The Small World Theorem

Ulrich Meierfrankenfeld, Bernd Stellmacher

June 10, 2002

Assume $\mathcal{M}(S) \geq 2$ and Q !. We investigate the Structure of $E / O_{p}(E)$.
For $L \in \mathcal{L}$ define $L_{\circ}=L^{\circ} O_{p}(L)$. In this section we assume

Hypothesis 0.1 [hypothesis e structure theorem]

(ES1) $\mathcal{M}(S) \geq 2$ and Q !.
(ES2) $P \in \mathcal{P}(S)$ and $P \not \subset \widetilde{C}$.
(ES3) $P_{\circ} / O_{p}(P) \cong S L_{2}(q), q$ a power of 2 .
(ES4) Y_{P} is a natural module for $P / O_{p}(P)$.
(ES5) $N_{P}\left(S \cap P_{\circ}\right) \leq \tilde{C}$.
(ES6) $\left\langle Y_{P}^{E}\right\rangle$ is abelian.
$(\mathrm{ES} 7) 0_{p}(\langle P, E\rangle)=1$.
Some remarks on this assumptions. (ES7) follows from E ! but not from Q ! (example ($L_{n}(q)$. (ES2) to (ES5) follow from P ! theorem. But $\neg P$! have currently been treated only for $Y_{M} \leq Q$.

Let $L=N_{G}\left(P^{\circ}\right)$ and $H=E(L \cap \tilde{C})$.
By (ES7) $O_{p}(\rangle H, L\langle)=1$. By part (a) of the preceeding lemma we can apply the amalgam method to (H, L). Let $\Gamma_{0}=\Gamma(G ; L, H)$ and Γ the connected component of Γ containing L and H. For $\alpha \in \Gamma$. If $\alpha=L g$ define $E_{\alpha}=P_{\circ}^{g}$, if $\alpha=H g$ define $E_{\alpha}=(E Q)^{g}$, $\widetilde{C}_{\alpha}=\widetilde{C}^{g}$ and $Q_{\alpha}^{*}=Q^{g}$.

Lemma 0.2 [basic es] Let (α, β) be adjacent vertices with $\alpha \sim H$
(a) $G_{\alpha}=E_{\alpha} G_{\alpha \beta}$ and $G_{\beta}=E_{\beta} G_{\alpha \beta}$.
(c) $C_{U}\left(Y_{\beta}\right)=Q_{\alpha} Q_{\beta}=Q_{a} Q_{\beta}^{*}=Q_{\alpha \beta} \in \operatorname{Syl}_{p}\left(L_{\alpha}\right)$, where $U \in \operatorname{Syl}_{p}\left(G_{\alpha \beta}\right)$.
(d) $G_{\alpha \beta}=N_{G_{\alpha}}\left(Q_{\alpha \beta}\right)$
(e) $Y_{\alpha \beta}=Y_{\beta}=\left[Y_{\alpha}, x\right]$ for all $x \in Q_{\alpha \beta} \backslash Q_{\alpha}$.
(f) Let $\widetilde{V_{\beta}}=V_{\beta} / Y_{\beta}$. Then $C_{G_{\beta}}\left(\widetilde{V}_{\beta}\right) \cap C_{G_{\beta}}\left(Y_{\beta}\right)=Q_{\beta}$ In particular $G_{\alpha \beta}$ contains a point stablizer for G_{β} on $\widetilde{V_{\beta}}$.

Proof: By edge transitivity we may assume that $\alpha=L$ and $\beta=H$. By (ES5), and the Frattini Argument, $L=P_{\circ}(L \cap \widetilde{C})=P_{\circ}(L \cap H)$. By definition of $H, H=(H \cap L) E$. Thus (a) holds.

Note that $Y_{H \cap L} \leq Y_{H}$ and so the definition of E implies $\left[Y_{H}, E\right]=1$. Since $L=(L \cap H) E$ we get $Y_{H \cap L}=Y_{H}$. Let $T=S \cap P^{\circ}$. Since $N_{P}(T)$ is a maximal subgroup of L we get $N_{P}(T)=H \cap L$ and $O_{p}(H \cap L)=T$. Since $Y_{H \cap L} \leq Y_{L}$ and Y_{P} is a natutal module for P_{\circ} we see that $Y_{H}=Y_{H \cap L}=C_{Y_{L}}(T)=\Omega_{1} \mathrm{Z}(T)$ and $C_{S}\left(Y_{H}\right)=T$. Also since $Q \not \leq O_{p}(P)$, $O_{p}(H) O_{p}(L) / O_{p}(L)$ is a non-trivial subgroup of $T / O_{p}(L)$ normalized by $H \cap L$. Thus $O_{p}(H) O_{p}(L)=T$.

For (f) let $D=C_{H}(\widetilde{V}) \cap C_{H}\left(Y_{H}\right)$. Since $\left[Y_{L}, O_{p}(H)\right]=Y_{H}, O_{p}(H) \leq D$. Note that $O^{p}(D)$ centralizes Y_{P} and so $\left[P^{\circ}, O^{p}(D) \leq O_{p}(P)\right.$. Since $O^{p}(D)=O^{p}\left(O^{p}(D) O_{p}(P)\right]$ we get $P^{\circ} \leq N_{G}\left(O^{p}(D)\right)$. Since also H normalizes $O^{p}(D)$ we conclude that $O^{p}(D)=1, D$ is a p-group and $D=O_{p}(H)$
$G_{\alpha \beta}=N_{G}\left(Q_{\alpha \beta}\right)$
Suppose that $N_{G}(T) \nsubseteq L$. Put $M=\left\langle N_{G}(T), P_{\circ} T\right\rangle$. If $O_{p}(M)=1$ then pushing up $S L_{2}(q)$ and $\Omega_{1} \mathrm{Z}\left(P^{\circ}\right)=1$ gives $\left[O_{p}(P), O^{p}(P)\right] \leq Y_{P}$. By $E S 6, V=\left\langle Z_{P}^{H}\right\rangle \leq O_{p}(L)$. Thus V is normal in H and L, a contradiction. The last equality in (e) follows since Y_{P} is a the natural module.

The following is not needed in the $F F$-module argumnet:
$C_{G_{\beta}}(\widetilde{x}) \leq G_{\alpha \beta}$ for all $x \in Y_{\alpha} \backslash Y_{\beta}$.
For (g) let $D^{*}=C_{H}(\tilde{x})$ and $D=C_{H}(x), T$ acts transitively on the coset $Y_{H} x, D^{*}=$ $D T$. Let $x \in Y_{H}^{l}$ for some $l \in L$. Then $D \leq C_{G}(x)$ and by $Q!, D \leq N_{G}\left(Q^{l}\right)$. Thus $D \leq N_{G}\left(\left\langle Q, Q^{l}\right\rangle=N_{G}\left(P^{\circ}\right)=L\right.$.

Let $\left(\alpha, \alpha^{\prime}\right)$ be a critical pair. Let $\beta=\alpha+1$ and $\alpha-1 \in \Delta(a)$ with $\alpha-1 \neq \beta$.

Lemma $0.3\left[b_{i} 2\right]$

(a) $b>2$.
(b) $\alpha \sim H$.
(b) b is odd.
$b>2$ follows from (ES6) and $\alpha \sim H$ follows from $Y_{H} \leq Y_{L}$. Suppose that b is even. The by $0.2 Y_{\beta}=\left[Y_{\alpha}, Y_{\alpha}\right]=Y_{\alpha^{\prime}-1}$. Hence by ?? $(\mathrm{c}), E_{\beta}=E_{\alpha^{\prime}-1}$. Since $b>3, V_{\alpha-1} \leq Q_{\beta}$ and $V_{\alpha-1} \leq N_{G}\left(Q_{\beta}^{*}\right)=N_{G}\left(Q_{\alpha^{\prime}-1}^{*}\right)$. Thus

$$
V_{\alpha-1} \leq N_{G_{\alpha-2}}\left(Q_{\alpha^{\prime}-2} Q_{\alpha^{\prime}-1}^{*}\right)=N_{G_{\alpha^{\prime}-2}}\left(Q_{\alpha-2 \alpha-1}\right)=G_{\alpha-2 \alpha-1}
$$

As $V_{\alpha-1} \leq Q_{\beta},\left[V_{\alpha-1}, E_{\beta}\right]$ is a p-group and so $V_{\alpha-1} \leq Q_{\alpha^{\prime}-1} \leq Q_{\alpha^{\prime}-1 \alpha^{\prime}}$ and hence $\left[V_{\alpha-1}, Y_{\alpha^{\prime}}\right] \leq Y_{\alpha^{\prime}-1}=Y_{\beta} \leq Y_{\alpha}$. Hence $Y_{\alpha^{\prime}}$ normalizes $V_{\alpha-1}$, a contradiction. Thus b is odd.

Lemma 0.4 [offender on Vbeta] One of the following holds

1. There exists $1 \neq A \leq Q_{\alpha \beta} / Q_{\beta}$ such A is an offender on $\widetilde{V_{\beta}}$.
2. $b=3$ and there exists an non-trivial $G_{\alpha \beta}$ invariant subgroup A of $Q_{\alpha \beta} / Q_{\beta}$ such that A is a quadratic $2 F$-offender on $\widetilde{V_{\beta}}$.

Proof: If $Y_{\beta} \cap Y_{\alpha^{\prime}} \neq 1$, then ??(c) implies $E_{\beta}=E_{\alpha^{\prime}}$, a contradiction since $\left[Y_{\beta}, E_{\beta}\right]$ is a p-group, but $\left[V_{\beta}, E_{\alpha^{\prime}}\right]$ is not. Hence

Step 1 [zbza] $Y_{\beta} \cap Y_{\alpha^{\prime}}=1$
Hence by $0.2\left[V_{\beta} \cap Q_{\alpha^{\prime}}, V_{\alpha^{\prime}} \cap Q_{\beta}\right] \leq Y_{\beta} \cap Y_{\alpha^{\prime}}=1$ and we proved
Step $2[\mathbf{v q v q}]\left[V_{\beta} \cap Q_{\alpha^{\prime}}, V_{\alpha^{\prime}} \cap Q_{\beta}\right]=1$
Suppose now that $b=3$. Since $Q_{\alpha^{\prime}}$ acts transitively on $\triangle(\alpha+2) \backslash\left\{\alpha^{\prime}\right\}$ get $G_{\alpha+2 \alpha^{\prime}}=$ $G_{\beta \alpha+2 \alpha^{\prime}} Q_{\alpha^{\prime}}$. Hence $V_{\beta} Q_{\alpha^{\prime}}$ is normal in $G_{\alpha+2 \alpha^{\prime}}$. Also $\left[V_{\alpha^{\prime}}, V_{\beta}, V_{\beta}\right] \leq\left[V_{\beta}, V_{\beta}=1\right.$. Since $G_{\alpha+2}$ is doubly transitive on $\triangle(\alpha+2)$,

$$
\left.V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}=\mid V_{\alpha^{\prime}} / V_{\alpha^{\prime}} \cap Q_{\beta}\right)
$$

Let $\delta \in \triangle(\beta)$. Then no subgroup of Q_{β} is an over-offender on Z_{δ}. This together with Step 2 implies

$$
V_{\alpha^{\prime}} \cap Q_{\beta} / C_{V_{\alpha^{\prime}} \cap Q_{\alpha^{\prime}-1}}\left(V_{\beta}\right) \leq\left|V_{\beta} / C_{V_{\beta}}\left(V_{\alpha^{\prime}} \cap Q_{\beta}\right)\right| \leq\left|V_{\beta} / V_{\beta} \cap Q_{\alpha^{\prime}}\right|=\left|V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right|
$$

By the lasy two displayed equations, V_{β} is a $2 F$ offender on $\widetilde{V}_{\alpha^{\prime}}$. So Case 2. of the lemma holds.

So we may assume from now on
Step $3 b>3$.
Suppose that $V_{\alpha^{\prime}} \leq Q_{\beta}$.
Then by Step $2\left[V_{\alpha^{\prime}}, Y_{\alpha} \cap Q_{\alpha^{\prime}}=1\right.$. By $0.2 \mathrm{f}\left[V_{\alpha^{\prime}}, Z_{\alpha}\right] \neq 1$ and since Y_{α} is a natural module for E_{α} and since $V_{\alpha^{\prime}} \leq E_{\alpha}$ we get

$$
\left|V_{\alpha^{\prime}} / C_{V_{\alpha^{\prime}}}\left(Y_{\alpha^{\prime}}\right) \leq q=\left|Y_{\alpha} / C_{Y_{\alpha}} V_{\alpha^{\prime}}\right|\right.
$$

Thus 1. holds in this case.
So we may assume that for all critcial pairs:

Step $4[\mathbf{s y m}] V_{\alpha^{\prime}} \not \leq Q_{\beta}$ and the situation is symmetric in β and α^{\prime}.
If $\left[V_{\beta}, V_{\alpha^{\prime}} \cap Q_{\beta}\right]=1=\left[V_{\alpha^{\prime}}, V_{\beta} \cap Q_{\alpha^{\prime}}\right]$, then again (1) holds. So we may assume
Step 5 [vvqa] $Y_{\beta}=\left[Y_{\beta}, Y_{\alpha^{\prime}} \cap Q_{\beta}\right] \leq V_{\alpha^{\prime}}$ or $Y_{\alpha^{\prime}} \leq\left[Y_{\alpha^{\prime}}, Y_{\beta} \cap Q_{\alpha^{\prime}}\right] \leq Y_{\beta}$
By symmetry in α, α^{\prime} we may assume
Step $6[\mathbf{v v q}] Y_{\beta}=\left[V_{\beta}, V_{\alpha^{\prime}} \cap Q_{\beta}\right] \leq V_{\alpha^{\prime}}$.
Pick $\mu \in \triangle(\beta)$ and $t \in V_{\alpha^{\prime}} \cap Q_{\beta}$ with $\left[Z_{\mu}, t\right] \neq 1$. Then $\mu \neq \alpha+2$ and by Step 2, $Z_{\mu} \not \leq Q_{\alpha^{\prime}}$ and we may assume that $\mu=\alpha$. Hence
Step $7[\mathbf{v b q}]$ There exists $t \in V_{\alpha^{\prime}} \cap Q_{\beta}$ with $\left[Z_{\alpha}, t\right] \neq 1$. In particular, $t \notin Q_{\alpha}$
Note that
Step $8 \quad[\mathbf{O} 2 \mathrm{G}] O^{p}\left(E_{\alpha}\right) \leq\left\langle Q_{\alpha-1}, t\right\rangle$.
By Step 2 and Step 7 we have $\left|V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right| \geq\left|Y_{\alpha} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right|=\left|Y_{\alpha} / C_{Y_{\alpha}}(t)\right| \geq q$. We record

Step $9 \quad[$ vbqa $]\left|V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right| \geq q$.
We next show:
Step 10 If $\left[V_{\alpha-1}, V_{\alpha^{\prime}-2}\right]=1$ then 1. holds.
Suppose $\left[V_{\alpha-1}, V_{\alpha^{\prime}-2}\right]=1$. Then $V_{\alpha-1} \leq Q_{\alpha^{\prime}-2} \cap Q_{\alpha^{\prime}-1}$. Put $A=V_{\alpha-1} \cap\left(V_{\beta} Q_{\alpha^{\prime}}\right)$. Then $A \leq V_{\beta}\left(V_{\beta} V_{\alpha-1} \cap Q_{\alpha^{\prime}}\right) \leq V_{\beta}\left(Q_{\alpha^{\prime}-1} \cap Q_{\alpha^{\prime}}\right)$. Thus by 0.2

$$
[A, t] \leq\left[V_{\beta}, t\right]\left[Q_{\alpha^{\prime}-1} \cap Q_{\alpha^{\prime}}, t\right] \leq Y_{\beta} Y_{\alpha^{\prime}}
$$

Let X be maximal in A with $[X, t] \leq Y_{\beta}$. As $\left|Y_{\alpha^{\prime}}\right|=q$ we have $|A / X| \leq q$. Since $Y_{\beta}^{*} \leq X, t$ normalizes X. By $0.2,\left[X Z_{a}, Q_{\alpha-1}\right] \leq\left[V_{\alpha-1}, Q_{\alpha-1}\right]=Y_{\alpha-1} \leq X Z_{\alpha}$. So by Step $8, O^{p}\left(E_{\alpha}\right)$ normalizes $X Z_{\alpha}$. Since $O^{p}\left(E_{\alpha}\right)$ is transitively on $\triangle(\alpha)$ we conclude that $X Z_{\alpha} \leq D_{\alpha}:=\bigcap_{\delta \in \Delta(\alpha)} V_{\delta}$. Put $a=\left|V_{\alpha-1} / A\right|$. Then $\left|V_{\alpha-1} D_{a} / D_{a}\right| \leq\left|V_{\alpha-1} / A\right||A / X| \leq a q$. Hence

$$
\left|V_{\beta} D_{a} / D_{\alpha}\right| \leq a q
$$

Note that $V_{\alpha-1} \leq Q_{\alpha^{\prime}-2} \cap Q_{\alpha^{\prime}-1} \leq G_{\alpha^{\prime}}$. Since $D_{\alpha^{\prime}-1} \leq V_{\alpha^{\prime}-2}$ we conclude from $\left|V_{\beta} D_{a} / Y D_{\alpha}\right| \leq q a$ and edge-transitivity that

$$
\left|V_{\alpha^{\prime}} / C_{V_{\alpha^{\prime}}}\left(V_{\alpha-1} V_{\beta}\right)\right| \leq\left|V_{\alpha^{\prime}} D_{\alpha^{\prime}-1} / D_{\alpha^{\prime}-1}\right|=\left|V_{\beta} D_{a} / D_{\alpha}\right| \leq a q
$$

On the otherhand by definition of a, an isomorphism theorem and Step 9

$$
\left|V_{\alpha-1} V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right|=\left|V_{\alpha-1} V_{\beta} Q_{\alpha^{\prime}} / V_{\beta} Q_{\alpha^{\prime}}\right|\left|V_{\beta} Q_{\alpha^{\prime}} / Q_{\alpha^{\prime}}\right| \geq a q
$$

By the last two equations 1. holds. So we may assume from now on that

Step $11 \quad\left[\right.$ va-1va-2] $\left[V_{\alpha-1}, V_{\alpha^{\prime}-2}\right] \neq 1$
Suppose that $V_{\alpha^{\prime}-2} \leq Q_{a-1}$. Then by Step $4, V_{\alpha-1} \leq Q_{\alpha^{\prime}-2}$. Note that by Step 8 , $C_{Y_{\alpha-1}}(t)=1$. Thus

$$
1 \neq\left[V_{\alpha-1}, V_{\alpha^{\prime}-2}\right] \leq Y_{\alpha-1} \cap Y_{\alpha^{\prime}-2} \leq C_{Y_{\alpha-1}}(t)=1
$$

a contradiction to Step 11 . Thus
Step 12 [va-1qa-1] $V_{\alpha^{\prime}-2} \not \leq Q_{\alpha-1}$
By Step 4 we get
Step 13 [va-1qa-2] $V_{\alpha-1} \not \leq Q_{\alpha^{\prime}-2}$
Since $b>3, t$ centralizes $\left[V_{\alpha^{\prime}-2} \cap Q_{\alpha-1}, V_{\alpha-1}\right.$]. and so

$$
\left[V_{\alpha^{\prime}}-2 \cap Q_{\alpha-1}, V_{\alpha-1}\right]=C_{Y_{\alpha-1}}(t)=1
$$

Thus by Step 5 and ?? that $Y_{\alpha^{\prime}-2}=\left[V_{\alpha-1} \cap Q_{\alpha^{\prime}-2} V_{\alpha^{\prime}-1}\right] \leq V_{\alpha-1}$. Hence there exists $1 \neq x \leq Y_{\alpha^{\prime}-2} \cap V_{\alpha-1}$.

Note that t centralizes x and $\left[x, Q_{\alpha-1} \leq Y_{\alpha-1} \leq Y_{\alpha}\right.$. So by Step $8, O^{p}\left(E_{\alpha}\right)$ normalizes the coset $x Y_{\alpha}$.

Suppose that $\left[x, Q_{\alpha}\right] \neq 1$. Let $R=O^{p}\left(E_{\alpha}\right)$ and $D=\left[Q_{\alpha}, R\right]$. Since $C_{Y_{\alpha}}(R)=1$, the Three Subgroup Lemma implies $[x, D] \neq 1$. Since R normalizes $[x, D]$ we get $[x, D]=Y_{\alpha}$. Thus D acts transitively on $Y_{\alpha} x$ and so by the Frattini argument, $R=C_{R}(x) D$. Since $x \in Y_{\alpha^{\prime}-2}, Q$! implies $C_{R}(x) \leq \widetilde{C}_{\alpha^{\prime}-2}$. Also since $\left[E_{\alpha^{\prime}-2}, Q_{\alpha^{\prime}-2}\right] \leq Q_{\alpha^{\prime}-2}^{*}$ and $E_{\alpha^{\prime}-2}$ acts transitively on $\triangle \alpha^{\prime}-2$ we have

$$
t \in V_{\alpha^{\prime}-1}^{(2)} \cap Q_{\alpha^{\prime}-2} \leq\left(V_{\alpha^{\prime}-1}^{(2)} \cap Q_{\alpha^{\prime}-2}\right) Q_{\alpha^{\prime}-2}^{*}=\left(V_{\alpha^{\prime}-3}^{(2)} \cap Q_{\alpha^{\prime}-2}\right) Q_{\alpha^{\prime}-2}^{*} \leq\left(Q_{\alpha} \cap \widetilde{C}_{\alpha^{\prime}-2}\right) Q_{\alpha^{\prime}-2}^{*}
$$

The right hand side of this equation is p-group normalized by $C_{R}(x)$ and so $\left\langle t^{C_{R}(x)}\right\rangle Q_{\alpha} / Q_{\alpha}$ is a p-group. But this contradicts $t \in Q_{\alpha \beta} \backslash Q_{\alpha}$ and $O^{p}\left(E_{\alpha}\right) \leq C_{R}(x) Q_{\alpha}$.

Thus $\left[x, Q_{\alpha}\right]=1$, and so $x \in \Omega_{1} \mathrm{Z}\left(Q_{\alpha}\right)=Y_{\alpha}$. Since $[x, t]=1$ we conclude $x \in Y_{\beta}$. Since also $x \in Y_{\alpha^{\prime}-2}$ we conclude that $E_{\alpha^{\prime}-2} \leq \widetilde{C}_{\beta}$

Since $b>3$,

$$
V_{\alpha-1} \leq V_{\alpha}^{(2)} Q_{\beta}^{*}=V_{\alpha+2}^{(2)} Q_{\beta}^{*} \leq\left(Q_{\alpha^{\prime}-2} \cap \widetilde{C}_{\beta}\right) Q_{\beta}^{*}
$$

The right hand side is a p-group normalized by $E_{\alpha^{\prime}-2}$ and we obtain a contradiction to Step 13.

Theorem 0.5 (The abelian E-Structure Theorem) [abelian es] Assume Hypothesis 0.1 (and maybe that there exists a unique $\widetilde{P} \in \mathcal{P}(E S)$ with $\widetilde{P} \not \leq N_{G}\left(P^{\circ}\right)$).) Let $V=\left\langle Y_{P}^{E}\right\rangle$ and $\tilde{V}=V /\left[V, O_{p}(E)\right]$. Then

Proof:

$G_{\alpha \beta}=N_{G}\left(Q_{\alpha \beta}\right)$
Suppose that $N_{G}(T) \not \leq L$. Put $M=\left\langle N_{G}(T), P_{0} T\right\rangle$. If $O_{p}(M)=1$ then pushing up $S L_{2}(q)$ and $\Omega_{1} \mathrm{Z}\left(P^{\circ}\right)=1$ gives $\left[O_{p}(P), O^{p}(P)\right] \leq Y_{P}$. By $E S 6, V=\left\langle Z_{P}^{H}\right\rangle \leq O_{p}(L)$. Thus V is normal in H and L, a contradiction. The last equality in (e) follows since Y_{P} is a the natural module.
$C_{G_{\beta}}(\widetilde{x}) \leq G_{\alpha \beta}$ for all $x \in Y_{\alpha} \backslash Y_{\beta}$.
For (g) let $D^{*}=C_{H}(\tilde{x})$ and $D=C_{H}(x), T$ acts transitively on the coset $Y_{H} x, D^{*}=$ $D T$. Let $x \in Y_{H}^{l}$ for some $l \in L$. Then $D \leq C_{G}(x)$ and by $Q!, D \leq N_{G}\left(Q^{l}\right)$. Thus $D \leq N_{G}\left(\left\langle Q, Q^{l}\right\rangle=N_{G}\left(P^{\circ}\right)=L\right.$.

Let G be a group of local characteristic p. We say that G has rank 2 , provided that there exists $P, \widetilde{P} \in \mathcal{P}(S)$ such that $\widetilde{P} \leq E S$ and $\langle P, \widetilde{P}\rangle \notin \mathcal{L}$. We say that H has rank at least three if G has neither rank 1 nor rank 2 .

The next lemma shows how $\widetilde{P}!$ can be used to obtain information about $E / O_{p}(E)$.
Lemma 0.6 [unique component in e] Suppose E!, P!, \widetilde{P} uniqueness and that G has rank at least three. Let $L=N_{G}\left(P^{\circ}\right)$ and $H=(L \cap \widetilde{C}) E$.
(a) $N_{G}(T) \leq L$ for all $O_{p}(H \cap L) \leq T \unlhd S$.
(b) There exists a unique $\widetilde{P} \in \mathcal{P}_{H}(S)$ with $\widetilde{P} \not \leq L$. Moreover, $\widetilde{P} \leq E S$.
(c) $\widetilde{P} / O_{p}(\widetilde{P}) \sim S L_{2}(q) \cdot p^{k}$.
(d) $H=K(L \cap H), L \cap H$ is a maximal subgroup of H and $O_{p}(H \cap L) \neq O_{p}(H)$.
(e) H has a unique p-component K.
(f) Let $Z_{0}=C_{Y_{P}}\left(S \cap P^{\circ}\right)$ and $V=\left\langle Y_{P}^{H}\right\rangle$. Then $Z_{0} \unlhd V$ and $V \leq Q \leq O_{p}(H)$.
(g) Let $D=C_{H}\left(K / O_{p}(K)\right.$. Then D is the largest normal subgroup of H contained in L and $D / O_{p}(H)$ is isomorphic to a section of the Borel subgroup of $\operatorname{Aut}\left(S L_{2}(q)\right.$
(h) Let $\bar{V}=V / Z_{0}$. Then
(ha) $\left[\bar{V}, O_{p}(H)\right]=1$
(hb) $C_{H}(\bar{V}) \leq D$ and $C_{H}(\bar{V}) \cap C_{H}\left(Z_{0}\right)=O_{p}(H)$.
(hc) Let $1 \neq X \leq Y_{P} / Z_{0}$. Then $N_{H}(X) \leq H \cap L$.
(hd) $H \cap L$ contains a point-stabilizer for H on \bar{V}.
Proof:
By $E!, O_{p}(\langle L, H\rangle)=1$ and so $E \not \leq L$. Since $\{P\}=\left\{\mathcal{P}^{\circ}(S)\right.$ and $N_{G}(S) \leq \widetilde{C}, N_{G}(S) \leq$ $N_{G}(P) \leq L$. Since $E=\left\langle\mathcal{P}_{E S}, N_{E}(S)>\right.$ there exists $\widetilde{P} \in \mathcal{P}_{E S}(S)$ with $\widetilde{P} \not \leq L$. Since rank G is at least three, $\langle P, \widetilde{P}\rangle \in \mathcal{L}$ and so by $\widetilde{P}!, \widetilde{P}$ is uniquely determined.

Let T be as in (a). It follows easily from P ! that $Q O_{p}(L)$ is a Sylow p subgroup of $P^{\circ} O_{p}(L)$. Since $Q O_{p}(L) \leq O_{p}(H \cap L) \leq T$ we conclude that T is a Sylow p-subgroup of $T P^{\circ}$. Suppose that $M:=\left\langle P^{\circ} \underset{\sim}{T}, N_{G}(T)\right\rangle \nless n \mathcal{L}$. Then by Pushing up ?? and $\underset{\sim}{Q}!P \sim q^{2} S L_{2}(q)$. Since $\langle P, \widetilde{P}\rangle \in \mathcal{L}$ we get $\widetilde{P} \leq N_{G}\left(Y_{P}\right)$ and ?? (dd) gives the contradiction $\widetilde{P} \leq N_{G}\left(P^{\circ}\right)=L$. Thus $M \in \mathcal{L}$. If $\widetilde{P} \in M$, then $T \unlhd \widetilde{P}$ and so $O_{p}\left(P^{\circ}\right) \leq O_{p}(\widetilde{P})$, a contradiction to ($\left.\widetilde{P}-2 b\right)$. Hence $\widetilde{P} \not \leq M$. By the uniqueness of \widetilde{P} and since $S \leq M, M \leq L$. Thus (a) holds.

Let $P^{*} \in \mathcal{P}_{H}(S)$ with $P^{*} \not \leq L$. Suppose that $\widetilde{P} \widetilde{P}$. Then $P^{*} \not \leq E S$ and so $S \cap E \leq$ $O_{p}\left(P^{*}\right)$ Since $E O_{p}(H \cap L)$ is normalized by $E(L \cap H)=H$ we get $O_{p}(H \cap L) \leq O_{p}\left(P^{*}\right)$. Thus by (a) $P^{*} \leq L$, a contradiction. So (b) holds. (a) is obvious.

Let $H \cap L<M \leq H$. Then $M \not \leq L$ and so $\widetilde{P} \leq M$. Let $R \in \mathcal{P}(H)(S)$. If $R=\widetilde{P}$, then $R \leq M$, if $R \neq \widetilde{P}$, then $R \leq L$ and again $R \leq M$. Since also $N_{H}(S) \leq H \cap L \leq M$ we get $M=H$. By (a) $O_{p}(H \cap L) \neq O_{p}(H)$.

Let N be a normal subgroup of H minimal with respect to $N \nsubseteq L$. By the uniqeness of $\widetilde{P}, \widetilde{P} \leq N S$. Hence $O^{p}(\tilde{P}) \leq N$ and since $O^{p}(\widetilde{P}) \not \leq L, N=\left\langle O^{p}(\widetilde{P})^{H}\right\rangle \leq E$. Next let F be the largest normal subgroup of H contained in L. Then $\left[O_{p}(H \cap L), F\right] \leq O_{p}(H \cap L) \cap F \leq$ $O_{p}(F) \leq O_{p}(H)$. Note that $\left[O_{p}(H), N\right]$ is normal in $N(H \cap L)=N$ and so $\left[O_{p}(H), N\right]=N$ and we conclude that $[N, F] \leq O_{p}(H)$. In particular $F \cap N / O_{p}(N) \leq Z\left(N / O_{p}(N)\right.$.

Suppose that N is solvable. Then the mimimality of N implies that $N / O_{p}(N)$ is a r-group for some prime $r \neq p$. In particular $H \cap N<N_{N}(H \cap N)$ and the maximality of $H \cap N$ implies $H \cap N \unlhd H$. Thus $H \cap N \leq F$. Suppose that S does not act irreducible on $N / H \cap N$. The by coprime action there exists an S-invarinat $R \leq N$ with $R \not \leq L$ and $O^{p}(\widetilde{P}) \not \leq R$. Then by (b) $R S \leq L$, a contradiction. So S acts irreducible on $N / H \cap N$. Thus $N=(H \cap N) O^{p}(\widetilde{P})$ and $N=\left[N, O_{p}(H)\right] \leq O^{p}(\widetilde{P})$. Note that $\left\langle P^{\circ}, N\right\rangle$ is normalizes by P°, $H \cap L$ and N and so by $\langle L, H\rangle$, it follows that $O_{p}\left\langle P^{\circ}, N\right\rangle=1$ and so also $O_{p}(\langle P, \widetilde{P}\rangle=1$, a contradiction.

Thus N is not solvable and so the product of p-components.
Let K_{1} be a p-component of N. By minimality of $N, N=\left\langle K_{1}^{H \cap L}\right\rangle$ If S does not act tranisitively on the p-components of N, we can choose K_{1} such that $\left.O^{p}(\widetilde{P}) \not \leq K_{1}^{S}\right\rangle$. But then $K_{1} \leq L$, a contradiction. Thus $N=\left\langle K_{1}^{S}\right\rangle$. Suppose that $K_{1} \cap \widetilde{P}$ lies in the unique maximal subgroup of \widetilde{P} containing S. Since $K_{1} \cap \widetilde{P}$ is subnormal in \widetilde{P} the structure of \widetilde{P} implies $\left[K_{1} \cap \widetilde{P}, S\right]$ is a p-group. Thus $K_{1} \neq N$ and $K_{1} \cap \widetilde{P}$ is a p-group. Hence $N \cap S \unlhd O_{p}(\widetilde{P})$. Since $N_{N}(N \cap S) / N \cap S$ is a p-group we conclude from coprimes action that $N \cap L$ projects onto $N_{K_{1}}(N \cap S) F / F$. Thus $\left.\left.\left[K_{1} \cap L\right) F, N_{K_{1}}(N \cap S)\right] \leq\left[K_{1} \cap L\right) F, N \cap L\right] \leq L$. Conjugation with S yields $\left[N \cap L, N_{N}(N \cap S) \leq N \cap L\right.$. Thus $H=\langle\widetilde{P}, L\rangle \leq N_{H}(N \cap L)$ and so $N \cap L=F \cap L$. Since L contains a Sylow p-subgroup of N, we conclude that $N F / F$ is a p^{\prime}-group. Let r be a prime divividing the order of $N F / F$ and R / F an S-invariant Sylow p-subgroup of $N F / F$. Then $R S$ is not contained in L and so $\widetilde{P} \leq R S$. Thus $\widetilde{P}=$ is a $\{r, p\}$ group and r is unique. Thus $N F / F$ is a r-group, a contradiction.

We proved that $K_{1} \cap \widetilde{P}$ is not contained in the unique maximal subgroup of \widetilde{P} containing S. Since $\left[K_{1} \cap \widetilde{P},\left(K_{1} \cap \widetilde{P}\right)^{g}\right.$ is a p-group for all $g \in \widetilde{P} \backslash N_{H}\left(K_{1}\right)$ the structure of \widetilde{P} implies $O^{p}(\widetilde{P}) \not \leq K_{1}$. Thus $S \leq N_{H}\left(K_{1}\right)$ and so $N=K_{1}$. Thus (e) is proved.

By P ! uniqueness Z_{0} is normal in \widetilde{C} and $\left[Z_{0}, Q\right]=1$. Since Y_{P} is a natural module for P° we get $\left[Y_{P}, Q\right] \leq\left[V, O_{p}(H) \leq\left[V, O_{P}(L \cap H)\right] \leq Z_{0}\right.$. So Y_{P} acts trivial an all factors of $1 \leq Z_{0} \leq Q$ and since \mathbb{C} is of characteristic $p, Y_{P} \leq Q$. This proves (f) and (ha).

To prove (g) note that $N \not \leq D$ and so by uniqueness of $N, D \leq L$ and so $D \leq F$. But as seen above $F \leq D$ and so $D=F$. Let D_{0} be maximal in D with $\left.\left[P^{\circ}, D_{0}\right] \leq O_{p}\left(P^{\circ}\right)\right]$. Then H and P° normalize $O^{p}\left(D_{0}\right)$ and so $O^{p}\left(D_{0}\right)=1$. Thus D_{0} is a p-group and (g) holds.

Note that $C_{H}(\bar{V}) \leq N_{H}\left(Y_{P}\right) \cap H \cap L$ and So $C_{H}(\bar{V}) \leq D$. Let $R=O^{p}\left(C_{H}(\bar{V}) \cap C_{H}\left(Z_{0}\right)\right)$. Then R) centralizes Y_{P} and $\left[R, P^{\circ}\right] \leq C_{P^{\circ}}\left(Y_{P}\right)=O_{p}\left(P^{\circ}\right) \leq O_{p}(H \cap L)$. But R is normal in $H \cap L$ and so $R=O^{p}(R)=O^{p}\left(R O_{p}(H \cap L)\right.$. Thus H and P° both normalizes R and so $R=1$. Hence (hb) holds.

Let $e \in Y_{P} \backslash Z_{0}$ with $e Z_{0} \in X$. Let $g \in N_{H}(X)$. Since $H \cap L$ acts transitively on $Y_{P} \backslash Z_{0}$, there exists $h \in H \cap L$ with $e^{g h}=e$. Let $t \in P^{\circ}$ with $e \in Z_{0}^{t}$. Then $\left[e, Q^{t}\right]=1$ and so $g h \leq \widetilde{C}^{t}$. Thus $g h \in N_{G}\left(\left\langle Q, Q^{t}\right\rangle=N_{G}\left(P^{\circ}\right)=L\right.$. Hence $g \in L$ and (hc) holds.
(hd) follows from (hc).

1 The Small World Theorem

Given Q ! and $P \in \mathcal{P}^{\circ}(S)$. We say that $b=2$ for P if $b>1$ for P and $\left\langle Y_{P}^{E\rangle}\right.$ is not abelian. If neither $b=1$ nor $b=2$ for P we say that b is at least three for P.

Theorem 1.1 (The Small World Theorem) [the small world theorem] Suppose E! and let $P \in \mathcal{P}^{\circ}(S)$. Then one of the following holds:

1. G has rank 1 or 2.
2. $b=1$ or $b=2$ for P.
3. A rank three sitiation described below.

Proof: Assume that G has rank at least three and that b is at least three. In the exceptional case of the $P!$-theorems (?? and ?? one easily sees that $b=2$ for P. Thus $P!$ holds. Also in the exceptionell case of the $\widetilde{P}!$ Theorem ?? one gets $b=2$ for P. Thus (strong) $\widetilde{P}!$ holds. We proved

Step 1 [P! and wP!] P! and $\widetilde{P}!$ hold.

0.6 gives us a good amount of information about E. We use the notation introduced in 0.6.

Since $\langle H, L\rangle \notin \mathcal{L}$, we can apply the amalgam method to the pair (H, L). A non-trivial argument shows

Step 2 [offender on V] One of the following holds:

1. $O_{p}(H \cap L) / O_{p}(H)$ contains a non-trivial quadratic offender on \widetilde{V}.
2. There exists a non-trivial normal subgroup A of $H \cap L / O_{p}(H \cap L)$ and normal subgroups $Y_{P} \leq Z_{1} \leq Z_{2} \leq Z_{3} \leq V$ of $H \cap L$ such that:
(a) A and V / Z_{3} are isomorphic as $\mathbb{F}_{p} C_{H \cap L}\left(Y_{P}\right)$-modules.
(b) $\left|Z_{3} / Z_{2}\right| \leq|A|$.
(c) $[\bar{V}, A] \leq \overline{Z_{2}} \leq C_{\bar{V}}(A)$. In particular, A is a quadratic $2 F$-offender.
(d) $[\bar{x}, A]=\overline{Y_{P}}$ for all $x \in Z_{3} \backslash Z_{2}$.
(e) $\overline{Z_{1}}$ is a natural $S L_{2}(q)$-module for $\widetilde{P} \cap C_{H}\left(Z_{0}\right)$.

Using ?? and ?? (and the Z^{*}-theorem to deal with the case $|A|=2$) it is not too difficult to derive

Step 3 [e-structure] $K / O_{p}(K) \cong S L_{n}(q),(n \geq 3), S p_{2 n}(q)^{\prime},(n \geq 2)$ or $G_{2}(q)^{\prime},(p=2)$. Moreover, if \bar{W} is a maximal submodule of \bar{V}, then V / W is the natural module for $K / O_{p}(K)$ and $H \cap L$ contains a point-stabilizer on V / W.

Let $M \in \mathcal{M}(\langle P, \widetilde{P}\rangle)$ with M° maximal.
Suppose first that $M^{\circ} \not \leq\langle P, \widetilde{P}\rangle$. Then by the Structure Theorem ?? $M^{\circ} / O_{p}\left(M^{\circ}\right) \cong$ $S L_{n}(q), n \geq 4$ or $S p_{2 n}(q), n \geq 3$. Moreover,

$$
R:=O^{p}\left(M^{\circ} \cap \tilde{C} \leq O^{p}(\widetilde{P})^{M \cap \widetilde{C}} \leq K\right.
$$

In the case of $S p_{2 n}(q)$ we have $R / O_{p}(R) \cong S p_{2 n-2}(q)^{\prime}$. So Step 3 implies $K / O_{p}(K) \cong$ $S p_{2 m}(q)$ and $R \leq H \cap L$, a contradiction.

Thus $M^{\circ} / O_{p}\left(M^{\circ}\right) \cong S L_{n}(q)$ and $R / O_{p}(R) \cong S L_{n-1}(q)$. Let R^{*} be a parabolic subgroup of $K S$ minimal with $R S<R^{*}$. Then $R^{*} \cap K / O_{p}\left(R^{*} \cap K\right) \cong S L_{n}(q)$ or $S p_{2 n-2}(q)$. Let $M^{*}=\left\langle M^{\circ} S, R^{*}\langle\right.$. Since
$R^{*} \leq\left\langle O^{p}(\widetilde{P})^{R^{*}}\right\rangle S \leq\left(M^{*}\right)^{\circ} S$
the maximality of M° implies that $M^{*} \notin \mathcal{L}$.
Now M^{*} has a geometry of type A_{n} or $C_{2 n}$ with all its residues classical we conclude that M^{*} has a normal subgroup $S L_{n+1}(q)$ or $S p_{2 n}(q)$. But this contradicts the assumption that V is abelian.
(Remark: One does not have to identify M^{*} first to obtain this contradiction. Indeed an easy geometric argument shows that M^{*} has rank at most three on $M^{*} / M^{*} \cap \widetilde{C}$. But then V abelian gives the contradiction $\left\langle Z_{0}^{M^{*}}\right\rangle$ abelian .)

We conclude that $M^{\circ} \leq\langle P, \widetilde{P}\rangle$. Let P^{*} be the unique elemenent of $\mathcal{P} K S(S)$ with $P^{*} \not \leq N_{G}\left(O^{p}(\widetilde{P})\right)$. By maximality of M° we obtain $\left\langle P, \widetilde{P}, P^{*}\right\rangle \notin \mathcal{L}$.

This is rank three situation eluded to in (c).

Lemma 1.2 [quadratic normal point stabilizer theorem] Let H be a finite group and V a faithful irreducible $\mathbb{F}_{p} H$-module. Let P be a point stabilizer for H on V and $A \leq P$. Suppose that
(i) $F^{*}(H)$ is quasi simple and $H=\left\langle A^{H}\right\rangle$
(ii) $A \unlhd P$ and $|A|>2$.
(iii) A acts quadratically on V.

Then one of the following holds:

1. $H \cong S L_{n}(q), S p_{2 n}(q)$,or $G_{2}(q)$ and V is the natural module. Moreover,
2. $p=2, H$ is a group of Lie Typ in char p, and H is contained in a long root subgroup of H.
3. Who knows

References

