{\alpha'} \leq Q_{\beta}$.

Then by Step 2 $[V_{\alpha'}, Y_{\alpha} \cap Q_{\alpha'} = 1$. By 0.2f $[V_{\alpha'}, Z_{\alpha}] \neq 1$ and since Y_{α} is a natural module for E_{α} and since $V_{\alpha'} \leq E_{\alpha}$ we get

$$|V_{\alpha'}/C_{V_{\alpha'}}(Y_{\alpha'}) \le q = |Y_{\alpha}/C_{Y_{\alpha}}V_{\alpha'}|$$

Thus 1. holds in this case.

So we may assume that for all critcial pairs:

Step 4 [sym] $V_{\alpha'} \not\leq Q_{\beta}$ and the situation is symmetric in β and α' .

If $[V_{\beta}, V_{\alpha'} \cap Q_{\beta}] = 1 = [V_{\alpha'}, V_{\beta} \cap Q_{\alpha'}]$, then again (1) holds. So we may assume

 $\textbf{Step 5} \quad [\textbf{vvqa}] \ Y_{\beta} = [Y_{\beta}, Y_{\alpha'} \cap Q_{\beta}] \leq V_{\alpha'} \ or \ Y_{\alpha'} \leq [Y_{\alpha'}, Y_{\beta} \cap Q_{\alpha'}] \leq Y_{\beta}$

By symmetry in α, α' we may assume

Step 6 [**vvq**] $Y_{\beta} = [V_{\beta}, V_{\alpha'} \cap Q_{\beta}] \leq V_{\alpha'}$.

Pick $\mu \in \Delta(\beta)$ and $t \in V_{\alpha'} \cap Q_{\beta}$ with $[Z_{\mu}, t] \neq 1$. Then $\mu \neq \alpha + 2$ and by Step 2, $Z_{\mu} \not\leq Q_{\alpha'}$ and we may assume that $\mu = \alpha$. Hence

Step 7 [vbq] There exists $t \in V_{\alpha'} \cap Q_{\beta}$ with $[Z_{\alpha}, t] \neq 1$. In particular, $t \notin Q_{\alpha}$

Note that

Step 8 [**O2G**] $O^p(E_\alpha) \leq \langle Q_{\alpha-1}, t \rangle$.

By Step 2 and Step 7 we have $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \ge |Y_{\alpha}Q_{\alpha'}/Q_{\alpha'}| = |Y_{\alpha}/C_{Y_{\alpha}}(t)| \ge q$. We record

Step 9 [vbqa] $|V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \ge q$.

We next show:

Step 10 If $[V_{\alpha-1}, V_{\alpha'-2}] = 1$ then 1. holds.

Suppose $[V_{\alpha-1}, V_{\alpha'-2}] = 1$. Then $V_{\alpha-1} \leq Q_{\alpha'-2} \cap Q_{\alpha'-1}$. Put $A = V_{\alpha-1} \cap (V_{\beta}Q_{\alpha'})$. Then $A \leq V_{\beta}(V_{\beta}V_{\alpha-1} \cap Q_{\alpha'}) \leq V_{\beta}(Q_{\alpha'-1} \cap Q_{\alpha'})$. Thus by 0.2

$$[A,t] \le [V_{\beta},t][Q_{\alpha'-1} \cap Q_{\alpha'},t] \le Y_{\beta}Y_{\alpha'}.$$

Let X be maximal in A with $[X,t] \leq Y_{\beta}$. As $|Y_{\alpha'}| = q$ we have $|A/X| \leq q$. Since $Y_{\beta}^* \leq X$, t normalizes X. By 0.2, $[XZ_a, Q_{\alpha-1}] \leq [V_{\alpha-1}, Q_{\alpha-1}] = Y_{\alpha-1} \leq XZ_{\alpha}$. So by Step 8, $O^p(E_{\alpha})$ normalizes XZ_{α} . Since $O^p(E_{\alpha})$ is transitively on $\Delta(\alpha)$ we conclude that $XZ_{\alpha} \leq D_{\alpha} := \bigcap_{\delta \in \Delta(\alpha)} V_{\delta}$. Put $a = |V_{\alpha-1}/A|$. Then $|V_{\alpha-1}D_a/D_a| \leq |V_{\alpha-1}/A||A/X| \leq aq$. Hence

$$|V_{\beta}D_a/D_{\alpha}| \le aq.$$

Note that $V_{\alpha-1} \leq Q_{\alpha'-2} \cap Q_{\alpha'-1} \leq G_{\alpha'}$. Since $D_{\alpha'-1} \leq V_{\alpha'-2}$ we conclude from $|V_{\beta}D_a/YD_{\alpha}| \leq qa$ and edge-transitivity that

$$|V_{\alpha'}/C_{V_{\alpha'}}(V_{\alpha-1}V_{\beta})| \le |V_{\alpha'}D_{\alpha'-1}/D_{\alpha'-1}| = |V_{\beta}D_a/D_{\alpha}| \le aq.$$

On the other hand by definition of a, an isomorphism theorem and Step 9

$$V_{\alpha-1}V_{\beta}Q_{\alpha'}/Q_{\alpha'}| = |V_{\alpha-1}V_{\beta}Q_{\alpha'}/V_{\beta}Q_{\alpha'}||V_{\beta}Q_{\alpha'}/Q_{\alpha'}| \ge aq$$

By the last two equations 1. holds. So we may assume from now on that

Step 11 [va-1va-2] $[V_{\alpha-1}, V_{\alpha'-2}] \neq 1$

Suppose that $V_{\alpha'-2} \leq Q_{a-1}$. Then by Step 4, $V_{\alpha-1} \leq Q_{\alpha'-2}$. Note that by Step 8, $C_{Y_{\alpha-1}}(t) = 1$. Thus

$$1 \neq [V_{\alpha-1}, V_{\alpha'-2}] \le Y_{\alpha-1} \cap Y_{\alpha'-2} \le C_{Y_{\alpha-1}}(t) = 1$$

a contradiction to Step 11. Thus

Step 12 [va-1qa-1] $V_{\alpha'-2} \nleq Q_{\alpha-1}$

By Step 4 we get

Step 13 [va-1qa-2] $V_{\alpha-1} \not\leq Q_{\alpha'-2}$

Since b > 3, t centralizes $[V_{\alpha'-2} \cap Q_{\alpha-1}, V_{\alpha-1}]$. and so

$$[V_{\alpha'} - 2 \cap Q_{\alpha-1}, V_{\alpha-1}] = C_{Y_{\alpha-1}}(t) = 1$$

Thus by Step 5 and ?? that $Y_{\alpha'-2} = [V_{\alpha-1} \cap Q_{\alpha'-2}V_{\alpha'-1}] \leq V_{\alpha-1}$. Hence there exists $1 \neq x \leq Y_{\alpha'-2} \cap V_{\alpha-1}$.

Note that t centralizes x and $[x, Q_{\alpha-1} \leq Y_{\alpha-1} \leq Y_{\alpha}]$. So by Step 8, $O^p(E_{\alpha})$ normalizes the coset xY_{α} .

Suppose that $[x, Q_{\alpha}] \neq 1$. Let $R = O^{p}(E_{\alpha})$ and $D = [Q_{\alpha}, R]$. Since $C_{Y_{\alpha}}(R) = 1$, the Three Subgroup Lemma implies $[x, D] \neq 1$. Since R normalizes [x, D] we get $[x, D] = Y_{\alpha}$. Thus D acts transitively on $Y_{\alpha}x$ and so by the Frattini argument, $R = C_{R}(x)D$. Since $x \in Y_{\alpha'-2}$, Q! implies $C_{R}(x) \leq \widetilde{C}_{\alpha'-2}$. Also since $[E_{\alpha'-2}, Q_{\alpha'-2}] \leq Q^{*}_{\alpha'-2}$ and $E_{\alpha'-2}$ acts transitively on $\Delta \alpha' - 2$ we have

$$t \in V_{\alpha'-1}^{(2)} \cap Q_{\alpha'-2} \le (V_{\alpha'-1}^{(2)} \cap Q_{\alpha'-2})Q_{\alpha'-2}^* = (V_{\alpha'-3}^{(2)} \cap Q_{\alpha'-2})Q_{\alpha'-2}^* \le (Q_{\alpha} \cap \widetilde{C}_{\alpha'-2})Q_{\alpha'-2}^* = (Q_{\alpha'-1} \cap Q_{\alpha'-2})Q_{\alpha'-2}^* = (Q_{\alpha'-1} \cap Q_{\alpha'-2})Q_{\alpha'-2})Q_{\alpha'-2}^* = (Q_{\alpha'-1} \cap Q_{\alpha'-2$$

The right hand side of this equation is *p*-group normalized by $C_R(x)$ and so $\langle t^{C_R(x)} \rangle Q_\alpha / Q_\alpha$ is a *p*-group. But this contradicts $t \in Q_{\alpha\beta} \setminus Q_\alpha$ and $O^p(E_\alpha) \leq C_R(x)Q_\alpha$.

Thus $[x, Q_{\alpha}] = 1$, and so $x \in \Omega_1 \mathbb{Z}(Q_{\alpha}) = Y_{\alpha}$. Since [x, t] = 1 we conclude $x \in Y_{\beta}$. Since also $x \in Y_{\alpha'-2}$ we conclude that $E_{\alpha'-2} \leq \widetilde{C}_{\beta}$

Since b > 3,

$$V_{\alpha-1} \le V_{\alpha}^{(2)} Q_{\beta}^* = V_{\alpha+2}^{(2)} Q_{\beta}^* \le (Q_{\alpha'-2} \cap \widetilde{C}_{\beta}) Q_{\beta}^*$$

The right hand side is a *p*-group normalized by $E_{\alpha'-2}$ and we obtain a contradiction to Step 13.

Theorem 0.5 (The abelian *E*-Structure Theorem) [abelian es] Assume Hypothesis 0.1 (and maybe that there exists a unique $\tilde{P} \in \mathcal{P}(ES)$ with $\tilde{P} \nleq N_G(P^\circ)$).) Let $V = \langle Y_P^E \rangle$ and $\tilde{V} = V/[V, O_p(E)]$. Then

Proof:

 $G_{\alpha\beta} = N_G(Q_{\alpha\beta})$

Suppose that $N_G(T) \not\leq L$. Put $M = \langle N_G(T), P_\circ T \rangle$. If $O_p(M) = 1$ then pushing up $SL_2(q)$ and $\Omega_1 Z(P^\circ) = 1$ gives $[O_p(P), O^p(P)] \leq Y_P$. By ES6, $V = \langle Z_P^H \rangle \leq O_p(L)$. Thus V is normal in H and L, a contradiction. The last equality in (e) follows since Y_P is a the natural module.

 $C_{G_{\beta}}(\widetilde{x}) \leq G_{\alpha\beta}$ for all $x \in Y_{\alpha} \setminus Y_{\beta}$.

For (g) let $D^* = C_H(\tilde{x})$ and $D = C_H(x)$, T acts transitively on the coset $Y_H x$, $D^* = DT$. Let $x \in Y_H^l$ for some $l \in L$. Then $D \leq C_G(x)$ and by Q!, $D \leq N_G(Q^l)$. Thus $D \leq N_G(\langle Q, Q^l \rangle = N_G(P^\circ) = L$.

Let G be a group of local characteristic p. We say that G has rank 2, provided that there exists $P, \tilde{P} \in \mathcal{P}(S)$ such that $\tilde{P} \leq ES$ and $\langle P, \tilde{P} \rangle \notin \mathcal{L}$. We say that H has rank at least three if G has neither rank 1 nor rank 2.

The next lemma shows how $\widetilde{P}!$ can be used to obtain information about $E/O_p(E)$.

Lemma 0.6 [unique component in e] Suppose E!, P!, \tilde{P} uniqueness and that G has rank at least three. Let $L = N_G(P^\circ)$ and $H = (L \cap \tilde{C})E$.

- (a) $N_G(T) \leq L$ for all $O_p(H \cap L) \leq T \leq S$.
- (b) There exists a unique $\widetilde{P} \in \mathcal{P}_H(S)$ with $\widetilde{P} \leq L$. Moreover, $\widetilde{P} \leq ES$.

(c)
$$\widetilde{P}/O_p(\widetilde{P}) \sim SL_2(q).p^k$$
.

(d) $H = K(L \cap H), L \cap H$ is a maximal subgroup of H and $O_p(H \cap L) \neq O_p(H)$.

- (e) *H* has a unique *p*-component *K*.
- (f) Let $Z_0 = C_{Y_P}(S \cap P^\circ)$ and $V = \langle Y_P^H \rangle$. Then $Z_0 \leq V$ and $V \leq Q \leq O_p(H)$.
- (g) Let $D = C_H(K/O_p(K))$. Then D is the largest normal subgroup of H contained in L and $D/O_p(H)$ is isomorphic to a section of the Borel subgroup of $Aut(SL_2(q))$
- (h) Let $\overline{V} = V/Z_0$. Then
 - (ha) $[\overline{V}, O_p(H)] = 1$
 - (hb) $C_H(\overline{V}) \leq D$ and $C_H(\overline{V}) \cap C_H(Z_0) = O_p(H)$.
 - (hc) Let $1 \neq X \leq Y_P/Z_0$. Then $N_H(X) \leq H \cap L$.
 - (hd) $H \cap L$ contains a point-stabilizer for H on \overline{V} .

Proof:

By E!, $O_p(\langle L, H \rangle) = 1$ and so $E \not\leq L$. Since $\{P\} = \{\mathcal{P}^{\circ}(S) \text{ and } N_G(S) \leq \widetilde{C}, N_G(S) \leq N_G(P) \leq L$. Since $E = \langle \mathcal{P}_{ES}, N_E(S) \rangle$ there exists $\widetilde{P} \in \mathcal{P}_{ES}(S)$ with $\widetilde{P} \not\leq L$. Since rank G is at least three, $\langle P, \widetilde{P} \rangle \in \mathcal{L}$ and so by $\widetilde{P}!$, \widetilde{P} is uniquely determined.

Let T be as in (a). It follows easily from P! that $QO_p(L)$ is a Sylow p subgroup of $P^{\circ}O_p(L)$. Since $QO_p(L) \leq O_p(H \cap L) \leq T$ we conclude that T is a Sylow p-subgroup of TP° . Suppose that $M := \langle P^{\circ}T, N_G(T) \rangle / n\mathcal{L}$. Then by Pushing up ?? and $Q! P \sim q^2 SL_2(q)$. Since $\langle P, \widetilde{P} \rangle \in \mathcal{L}$ we get $\widetilde{P} \leq N_G(Y_P)$ and ??(dd) gives the contradiction $\widetilde{P} \leq N_G(P^{\circ}) = L$. Thus $M \in \mathcal{L}$. If $\widetilde{P} \in M$, then $T \leq \widetilde{P}$ and so $O_p(P^{\circ}) \leq O_p(\widetilde{P})$, a contradiction to $(\widetilde{P} - 2b)$. Hence $\widetilde{P} \nleq M$. By the uniqueness of \widetilde{P} and since $S \leq M$, $M \leq L$. Thus (a) holds.

Let $P^* \in \mathcal{P}_H(S)$ with $P^* \not\leq L$. Suppose that $\widetilde{P} / \widetilde{P}$. Then $P^* \not\leq ES$ and so $S \cap E \leq O_p(P^*)$ Since $EO_p(H \cap L)$ is normalized by $E(L \cap H) = H$ we get $O_p(H \cap L) \leq O_p(P^*)$. Thus by (a) $P^* \leq L$, a contradiction. So (b) holds. (a) is obvious.

Let $H \cap L < M \leq H$. Then $M \nleq L$ and so $\tilde{P} \leq M$. Let $R \in \mathcal{P}(H)(S)$. If $R = \tilde{P}$, then $R \leq M$, if $R \neq \tilde{P}$, then $R \leq L$ and again $R \leq M$. Since also $N_H(S) \leq H \cap L \leq M$ we get M = H. By (a) $O_p(H \cap L) \neq O_p(H)$.

Let N be a normal subgroup of H minimal with respect to $N \nleq L$. By the uniqueness of $\tilde{P}, \tilde{P} \leq NS$. Hence $O^p(\tilde{P}) \leq N$ and since $O^p(\tilde{P}) \nleq L, N = \langle O^p(\tilde{P})^H \rangle \leq E$. Next let F be the largest normal subgroup of H contained in L. Then $[O_p(H \cap L), F] \leq O_p(H \cap L) \cap F \leq O_p(F) \leq O_p(H)$. Note that $[O_p(H), N]$ is normal in $N(H \cap L) = N$ and so $[O_p(H), N] = N$ and we conclude that $[N, F] \leq O_p(H)$. In particular $F \cap N/O_p(N) \leq Z(N/O_p(N)$.

Suppose that N is solvable. Then the minimality of N implies that $N/O_p(N)$ is a r-group for some prime $r \neq p$. In particular $H \cap N < N_N(H \cap N)$ and the maximality of $H \cap N$ implies $H \cap N \trianglelefteq H$. Thus $H \cap N \le F$. Suppose that S does not act irreducible on $N/H \cap N$. The by coprime action there exists an S-invariant $R \le N$ with $R \not\le L$ and $O^p(\widetilde{P}) \not\le R$. Then by (b) $RS \le L$, a contradiction. So S acts irreducible on $N/H \cap N$. Thus $N = (H \cap N)O^p(\widetilde{P})$ and $N = [N, O_p(H)] \le O^p(\widetilde{P})$. Note that $\langle P^\circ, N \rangle$ is normalizes by P° , $H \cap L$ and N and so by $\langle L, H \rangle$, it follows that $O_p \langle P^\circ, N \rangle = 1$ and so also $O_p(\langle P, \widetilde{P} \rangle = 1$, a contradiction.

Thus N is not solvable and so the product of p-components.

Let K_1 be a *p*-component of *N*. By minimality of *N*, $N = \langle K_1^{H \cap L} \rangle$ If *S* does not act transitively on the *p*-components of *N*, we can choose K_1 such that $O^p(\tilde{P}) \notin K_1^S \rangle$. But then $K_1 \leq L$, a contradiction. Thus $N = \langle K_1^S \rangle$. Suppose that $K_1 \cap \tilde{P}$ lies in the unique maximal subgroup of \tilde{P} containing *S*. Since $K_1 \cap \tilde{P}$ is subnormal in \tilde{P} the structure of \tilde{P} implies $[K_1 \cap \tilde{P}, S]$ is a *p*-group. Thus $K_1 \neq N$ and $K_1 \cap \tilde{P}$ is a *p*-group. Hence $N \cap S \leq O_p(\tilde{P})$. Since $N_N(N \cap S)/N \cap S$ is a *p*-group we conclude from coprimes action that $N \cap L$ projects onto $N_{K_1}(N \cap S)F/F$. Thus $[K_1 \cap L)F, N_{K_1}(N \cap S)] \leq [K_1 \cap L)F, N \cap L] \leq L$. Conjugation with *S* yields $[N \cap L, N_N(N \cap S) \leq N \cap L$. Thus $H = \langle \tilde{P}, L \rangle \leq N_H(N \cap L)$ and so $N \cap L = F \cap L$. Since *L* contains a Sylow *p*-subgroup of *N*, we conclude that NF/F is a *p'*-group. Let *r* be a prime divividing the order of NF/F and R/F an *S*-invariant Sylow *p*-subgroup of NF/F. Then *RS* is not contained in *L* and so $\tilde{P} \leq RS$. Thus $\tilde{P} =$ is a $\{r, p\}$ group and *r* is unique. Thus NF/F is a *r*-group, a contradiction.

We proved that $K_1 \cap \widetilde{P}$ is not contained in the unique maximal subgroup of \widetilde{P} containing S. Since $[K_1 \cap \widetilde{P}, (K_1 \cap \widetilde{P})^g]$ is a *p*-group for all $g \in \widetilde{P} \setminus N_H(K_1)$ the structure of \widetilde{P} implies $O^p(\widetilde{P}) \nleq K_1$. Thus $S \leq N_H(K_1)$ and so $N = K_1$. Thus (e) is proved. By P! uniqueness Z_0 is normal in \widetilde{C} and $[Z_0, Q] = 1$. Since Y_P is a natural module for P° we get $[Y_P, Q] \leq [V, O_p(H) \leq [V, O_P(L \cap H)] \leq Z_0$. So Y_P acts trivial an all factors of $1 \leq Z_0 \leq Q$ and since \mathbb{C} is of characteristic $p, Y_P \leq Q$. This proves (f) and (ha).

To prove (g) note that $N \not\leq D$ and so by uniqueness of $N, D \leq L$ and so $D \leq F$. But as seen above $F \leq D$ and so D = F. Let D_0 be maximal in D with $[P^\circ, D_0] \leq O_p(P^\circ)]$. Then H and P° normalize $O^p(D_0)$ and so $O^p(D_0) = 1$. Thus D_0 is a p-group and (g) holds.

Note that $C_H(\overline{V}) \leq N_H(Y_P) \cap H \cap L$ and So $C_H(\overline{V}) \leq D$. Let $R = O^p(C_H(\overline{V}) \cap C_H(Z_0))$. Then R) centralizes Y_P and $[R, P^\circ] \leq C_{P^\circ}(Y_P) = O_p(P^\circ) \leq O_p(H \cap L)$. But R is normal in $H \cap L$ and so $R = O^p(R) = O^p(RO_p(H \cap L))$. Thus H and P° both normalizes R and so R = 1. Hence (hb) holds.

Let $e \in Y_P \setminus Z_0$ with $eZ_0 \in X$. Let $g \in N_H(X)$. Since $H \cap L$ acts transitively on $Y_P \setminus Z_0$, there exists $h \in H \cap L$ with $e^{gh} = e$. Let $t \in P^\circ$ with $e \in Z_0^t$. Then $[e, Q^t] = 1$ and so $gh \leq \widetilde{C}^t$. Thus $gh \in N_G(\langle Q, Q^t \rangle = N_G(P^\circ) = L$. Hence $g \in L$ and (hc) holds. (hd) follows from (hc).

1 The Small World Theorem

Given Q! and $P \in \mathcal{P}^{\circ}(S)$. We say that b = 2 for P if b > 1 for P and $\langle Y_P^{E} \rangle$ is not abelian. If neither b = 1 nor b = 2 for P we say that b is at least three for P.

Theorem 1.1 (The Small World Theorem) [the small world theorem] Suppose E! and let $P \in \mathcal{P}^{\circ}(S)$. Then one of the following holds:

- 1. G has rank 1 or 2.
- 2. b = 1 or b = 2 for P.
- 3. A rank three sitiation described below.

Proof: Assume that G has rank at least three and that b is at least three. In the exceptional case of the P!-theorems (?? and ?? one easily sees that b = 2 for P. Thus P! holds. Also in the exceptionell case of the \tilde{P} ! Theorem ?? one gets b = 2 for P. Thus (strong) \tilde{P} ! holds. We proved

Step 1 [P! and wP!] P! and $\tilde{P}!$ hold.

0.6 gives us a good amount of information about E. We use the notation introduced in 0.6.

Since $\langle H, L \rangle \notin \mathcal{L}$, we can apply the amalgam method to the pair (H, L). A non-trivial argument shows

Step 2 [offender on V] One of the following holds:

- 1. $O_p(H \cap L)/O_p(H)$ contains a non-trivial quadratic offender on \widetilde{V} .
- 2. There exists a non-trivial normal subgroup A of $H \cap L/O_p(H \cap L)$ and normal subgroups $Y_P \leq Z_1 \leq Z_2 \leq Z_3 \leq V$ of $H \cap L$ such that:
 - (a) A and V/Z_3 are isomorphic as $\mathbb{F}_p C_{H \cap L}(Y_P)$ -modules.
 - (b) $|Z_3/Z_2| \le |A|$.
 - (c) $[\overline{V}, A] \leq \overline{Z_2} \leq C_{\overline{V}}(A)$. In particular, A is a quadratic 2F-offender.
 - (d) $[\overline{x}, A] = \overline{Y_P}$ for all $x \in Z_3 \setminus Z_2$.
 - (e) $\overline{Z_1}$ is a natural $SL_2(q)$ -module for $\widetilde{P} \cap C_H(Z_0)$.

Using ?? and ?? (and the Z^* -theorem to deal with the case |A| = 2) it is not too difficult to derive

Step 3 [e-structure] $K/O_p(K) \cong SL_n(q)$, $(n \ge 3)$, $Sp_{2n}(q)', (n \ge 2)$ or $G_2(q)', (p = 2)$. Moreover, if \overline{W} is a maximal submodule of \overline{V} , then V/W is the natural module for $K/O_p(K)$ and $H \cap L$ contains a point-stabilizer on V/W.

Let $M \in \mathcal{M}(\langle P, \widetilde{P} \rangle)$ with M° maximal.

Suppose first that $M^{\circ} \not\leq \langle P, \widetilde{P} \rangle$. Then by the Structure Theorem ?? $M^{\circ}/O_p(M^{\circ}) \cong$ $SL_n(q), n \geq 4$ or $Sp_{2n}(q), n \geq 3$. Moreover,

$$R := O^p(M^\circ \cap \tilde{C} \le O^p(\tilde{P})^{M \cap \tilde{C}} \le K$$

In the case of $Sp_{2n}(q)$ we have $R/O_p(R) \cong Sp_{2n-2}(q)'$. So Step 3 implies $K/O_p(K) \cong Sp_{2m}(q)$ and $R \leq H \cap L$, a contradiction.

Thus $M^{\circ}/O_p(M^{\circ}) \cong SL_n(q)$ and $R/O_p(R) \cong SL_{n-1}(q)$. Let R^* be a parabolic subgroup of KS minimal with $RS < R^*$. Then $R^* \cap K/O_p(R^* \cap K) \cong SL_n(q)$ or $Sp_{2n-2}(q)$. Let $M^* = \langle M^{\circ}S, R^* \rangle$. Since

 $R^* \le \langle O^p(\widetilde{P})^{R^*} \rangle S \le (M^*)^{\circ} S$

the maximality of M° implies that $M^* \notin \mathcal{L}$.

Now M^* has a geometry of type A_n or C_{2n} with all its residues classical we conclude that M^* has a normal subgroup $SL_{n+1}(q)$ or $Sp_{2n}(q)$. But this contradicts the assumption that V is abelian.

(Remark: One does not have to identify M^* first to obtain this contradiction. Indeed an easy geometric argument shows that M^* has rank at most three on $M^*/M^* \cap \widetilde{C}$. But then V abelian gives the contradiction $\langle Z_0^{M^*} \rangle$ abelian.)

We conclude that $M^{\circ} \leq \langle P, \widetilde{P} \rangle$. Let P^* be the unique element of $\mathcal{P}KS(S)$ with $P^* \not\leq N_G(O^p(\widetilde{P}))$. By maximality of M° we obtain $\langle P, \widetilde{P}, P^* \rangle \notin \mathcal{L}$.

This is rank three situation eluded to in (c).

Lemma 1.2 [quadratic normal point stabilizer theorem] Let H be a finite group and V a faithful irreducible \mathbb{F}_pH -module. Let P be a point stabilizer for H on V and $A \leq P$. Suppose that

- (i) $F^*(H)$ is quasi simple and $H = \langle A^H \rangle$
- (ii) $A \leq P$ and |A| > 2.
- (iii) A acts quadratically on V.

Then one of the following holds:

- 1. $H \cong SL_n(q)$, $Sp_{2n}(q)$, or $G_2(q)$ and V is the natural module. Moreover,
- 2. p = 2, H is a group of Lie Typ in char p, and H is contained in a long root subgroup of H.
- 3. Who knows

References