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1 Introduction

Let p a prime, G a finite group and T ∈ Sylp(G). Then G has characteristic p if CG(Op(G)) ≤ Op(G);
and G has local characteristic p if every p-local subgroup of G has characteristic p. This paper is
part of a program to understand and classify the finite groups of local characteristic p, see [MSS1].

It was shown in [MS1] that in such groups there always exists a maximal p-local subgroup M
containing T satisfying one of the following three cases (where YM is the largest elementary abelian
normal p-subgroup of M with Op(M/CM (YM )) = 1):

1. M is the unique maximal p-local subgroup of G containing T .

2. There exists A ≤ T such that [YM , A] 6= 1, [Φ(A), YM ] = 1, and

|YM/CYM
(A)| ≤ |A/CA(YM )|.

3. There exists A ≤ T such that [YM , A] 6= 1, [Φ(A), YM ] = 1, and

(i) [YM , A]CYM
(A) = [v,A]CYM

(A) for every v ∈ YM \ [YM , A]CYM
(A) and [YM , A, A,A] = 1,

(ii) |YM/CYM
(A)| ≤ |A/CA(YM )|2.

The nature of these properties give rise to questions about the embedding of M in G (in case
(1)), and about the structure of M := M/CM (YM ) and the FpM -module YM (in case (2) and (3)).

In case (1) the Local C(G, T )-Theorem [BHS] gives the structure of all maximal p-local subgroups
not containing a Sylow p-subgroup of G – and if there are none, then G has a strongly p-embedded
subgroup.

In the other two cases one usually assumes that the composition factors of M are known simple
groups. Then a forthcoming paper [MS2] describes the structure of YM and M in case (2). It
generalizes known results about FF -modules.
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In case (3) results of Guralnick, Lawther and Malle (see [GM1], [GM2] and [GLM]) use property
(3:ii) to determine M and YM under the additional assumption that F ∗(M) is quasisimple and YM

is a simple module. The purpose of our paper is to use property (3:i) to determine those M and
YM that do not satisfy this additional assumption. In fact, we prove a stronger result giving more
information about the action of M on YM , see Theorem 2. In addition, we do not need to assume
that the composition factors of M are known simple groups.

We turn (3:i) into a definition:
Let F be a field, A a group and V an FA-module. Then V is a nearly quadratic FA-module (and

A acts nearly quadratically on V ) if [V,A, A,A] = 0 and

[V,A] + CV (A) = [vF, A] + CV (A) for every v ∈ V \ [V,A] + CV (A).

Our main theorems:

Theorem 1 Let F be field, H a group and V be a faithful semisimple FH-module. Let Q be the set
of nearly quadratic, but not quadratic subgroups of H. Suppose that H = 〈Q〉. Then there exists a
partition (Qi)i∈I of Q such that

(a) H =×i∈I Hi, where Hi = 〈Qi〉.

(b) V = CV (H)⊕
⊕

i∈I [V,Hi].

(c) For each i ∈ I, [V,Hi] is a faithful simple FHi-module.

Theorem 2 Let H be a finite group, and V a faithful simple FpH-module. Suppose that H is
generated by subgroups that act nearly quadratically but not quadratically on V .

Let W a Wedderburn-component for Fp F∗(H) on V and K := Z(EndF∗(H)(W )). Then W is a
simple FpF∗(H)-module and one of the following holds:

(I) V = W, K = EndH(W ),F∗(H) = Z(H)K, K a component of H and V is a simple FpK module.

(II) H,V, W, K and ( if V = W ) H/CH(K) fulfil one the thirteen cases in Table 1. Moreover, in case
13. H is not generated by abelian nearly quadratic subgroups.

Some notations used in the above table and through this paper:

All our actions are from the right. We write abc for (ab)c, ab.cd for (ab)(cd), ab.cde.fg for
((ab)((cd)e))(fg) and so on.

By Cn,Frobn, Dn and Qn, respectively, we denote a cyclic, Frobenius, dihedral or quaternion
group of order n, and Fq is a finite field of order q.

Let K be a field and V a K-space. Then ΓGLK(V ), GLK(V ) and SLK(V ), respectively, denotes
the group of semilinear K-isomorphisms, K-isomorphisms, or K-isomorphisms with determinant 1 of
V .

Let K0 be the base field of K and V0 a K0-subspace of V such that the map τ : V0 ⊗K0 K → V ,
v0 ⊗ k → vk is a K-isomorphism. For σ ∈ Aut(K) let σ̃ be the semilinear K-isomorphism of V with
(v0 ⊗ k)τ σ̃ = (v0 ⊗ kσ)τ . Let ΓSLK(V ) = {gσ̃ | g ∈ SLK(V ), σ ∈ AutK(V )}. Note that ΓSLK(V )
depends on the choice of V0, but is unique up to conjugation under GLK(V ).

PK(V ) is the set of 1-dimensional K-subspaces of V . For X = SL,GL, ΓGL and ΓSL define
PXK(V ) = XK(V )/Z, where Z is the kernel of the action of XK(V ) on PK(V ), so Z = Z(GLK(V ) ∩
XK(V )). If K = Fq and V = Fn

q we write Xn(q) or Xn(Fq) for XFq (Fn
q ).
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Table 1: The exceptional nearly quadratic modules

H V W K H/CH(K) conditions

1. (C2 o Sym(m))′ (F3)m F3 F3 − m ≥ 3,m 6= 4

2. SLn(F2) o Sym(m) (Fn
2 )m Fn

2 F2 − m ≥ 2, n ≥ 3

3. Wr(SL2(F2),m) (Fn
2 )m Fn

2 F4 − m ≥ 2

4. Frob39 F27 V F27 C3

5. ΓGLn(F4) Fn
4 V F4 C2 n ≥ 2

6. ΓSLn(F4) Fn
4 V F4 C2 n ≥ 2

7. SL2(F2)× SLn(F2) F2
2 ⊗ Fn

2 V F4 C2 n ≥ 3

8. 3. Sym(6) F3
4 V F4 C2

9. SLn(K) ◦ SLm(K) Kn ⊗Km V any 1 n, m ≥ 3

10. SL2(K) ◦ SLm(K) K2 ⊗Km V K 6= F2 1 m ≥ 2

11. SLn(F2) o C2 Fn
2 ⊗ Fn

2 V F2 1 n ≥ 3

12. (C2 o Sym(4))′ (F3)4 V F3 1

13. SU3(2)′ F3
4 V F4 1

Let L be a group and m an integer with m > 1. Then Wr(L, m) denotes the augmented wreath-
product of L with Sym(m). That is, Wr(L,m) is the normal closure of Sym(m) in L o Sym(m). An
elementary argument shows that L o Sym(m)/ Wr(L, n) ∼= L/L′, so Wr(L, n) = L o Sym(n) if L is
perfect.

The proof of Theorem 1 is straight forward. It is entirely based on an elementary property of
groups A that act nearly quadratically but not quadratically on a module V : If V is the direct
sum of two A-submodules, then A acts trivial on one of them (see 2.9). This also indicates that
non-quadratic nearly quadratic action has some properties stronger than quadratic action.

The proof of Theorem 2 uses two well-known facts: For every finite group H, F∗(H) is the central
product of subgroups N1, . . . , Nr, where Ni is either a component of H or Ni = Oq(H), q a prime
divisor of F(H), and for every finite dimensional simple F∗(H)-module V , V can be written as a
tensor product of Ni-modules Vi.

If in addition V is also an FH-module, the action of H on V can be described explicitly by means
of this tensor decomposition. It turns out that the action of a nearly quadratic subgroup on such
a tensor decomposition is very restricted. This is then used to determine the exceptions given in
Theorem 2.

Similar arguments also give the following theorem, which is a generalization of a result of Chermak
[Ch].

Theorem 3 Let G be a finite group, K a component of G and V a faithful FG-module. Suppose
that there exists a p-subgroup A ≤ G with |A/CA(K)| > 2 acting nearly quadratically on V . Then
|A/ NA(K)| ≤ 2 and either A ≤ NG(K), or p = 2 and K/O2(K) ∼= SLn(2) or SL2(2m).
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We would like to remark all the results in this paper are proved without using the classification
of finite simple groups. In fact, apart from text book results, the proofs are selfcontained.

2 Cubic and Nearly Quadratic Action

In this section A is a group, F is a field and V an FA-module.

Definition 2.1 V is a

(a) quadratic FA-module if [V,A, A] = 0,

(b) cubic FA-module if [V,A, A,A] = 0,

(c) nearly quadratic FA-module if V is a cubic FA-module such that

[V,A] + CV (A) = [vF, A] + CV (A) for every v ∈ V \ [V,A] + CV (A).

In the corresponding cases we also say that A acts quadratically, cubically and nearly quadrati-
cally on V .

Definition 2.2 QV (A) is the sum of all quadratic FA-submodules of V (and so the largest quadratic
FA-submodule of V ).

Definition 2.3 A system of imprimitivity for A in V is a set ∆ of F-subspaces of V such that

(i) |∆| > 1 and ∆A = ∆, and

(ii) V =
⊕

∆ (=
⊕

W∈∆ W ).

Definition 2.4 Let K be a field extension of F such that V is also a K-vector space, and let σ :
A → Aut(K) be a homomorphism. Then V is a semi-linear KA-module with respect to σ provided
that vka = va.kσ for every k ∈ K, a ∈ A and v ∈ V . Set AK := kerσ and KA := CK(Aσ).

Lemma 2.5 Let V be a quadratic FA-module. Then V is a nearly quadratic FA-module.

Proof: Since A is quadratic, [V,A] ≤ CV (A) ≤ [vF, A] + CV (A) for all v ∈ V . �

Lemma 2.6 Let V be a nearly quadratic FA-module and W be an FA-submodule of V . Then the
following hold:

(a) Either W ≤ [V,A] + CV (A) or [V,A] ≤ [W,A] + CV (A).

(b) Either QV (A) = V or QV (A) = [V,A] + CV (A).

(c) W and V/W are nearly quadratic FA-modules.

(d) A is quadratic on W or on V/W .
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Proof: (a) If W � [V,A] + CV (A) the definition of nearly quadratic implies [V,A] ≤ [W,A] +
CV (A).

(b) Since A is cubic, [V,A] + CV (A) ≤ QV (A). Since A is quadratic on QV (A), [QV (A), A] ≤
CV (A). By (a) with W := QV (A) either QV (A) ≤ [V,A] + CV (A) or [V,A] ≤ [QV (A), A] + CV (A).
In the first case [V,A]+CV (A) = QV (A). In the second case [V,A] ≤ CV (A), so A acts quadratically
on V and V = QV (A).

(c) and (d) We first show that V := V/W is a nearly quadratic FA-module. Let v ∈ V with
v /∈ [V , A] + CV (A). Since [V,A] + CV (A) ≤ [V ,A] + CV (A) we get that v /∈ [V,A] + CV (A). Thus
[V,A] ≤ [vF, A] + CV (A) and [V , A] ≤ [vF, A] + CV (A). Hence V is nearly quadratic for A.

To show that A is nearly quadratic on W and is quadratic on W or V/W we may assume that
A is not quadratic on W , so W 6≤ QV (A). Then by (a) and (b) [V,A] ≤ [W,A] + CV (A). It follows
that [V ,A] ≤ CV (A) and A is quadratic on V . Hence (d) holds.

Moreover, QV (A) = [V,A] + CV (A) = [W,A] + CV (A) and so QW (A) = W ∩QV (A) = [W,A] +
CW (A). Hence if w ∈ W with w /∈ [W,A] + CW (A), then w /∈ QV (A) = [V,A] + CV (A) and so
[V,A] ≤ [Fw,A]+CV (A). Thus [W,A] ≤ [V,A]∩W ≤ [wF, A]+CW (A), and W is nearly quadratic.
So also (c) is proved. �

Lemma 2.7 Let V be a cubic FA-module and put A0 = CA(QV (A)). Then the following hold:

(a) A0 acts quadratically on V .

(b) For z ∈ Z, a ∈ A and v ∈ V with [v, a, a] = 0,

[v, a]z = [v, az] = [vz, a].

(c) If A acts quadratically on V , then A/CA(V ) is an elementary abelian char F-group. 1

(d) A0 E A, and A/A0 and A0/CA(V ) are elementary abelian char F-groups.

(e) If char F = 0, then all non-trivial elements in A/CA(V ) have infinite order. If char F is a prime,
then A/CA(V ) is a char F-group.

Proof: (a): Since A is cubic, [V,A0] ≤ [V,A] ≤ QV (A) ≤ CV (A0).
(b): Note that [v, a] is centralized by a and v. So (b) follows from [Gor, II2.2(i)]
(c): Since [V,A, A] = 0 = [A, V, A] the Three Subgroup Lemma gives [A,A, V ] = 0. So A/CA(V )

is abelian. Now let a ∈ A and v ∈ V with [v, a] 6= 0. Let i be a positive integer and put p := char F.
By (b) [v, ai] = [v, a]i. If p > 0 we conclude that [v, ap] = 0 and if p = 0, then [v, ai] 6= 0. So aCA(V )
has order p in A/CA(V ) if p > 0 and infinite order if p = 0.

(d): This follows from (c), since A acts quadratically on QV (A) and A0 acts quadratically on V .
(e) follows immediately from (d). �

Lemma 2.8 Let a ∈ A and v ∈ V . Suppose that char F = 2. Then [v, a2] = [v, a, a] and [V, a2] =
[V, a, a].

Proof: This follows for example since (a− 1)2 = a2 − 1 in EndF(V ). �

1Here an elementary abelian m-group is an abelian group all of its non-trivial elements have order m, if m is a
prime, and infinite order if m = 0.
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Lemma 2.9 Let V be a nearly quadratic, but not quadratic FA-module and X and Y be FA-
submodules of V such that V = X ⊕ Y . Then at least one of the submodules X and Y is centralized
by A.

Proof: Since V = X ⊕ Y and V is not quadratic at least one of the summands, say X, is not
a quadratic FA-module. Then by 2.6(a),(b)

[V,A] + CV (A) = [X, A] + CV (A) = QV (A).

In particular, [V,A, A] = [X, A,A] ≤ X and [Y,A, A] ≤ Y ∩ X = 0. Hence Y ≤ QV (A) =
[X, A] + CV (A) and [Y,A] ≤ Y ∩ [X, A,A] ≤ Y ∩X = 0. �

Lemma 2.10 Suppose that ∆ is a system of imprimitivity for A in V . Let ∆1 be an orbit for A on
∆ and ∆0 ⊆ ∆1. Then each of following conditions implies that ∆0 = ∆1.

1.
⊕

∆0 ∩ CV (A) 6= 0.

2. A is cubic and
⊕

∆0 ∩ [V,A, A] 6= 0.

3. A is quadratic and
⊕

∆0 ∩ [V,A] 6= 0.

Proof: Put U =
⊕

∆0. Observe that each of the conditions (2) and (3) imply (1), so we may
assume that CU (A) 6= 0. For X ∈ ∆ let πX be the projection of V onto X. Set

∆2 := {X ∈ ∆1 | CU (A)πX 6= 0}.

Since UπX = 0 for all X ∈ ∆1 \ ∆0 we have ∆2 ⊆ ∆0. Since ∆2 6= ∅ and ∆2 is A-invariant we
conclude that ∆2 = ∆1 and so also ∆0 = ∆1. �

Lemma 2.11 Let V be a quadratic FA-module, ∆ a system of imprimitivity for A in V , ∆1 a
non-trivial orbit for A on ∆, and W ∈ ∆1. Then |∆1| = char F = |A/CA(

⊕
∆1)| = 2.

Proof: Let W ∈ ∆1 and B = NA(W ). Then {W} 6= ∆1 and so by 2.10(3), W ∩ [V,A] = 0. In
particular, [W,B] = 0.

Let a ∈ A \ B. Then 0 6= [W,a] ≤ W + W a and so by 2.10(3), ∆1 = {W,W a} and |A/B| = 2.
In particular, B E A and B = CA(

⊕
∆1), so

|∆1| = |A/CA(
⊕

∆1)| = 2.

Moreover, 2.7(e) gives char F = 2. �

Lemma 2.12 Let V be a cubic FA-module, ∆ a system of imprimitivity for A in V , ∆1 a non-trivial
orbit for A on ∆, and W ∈ ∆1. Then

(a) A/CA(
⊕

∆1) is an elementary abelian p-group for some prime p.

(b) p = char F ∈ {2, 3}.

(c) One of the following holds:
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1. |A/CA(
⊕

∆1)| = |∆1| ≤ 4 and NA(W ) = CA(
⊕

∆1) = CA(∆1)

2. p = |∆1| = 2 and NA(W ) = CA(∆1) acts quadratically on
⊕

∆1.

Proof: We may assume without loss that V =
⊕

∆1 and V is a faithful FA-module. If A is
quadratic on V , then the lemma follows from 2.11. Hence we may assume

1◦ A is not quadratic on V .

Next we prove

2◦ Suppose char F = 2. Then A is an elementary abelian 2-group.

Let a ∈ A and suppose that a2 6= 1. Then there exists W ∈ ∆1 with [W,a2] 6= 0. Put
∆0 = {W,W a2}. By 2.8 [W,a, a] = [W,a2] ≤

⊕
∆0. Hence 2.10(2) implies that ∆1 = ∆0. Thus

∆1 = {W,W a} and so a2 acts trivially on ∆1. But then W = W a2
and ∆1 = ∆0 = {W}, a

contradiction.
This shows that a2 = 1 for all a ∈ A, and (1◦) holds.

3◦ Let W ∈ ∆1 and a, b ∈ V with [W, b, a] 6= 0. Then ∆1 = {W,W b,W a,W ba}.

Note that [W, b] ≤ W + W b and so also [W, b, a] ≤ W + W b + W a + W ba. Hence 2.10(2) implies
that ∆1 = {W,W b,W a,W ba}.

4◦ |∆1| ≤ 4

By (1◦) there exist a, b ∈ A with [V, b, a] 6= 0. Since V =
⊕

∆1 there exists W ∈ ∆1 with
[W, b, a] 6= 0 and so (4◦) follows from (3◦).

Case 1 Suppose that [W,NA(W )] 6= 0 for some W ∈ ∆1.

Pick b ∈ B := NA(W ) with [W, b] 6= 0 and a ∈ A \ B. Since [W, b] ≤ W we get [W, b, a] 6= 0,
so (3◦) yields ∆1 = {W,W a} and |A/B| = 2, in particular B E A. Since ∆1 6= {W}, 2.10(2) gives
[W,B,B] = 0, so B acts quadratically on W ⊕W a = V .

Since A is cubic on V , A is quadratic on [V,A] and thus also on [W,B] ⊕ [W a, B]. Hence 2.11,
applied to A and [W,B] ⊕ [W a, B], shows that p = 2. Thus (c:2) holds. By (2◦), A is elementary
abelian and so the lemma holds in this case.

Case 2 Suppose that [W,NA(W )] = 0 for all W ∈ ∆1.

Note that CA(∆1) = 1 in this case. Hence by (4◦) A is isomorphic to a subgroup of Sym(4). Put
p = char F. By 2.7(e), p > 0 and A is a p-group. Hence (b) holds. Moreover, if |∆1| ≤ 3 we conclude
that |∆1| = p = |A| and the lemma holds. In the other case (4◦) shows that |∆1| = 4. Hence p = 2
and by (2◦), A is elementary abelian. Since A acts transitively and faithfully on ∆1, this implies
|A| = 4 and NA(W ) = CA(∆1) = 1 for W ∈ ∆1. Again the lemma holds. �

Lemma 2.13 Let V be a nearly quadratic FA-module, and let ∆ be a system of imprimitivity for
A in V . Then one of the following holds:

1. A acts trivially on ∆ and there exists at most one W ∈ ∆ with [W,A] 6= 0.

2. A acts trivially on ∆ and quadratically on V .
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3. A acts quadratically on V , char F = 2, and |A/CA(W )| ≤ 2 for every W ∈ ∆ \ C∆(A).

4. A does not act quadratically on V , A/CA(V ) is elementary abelian and there exists a unique
A-orbit WA ⊆ ∆ with [W,A] 6= 0. Moreover, B := NA(W ) acts quadratically on V , B = CA(∆)
and one of the following holds:

1. char F = 2, |WA| = 4, dimF W = 1, B = CA(V ), and A/CA(V ) ∼= C2 × C2.

2. char F = 3, |WA| = 3, dimF W = 1, B = CA(V ), and A/CA(V ) ∼= C3.

3. char F = 2, |WA| = 2, and CA(W ) = CA(V ). Moreover, dimF W/CW (B) = 1 and CW (B) =
[W,B].

Proof: Suppose first that A acts quadratically on V . Then 2.11 shows that (2) or (3) holds.
Suppose next that A does not act quadratically on V . Pick W ∈ ∆ with [W,A] 6= 0 and set

B := NA(W ), U :=
⊕

WA and U0 :=
⊕

C∆(A).

By 2.9 [E,A] = 0 for all E ∈ ∆ \ WA. It follows that V = U ⊕ U0 and [U0, A] = 0. Thus after
replacing V by U , we may assume that ∆ = WA.

If WA = W then (1◦) holds. Thus we may assume that |WA| ≥ 2. We prove next that

1◦ W is not the direct sum of two proper FB-submodules.

Suppose that W = W1 ⊕W2 for some proper FB-submodules W1 and W2. Then

V =
⊕

WA
1 ⊕

⊕
WA

2 ,

and A acts non-trivially on both direct summands. But this contradicts 2.9.

Note that we can apply 2.12. In particular, char F is a prime p ∈ {2, 3}, and A/CA(V ) is an
elementary abelian p-group. We now discuss the two cases given in 2.12(c) separately.

Suppose that 2.12(c:1) holds. Then [W,B] = 0, and (1◦) gives dimF W = 1. In addition
|A/CA(V )| > 2 since A is not quadratic on V . Thus (4:1) or (4:2) holds in this case.

Suppose that 2.12(c:2) holds. Then |A/B| = 2 and B is quadratic on W , so [W,B] ≤ CW (B).
Moreover, as above [W,B] 6= 0 since A is not quadratic on V . Pick an F-subspace W1 ≤ W with
W1 ∩ CW (B) = [W,B] and W1 + CW (B) = W . Also pick an F-subspace W2 ≤ CW (B) with
CW (B) = W2 ⊕ [W,B]. Then W = W1 ⊕W2 and W1 and W2 are FB-submodules of W . Thus by
(1◦), W2 = 0 and so CW (B) = [W,B].

Let a ∈ A\B and w ∈ W \CW (B). Put W0 = wF+CW (B) and V0 = 〈WA
0 〉. Then V = W +W a

and V0 = W0 + W a
0 .

By 2.6(b), QV (A) = [V,A] + CV (A). Since [W0, B] 6= 0 we have [V0, B,A] 6= 0. Thus V0 �
QV (A) = [V,A] + CV (A) and so by 2.6(a), [V,A] ≤ V0 = W0 + W a

0 . This gives

V = W ⊕W a = W + [V,A] = W + W0 + W a
0 = W + W a

0

Hence W a = W a
0 , W = W0, and CW (B) = [W,B] is an F-hyperplane in W . Thus (4:3) holds. �

Lemma 2.14 Let K be a field, 1 6= A ≤ Aut(K), and E := CK(A). Suppose that K is a cubic
EA-module. Then
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(a) p := char K ∈ {2, 3}.

(b) A is an elementary abelian p-group and A = AutE(K).

(c) dimE K = |A| and K ∼= EA as an EA-module.

(d) One of the following holds:

1. |A| = 2, A acts quadratically on K and [K, A] = E.

2. |A| = 3, A does not act quadratically on V and [K, A, A] = E.

3. A ∼= C2 × C2, A does not act quadratically on V , [K, A, A] = E and K is infinite.

Proof: We consider first the case where A is cyclic. Then A = 〈σ〉 for some σ ∈ A and CK(σ) = E,
so CK(σ) is 1-dimensional over E. Since σ acts cubically on V we have (σ − 1)3 = 0. So σ is
unipotent with Jordan blocks of size at most 3. As dim CK(σ) = 1, σ has most one Jordan block, so
2 ≤ dimE K ≤ 3.

Note that K over E is a finite Galois extension since the fixed field of the Galois group AutE(K) is
E, so |A| = |AutE(K)| = dimE K ∈ {2, 3}. Since A is cubic we conclude from 2.7(e) that char E = |A|.
Let k ∈ K\[K, A]. Then it is easy to see that kA is an E-basis for K and so K ∼= EA as an EA-module.

We now consider the general case and use the cyclic case we have treated already. Let 1 6= σ ∈ A
and put L = CK(σ). Then by the cyclic case p = char K = |σ| = dimL K.

Suppose that p = 2 and A acts quadratically on K or that p = 3. If p = 2, then L = [K, σ] and if
p = 3, then L = [K, σ, σ]. So in any case L ≤ CK(A) = E. Thus dimE K =p and also |AutL(K)| = p.
Thus A = 〈σ〉 and the lemma holds.

Suppose that p = 2 and A is not quadratic on K. Then A 6= 〈σ〉 and there exists µ ∈ A with
µ /∈ 〈σ〉. On the other hand the cyclic case implies L = [K, σ]. Hence

[L, µ] ≤ [K, A, A] ≤ CK(A) = E ≤ L,

so Lµ = L. Since AutL(K) = 〈σ〉, [L, µ] 6= 0. The cyclic case applied to L in place of K shows that
dim[L,µ] L = 2. We conclude that [L, µ] = E and so dimE K = 4. It follows that A = AutE(K) and
|A| = 4. Since σ2 = 1 for all σ ∈ A, A is elementary abelian. Pick k ∈ K \ [K, A], then kA is a
E-basis for K and so K ∼= EA as an EA-module. Since the automorphism group of a finite field is
cyclic, K is infinite. �

Lemma 2.15 Let V be a semi-linear, cubic KA-module. Put E = KA and suppose that E 6= K.
Then one of the following holds:

1. |A/CA(V )| = char E = dimE K = 2, AK = CA(V ), A is quadratic on V , and as an EA-module V
is the direct sum of EA-submodules isomorphic to K.

2. |A/CA(V )| = char E = dimE K = 3, AK = CA(V ), A is not quadratic on V , and as an EA-module,
V is the direct sum of EA-submodules isomorphic to K.

3. A/CA(V ) ∼= C2 ×C2, AK = CA(V ), char E = 2, dimE K = 4, K is infinite, A is not quadratic on
V , and as an EA-module, V is the direct sum of EA-submodules isomorphic to K.

4. |A/AK| = char E = dimE K = 2, A is not quadratic on V , A/CA(V ) is elementary abelian, and
there exists an EA submodule W of V such that V ∼= W ⊗E K as an EA-module, A = CA(W )AK,
and AK acts quadratically on V and W .
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Proof: We may assume that A acts faithfully on V and V 6= 0.

Case 1 Suppose that AK = 1.

By Zorn’s Lemma there exists a subset B ⊆ CV (A) that is maximal with respect to being linearly
independent over K. Since A is cubic, CV (A) 6= 0 and so B 6= ∅.

Let U be the K-span of B and b ∈ B. Then bK is isomorphic to K as an EA-module. So A acts
cubicly on K. Since AK = 1, A acts faithfully on K and we can apply 2.14. It follows that |A| ≤ 4,
A is elementary abelian and, if |A| = 4, K is infinite. Moreover, either

char E = |A| = 2, [K, A] = E and [K, A, A] = 0, or |A| > 2 and [K, A, A] = E.

Suppose that U 6= V . Then V/U has an EA-submodule isomorphic to K. Hence [V/U,A] 6= 0,
and, if |A| > 2, [V/U,A, A] 6= 0. So if |A| = 2 we can choose v ∈ [V,A] with v /∈ U , and if |A| > 2
we can choose v ∈ [V,A, A] with v 6∈ U .

If |A| = 2, then char E = 2 and A acts quadratically on V . So in any case v ∈ CV (A). Since U
is a K-subspace, B ∪ {v} is linearly independent over K, a contradiction to the maximality of B.

Thus U = V and so V =
⊕

b∈B bK is a direct sum of copies of K as an EA-module. Now 2.14
shows that one of (1), (2) and (3) holds.

Case 2 Suppose AK 6= 1.

Note that [V,AK, AK] is a K-subspace of V centralized by A. Since A does not act K-linearly
on V , we get [V,AK, AK] = 0. Moreover, A/AK acts quadratically and faithfully on the non-trivial
K-space [V,AK] and so (Case 1) shows that |A/AK| = 2 and dimE K = 2.

Let a ∈ A. By 2.8 [V, a2] = [V, a, a]. Since a2 ∈ AK we conclude that [V, a2] is a K-subspace
centralized by A. Thus [V, a2] = 0 and A is elementary abelian. Let a ∈ A\AK and put W := CV (a).
Then W is an E-subspace of V . By (Case 1) applied to 〈a〉, W = [V, a]. Hence [W,A] = [V, a,A] ≤
CV (A) ≤ W . Hence W is an quadratic EA-submodule of V . Since a ∈ CA(W ), A = CA(W )AK.

By the universal property of the tensor product, there exists an EA-homomorphism ρ : W⊗EK →
V with (w ⊗ k)ρ = wk for all w ∈ W and k ∈ K. By (Case 1) applied to 〈a〉, ρ is a bijection. Thus
(4) holds in this case. �

3 Tensor Decomposition

Lemma 3.1 Let K be a field, V a K-space of dimension at least 2 and F a subfield of K, and let
α ∈ GLF(V ) with vKα = vK for all v ∈ V . Then there exists k ∈ K with vα = vk for all v ∈ V .

Proof: Let 0 6= v ∈ V . Then by assumption vα = vkv for a unique kv ∈ K. Let 0 6= w ∈ V . It
suffices to show that kv = kw.

Suppose first that vK 6= wK. We have

vkv + wkw = vα + wα = (v + w)α = (v + w)kv+w = vkv+w + wkv+w.

Since v and w are linearly independent over K we conclude that kv = kv+w = kw.
Suppose next that vK = wK. Since V is at least two dimensional over K there exists u ∈ V \vK.

Thus by the preceding case kv = ku = kw. �
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Definition 3.2 Let K be a field, G group and V a quadratic KG-module.

(a) We say that G acts K-commutator dependently on V if [v, a]K = [v, b]K for all a, b ∈ G \CG(V )
and v ∈ V .

(b) Let λ : G → (K,+) be a homomorphism. We say that G acts λ-dependently on V if there exists
α ∈ EndK(V ) with α2 = 0 and [v, a] = vα.aλ for all a ∈ G and v ∈ V .

Lemma 3.3 Let K be a field, G a group, and V a quadratic KG-module. Then G acts K-commutator
dependently on V iff G acts λ-dependently on V for some homomorphism λ : G → (K,+).

Proof: If G acts λ-dependently on V , then clearly G acts K-commutator dependently on V .
Suppose now that G is K-commutator dependent on V and fix a ∈ G \ CG(V ). Define

α : V → V, v 7→ [v, a].

Since G is quadratic on V , α2 = 0.
Let b ∈ G \ CG(V ). Then by assumption [v, a]K = [v, b]K for all v ∈ V . Thus CV (a) = CV (b)

and [V, a] = [V, b]. Hence we obtain K-isomorphisms

β : V/CV (a) → [V, a], v + CV (a) 7→ [v, a] and γ : V/CV (a) → [V, a], v + CV (a) 7→ [v, b].

Put δ = γβ−1. From [v, a]K = [v, b]K for all v ∈ V we conclude that uKδ = uK for all
u ∈ V/CV (a). Thus by 3.1 there exists kb ∈ K with uδ = ukb for all u ∈ V/CV (a). Hence
uγ = ukbβ = uβkb for all u ∈ V/CV (a) and so [v, b] = [v, a]kb = vαkb for all v ∈ V .

For b ∈ CG(V ) put kb = 0. Define λ : G → K, b 7→ kb. Then for all v ∈ V and b ∈ G,
[v, b] = vα.aλ. Let b, c ∈ G. Using the quadratic action, [v, bc] = [v, b] + [v, c] and so bcλ = bλ + cλ.
Thus λ is a homomorphism and G acts λ-dependently on V . �

Lemma 3.4 Let K be a field , G a group, λ : G → (K,+) a homomorphism, and V a λ-dependent
KG-module. Let Wλ be the KG-module with Wλ = K2 as K-space and (k, l)a = (k, l + k.aλ) for
a ∈ G. Then V = W ⊕ C, where W and C are KG submodules of V such that G centralizes C and
W is the direct sum of KG-submodules isomorphic to Wλ.

Proof: By the definition of λ-dependent there exists α ∈ EndK(V ) with α2 = 0 and [v, a] = vα.aλ
for all v ∈ V, a ∈ G. Choose V ⊆ V such that (v + CV (G))v∈V is a K-basis for V/CV (A). For v ∈ V
put Wv = 〈v, vα〉K. Let C be a K-subspace of CV (G) with CV (G) = [V,G]⊕ C. Then it is readily
verified that Wv is a K-subspace of V isomorphic to Wλ and V = C ⊕

⊕
v∈V Wv. �

Definition 3.5 Let F be a field and V an F-space.

(a) A tensor decomposition V of V is a tuple (Φ, K, (Vi, i ∈ I)) where F ≤ K is a field extension,
(Vi, i ∈ I) is a finite family of pairwise disjoint K-spaces, and Φ :

⊗K
i∈I Vi → V is an F-

isomorphism.

(b) A tensor decomposition V (as in (a)) is called proper if |I| > 1 and dimK Vi ≥ 2 for all i ∈ I.
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Notation 3.6 Let K be a field and (Vi, i ∈ I) be a finite family of pairwise disjoint K-spaces. For
J ⊆ I let

VJ :=
K⊗

j∈J

Vj and V J := VI\J ,

and for 1-element sets we write V i rather than V {i}.
Let (ui, i ∈ I) be a tuple of elements such that there exists π ∈ Sym(I) with uiπ ∈ Vi. Then

⊗i∈Iui (or just ⊗ui) denotes the element ⊗i∈Iuiπ in VI = ⊗K
i∈IVi. (Note here that π and thus

⊗i∈Iui is uniquely determined by the elements (ui, i ∈ I) since the spaces Vi are pairwise disjoint.)
In the same spirit we identify VJ ⊗ V J with VI .

Definition 3.7 Let G be a group, F a field and V an FG-module.

(a) A G-invariant tensor decomposition T = (Φ, K, (Vi, i ∈ I), σ, (gi; g ∈ G, i ∈ I)) of V is a tuple
consisting of

(i) a tensor decomposition (Φ, K, (Vi, i ∈ I)) of V ;

(ii) an action I ×G → I, (i, g) 7→ ig of G on I;

(iii) a homomorphism σ : G → AutF(K); and

(iv) a family (gi; g ∈ G, i ∈ I) of maps such that for each g ∈ G and i ∈ I, gi : Vi → Vig is a
gσ-linear map from Vi to Vig. such that

(i) (⊗i∈Ivi)Φg = (⊗i∈Ivigi)Φ for all g ∈ G, and
(ii) for each g, h ∈ G and i ∈ I there exists an element λi,g,h ∈ K] with

gihig = (gh)iλi,g,h.

(b) A G-invariant tensor decomposition as in (a) is called strict if λi,g,h = 1 for all i, g, h, that is if

gihig = (gh)i

for all g, h ∈ G and i ∈ I.

(c) A G-invariant tensor decomposition is called regular if the action of G on I is trivial.

(d) A G-invariant tensor decomposition is called K-linear if Gσ = 1, that is if G acts K-linearly on
V .

(e) A G-invariant tensor decomposition is ordinary if its K-linear, regular and strict.

Abusing notation we will often say that Φ :
⊗K

i∈I Vi → V is a G-invariant tensor decomposition
of V , assuming that the remaining parts of a tensor decomposition are just as in 3.7(a).

Definition 3.8 Let G be a group, K a field, and σ : G → Aut(K) a homomorphism. A projective
σ-linear KG–module is a K-space V together with a map V × G → V, (v, g) 7→ vg, such that the
following hold:

(i) For each g ∈ G, the map V → V, v 7→ vg, is gσ-linear.
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(ii) For each g, h ∈ G there exists λg,h ∈ K] with

v.gh = vghλg,h

for all v ∈ V .

In the case σ = 1 (that is gσ = idK for all g ∈ G) a σ-linear projective KG-module is called
projective KG-module.

Lemma 3.9 Let G be a group, F a field, V an FG-module, and

T = (Φ, K, (Vi, i ∈ I), σ, (gi; g ∈ G, i ∈ I))

a G-invariant tensor decomposition. Then the following hold:

(a) G acts on
⋃

i∈I PK(Vi) via viKg = vigiK for all vi ∈ V ]
i and g ∈ G.

(b) For each i ∈ I, Vi is a projective σ-linear KCG(i)-module.

(c) For each g ∈ G and i ∈ I, gi : Vi → Vig is a σg-linear isomorphism.

Proof: This follows immediately from the definition of a G-invariant tensor decomposition. �

4 Strict Tensor Decompositions

Throughout this section we assume the following hypothesis:

Hypothesis 4.1 Let G be a group, F a field, V an FG-module, and

T = (Φ, K, (Vi, i ∈ I), σ, (gi; g ∈ G, i ∈ I))

a strict G-invariant tensor decomposition of V with Φ = idV , that is V = ⊗K
i∈IVi and Φ = id⊗Vi

.

Lemma 4.2 Assume Hypothesis 4.1.

(a) G acts on
⋃

i∈I Vi via vg := vgi for all g ∈ G and v ∈
⋃

i∈I Vi, where i is the unique element in
I with v ∈ Vi.

(b) Let i ∈ I. Then CG(i) acts σ-semilinear on Vi.

Proof: This follows immediately from the definition of a strict tensor decomposition. �

Notation 4.3 By 4.2(a) G acts on
⋃

i∈I Vi and we can use the usual notation CW (B) and CB(W )
where W ⊆

⋃
i∈I Vi and B ⊆ G. Note that if B fixes v ∈ Vi, then B also fixes i. (This is even true

for v = 0, since we assumed the Vi’s to be disjoint and so have distinct zero vectors.)
By 4.2(b), Vj is a FCG(i)-module, and we can use the usual notation [Vj , B] for B ⊆ CG(i).

Lemma 4.4 Assume Hypothesis 4.1. For i ∈ I let Ui be a non-trivial F-subspace of Vi. Suppose
that there exist r ∈ I and B ≤ G such that

B 6≤ CG(r) and {⊗ui | ui ∈ Ui, i ∈ I} ⊆ CV (B).

Then dimK〈Ur〉K = 1.
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Proof: Pick 0 6= ui ∈ Ui, i ∈ I and a ∈ B with ra 6= r. Then

⊗ui = (⊗ui)a = ⊗uiai

and so urar = urak for some k ∈ K]. Fixing ura and allowing ur to run through the elements of U ]
r

shows that Urar ≤ uraK. Thus 〈Urar〉K = uraK is 1-dimensional K-space. Since ar is a K-semilinear
isomorphism, also 〈Ur〉K is a 1-dimensional K-space. �

Lemma 4.5 Assume Hypothesis 4.1. Suppose that char K = p > 0 and that G is a finite p-group.
Let j ∈ I with dimK Vj ≥ 2. Then CG(V ) ≤ CG(Vj).

Proof: Pick h ∈ CG(V ) and for i ∈ I pick 0 6= vi ∈ Vi. Then

⊗vi = (⊗vi)h = ⊗vihi,

so vjhj ∈ vjhK.
If j 6= jh, then Vjhj ≤ vjhK, and since hj is a K-semilinear isomorphism, dimK Vj = 1, a

contradiction. Hence j = jh and by 3.1 h acts via scalar multiplication by a fixed scalar λ ∈ K on
Vj . On the other hand, since char K = p and G is a finite p-group, CVi

(G) 6= 0 and so λ = 1. �

Lemma 4.6 Assume Hypothesis 4.1. Suppose T is ordinary and that |I| ≥ 2. Suppose that there
exists r ∈ I such that G acts non-trivially on PK(Vr). Then

dimK
⊗K

r 6=i∈IVi ≤ dimK V/CV (G).

Proof: Put W := V r =
⊗K

r 6=i∈I Vi. Then V and Vr ⊗K W are isomorphic KG-modules.
Since G acts non-trivially on PK(Vr) there exist a ∈ G and v ∈ Vr with vK 6= vaK. Hence

(v ⊗W )a ∩ v ⊗W = var ⊗W ∩ v ⊗W = 0.

In particular, v ⊗W ∩ CVr⊗W (a) = 0 and

dim V/CV (G) ≥ dim V/CV (a) ≥ dim v ⊗W = dim W.

Lemma 4.7 Assume Hypothesis 4.1. Suppose G is transitive on I and |I| ≥ 2. Fix r ∈ I and let
Xr be a proper CG(r)-invariant K-subspace of Vr. For h ∈ G put Xrh := Xrh and

X :=
⊗K

I Xi, Ui := Vi ⊗
⊗

j 6=iXj , U :=
∑
i∈I

Ui, ∆ := {Ui/X | i ∈ I}.

Then

(a) U , X and U/X are semi-linear KG-modules,

(b) ∆ is a system of imprimitivity for G in U/X,

(c) G acts transitively on ∆.
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Proof: Observe that Xrh = Xrg for g ∈ Grh since Xr is CG(r)-invariant. So Xrh is well-defined.
For h ∈ G

Xh = (
⊗

Xi)h =
⊗

Xih =
⊗

Xi = X

and similarly

Uih = Vihi ⊗
⊗

j 6=iXjhj = Vih ⊗
⊗

j 6=iXjh = Vih ⊗
⊗

k 6=ihXk = Uih.

This shows that X and U are G-invariant, so (a) holds, and that G acts on ∆, so (c) holds.
Observe that

∑
j 6=i Uj ≤ Xi ⊗ V i and that (Xi ⊗ V i) ∩ Ui = X. Thus also Ui ∩

∑
j 6=i Uj = X,

and (b) holds. �

We also need the dual version of the preceding lemma:

Lemma 4.8 Assume Hypothesis 4.1. Suppose G is transitive on I and |I| ≥ 2. Fix r ∈ I and let
Xr be a proper CG(r)-invariant K-subspace of Vr. For h ∈ G put Xrh := Xrh and

Ũ :=
∑

i 6=j∈I

V {i,j} ⊗Xi ⊗Xj , Ũi = (V i ⊗Xi) + Ũ , X̃ =
∑
i∈I

Ui, ∆̃ := {Ũi/X̃ | i ∈ I}.

Then

(a) Ũ , X̃ and X̃/Ũ are semi-linear KG-modules,

(b) ∆̃ is a system of imprimitivity for G in X̃/Ũ ,

(c) G acts transitively on ∆̃.

Proof: This can be proved similarly to 4.7 or by applying 4.7 to the dual of V . �

Lemma 4.9 Assume Hypothesis 4.1 and in addition:

(i) |I| = 2.

(ii) T is ordinary.

(iii) G acts quadratically on V and Vi 6= CVi(G) 6= 0 for every i ∈ I.

Then the following hold:

(a) For all i ∈ I, G acts quadratically on Vi and CG(V ) = CG(Vi).

(b) There exists a homomorphism λ : G → K such that G acts λ-dependently on each Vi, i ∈ I.

Proof: Let I = {i, j}. Note that

[Vi, G]⊗ CVj
(G) = [Vi ⊗ CVj

(G), G] ≤ CV (G),

so [Vi, G,G]⊗ CVi
(G) ≤ [V,G,G] = 0 and thus [Vi, G,G] = 0. Hence (a) holds.

Let a, b ∈ G \ CG(Vj) and x ∈ Vi. Then Vj 6= CVj
(a) ∪ CVj

(b) and so there exists y ∈ Vj with
[y, a] 6= 0 and [y, b] 6= 0. Then

(1) [x⊗ y, a] = [x, a]⊗ [y, a] + x⊗ [y, a] + [x, a]⊗ y.
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Taking commutators with b and using that G acts quadratically on Vi, Vj and V we get

(2) 0 = [x⊗ y, a, b] = [x, b]⊗ [y, a] + [x, a]⊗ [y, b].

By the choice of y, [y, a] 6= 0 6= [y, b] and so (2) implies CVi(a) = CVi(b) = CVi(G) and that
[x, a]K = [x, b]K. Now 3.3 implies that G acts λi-dependently with respect to αi on Vi for some
homomorphism λi : G → (K,+) and some αi ∈ EndK(Vi) with α2

i = 0. By symmetry the same
holds for j in place of i.

Recall that kj := aλj 6= 0 since [y, a] 6= 0. Thus, after substituting αj by kjαj and λj by
k−1

j λj : g 7→ k−1
j gλj , we may assume that aλj = 1 and with a similar argument that aλi = 1.

Substitution into (2) yields, bλj = −bλi. In the case a = b we have 1 = −1 and so char K = 2.
It follows that λj = λi and the lemma is proved.

�

Lemma 4.10 Assume Hypothesis 4.1 and in addition:

(i) T is proper and K-linear.

(ii) G acts transitively on I.

(iii) |G| > 2 and V is a faithful quadratic KG-module.

Then char F = 2, |I| = 2 and for i ∈ I, dimK Vi = 2, and [Vi, CG(I)] = CVi
(CG(I)) is a

1-dimensional K-subspace of Vi.

Proof: Recall from 2.7(c) that G is an elementary abelian char F-group. Put B := CG(I) and
fix r ∈ I. Then B = CG(r) since G is abelian and transitive on I.

Let Xr be an 1-dimensional KB-subspace of Vr. We apply 4.7 with the notation given there.
Then ∆ is a system of imprimitivity for G in U/X, so we can apply 2.13. Since G acts transitively
on I and quadratically on U/X, we are in case (3) of 2.13, so char F = 2, |I| = 2, say I = {1, 2},
and [Ui, B] ≤ X. As |G| > 2 we also get that B 6= 1. Since the KB-modules Uj/X and Vj/Xj are
isomorphic, [Vj , B] = Xj .

Pick 1 6= b ∈ B and a ∈ G \B, and put C1 := CV1(b). Then by the quadratic action of G,

[C1 ⊗ V2, b] = C1 ⊗X2 ≤ CV (a).

Hence 4.4 shows that dimK C1 = dimK X2 = 1, so also dimK X1 = 1. The quadratic action of b on
V1 gives C1 = X1 and dimK V1 = 2. �

5 Tensor Decompositions of Homogeneous Modules

Lemma 5.1 Let F be finite field, H a group and V a finite dimensional simple FH-module. Recall
that V is called absolutely simple if V ⊗F E is an simple EH module for all field extensions F ≤ E.

(a) V is absolutely simple iff F = EndFH(V ).

(b) Put K := EndFH(V ). Then K is a field and V is an absolutely simple KH-module.
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Proof: (a) This is [As, 25.8].
(b) By Schur’s Lemma K is a division ring. As dimF V is finite, also dimF K is finite. Now the

finiteness of F shows that K is finite, so by Wedderburn’s Theorem K is a finite field.
Since F and K are commutative we have F ≤ K and K ≤ EndKH(V ), so K ≤ EndKH(V ) ≤

EndFH(V ) = K. Hence by (a), V is absolutely simple. �

Lemma 5.2 Let F be a finite field, G a group, and V a finite dimensional FG-module. Let D and
E be subgroups of G such that [D,E] = 1. Suppose that V is a homogeneous FD-module and X is
a simple FD-submodule of V . Then the following hold, where Y := HomFD(X, V ), K := EndFD(X)
and E := Z(EndFD(V )):

(a) K is a finite field and Y is a KE-module via

αk : x 7→ xkα and αe : x 7→ xαe (x ∈ X, α ∈ Y, k ∈ K, e ∈ E).

(b) X is an absolutely simple KD-module.

(c) There exists an F(D × E)-module isomorphism Φ : X ⊗K Y → V with (x ⊗ α)Φ = xα for all
x ∈ X and α ∈ Y .

(d) For K-subspaces Z ≤ Y the map Z 7→ (X ⊗ Z)Φ is an E-invariant bijection between the K-
subspaces Z of Y and the FD-submodules of V with inverse U 7→ HomFD(X, U), U an FD-
subspace of V .

(e) V is a simple FDE-module iff Y is a simple KE-module.

(f) EndFD(V ) ∼= EndK(Y )

(g) K ∼= E, X is E-invariant and K = {e |
X
| e ∈ E}. In particular, X is an absolutely simple

ED-module.

Proof: By 5.1(b), K is a field and X is an absolutely simple KF -module. Statements (a)-(d)
now follows from [As, 27.14].

(e): This is a direct consequence of (d) since a K-subspace of Y is E-invariant if and only if the
corresponding FD-submodule of V is E-invariant.

(f): Let x ∈ X, α ∈ Y and β ∈ EndFD(V ). Then the map

αβ : x 7→ xαβ

is in Y , and Y is an EndFD(V )-module. Moreover, for k ∈ K

x.αβk = xk.αβ = xkαβ = x.αk.β = x.αkβ,

so αβk = αkβ and EndFD(V ) acts K-linearly on Y . Hence we obtain a ring homomorphism τ :
EndFD(V ) → EndK Y .

Observe that X ⊗K Y is an EndK(Y )-module via

(x⊗ α)δ = x⊗ αδ (x ∈ X, α ∈ Y, δ ∈ EndK(Y )).

So by (c) V is an EndK(Y )-module with (x⊗ α)Φδ := (x⊗ α)δΦ. Since Φ is an F(D × E)-module
homomorphism this action of EndK(Y ) on V is FD-linear. Hence, we obtain a ring homomorphism
EndK(Y ) → EndFD(V ) which is inverse to τ . Thus (f) holds.
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(g) Let e ∈ E. By (f) Eτ = Z(EndK(Y )) = {idY k | k ∈ K}. So there exists k ∈ K with α.eτ = αk
for all α ∈ Y . Hence for all x ∈ X

xαk = x.αk = x(α.eτ) = xαe.

For α = idX this gives xk = xe. Together with (b) we have (g).
�

Lemma 5.3 Let F be a finite field, G a group, and V a finite dimensional simple FG-module. Let
X a simple FpG-submodule of V and put D := EndFG(V ) and E =: Z(EndFpG(V )). Then E ≤ D is
a field extension and V ∼= X ⊗E D as an DG-module.

Proof: Since V is a simple FG-module, V =
∑

f∈F Wf . Thus V is homogeneous and by 5.2(g)
E is a field and X is an absolutely simple EG-module. Note that E ⊆ EndFpG(V ) and so E ⊆
EndFG(V ) = D. Thus by the definition of absolutely simple, X ⊗E D is a simple DG-module.

By the universal property of the tensor product there exists a unique E-linear map α : X⊗ED → V
with (x ⊗ d)α = xd for all x ∈ X, d ∈ D. Clearly this map is a DG-homomorphism. Since both
X ⊗E D and V are simple DG-modules, α is an isomorphism. �

Lemma 5.4 Let F be a finite field, G a group, and V a finite dimensional simple FG-module. Let
(Di, i ∈ I) be a finite family of subgroups of G with G = 〈Di | i ∈ I〉 and [Di, Dj ] = 1 for all
i 6= j ∈ I. Put K := EndFG(V ). Then the following hold:

(a) For each i ∈ I there exists an absolutely simple KDi-module Vi isomorphic to a KDi-submodule
of V , and there exists a K(×i∈I Di)-isomorphism Φ : ⊗I

KVi → V (where Di acts trivially on Vj

for i 6= j).

(b) For 0 6= v ∈ V the following two statements are equivalent:

1. For all i ∈ I, vKDi is a simple KDi-submodule of V .
2. There exist 0 6= vi ∈ Vi with v = (⊗vi)Φ.

Proof: By 5.1 V is an absolutely simple KG-module and K = EndK(V ). By induction on |I|
we may assume that |I| = 2, say I = {1, 2}. Let V1 be a simple KD1-submodule of V and put
V2 := HomKD1(V1, V ).

(a): Put E := EndKD1(V1) and note that K embeds into E. By 5.2 there exists a K(D1 ×D2)-
isomorphism

Φ : V1 ⊗E V2 → V with (w ⊗ α)Φ = wα (w ∈ V1, α ∈ V2).

It follows that EndK(D1×D2)(V1 ⊗E V2) ∼= EndKG(V ) = K. Since E embeds into EndK(D1×D2)(V1 ⊗E
V2), we get conclude that K is isomorphic to E and V1 is an absolutely simple KD1-module. By
symmetry any simple KD2 submodule of V is absolutely simple.

Let 0 6= v1 ∈ V1. Then, again by 5.2, V2 is isomorphic to the KD2-submodule (v1 ⊗ V2)Φ of V ,
and V2 is a simple KD2-module since V is a simple KG-module. It follows that (v1 ⊗ V2)Φ and so
also V2 is an absolutely simple KD2-module.

(b): Let 0 6= v ∈ V . Suppose first that (b:1) holds. Since V is a homogeneous KD1-module, there
exists a KD1-isomorphism α ∈ V2 such that V1α = vKD1. Put v1 = vα−1. Then (v1 ⊗ α)Φ = v.

Suppose next that (b:2) holds. Then vKD1 = (v1⊗v2)ΦKD1 = (V1⊗v2)Φ ∼= V1 as KD1-module.
By symmetry vKD2

∼= V2 as KD2-module. Thus (b:1) holds. �
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Proposition 5.5 Let F be a finite field of characteristic p, G a finite group, V a finite dimensional
FG-module, and I a finite G-set. Further let T be a p-subgroup of G and (Di, i ∈ I) be a family of
subgroups of G. Put D := 〈Di | i ∈ I〉. Suppose that

(i) Dh
i = Dih and [Di, Dj ] = 1 for all i 6= j ∈ I, h ∈ H, and

(ii) V is homogeneous as an FD-module.

Put K := Z(EndFD(V )), J := I if V is a simple FD-module and otherwise J := I ]{0}, where J
is viewed as a G-set with G fixing 0. Then there exist KDi-modules Vi, i ∈ I, a finite dimensional
K-space V0 and a G-invariant tensor decomposition T = (Φ, K, (Vj , j ∈ J), σ, (gj , j ∈ J, g ∈ G)) of
V such that the following hold:

(a) Vj is an absolutely simple KDj-module for j 6= 0, and V0 is a trivial KD-module. Moreover,
every simple KDj-submodule of V is isomorphic to Vj as a KDj-module.

(b) Φ : ⊗J
KVj → V is a K(×i∈I Di)-module isomorphism (where Di acts trivially on Vj for j 6= i).

(c) T restricted to T is strict.

Proof: To simplify notation we assume without loss that V is a faithful FG-module and that G is
subgroup of GLF(V ). Let D0 := GLFD(V ), and for j ∈ J let Rj be the subring of EndF(V ) spanned
by K and Dj . By 5.2(f),(e) (with D0 in place of E) V is a simple FDD0-module and so V is an
absolutely simple KDD0-module. Thus 5.4 implies:

1◦ There exist absolutely simple KDj-modules Vj and a K(×i∈J Dj)-isomorphism

Φ : ⊗J
KVj → V.

Let αj be canonical ring homomorphism from KDj onto Rj . From (⊗vjdj)Φ = (⊗vj)Φ.
∏

dj for
all vj ∈ Vj , dj ∈ Dj we conclude that (⊗vjaj)Φ = (⊗vj)Φ.

∏
ajαj for all vj ∈ Vj , aj ∈ KDj . This

implies kerαj = AnnKDj (Vj) and we conclude that

2◦ Vj can be viewed as simple Rj-module such that (⊗vjrj)Φ = (⊗vj)Φ.
∏

rj for all vj ∈ Vj , rj ∈
Rj.

Fix 0 6= wj ∈ Vj , j ∈ J . Let g ∈ G and j ∈ J . By 5.4(b), wRj is a simple Rj-module. Since
g normalizes K and Dg

j = Djg we have Rg
j = Rjg and so wRjg is a simple Rjg-module. Also

wRjg = wgRjg and so for j ∈ J , wgRjg is a simple Rjg-module. Thus by 5.4(b), there exist
0 6= uj ∈ Vj , j ∈ J , with wg = (⊗uj)Φ. The number of elements of the form (⊗vj)Φ, 0 6= vj ∈ Vj ,
is not divisible by p and so we can and do choose the wj ’s such that w := (⊗wj)Φ is centralized by
T . Hence we may also choose uj = wj if g ∈ T .

Let vj ∈ Vj . Since Vj is a simple Rj-module there exists rj ∈ Rj with vj = wjrj . Next we show:

3◦ Let i ∈ J and ri, si ∈ Ri with wiri = wisi. Then uigr
g
i = uigs

g
i .

Put ti = ri − si. Then witi = 0 and by (2◦) wti = 0. Thus (⊗uj)Φtgi = wgtgi = wtig = 0. Since
tgi ∈ Rig we conclude from (2◦) that uigt

g
i = 0 and so uigr

g
i = uigs

g
i .

We now define

gj : Vj → Vjg with vj → ujgr
g
j , where rj ∈ Rj and vj = wjrj .

Using (3◦) we get
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4◦ gj is independent from the choice of rj.

Clearly gj is a homomorphism between the additive group Vj and Vjg. Next we define a homo-
morphism σ : G → Aut(K). Observe that for fixed g ∈ G,

gσ : K → K with k 7→ kg

is an element of AutF(K) and so g 7→ gσ defines the desired homomorphism σ.
Let k ∈ K. Since vjk = wjrjk = wj .rjk and rjk ∈ Rj , the definition of gj shows that

vjkgj = ujg(rjk)g = ujgr
g
j kg = vjgj(k.gσ).

Hence gj is gσ-linear.
To verify 3.7(a) we compute

(∗)
(⊗vjgj)Φ = (⊗ujgr

g
j )Φ = (⊗uj)Φ

∏
rg
j = wg(

∏
rj)g = w(

∏
rj)g

= (⊗wj)Φ(
∏

rj)g = (⊗wjrj)Φg = (⊗vj)Φg.

This is 3.7(a).
Let g, h ∈ G and put v := ⊗vj . Note that vΦ.gh = vΦgh and so using (∗) three times

(⊗vj(gh)j)Φ = vΦ.gh = vΦgh = (⊗vjgj)Φh = (⊗vjgjhjg)Φ.

Since Φ is bijective, this implies:

⊗vj(gh)j = ⊗vjgjhjg.

Thus vj(gh)jK = vjgjhjgK. Fix j, g and h and put δ = gjhjg(gh)−1
j . Then δ : Vj → Vj is

K-linear and vjδK = vjK for all vj ∈ Vj . If dimK Vj ≥ 2 we conclude from 3.1 δ acts as a scalar µ
on Vj . Obviously the same is true if dimK Vj = 1. Thus gjhjg = µ(gh)j = (gh)jλ where λ = µ.ghσ.
Hence 3.7(b) holds.

Therefore T = (Φ, K, (Vj , j ∈ J), σ, (gj ; g ∈ G, j ∈ J)) is a G-invariant tensor decomposition of
V .

Let g ∈ T . Recall that we chose wj = uj for such g. Hence for vj = wj we can choose rj = 1
and so wjgj = wjg. For a, b ∈ T we conclude

wjajbja = wjabja = wjab = wj(ab)j ,

and λj,a,b = 1. Thus (c) holds. �

We remark that 5.5(c) maybe false if K is infinite. Indeed, let F be a finite field of characteristic
2 and E = F(t) with t transcendental over E. Put K = E(t2), V = E⊗K E and let α ∈ GLK(V ) with
(k ⊗ l)α = kt⊗ lt−1 for all k, l ∈ E. Then α2 = 1 and so 〈α〉 has order two. Moreover, it is easy to
verify that the tensor decomposition E⊗K E is not strict for 〈α〉.

6 Tensor Products and Nearly Quadratic Modules

The following hypothesis will be used throughout this section (except in 6.3).
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Hypothesis 6.1 Let p be a prime, F a field of characteristic p, A a finite p-group, J a finite A-
set, V an FA-module, and T = (Φ, K, (Vj , j ∈ J), σ, (gj ; g ∈ A, j ∈ J)) a strict A-invariant tensor
decomposition of V with Φ = idV . The fixed field of A in K is denoted by KA.

Lemma 6.2 Suppose Hypothesis 6.1 holds, T is proper and ordinary, J = {1, 2}, and V is a nearly
quadratic FA-module but not a quadratic FA-module. Then the following hold for j ∈ J :

(a) A acts quadratically and non-trivially on Vj. In particular, A is elementary abelian.

(b) [Vj , A] = CVj (A) is a K-hyperplane of Vj.

(c) [zF, A] = [Vj , A] for all z ∈ Vj \ [Vj , A].

(d) QV (A) = [V1, A]⊗ V2 + V1 ⊗ [V2, A] is a K-hyperplane of V .

(e) One of the following holds:

1. CV (A) = [V1, A]⊗ [V2, A] and if F = Fp then A = CA(V1)CA(V2).

2. dimK CV (A) = 2, char F 6= 2, dimK V1 = 2 = dimK V2, and V1 and V2 are isomorphic as
KA-modules.

(f) If F = Fp then A induces CSLK(Vj)([Vj , A]) on Vj.

Proof: As A is not quadratic on V , by 2.6(b) [V,A] + CV (A) is the largest quadratic FA-
submodule QV (A) of V . Observe that QV (A) is K-subspace of V . Let J = {i, j} and put Ci =
CVi(A).

1◦ As a KA-module, Vi ⊗ Cj is the direct sum of dimK Cj KA-submodules isomorphic to Vi.

Let B be a K-basis for Cj . Then Vi ⊗ Cj =
⊕

b∈B Vi ⊗ b and each Vi ⊗ b is isomorphic to Vi as
an KA-module.

2◦ A acts non-trivially on Vi.

Suppose A centralizes Vi. Then Ci = Vi and since dimK Vi ≥ 2 we conclude that from (1◦) (with
the roles of i and j reversed) and 2.9, that A centralizes Vj and V , a contradiction.

3◦ Vi is not the direct sum of two proper KA-submodules.

Suppose Vi = X⊕Y with X and Y proper KA submodules of Vi. Then V = X⊗Vj⊕X⊗Vj and
so by 2.9, A centralizes one of the summands, say X⊗Vj . So by 4.5, A centralizes Vj , a contradiction
to (2◦).

4◦ A acts quadratically on Vi, so (a) holds.

Since dimK Vj ≥ 2 and A is a p-group, there exists a proper KA-submodule X 6= 0 of Vj . By
2.6(d), A acts quadratically on V/(Vi⊗X) or on Vi⊗X. Since V/(Vi⊗X) ∼= Vi⊗(Vj/X) we conclude
that G acts quadratically on Vi⊗Y where Y = X and Y = Vj/X, respectively. If dimK Y = 1, then
Vi
∼= Vi ⊗ Y and (4◦) holds. If dim Y ≥ 2, then 4.9(a) shows that G acts quadratically on Vi.

5◦ Ci = [Vi, A].

21



By (4◦), [Vi, A] ≤ Ci. Let Ci = X ⊕ [Vi, A] and Vi/[Vi, A] = Ci/[Vi, A] ⊕ Y/[Vi, A] for some
K-subspaces X and Y of Vi with [Vi, A] ≤ Y . Then Vi = X ⊕ Y , Y 6= 0 and both X and Y are
KA-submodules of Vi. So by (3◦), X = 0 and Ci = [Vi, A].

6◦ C1 ⊗ V2 + V1 ⊗ C2 ≤ QV (A).

By (4◦), A is quadratic on Vi and so by (1◦) also on Vi ⊗ Cj . Thus Vi ⊗ Cj ≤ QV (A).

7◦ Let v1 ∈ V1, v2 ∈ V2 and a ∈ A. Then

[v1 ⊗ v2, a] = [v1, a]⊗ [v2, a] + v1 ⊗ [v2, a] + [v1, a]⊗ v2.

This is readily verified.

Since V 6= QV (A) there exists xi ∈ Vi with x1 ⊗ x2 /∈ QV (A). By (6◦) we have xi /∈ Ci.

8◦ QV (A) = x1 ⊗ C2 + C1 ⊗ x2 + CV (A)

By (6◦) the right-hand-side is contained in the left-hand-side of (8◦), and by the definition of
nearly quadratic, QV (A) = [(x1 ⊗ x2)F, A] + CV (A). Since [Vi, A] ≤ Ci we conclude from (7◦) that
the left-hand-side is also contained in the right-hand-side.

9◦ Let t1 ∈ V1 with t1 ⊗ x2 ∈ QV (A). Then t1 ∈ C1.

By (8◦) there exist c ∈ CV (A), c1 ∈ C1 and c2 ∈ C2 such that

t1 ⊗ x2 = x1 ⊗ c2 + c1 ⊗ x2 + c.

Taking commutators with a on both sides and using (7◦) we conclude

[t1, a]⊗ [x2, a] + t1 ⊗ [x2, a] + [t1, a]⊗ x2 = [x1, a]⊗ c2 + c1 ⊗ [x2, a].

Hence (4◦) gives [t1, a]⊗ x2 ∈ V1 ⊗C2. Since x2 /∈ C2 we get [t1, a] = 0 and thus t1 ∈ CV1(A) = C1.

10◦ Ci is a K-hyperplane of Vi.

Since [V,A, A] 6= 0, there exists a K-hyperplane Hi of Ci with [V,A, A] � Hi⊗Vj . Put Vi = Vi/Hi.
Hence by 2.6(c), V/(Hi ⊗ Vj) ∼= Vi ⊗ Vj is a nearly quadratic, but not quadratic FA-module. Thus
by (5◦),

Ci = [Vi, A] = [V i, A] = CV i
(A),

so we may replace Vi by V i and assume that dimK Ci = 1 for i = 1, 2. Thus we need to show that
dimK Vi = 2.

Assume for a contradiction that dimK Vi ≥ 3. By (3◦), Vi ⊗ Cj ≤ QV (A) and by (8◦),
dimK QV (A)/(Ci ⊗ xj + CV (A)) ≤ 1. Hence R := Vi ⊗ Cj ∩ (Ci ⊗ xj + CV (A)) contains a hy-
perplane of Vi ⊗ Cj . Moreover, Ci ⊗ Cj ≤ R. Let 0 6= cj ∈ Cj . Since Cj is 1-dimensional, the map
Vi → Vi ⊗ Cj with vi → vi ⊗ cj is a K-isomorphism. Since dim Vi ≥ 3 we have R 6= C1 ⊗ C2 and so
there exists ti ∈ Vi with ti ⊗ cj ∈ R and ti /∈ Ci. As Cj is 1-dimensional, also ti ⊗ Cj ≤ R.

From (9◦) we get that ti ⊗ xj /∈ QV (A), so (8◦) applies with ti in place of xi; i.e., QV (A) =
ti⊗Cj +Ci⊗xj +CV (A). Since ti⊗Cj ≤ R ≤ Ci⊗xj +CV (A) this gives QV (A) = Ci⊗xj +CV (A).
Hence CV (A) is a hyperplane of QV (A) and (Vi⊗Cj)∩CV (A) is a hyperplane of Vi⊗Cj containing
Ci⊗Cj . It follows that CVi(A) = Ci is a hyperplane of Vi contradicting dimK Ci = 1 and dimK Vi ≥ 3.
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11◦ (b) and (d) hold.

Claim (b) follows from (10◦) and (5◦). In particular, C1 ⊗ V2 + V1 ⊗C2 is a K-hyperplane of V .
So (6◦) and (b) imply (d).

12◦ Suppose that CV (A) = C1 ⊗ C2. Then (c), (e:1) and (f) hold.

To prove (c) let z1 ∈ V1 \ [V1, A]. By (b) C1 = [V1, A] and thus by (9◦) z1⊗ x2 /∈ QV (A). Hence,
we may assume that z1 = x1.

From (6◦) and the nearly quadratic action of A we get

C1 ⊗ x2 ≤ QV (A) = [(x1 ⊗ x2)F, A] + C1 ⊗ C2.

Since by (b) [V2, A] = C2, (7◦) implies that

[(x1 ⊗ x2)F, A] + C1 ⊗ C2 ≤ [x1F, A]⊗ x2 + V1 ⊗ C2.

Thus we have
[x1F, A]⊗ x2 ≤ C1 ⊗ x2 ≤ [x1F, A]⊗ x2 + V1 ⊗ C2.

Since x2 /∈ C2 this implies C1 ⊗ x2 = [x1F, A]⊗ x2. Hence C1 = [x1F, A], and (c) follows.
The first part of (e:1) is true by assumption, so for the proof of (e:1) and (f) we can assume

that F = Fp. Since F = Fp and A is quadratic on V/CV (A) we have [(x1 ⊗ x2)F, A] + CV (A) =
{[x1 ⊗ x1, a] | a ∈ A}+ CV (A) and so

C1 ⊗ x2 + x1 ⊗ C2 ≤ [(x1 ⊗ x2)F, A] + C1 ⊗ C2 = {[x1, a]⊗ x2 + x1 ⊗ [x2, a] | a ∈ A}+ C1 ⊗ C2.

Hence, for every c1 ∈ C1 and c2 ∈ C2, there exists a ∈ A with [x1, a] = c1 and [x2, a] = c2. The
particular case when c1 = 0 (or c2 = 0) gives (e:1). Moreover, (f) follows.

13◦ Suppose that CV (A) 6= C1 ⊗ C2. Then (c), (e:2) and (f) hold.

By (b) and (d),
QV (A) = C1 ⊗ C2 + C1 ⊗ x2 + x1 ⊗ C2.

Since C1⊗C2 < CV (A) there exist c1 ∈ C1 and c2 ∈ C2 with 0 6= c1⊗ x2− x1⊗ c2 ∈ CV (A). Hence
(7◦) implies that

(∗) c1 ⊗ [x2, a] = [x1, a]⊗ c2 for all a ∈ A.

Suppose that c1 = 0. By the choice of x1, there exists a ∈ A with [x1, a] 6= 0, so c2 = 0, which
contradicts c1 ⊗ x2 − x1 ⊗ c2 6= 0. Hence c1 6= 0 and similarly also c2 6= 0. Then (∗) implies that
[x1, a] ∈ c1K for all a ∈ A. So by (b) dimK C1 = 1 and dimK V1 = 2. By symmetry dimK C2 = 1 and
dimK V2 = 2.

Define λi : A → K by [xi, a] = ci.aλi for all a ∈ A. Then by (∗), aλ1 = aλ2 and λ1 = λ2 =: λ.
Hence V1 and V2 are isomorphic as FA-modules. Moreover,

CV (A) = C1 ⊗ C2 + (c1 ⊗ x2 − x1 ⊗ c2)K.

Let L be the F-subspace of K spanned by Aλ = {aλ | a ∈ A}. Then

QV (A) = [(x1 ⊗ x2)F, A] + CV (A) = (c1 ⊗ x2 + x1 ⊗ c2)L + (c1 ⊗ x2 − x1 ⊗ c2)K + C1 ⊗ C2.
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Let k ∈ K. Then x1k ⊗ c2 ∈ QV (A), so there exists ` ∈ L and s ∈ K with

x1k⊗c2 ∈ (c1⊗x2+x1⊗c2)`+(c1⊗x2−x1⊗c2)s+C1⊗C2 = c1(`+s)⊗x2+x1⊗c2(`−s)+C1⊗C2.

This implies s = −` and k = 2`. Since k ∈ K was arbitrary we conclude that char F 6= 2 and L = K.
Thus (e:2) and (c) hold.

If F = Fp, then K = L = Aλ and so also (f) is proved. �

Lemma 6.3 Let V be a semi-linear but not linear KA-module. Suppose that there exists a subfield
F ≤ K such that V is a nearly quadratic FA-module. Then A/CA(V ) is elementary abelian and one
of the following holds:

1. [V,A, A] = 0, [V,AK] = 0, and char K = 2 = |A/AK|.

2. [V,A, A] 6= 0, [V,AK] = CV (AK), dimK V/CV (AK) = 1, F = KA, and char K = 2 = |A/AK| =
dimF K.

3. [V,A, A] 6= 0, [V,AK] = 0, F = KA, dimK V = 1, and char F = 3 = |A/AK| = dimF K.

4. [V,A, A] 6= 0, [V,AK] = 0, F = KA, dimK V = 1, char F = 2, A/AK ∼= C2 × C2, dimF K = 4, and
F is infinite.

Proof: Without loss V is a faithful FA-module. Put E = KA. Since A is cubic on V we can apply
2.15. If A is quadratic on V , then 2.15(1) applies and gives (1). So we may assume that A is not
quadratic.

Suppose first that [V,AK] = 0. Then 2.15(2) or (3) applies, and V is as an EA-module the direct
sum of EA-submodules isomorphic to K. Hence by 2.9, V ∼= K as an FA-module. Thus by 2.14(c),
V ∼= EA as an EA-module. As an FA-module, EA is a direct sum of dimF E-copies of FA and so 2.9
gives F = E. Now 2.15 implies (3) or (4).

Suppose next that [V,AK] 6= 0. Then 2.15(4) applies, so p = |A/AK| = dimE K = 2, and there
exists an EA-module W such that V ∼= W ⊗E K as an EA-module and A = AKCA(W ). Hence we
can apply 6.2 (with E in place of K). Note that [K, A] = E. By 6.2(c), [K, A] = [zF, A] for some
z ∈ K. Since |A/AK| = 2 this implies that [K, A] is 1-dimensional over F. Hence E = F. Also by
6.2(b) [W,A] = CW (A) is an E-hyperplane of W . Since A = AKCA(W ), [W,AK] = CW (AK) is a
E-hyperplane of W . Since V ∼= W ⊗E K we conclude that [V,AK] = CV (AK) is an K-hyperplane of
V . Thus (2) holds. �

Lemma 6.4 Suppose Hypothesis 6.1 holds, T is proper and K-linear, [Vj , A] 6= 0 for all j ∈ J , and
char F = 2. If A acts cubically on V , then A/CA(V ) is elementary abelian.

Proof: We may assume that CA(V ) = 1 and that A is not elementary abelian. By 2.7(e) A is a
2-group. Hence there exists a ∈ A with a2 6= 1. Since char F = 2, 2.8 gives [V, a2] = [V, a, a] and
since A is cubic we conclude that

(∗) [V, a2] ≤ CV (A).

If A does not act transitively on J , let I be an orbit for A on J and K := J \ I. If A acts
transitively on J , let A0 be a maximal subgroup of A containing a point stabilizer and I and K
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be the two orbits of A0 on J . In both cases we obtain a strict A-invariant tensor decomposition
VI ⊗K VK → V . So we may assume that |J | = 2, say J = {1, 2}. Then a2 acts trivially on J .
Without loss [V1, a

2] 6= 0. We have

[V1 ⊗ CV2(a
2), a2] = [V1, a

2]⊗ CV2(a
2),

and so by (∗)

(∗∗) [V1, a
2]⊗ CV2(a

2) ≤ CV (A).

Suppose that a acts trivially on J . Then (∗∗) and 4.5 imply CV2(a
2) = CV2(a). Put QV (a) :=

QV (〈a〉). By 2.8 CV2(a
2) = QV2(a), so

CV2(a) = CV2(a
2) = QV2(a).

Thus a centralizes V2. Hence (∗∗) and again 4.5 imply that also CA(J) centralizes V2. It follows
that A 6= CA(J) and since CA(J) E A, CA(J) centralizes V1 and V . Thus |A| = 2, a contradiction.

We have shown that a acts non-trivial on J . Recall that by 4.2(a), A acts on V1∪V2 via via = viai

for all vi ∈ Vi. So (v1 ⊗ v2)a = v2a ⊗ v1a. Let x1 ∈ V1 with [x1, a
2] 6= 0 and [x1, a

2, a2] = 0. Put
x1a =: x2 ∈ V2. Then

(∗ ∗ ∗)
[x1 ⊗ x2, a] = (x1 ⊗ x2)a− x1 ⊗ x2 = x2a⊗ x1a− x1 ⊗ x2

= x1a
2 ⊗ x2 − x1 ⊗ x2 = [x1, a

2]⊗ x2.

Since A acts quadratically on [V1⊗V2, A], a2 centralizes [V1⊗V2, A], and since a2 also centralizes
[x1, a

2] we conclude from (∗ ∗ ∗) that a2 centralizes x2. But then a2 also centralizes x1 = x2a
−1, a

contradiction. �

Proposition 6.5 Suppose Hypothesis 6.1 holds,

(i) |A| > 2, T is proper, and

(ii) V is a faithful nearly quadratic FA-module.

Then A acts K-linearly on V , A is elementary abelian char F-group and one of the following holds,
where B := CA(J):

1. A is quadratic on V , and there exists j ∈ J such that A centralizes Vi for all i ∈ J \ {j}.

2. char F = 2, A is quadratic on V , and there exists an A-invariant subset J0 in J with |J0| = 2
such that A centralizes Vi for all i ∈ J \ J0. Moreover, one of the following holds:

1. A acts trivially on J0 and there exists a homomorphism λ : G → (K,+) such that Vj is a
λ-dependent KA-module for all j ∈ J0.

2. A acts non-trivially on J0, dimK Vj = 2 and CB(Vj) = CB(V ) for all j ∈ J0.

3. |J | = 2, A is not quadratic on V and for j ∈ J , [Vj , B] = CVj (B) is a K-hyperplane of Vj.
Moreover, one of the following holds:

1. A acts trivially on J , and [Vj , A] = [vjF, A] for all vj ∈ Vj \ [Vj , A] and j ∈ J .
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2. A acts non-trivially on J , char F = 2, F = K, and CB(Vj) = CB(V ) for all j ∈ J .

Proof: The proof is by induction on |A| and |J |. Note that dimK V ≥ 4 since |J | ≥ 2 and
dimK Vj ≥ 2. First we show:

1◦ A acts K-linearly on V .

Assume that A 6= AK. Then we can apply 6.3. Since |A| > 2 and dimK V 6= 1 we are in
case 6.3(2), so p = 2, AK 6= 1, [V,AK] = CV (AK), and dimK V/CV (AK) = 1. If |AK| = 2, then
dimK[V,AK] = 1 and so dimK V = 2, which contradicts dimK V ≥ 4. If |AK| > 2, then we can apply
induction with AK in place of A. Since AK acts quadratically on V , one of the cases (1) or (2) holds
for AK. In both cases |AK/AK ∩ B| ≤ 2, so [Vr, AK ∩ B] 6= 0 for some r ∈ J . Hence 4.6 applied to
AK ∩ B shows that CV (AK ∩ B) is not a K-hyperplane of V . This contradiction shows that A acts
K-linearly on V .

Case 1 A is not transitive on J .

Let L be an orbit of A on J . We choose L in such a way that |L| is minimal and that A centralizes
Vj for j ∈ L if this is possible. Put I := J \L. Then VL⊗K VI

∼= V is an ordinary A-invariant tensor
decomposition of V . By (1◦) A induces K-linear transformations on VL and VI .

2◦ A acts quadratically on VL and VI .

If A acts quadratically on V , then by 4.9(a) A also acts quadratically on VL and VI . If A is not
quadratic on V , then 6.2(a) shows that A acts quadratically on VL and VI .

3◦ Suppose that A centralizes VL. Then (1) or (2) of the proposition holds.

Note that by our choice of L and 4.5, |L| = 1. Moreover, the faithful action of A on V shows
that A acts faithfully on VI .

If |I| = 1, then (1) holds. If |I| > 1, then by induction on |J | we see that (1) or (2) holds for VI

since A is quadratic on VI . But then the same case also holds for V .

4◦ Suppose that A acts non-trivially on VL. Then (2:1) or (3:1) holds.

By our choice of L and 4.5, A does not centralize any Vi for i ∈ J and A acts non-trivially on VI .
Assume first that A acts quadratically on V . Then A is elementary abelian and by 4.9 there

exists a homomorphism λ : G → (K,+) such that VL and VI are λ-dependent as KA-modules.
Suppose for a contradiction that |I| ≥ 2. Then by induction |I| = 2, and (2:1) or (2:2) holds for VI .
Let I = {i, k}.

Suppose that (2:1) holds. Then there exists a homomorphism µ : G → (K,+) such that VL and
VI are µ-dependent as KA-module. Let 1 6= a, b ∈ A. As in the proof of 4.9 we can choose µ such
that aµ = 1. Put ξ = bµ. For j ∈ I let xj ∈ Vj \ CVj

(A) and put yj := [xj , a]. Then

[xi ⊗ xk, a] = xi ⊗ yk + yi ⊗ xk + yi ⊗ yk

and
[xi ⊗ xk, b] = xi ⊗ ykξ + yi ⊗ xkξ + yiξ ⊗ ykξ

= (xi ⊗ yk)ξ + (yi ⊗ xk)ξ + (yi ⊗ yk)ξ2.

26



Since A acts λ-dependently on VI , we also get [xi ⊗ xk, b] = [xi ⊗ xk, a]` for some ` ∈ K. A
comparison of coefficients gives ξ = ξ2. So ξ = 1 and a = b. Thus |A| = 2, a contradiction to the
assumptions.

Suppose next that (2:2) holds. Let a ∈ A \CA(I). Since |A| > 2 there also exists 1 6= b ∈ CA(i).
Since |I| = 2, a interchanges i and k while b fixes i and k. Let vi ∈ Vi \ CVi

(b) and ci := [vi, b].
Put ck := ciai = cia and vk := viai = via. By 4.2(a) and since A is abelian, [vk, b] = ck. Since
char K = 2 we have a2 = 1, vka = vi and cka = ci. Thus

[vi ⊗ ck, b] = ci ⊗ ck

and

[vi ⊗ ck, a] = (ckak ⊗ viai)− (vi ⊗ ck) = ci ⊗ vk − vi ⊗ ck.

Since cj and vj are K-linearly independent we conclude that [vi ⊗ ck, b]K 6= [vi ⊗ ck, a]K, a
contradiction to 3.3 since A acts λ-dependently on VJ .

Thus |I| = 1 and the minimal choice of |L| gives |L| = 1. Now (2:1) holds.

Assume now that A is not quadratic on V . Then by 6.2(b) (with V1 = VL and V2 = VI), CVI
(A) =

[VI , A] is a K-hyperplane of VI . Suppose for a contradiction that |I| ≥ 2. If [CA(I), VI ] 6= 1, then by
4.6 (applied to VI and CA(I)), dimK VI/CVI

(CA(I)) > 1, a contradiction. Thus CA(VI) = CA(I) and
so |A/CA(VI)| = 2. But then CVI

(A) = [VI , A] is 1-dimensional and dimK VI = 2, a contradiction
to |I| ≥ 2. Hence |I| = 1, and thus by our choice of L also |L| = 1. Now 6.2(c) gives (3:1).

Case 2 A is transitive on J .

Fix 1 ∈ J and put B1 := CA(1). Since A is a finite p-group, there exists a 1-dimensional KB1-
submodule X1 of V1. We apply 4.7 and 4.8 (with A in place of G) and use the notation introduced
there. So we get systems ∆ and ∆̃ of imprimitivity for A in U/X and X̃/Ũ , respectively, on which
A acts transitively. Moreover, by 2.6 A is nearly quadratic on U/X and Ũ/X̃. Thus we can apply
2.13 to U/X, ∆ and A (and X̃/Ũ , ∆̃ and A).

5◦ Either |J | ≥ 3 and 2.13 (4:1) or (4:2) holds for ∆ and A, or |J | = 2 and 2.13 (3) or (4:3)
holds for ∆ and A. In particular [V1, B, B] ≤ X1.

This follows from 2.13 using the transitivity of A on ∆.

6◦ |J | = 2 = char K and |A/B| = 2, in particular B1 = B 6= 1.

Suppose that |J | ≥ 3. Then by (5◦) and 2.13 A is not quadratic on U/X and not quadratic
on X̃/Ũ . Since |J | ≥ 3 we have U ≤ Ũ . Hence A is neither quadratic on U nor on V/U , which
contradicts 2.6.

Thus |J | = 2. It follows that |A/B| = |J | = 2 and B1 = B. Moreover, B 6= 1 since |A| ≥ 3.

According to (6◦) we may assume J = {1, 2}.

7◦ A is elementary abelian and CB(Vi) = CB(V ).

By (6◦) char F = 2. So by 6.4, A is elementary abelian. The transitive action of A on J and
4.2(a) also give CB(Vi) ≤ CB(V ). By 4.5 CB(V ) ≤ CB(Vi) and (7◦) is proved.

8◦ Suppose that A is quadratic on V . Then (2:2) holds.
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This follows from (1◦), (7◦) and 4.10.

9◦ Suppose that CV1(B) 6= X1. Then (2:2) or (3:2) holds.

There exists a 1-dimensional K-subspace X ′
1 of CV1(B) different from X1. Hence by (5◦)

[Vj , B,B] ≤ X1 ∩X ′
1 = 0, so B acts quadratically on V1. By (6◦) |A/B| = 2 and B 6= 1.

Assume first that CV1(B) 6= [V1, B]. Then there exists a non-zero a KB-submodule Z1 ≤ CV1(B)
with CV1(B) = Z1 ⊕ [V1, B]. Hence, there also exists a KB-submodule Y1 ≤ V1 with CV1(B) ∩ Y1 =
[V1, B] and V1 = Y1 ⊕ Z1. Pick a ∈ A \B and put

Z2 := Z1a1, Y2 := Y1a1, Y := Z1 ⊗ Y2 + Y1 ⊗ Z2, D := Y1 ⊗ Y2.

By 4.2(a), Y , D and Z1 ⊗ Z2 are KA-submodules of V . Note that

V = (Z1 ⊕ Y1)⊗ (Z2 ⊕ Y2) = (Z1 ⊗ Z2)⊕ (Z1 ⊗ Y2)⊕ (Y1 ⊗ Z2)⊕ (Y1 ⊗ Y2) = (Z1 ⊗ Z2)⊕ Y ⊕D.

4.5 implies that A neither centralizes Y nor D. Hence, 2.9 shows that A is quadratic on V , and (8◦)
implies (9◦).

Assume now that CV1(B) = [V1, B]. Then X1 ≤ [V1, B]. We apply (5◦). If 2.13 (4:3) holds for ∆
then [U1/X, B] is a F-hyperplane of U1/X. Hence K = F, [V1, B] is a K-hyperplane of V1 and (3:2)
follows from (7◦). If 2.13 (3) holds for ∆ then [V1, B] = X1 and so CV1(B) = X1, a contradiction.

10◦ Suppose that CV1(B) = X1. Then (2:2) or (3:2) holds.

If dimK V1 = 2, then (7◦) implies (2:2) or (3:2). Hence we may assume that dimK V1 ≥ 3. Let Y
be a 3-dimensional KB-submodule of V1.

Since char K = 2, the elementary abelian 2-subgroups of GL3(K) are quadratic. Hence [Y, B, B] =
0 and since CV1(B) = X1 we conclude that [Y, B] = X1. Fix 1 6= b ∈ B with [Y, b] 6= 0 and a ∈ A\B.
Then dimK Y/CY (b) = dimK X1 = 1, so there exists x, y, z ∈ Y such that

Y = 〈x, y, z〉K, X1 = xK, [z, b] = 0, [y, b] = x.

By (7◦) A is abelian and so by 4.2 the map

V1 → V2 with v1 7→ v1a =: v′1

is a KB-module isomorphism. It is easy to calculate that

x⊗ x′ ∈ CV (A), y ⊗ y′ ∈ CV (a) and [y ⊗ z′, a] = y ⊗ z′ + z ⊗ y′.

This shows that
[y ⊗ z′, a, b] = [y ⊗ z′ + z ⊗ y′, b] = x⊗ z′ + z ⊗ x′ 6= 0,

Thus y ⊗ z′ /∈ QV (A). Since V is a nearly quadratic FA-module we get for Y ′ := Y a1

(∗)
QV (A) = [y ⊗ z′, A]F + CV (A) = [y ⊗ z′, a]F + [y ⊗ z′, B]F + CV (A)

≤ (y ⊗ z′ + z ⊗ y′)F + x⊗ Y ′ + Y ⊗ x′ + CV (A).

If y ⊗ y′ /∈ QV (A) then QV (A) = [y ⊗ y′, A]F + CV (A) ≤ CV (a), since y ⊗ y′ ∈ CV (a). But then
[V,A, a] = 0. Since A is abelian, we get [V, a,A] = 0, which contradicts [y ⊗ z′, a, b] 6= 0. Thus we
have y ⊗ y′ ∈ QV (A), so (∗) shows that there exist u, w ∈ Y , t ∈ F and c ∈ CV (A) such that

y ⊗ y′ = (y ⊗ z′ + z ⊗ y′)t + x⊗ u′ + w ⊗ x′ + c.
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Taking the commutator with b on both sides gives

x⊗ x′ + x⊗ y′ + y ⊗ x′ = (x⊗ z′ + z ⊗ x′)t + x⊗ [u′, b] + [w, b]⊗ x′

and
x⊗ y′ + y ⊗ x′ ≡ (x⊗ z′ + z ⊗ x)t + (x⊗ x′)k

for some k ∈ K. But then x, y, z are not linearly independent in V1 which contradicts dimK Y = 3.
This contradiction shows (10◦) and completes the proof of 6.5. �

7 The Nearly Quadratic Subgroup Theorem

Definition 7.1 Let H be a group, F a field and V an FH-module. We say that H acts nilpotently
on V if there exists a finite ascending series

0 = V0 ≤ V1 ≤ V2 ≤ . . . ≤ Vd−1 ≤ Vd = V

of FH-submodules such that [Vi,H] ≤ Vi−1 for all 1 ≤ i ≤ d.
We say that V is H-reduced if [V,N ] = 0 whenever N is a normal subgroup of H acting nilpotently

on V .

Lemma 7.2 Let F be a field, V a finite dimensional F-space, and G ≤ GLF(V ). For U ≤ V let L(U)
be the largest subgroup of SLF(V ) with [U,L(U)] = 0 and [V,L(U)] ≤ U . Suppose that V is G-reduced
and there exists 1-dimensional F-subspace U of V with L(U) ≤ G. Then 〈L(U)G〉 = SLF(V ).

Proof: Put M = 〈L(U)G〉. We may assume that dimF V > 1 since otherwise M = SLF(V ) = 1.
Let P = PK(V ) be the set of 1-dimensional subspaces of V , and let

P(M) := {X ∈ P | L(X) ≤ M}.

As SLF(V ) = 〈L(X) | X ∈ P〉, it suffices to show that P(M) = P.
Since [V,L(U)] = U we get [V,M ] =

∑
U∈P(M) U . If [V,M ] 6= V , then 1 6= CL(U)([V,M ]) ≤

CM ([V,M ]))∩CM (V/[V,M ]), a contradiction since the latter group is normal in M and acts nilpo-
tently on V . Thus V = [V,M ] =

∑
U∈P(M) U .

Let U1, U2 ∈ P(M). Then L(U1) acts transitively on the 1-dimensional subspaces of U1 + U2

unequal to U1. Hence P(M) contains all the 1-dimensional subspaces of U1 + U2. Since V =∑
U∈P(M) U we conclude that V =

∑
U∈P(M) U =

⋃
U∈P(M) U , and P(M) contains all the 1-

dimensional subspaces of V . �

Remark 7.3 Let F be a field, H a group and V be a finite dimensional FH-module. Then H acts
on the dual module V ∗ := HomF(V, F) via

v.w∗h := vh−1.w∗ (h ∈ H, v ∈ V, w∗ ∈ V ∗).

Put
U⊥ := {w∗ ∈ V ∗ | Uw∗ = 0} and U∗⊥ := {v ∈ V | vU∗ = 0},
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where U is an F-subspace of V and U∗ an F-subspace of V ∗. Elementary linear algebra shows that

dimF U + dimF U⊥ = dimF U∗ + dimF U∗⊥ = dimF V,

[V,U ]⊥ = CV ∗(U) and [V ∗, U ]⊥ = CV (U) for U ≤ H.

In particular, if U is a hyperplane of V , U⊥ is a 1-dimensional subspace of V and L(U) =
L(U⊥). Hence passing to the dual space V ∗ transforms 7.2 into a statement about reduced subgroups
G ≤ GLF(V ) with L(U) ≤ G for some hyperplane U ≤ V . We will refer to this version as the “dual
version of 7.2”.

Also in 7.5 below we will “dualize” in this way certain steps in the proof.

Proof of Theorem 1: Since V is semisimple, there exist simple FH-submodules Vj , j ∈ J,
such that V =

⊕
j∈J Vj . Let I = {i ∈ J | [Vi,H] 6= 0}. Then clearly

V = CV (H)⊕
⊕
i∈I

Vi.

For i ∈ I let Qi = {A ∈ Q | [Vi, A] 6= 0}. Then by 2.9 each A ∈ Q is contained in a unique Qi and
so (Qi)i∈I is a partition of Q. Observe that Hi centralizes Vj for all i ∈ I and j ∈ J with i 6= j. In
particular, Vi is a faithful Hi-module and Hi ∩ 〈Hj | i 6= j ∈ I〉 = 1. Thus (a) holds. Since Vi is a
simple FH module, we conclude that Vi is a simple FHi. Since 0 6= [V,Hi] ≤ Vi we get Vi = [V,Hi]
and so (b) and (c) hold. �

Lemma 7.4 Let K be a finite field, F ≤ K a subfield, V a K-space, L ≤ GLK(V ) such that L ∼=
SL2(F), V = [V,L], CV (L) 6= 0 and V/CV (L) ∼= W0 ⊗F K, where W0 is a natural FSL2(F)-module
for L. Let A ∈ Syl2(L). Put H = NGLK(V )(A), B = CSLK(V )(CV (A)), Z = Z(GLK(V )), V1 =
[CV (A),H ∩ L] and V2 = CV (L). Then the following hold:

(a) char F = 2, |F| ≥ 4 and V ∼= W ⊗F K, where W is a natural FΩ3(F)-module for L.

(b) CV (A) = V1 ⊕ V2 and CV (A) ≤ [V,B] = [V,A] for all B ≤ A with |B| ≥ 4.

(c) If |F| > 4, then V1 and V2 are H-invariant and H = (H ∩ L)ZB = CH(V2)Z.

(d) If |F| = 4, then V H
1 = {V1, V2} and NH(V1) = (H ∩ L)ZB = CH(V2)Z.

Proof: If p := char F 6= 2 or |F| = 2, then F(L) is a non-trivial p′-group, V = CV (F(L))⊕ [V,F(L)],
CV (L) = CV (F(L)) and V = [V,L] = [V,F(L)], a contradiction to CV (L) 6= 0.

Thus char F = 2 and q := |F| ≥ 4. Let E ≤ A with |E| = 4 and pick 1 6= e ∈ E. Then CV (L)[V, e]
is a K-hyperplane of V . By Dickson’s List [Hu, II.8.27] of maximal subgroups of SL2(F), there exists
a maximal subgroup D ≤ L with D ∼= D2(q+1). As q + 1 is odd, D = 〈e, eg〉 for some g ∈ D and
E 6≤ D, in particular L = 〈E, eg〉. Since [V, e, e] = 0 we get CV (L) + [V, e] = CV (e) and [V, e] is
1-dimensional over K. Thus [V,E] is at most 2-dimensional and V = [V,L] = [V,E] + [V, eg] is
at most 3-dimensional. Since CV (L) 6= 0, dimK V ≥ 3. Thus dimK V = 3, dimK CV (L) = 1 and
dimK[V,E] = 2. We have dimK[V/CV (L), E] = 1 and so CV (L) ≤ [V,E].

Since dimK CV (L) = 1 for any such V , we conclude that V is unique up to KL-isomorphism (see
[As, 17.12]). Let W be a natural FΩ3(F) module. The W = [W,L], CW (L) is 1-dimensional over F
and W/CW (L) ∼= W0. Thus W ⊗F K fulfills the assumption on V and so V ∼= W ⊗F K. By coprime
action CV (A) = V1 ⊕ V2. Hence (a) and (b) hold.
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Let q be the L-invariant quadratic form on W and s the corresponding bilinear form. We fix an
F-basis (w1, w2, w3) satisfying

w2 ∈ CW (L), (w1, w3)s = 1, w1q = w3q = 0, w2q = 1, w1 ∈ CV (A).

Let a ∈ A and w3a = w1f1 + w2f2 + w3f3, fi ∈ F. Then

1 = (w1, w3)s = (w1a,w3a)s = (w1, w3a)s = (w1, w3f3) = f3,

and a similar calculation using 0 = (w3a)q yields f2
2 = f1, so w3a = w1λ

2 + w2λ + w3 for some
λ ∈ F. We denote this element of A by aλ.

Let vi be the image of wi ⊗ 1 in V under the isomorphism from W ⊗F K to V . Then (v1, v2, v3)
is an K-basis for V and the matrix of aλ with respect to this basis is

aλ ↔


1 0 0

0 1 0

λ2 λ 1

 .

Note that B is abelian and A ≤ B. Thus ZB ≤ H. Since ZB acts transitively on V \CV (A) we
have H = CH(v3)ZB. Let h ∈ CH(v3). Since H normalizes CV (A) = v1K + v2K:

h ↔


a b 0

c d 0

0 0 1


for some a, b, c, d ∈ K with ad− cb 6= 0. Let λ ∈ F. Since h ∈ H, h normalizes A and so aλh = haµ

for some µ ∈ F. We have

aλh ↔


a b 0

c d 0

λ2a + λc λ2b + λd 1

 and haµ ↔


a b 0

c d 0

µ2 µ 1

 .

Hence

λ2b + λd = µ and λ2a + λc = µ2 = λ4b2 + λ2d2.

Thus

λc + λ2(a + d2) + λ4b2 = 0 for all λ ∈ F.

Suppose that |F| > 4 and consider the polynomial f = cx + (a + d2)x2 + b2x4. Then each λ ∈ F
is a root of f . Since deg f ≤ 4 < |F| we conclude that f is the zero polynomial. Hence c = 0, b = 0
and a = d2. From µ = λ2b + λd = λd we conclude that d ∈ F. Moreover,

h ↔


d2 0 0

0 d 0

0 0 1

 =


d 0 0

0 1 0

0 0 d−1




d 0 0

0 d 0

0 0 d
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and so h ∈ (H ∩ L)Z. Thus H = (H ∩ L)BZ. Since (H ∩ L)B ≤ CH(V2) we see that (c) holds.
Suppose next that |F| = 4. Then λ4 = λ for all λ in F. Thus λ(c + b2) + λ2(a + d2) = 0. Hence

f = (c + b2)x + (a + d2)x2 is the zero polynomial and so c = b2 and a = d2. From λ2b + λd = µ ∈ F
for all λ ∈ F we conclude that b, d ∈ F. Moreover, 0 6= ad − bc = a3 − b3. Since u3 = 1 for all
0 6= u ∈ F we have a = 0 or b = 0. If a = 0, then v1h = v2b ∈ V2 and if b = 0 then v1h = v1a ∈ V1.
Thus V H

1 = {V1, V2}. Also if b = 0 then as above h ∈ (L ∩H)BZ ≤ CH(V2)Z and so (d) holds. �

Proposition 7.5 Let H be a finite group, K a finite field and V faithful finite dimensional KH-
module. Put

H = {A ≤ H | CV (A) = [V,A] and dim V/CV (A) = 1}.
Suppose that H = 〈H〉. Then CH(V/CV (H)) = Op(H) and CV (H) is the unique maximal KH-
submodule of V . Moreover, put V = V/CV (H), H̃ = H/CH(V ), p = char K, and n = dimK(V ).
Then one of the following holds:

1. p = 2, n = 2, and H̃ ∼= D2m for some odd integer m with m > 3.

2. p = 3, n = 2, F9 ≤ K, and H̃ ∼= SL2(5).

3. p = 2, n = 3, F4 ≤ K and H̃ ∼= 3.Alt(6).

4. H̃ ∼= SLn(F) for some subfield F of K. Moreover, V ∼= W ⊗F K for a natural FH̃-module W .

Proof: Let
H∗ = {A ≤ H | CV (A) = [V,A] and dimK CV (A) = 1},

and let A and A∗ be the set of maximal elements of H and H∗, respectively. By HL, AL,H∗
L and

A∗
L we denote the set of elements of H, A, H∗ and A∗ contained in L ≤ H.

We now proceed by induction on n. First we show:

1◦ Let B ∈ H and T be a p-subgroup of H with [B, T ] = 1. Then CV (B) ≤ CV (T ), BT ∈ H,
and if B ∈ A, then T ≤ B.

Let 1 6= b ∈ B. Then [V, b] is a 1-dimensional K-space normalized by T and so [V, b, T ] = 0. Since
CV (B) = [V,B] we get CV (B) ≤ CV (T ). Hence CV (B) = CV (BT ) = [V,BT ] and BT ∈ H. If
B ∈ A this gives BT = B.

2◦ Let L ≤ H such that L = 〈HL〉. Then CV (L) is the unique maximal KL-submodule of V .

Let U be a KL-submodule of V with U � CV (L). Then there exists A ∈ HL with [U,A] 6= 0.
Since dimK V/CV (A) = 1 we have V = U + CV (A). Thus CV (A) = [V,A] = [U,A] ≤ U and so
V = U .

3◦ Let L ≤ H such that L = 〈HL〉. Then V/CV (L) is an absolutely simple KL-module and
Op(L) = CL(V/CV (L)).

Put V̂ := V/CV (L). It follows from (2◦) that V̂ is simple KL-module. Let A ∈ HL and put
D = EndKL(V̂ ). Then

|D| ≤ |V̂ /[V̂ , A]| = |V/[V,A]| = |K|

and so D = K. Thus by 5.1(a), Ṽ is absolutely simple. Moreover, Op(L) ≤ CL(V̂ ). Since CL(V̂ )
centralizes CV (L) and V/CV (L) we get that CL(V̂ ) is a p-group and so (3◦) holds.
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4◦ H = 〈A〉, each A in A is weakly closed in H, and H acts transitively on A.

Since each B ∈ H is contained in some A ∈ A, H = 〈A〉. Let A,B ∈ A such that B normalizes
A. By (2◦) applied to AB in place of H, CV (A) ≤ CV (AB). Thus CV (A) = CV (B) and so AB ∈ H.
By maximality of A and B we get A = AB = B. Thus A is weakly closed in H. In particular, any
Sylow p-subgroup of H contains a unique member of A. So (4◦) holds.

If n ≤ 1, then (4) holds with K = F. If n = 2 the Proposition follows from Dickson’s List of
subgroups of SL2(K) [Hu, II.8.27]. Replacing V be V and H by H̃ we may assume from now on:

5◦ V is a faithful simple KH module and n ≥ 3.

Let V ∗ be the KH-module dual to V . If X is an KH-submodule of V ∗, then X⊥ is a KH-
submodule of V . So by (5◦) V ∗ is a simple KH-module. For A ∈ H∗, observe that dimK CV ∗(A) =
n− 1 and CV ∗(A) = [V ∗, A]. Hence, the elements of H∗ act on V ∗ as the elements of H act on V .
In particular any statement proved for H and subgroups generated by elements of H also gives rise
to a dual statement with H and V replaced by H∗ and V ∗.

Since CV (H) = 0 and dim V/CV (A) = 1 for all A ∈ A, there exists L ≤ H with L = 〈AL〉 and
dim CV (L) = 1. Let L be the set of such subgroups of H. Similarly let L∗ be the set of all subgroups
L∗ such that L∗ = 〈A∗

L〉 and dimK CV ∗(L∗) = 1.

6◦ Suppose L ∈ L with Op(L) = 1. Then n = 3, p = 2, L ∼= SL2(F) for some subfield F of K
with 4 ≤ |F|, AL = Sylp(L) and V ∼= W ⊗F K for a natural FΩ3(F)-module W for L.

By induction the theorem holds for L in place of H. By (2◦) V is indecomposable as a KL-
module. In particular, Op′(L) = 1. We conclude that Case (4) of 7.5 holds for L, so L ∼= SLn−1(F)
for some subfield F ≤ K.

Let A ∈ AL and put P ∗ = NL(CV (A)) and P = CP∗(V/CV (A)). Note that P ∗ acts simply on
Op(P ∗). Since A is weakly closed in H and A ≤ Op(P ∗) we conclude that A E P ∗ and A = Op(P ∗).
If n = 3, then 7.4(a) implies that (6◦) holds.

Suppose that n > 3. Then A = Op(P ∗) is natural module for P/Op(P ∗) ∼= SLn−2(F). Let
x ∈ V \ CV (A). Then [x,A] ∼= A/CA(x) ∼= A as an FpP -module. Thus [x,A] is a nontrivial
simple module for P . Hence [V,A] =

∑
v∈V [v,A] is a sum of non-trivial simple FpP -modules and so

C[V,A](P ) = 0. But this contradicts CV (L) ≤ CV (A) = [V,A] and dimK CV (L) = 1.

7◦ Suppose L ∈ L with Op(L) = 1. Fix A ∈ AL.

(a) If T is a p-subgroup of H with L ≤ NH(T ), then T = 1.

(b) Let L ≤ R ∈ L. Then L = R.

(c) Let L−(A) = {R ∈ L | A ≤ R,Op(R) = 1}. If |A| = 4, then |L−(A)| ≤ 2 and if |A| > 4, then
L−(A) = {L}.

(d) There exists R ∈ L with Op(R) 6= 1.

Since A ∩ T ≤ Op(L) = 1 and by (4◦) A is weakly closed in L, [A, T ] = 1. Thus by (1◦), T ≤ A
and so T ≤ A ∩ T = 1. Hence (a) hold.

In particular, if L ≤ R ∈ L, then Op(R) = 1. Hence by (6◦), both L and R are isomorphic to
SL2(|A|) and so L = R. Thus (b) holds.

33



Put V1 := [CV (A), NL(A)] and V2 := CV (L). Let R ∈ L−(A). By (6◦) NR(A) = O2(NR(A)),
so (6◦) and 7.4 imply that NR(A) normalizes V1 and V2. Since there are only two proper KNR(A)-
submodules of CV (A), we conclude that CV (R) = V1 or CV (R) = V2. In the second case 〈R,L〉 ∈ L
and so by (b), R = L. So suppose CV (R) = V1, then V2 = [CV (A), NR(A)]. Put P = NH(A) ∩
NH(V2). From the action of R ∼= SL2(|A|) on V we conclude that |P/CP (V2)| ≥ |A| − 1. On the
other hand since P ≤ SLK(V ) and V2 = CV (L), 7.4 implies that P ≤ Z(SLK(V ))CP (V2) and so
|P/CP (V2)| ≤ 3. Thus |A| = 4. Moreover by (b), R is unique in L with CV (R) = V1 and so (c)
holds.

Suppose that Op(R) = 1 for all R ∈ L. Let B ∈ A with B � L. Then B 6= C for every
C ∈ AL. Hence CV (C) 6= CV (B)). From (6◦) we get n = 3, so 〈C,B〉 ∈ L. Again by (6◦)
〈C,B〉 ∼= SL2(F), 〈C,B〉 ∈ L−(B) and AL∩〈C,B〉 = {C}. Thus 〈C,B〉 6= 〈D,B〉 for all B 6= D ∈ AL.
Thus |L−(B)| ≥ |AL| > 2, a contradiction to (c).

8◦ Suppose L ∈ L with Op(L) 6= 1. Then there exists a simple FpL-module W and a subfield
F ≤ K with F ∼= EndL(W ) such that the following hold:

(a) B ∈ H∗ for every 1 6= B E L with B ≤ Op(L).

(b) Op(L) ∈ A∗ and |Op(L)| = |A| for A ∈ A.

(c) Op(L) is a minimal normal subgroup of L.

(d) |A| = |F|n−1 and |A ∩Op(L)| = |F| for A ∈ AL.

(e) L/Op(L) ∼= SLn−1(F), and Op(L) is a natural module for FpSLn−1(F).

(f) V/CV (L) ∼= Y ⊗F K as an FpL-module, and Y is a natural FpSLn−1(F)-module for L dual to
Op(L).

(g) H = 〈H∗〉.

By (2◦) V/CV (L) is a simple KL-module. Hence dimK CV (L) = 1 implies that [V,B] = CV (L) =
CV (Op(L)) = CV (B) for every non-trivial normal subgroup B of L contained in Op(L), in particular,
B ∈ H∗. This is (a).

Now let B be a minimal normal subgroup of L in Op(L). Then B is a simple FpL-module. There
exists an FpL-submodule W ≤ V and a maximal FpL-submodule U of CV (L) such that CV (L) ≤ W ,
W/CV (L) is a simple FpL-module, and [W,B] 6≤ U . Then B∗ := W/CV (L) is as an FpL-module
dual to B. It follows that Op(L) = BB0, where B0 := COp(L)(W/U) and B ∩B0 = 1.

Put F := EndL(B∗). Then B and B∗ are also FL-modules. By (3◦), V/CV (L) is an abso-
lutely simple KL-module and so by 5.3 V/CV (L) ∼= B∗ ⊗F K as an FpL-module. Let A ∈ AL.
Since [V/CV (L), A] = CV/CV (L)(A) is a K-hyperplane of V/CV (L), [B∗, A] = CB∗(A) is an F-
hyperplane of B∗. Hence duality shows that dimF[B,A] = CB(A) is 1-dimensional over F; in
particular, |A/CA(B)| ≤ |B/CB(A)|. Moreover, [B,A] ≤ A since A is weakly closed in H by (4◦),
so

[B,A] = CB(A) = B ∩A.

By the dual version of (1◦), [V,CA(B)] ≤ [V,B] = CV (L) and so A ≤ Op(L). This gives CA(B) =
A ∩Op(L) and

|A| = |A/CA(B)||CA(B)| ≤ |B/CB(A)||A ∩Op(L)| = |B/B ∩A||A ∩Op(L)|

≤ |Op(L)/Op(L) ∩A||A ∩Op(L)| = |Op(L)|.
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By the dual version of (4◦) all elements of A∗ are conjugate and so have the same order. Together
with (4◦) we conclude

|A| ≤ |Op(L)|
(a)

≤ |A∗| for every A ∈ A and every A∗ ∈ A∗.

The dual version of (7◦)(d) shows that there exists L∗ ∈ L∗ such that Op(L∗) 6= 1. This leads to a
dual version of the above chain of inequalities. Thus also |A∗| ≤ |A|, and |A| = |Op(L)|; in particular
Op(L) ∈ A∗. This is (b).

Moreover, |Op(L)/A ∩ Op(L)| = |B/A ∩ B| and so Op(L) = B(A ∩ Op(L)); in particular,
[Op(L), A] ≤ B. Since this holds for all A ∈ AL, [Op(L), L] = B. Now the above factorization
Op(L) = BB0 yields [B0, L] = 1 and then with the Three Subgroups Lemma [V,B0] = 0 and
B0 = 1. This is (c).

By induction the theorem holds for V/CV (L) and L. If we are not in case (4) we conclude that
|AB/B| < |B/CB(A)|, a contradiction. Thus (4) holds. So L/Op(L) ∼= SLn−1(F) and B = Op(L) is
a natural FpSLn−1(F)-module. In particular |Op(L)| = |F|n−1, so by (c) also |A| = |F|n−1. Hence
(e) and (d) are proved.

We have shown already that V/CV (L) ∼= B∗ ⊗F K. Hence (f) follows from (e).
By the dual version of (b) Op(L∗) ∈ A, where as above L∗ ∈ L∗ with Op(L∗) 6= 1. Hence (4◦)

shows that
H = 〈Op(L∗)H〉 ≤ 〈L∗H〉 = 〈H∗〉,

and (g) follows.

9◦ Let A ∈ A and put L∗A := 〈A∗
NH(A)〉. Then L∗A ∈ L∗ and A = Op(L∗A).

By (7◦)(d) there exists R∗ ∈ L∗ with Op(R∗) 6= 1. By (8◦)(b), Op(R∗) ∈ A and so by (4◦) we
may assume that Op(R∗) = A. Thus A ≤ R∗ ≤ L∗A. Note that A ≤ Op(L∗A). Since L∗A normalizes
[V,A] we have [V,L∗A] = [V,A] and so L∗A ∈ L∗. Thus by (8◦)(e), |R∗| = |L∗A| and so R∗ = L∗A and
A = Op(L∗A).

10◦ Let A,B ∈ A with A 6= B. Then exactly one of the following holds.

1. There exists D ∈ A∗ with D ≤ NH(A) and B ≤ NH(D).

2. 〈A,B〉 ∈ L and Op(〈A,B〉) = 1.

Pick L ∈ L with 〈A,B〉 ≤ L. Suppose that D := Op(L) 6= 1. Then by (8◦)(b), D ∈ A∗. Clearly
B ≤ NH(D) and since AD is a p-group and A is weakly closed, D ≤ NH(A). Thus (1) holds.

Suppose that Op(L) = 1. Then by (6◦), L = 〈A,B〉 and so (2) holds.
Suppose for a contradiction that (1) and (2) hold. Since D is weakly closed by (4◦), A ≤ NH(D)

and so L ≤ NH(D), a contradiction to (7◦)(a).

We now divide the proof into three cases.

Case 1 Suppose that Op(L) = 1 for some L ∈ L. Then (3) holds.

By (6◦) n = 3, p = 2 and L ∼= SL2(F) for a subfield F of K with |F| = |A|. Let A ∈ AL. By
(7◦) there exists R ∈ L with Op(L) 6= 1 and by (4◦) we can choose R such that A ≤ R. Suppose
that |A ∩ Op(R)| > 2. Then by 7.4(b) [V,A ∩ Op(R] = [V,A]. But this is a contradiction since by
(8◦)(b) [V,Op(R)] is 1-dimensional while [V,A] is a hyperplane. Thus |A ∩Op(R)| = 2. By (8◦)(e),
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R/Op(R) ∼= SL2(E) for some subfield E of K. Moreover, |A| = |E|2 and |A ∩ Op(R)| = |E|. Thus
|E| = 2 and |F| = |A| = 4.

By (9◦), NH(A) 6= NH(CV (L)). So NH(A) does not normalizes L. Thus (7◦)(c) implies that
|L−(A)| = 2. Each T ∈ L−(A) is isomorphic to SL2(4) and so contains four elements of A other
than A. So there exist eight elements of A that satisfy (10◦)(2) together with A.

By (9◦) and (8◦)(e), L∗A
∼= Sym(4) and so there exist exactly three D ∈ A∗ with D ≤ NH(A).

Similarly there exist exactly three elements B ∈ A with B ≤ NH(D), two of which are different
from A. If B 6= A, then 〈A,B〉 = LD and so D = Op(〈A,B〉) is uniquely determined by A and
B. Thus there are 6 = 2 · 3 elements of A that satisfy (10◦)(1) together with A. This shows that
|A| = 1 + 6 + 8 = 15.

Since NL(A) ∼= Alt(4) and L∗A
∼= Sym(4) we have N∗

L(A) � Z(H)NL(A). Thus 7.4 implies
|NH(A)/Z(H)NL(A)| = 2. Since |NL(A)| = 12 and NL(A)∩Z(H) = 1, |NH(A)/ Z(H)| = 2 ·12 = 24
and |H/ Z(H)| = 24 · 15 = 360. Since |LZ(H)/ Z(H)| = |L| = 60 we have |H/LZ(H)| = 6 and so
H/ Z(H) ∼= Alt(6). The elements of order three in L∗A act fixed-point freely on CV (A), but the
elements of order three in NL(A) do not. Thus NL(A) � L∗A and Z(H) 6= 1, so |Z(H)| = 3.
Therefore H ∼ 3.Alt(6), F4 ≤ K and (3) holds in this case.

Case 2 Suppose that Op(L) = 1 for some L ∈ L∗. Then (3) holds.

By duality the above argument also applies to L∗. Thus, also in this case (3) holds.

Case 3 Suppose that Op(L) 6= 1 for all L ∈ L ∪ L∗. Then (4) holds.

Let F be as in (8◦). By (4◦) and (8◦)(d), |F| and so also F is independent of the choice of L ∈ L.
Let

W = {x ∈ V \ {0} | x ∈ CV (A∗) for some A∗ ∈ A∗} and W0 := W ∪ {0}.

For x ∈ W let A∗
x ∈ A∗ with x ∈ CV (A∗

x) and observe that A∗
x is uniquely determined by x since

CV (A∗
x) = xK. Define the relation ’∼’ on W by

x ∼ y : ⇐⇒ xF = yF or y ∈ [x, A∗
y].

Since xF = xF, ∼ is reflexive.

11◦ Let x, y ∈ W with x ∼ y. Then y ∼ x and xF+yF ⊆ W0. Moreover, if in addition xF 6= yF,
then 〈A∗

x, A∗
y〉/C〈A∗

x,A∗
y〉(xF + yF) ∼= SL2(F) and xF + yF is a natural FSL2(F)-module for 〈A∗

x, A∗
y〉,

in particular yF = [x, A∗
y].

If xF = yF, then clearly y ∼ x and xF + yF ⊆ W0. So we may assume that xF 6= yF and
y ∈ [x, A∗

y]. Put R∗ := 〈A∗
x, A∗

y〉 and V1 := xK+yK, and pick L∗ ∈ L∗ with R∗ ≤ L∗. Let z ∈ {x, y}.
Observe that R∗ normalizes V1. From (8◦) applied to L∗ we conclude that R∗/C∗

R(V1) ∼= SL2(F)
and V1

∼= W1 ⊗F K for some natural FSL2(F)-module W1 of R∗; in particular, CW1⊗FK(A∗
z) =

CW1(A
∗
z)⊗F K.

Since z ∈ CV1(A
∗
z), z ↔ wz ⊗ `z for some wz ∈ W1 and `z ∈ K. On the other hand W1 ⊗ `x is

R∗-invariant and y ∈ [x,A∗
y], so wy ⊗ `y ∈ W1 ⊗ `x. Thus xF + yF ↔ W ⊗ `x, in particular xF + yF

is invariant under R∗. Hence xF + yF is natural SL2(F)-module for R∗ and R∗ acts transitively on
(xF + yF)]. It follows that xF + yF ⊆ W0, [x, A∗

y] = yF and x ∈ [y, Ax]. So (11◦) holds.

12◦ ∼ is an equivalence relation on W.
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We already have proved that ∼ is reflexive and symmetric. To show that ∼ is transitive, let
x, y, z ∈ W] with x ∼ y and y ∼ z. If xF = yF and yF = zF, then xF = yF. If xF = yF and
yF 6= zF, then x ∈ yF ≤ yF + zF and by (11◦), [x, A∗

z] = zF and so x ∼ z. So we may assume that
xF 6= yF and similarly that yF 6= zF.

Put V1 := xK + yK, R∗ := 〈A∗
x, A∗

y〉. and N = NH(V1). Then 〈A∗
N 〉 ≤ L∗ for some L∗ ∈ L∗ and

(8◦) gives that 〈A∗
N 〉 = R∗. By (11◦) 〈yR∗〉 = xF + yF.

Suppose first that z ∈ V1. Then V1 = zK + yK and by symmetry R = 〈A∗
N 〉 = 〈A∗

z, A
∗
x〉 and

〈yR∗〉 = zF + yF. Hence by (11◦), x ∼ z.
Suppose next that z /∈ V1. Note that CV (CA∗

y
(x)) = V1. Thus CV (CA∗

y
(x)) 6= CV (CA∗

y
(z)). Since

both CV (CA∗
y
(x)) and CV (CA∗

y
(z)) are F-hyperplanes of A∗

y we conclude that A∗
y = CA∗

y
(x)CA∗

y
(z).

Thus

[z + V1, CA∗
y
(V1)] = [z, CA∗

y
(x)] = [z,A∗

y] = yF.

By (11◦) there exists g ∈ R∗ with yg = x. Since [V,R∗] ≤ V1 we have (z + V1)g = z + V1. So
conjugating the preceding line by g gives

[z + V1, CA∗
x
(V1)] = xF.

Hence x ∈ [z,A∗
x] and x ∼ z. Thus (12◦) holds.

13◦ Let W0 be an equivalence class of ∼. Then W := W0 ∪ {0} is an F-subspace of V , H
normalizes W , H induces SLF(W ) on V , and V ∼= W ⊗F K as an KH-module.

It follows from (11◦) that W is an F-subspace of V . Let x ∈ W , A∗ ∈ A∗ with [x,A∗] 6= 0, and
y ∈ [x, A∗]]. Then A∗

y = A∗ and x ∼ y. So y ∈ W and 〈A∗〉 normalizes W . Now (8◦)(g) implies that
H normalizes W . Note that A∗

y induces CSLF(W )(W/xF) on W . Hence by 7.2, H induces SLF(W )
on W . In particular, F = EndFG(W ). By (3◦), V is absolutely simple and so by 5.3 V ∼= W ⊗F K.
Hence (13◦) holds.

(13◦) completes the proof for (Case 3) and for the Proposition. �

Proof of Theorem 2: Let Q be the set of subgroups that act nearly quadratically but not
quadratically on V . To simplify notation we view H as a subgroup of GLFp(V ). By assumption
H = 〈Q〉.

Put F := F∗(H) and F := Fp. Let ∆ be the set of Wedderburn components of F on V , and for
A ∈ Q let

∆A := {W ∈ ∆ | [W,A] 6= 0}.

Since V is a simple H-module, Clifford Theory ensures that V =
⊕

∆. Observe that ∆ is a
system of imprimitivity if |∆| > 1.

Let W ∈ ∆ and A ∈ Q. Put

N := NG(W ), Ñ := N/CG(W ), AW := NA(W ), E := 〈AN
W 〉.

By Clifford Theory W is a simple FN -module. By 5.2(f) K is a finite field. We now divide the proof
into several cases.

Case 1 The case V 6= W .
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Since H acts transitively on ∆ and H = 〈Q〉 there exists A ∈ Q with A 6= AW . Hence |∆A| > 1,
and 2.13 can be applied. Since A is not quadratic on V , we are in case 2.13(4).

Clearly |W | > 2 since CV (F ) = 0. Hence 2.13(4) shows that A is elementary abelian and either

(i) p = 3, AW = 1 and |W | = |A| = |∆A| = 3; or

(ii) p = 2, |A/AW | = |∆A| = 2, CW (AW ) = [W,AW ], and |W/CW (AW )| = 2.

Put m := |∆| and let a ∈ A\AW . Suppose that (i) holds. Then a acts as 3-cycle on ∆. It follows
that H/CH(∆) is a transitive subgroup of Sym(∆) generated by 3-cycles. Hence H/CH(∆) ∼= Alt(∆)
and m ≥ 3.

Put D := NGLF(V )(∆). Then D ∼= C2 o Sym(m) and O3′(D) = D′ ∼ 2m−1 Alt(m). Put X :=
CD′(∆). Then F ≤ X and D′ = XH. Moreover, X is an elementary abelian 2-group, X = [X, D′],
and X/CX(D) is isomorphic to the simple constituent of the F Alt(m)-permutation module. Since
F � Z(H) we conclude that F = X and H = D′. If m = 4, the O2(D′) � X. So m 6= 4 and the
first case of Theorem 2 holds.

Suppose that (ii) holds. Then H/CH(∆) is a transitive subgroup of Sym(∆) generated by 2-
cycles and so H/CH(∆) ∼= Sym(∆). Also |AW | = |[w,AW ]| = |[W,AW ]| for w ∈ W \ CW (AW )
and thus |AW | = |CW (AW )|. Since W is a simple FN -module, the dual version of 7.2 implies
that Ẽ ∼= SLF(W ). Since CV (F ) = 0, F̃ 6= 1, and since Ẽ normalizes F̃ we conclude that either
dimF W > 2 and F̃ = Ẽ or dimF W = 2 and F̃ = Ẽ′ ∼= C3.

Assume first that n := dimF W > 2. Then there exists a component K of H such that F =
KCF (W ) and CF (W ) = CF (K). Suppose that K is A-invariant, then KAW also induces SLF(W a)
on W a. Moreover, CF (W ) = CF (K) = CF (W a), and W and W a are isomorphic F -modules
since AW centralizes a hyperplane in both. This contradicts the fact that W and W a are distinct
Wedderburn components. Thus, we have that K 6= Ka. It follows that F ∼= Km ∼= SLn(F)m and
the second case of theorem 2 holds.

Assume now that n = 2. Put D := NGLF(V )(∆). Then D ∼= SL2(2) o Sym(m). Let D1 be the
image of Wr(SL2(2),m) in D under this isomorphism. Put B = CD(∆) ∼= SL2(2)m and B1 = B∩D1.
Since A centralizes each W0 ∈ ∆ \ ∆A and A is elementary abelian we have that A ≤ D1. Each
2-subgroup of B acts quadratically on V and so each member of Q acts non-trivially on ∆. Thus
H ≤ D1 and D1 = B1H. It follows that B1 = B′〈AH

W 〉 and D1 = B′H. Note that 1 6= F ≤ B′. We
claim that F = B′. If m > 2, then D and so also H acts simply on B′. Hence B′ = F . If m = 2,
then |B′| = 32. But C3 has a unique non-trivial simple module over F and W is a Wedderburn
component for F , so also |F | > 3 and again F = B′.

From F = B′ we conclude that H = D1 and so the third case of Theorem 2 holds.

Case 2 The case V = W , and H not K-linear on V .

Since H = 〈Q〉, there exists A ∈ Q such that A is not K-linear on V . Hence we can apply 6.3.
Since A is not quadratic on V and K is finite, we are either in case 6.3(2) or (3). If 6.3(3) holds,
then |K| = 27, and it is easy to see that case 4 of Theorem 2 holds.

Assume now that 6.3(2) holds. Then A is elementary abelian and

(∗) |K| = 4, [V,AK] = CV (AK), |A/AK| = 2, and |V/CV (AK)| = 4.

In particular AK 6= 1, dimK V > 1, and AK acts quadratically on V . Let E1 = 〈AH
K 〉. We apply 7.5.

If 7.5(1) holds, then H is a subgroup of ΓGL2(4), |A| = 4 and E1
∼= D6 or D10. Since A is elementary

abelian we get A ∩ O2(H) 6= 1, a contradiction. Thus, we get from 7.5 that either E1
∼= SLK(V ),
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E1
∼= SLF(U) where U is an F-space with V ∼= U ⊗F K as an FE1-module, or dimK V = 3 and

E1
∼= 3. Alt(6).
In the first case ΓGLK(V )/E1

∼= Sym(3) and so either H = ΓGLK(V ), or |H/E1| = 2 and
H = ΓSLK(V ). In the second case NGLF(V )(E1) ∼= SL2(F)× SLF(U) and so, since H acts simply on
V and is generated by 2-groups, H ∼= SL2(F)× SLF(U). In the last case NΓ GLK(V )(E1) ∼= 3. Sym(6)
and so H ∼= 3. Sym(6). It follows that Case 5, 6, 7 or 8 of Theorem 2 holds.

We may assume from now on that V = W and H acts K-linearly on V . In particular, Z(F ) =
Z(H). Let I be the set of all X E F such that either X is a component of H or X = Oq(H) with
X ′ 6= 1, q a prime. Put D := 〈I〉 and D := Z(EndFD(V )). Next we show:

1◦ Z(F ) = Z(H) = F ∩K, F = Z(H)D and D ⊆ K. In particular, H acts D-linearly on V .

The definition of I and Z(H) = Z(F ) imply that F = Z(F )〈I〉 = Z(H)D and Z(H) = Z(F ) =
F ∩ K. Since D ≤ F , EndFF (V ) ⊆ EndFD(V ). Since Z(F ) ⊆ EndFD(V ) and F = Z(F )D, D ⊆
EndFF (V ) and so D ⊆ Z(EndFF (V )) = K. Thus all parts of (1◦) are proved.

2◦ Let A ∈ Q. Then [D,A] 6= 1.

Otherwise (1◦) implies that [F,A] = 1 and so A ≤ Z(F ) and A ≤ Op(F ) = 1, a contradiction.

3◦ V is a simple FD-module and K = D = EndFD(V ).

Suppose for a contradiction that V is not a simple FD-module. Since V is a homogeneous FF -
module and F = Z(F )D, V is a homogeneous FD-module. We apply 5.5 with I = {1}, T := A ∈ Q,
D1 = D, and D in place of K. Hence there exists an H-invariant tensor decomposition T with
Φ : ⊗j∈JVj → V where J = {0, 1}, H acts trivially on J , V1 is a simple DD-module, V0 is a trivial
DD-module and Φ : V0 ⊗D V1 → V is a DD-isomorphism. Moreover, T is strict when restricted to
A.

Since V is a simple FH-module we conclude that V0 and V1 are simple projective DH-modules.
By (2◦), D 6= 1 and so D is non-abelian. Thus dimD V1 ≥ 2 and if dimD V1 = 2, then |D| > 2. Since
V is not a simple FD-module, dimD V0 ≥ 2. Thus T is proper, regular and D-linear, and T is proper
and ordinary when restricted to A. In particular 6.2 applies with G := A, J in place of {1, 2} (and
D in place of K).

It follows from 6.2(b) and (f) that [Vj , A] is a D-hyperplane of Vj and A induces CSLD(Vi)([Vj , A])
on Vj for j = 0, 1. Thus the dual version of 7.2 shows that 〈AH〉 induces PSLD(Vj) on PD(Vj). Since
D is normal in H and acts faithfully on V1 we conclude that D ∼= SLD(V1)′. Put Z := CH(PD(V1)).
Using (1◦), [Z,F ] = [Z,D] ≤ Z ∩ D ≤ Z(D) ≤ Z(F ) ≤ Z(H). But CH(F/ Z(H)) ≤ F and
so Z = Z(F ) = Z(H). Hence H/ Z(H) is isomorphic to a subgroup of PΓGLD(V1) contain-
ing PSLD(V1)′. Since F acts trivially on PD(V0) we see that H/CH(PD(V0)) is isomorphic to
a section of PΓGLD(V1)/ PSLD(V1)′. Therefore H/CH(PD(V0)) is solvable. On the other hand
H/CH(PD(V0)) contains a subgroup isomorphic to PSLD(V0). Hence p = 2 or 3, D = F and
dimD V0 = 2. In particular, PΓGLD(V1) = PGLD(V1). Since PSLD(V0) is not abelian, we conclude
that PGLD(V1)/ PSLD(V1)′ is not abelian. Hence SLD(V1) 6= SLD(V1)′, dimD V1 = 2, D = F, and
PGLD(V1)/ PSLD(V1)′ ∼= Sym(3). Thus H/CH(PD(V0)) has order at most 6. But PSLD(V0) ∼=
PSL2(3) has order 12, a contradiction.

Therefore V is a simple FD-module. It follows that EndFD(V ) is a field, D = EndFD(V ), K ⊆ D
and K = D.

Case 3 The case H K-linear on V , |I| ≥ 2, and V a simple FD-module.
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Let D1, . . . , Dr be the distinct elements of the set I and put I := {1, . . . , r}. Since H acts on
I by conjugation, I is an H-set with respect to the induced action; i.e., Dig := Dg

i for g ∈ H.
Hence, the module V , I and I satisfy the conditions (i) and (ii) of 5.5 (with T := A ∈ Q and H
in place of G) for the case that V is a simple KD-module. Thus there exists an H-invariant tensor
decomposition T with Φ :

⊗
I Vi → V , where Vi is a simple KDi-module and trivial KDj-module for

i, j ∈ I with i 6= j. Moreover, Φ is a K(D1 × . . .×Dr)-module isomorphism and the decomposition
restricted to A is strict. Since each Di is non-abelian, dimK Vi ≥ 2 for each i ∈ I. By assumption of
the current case, |I| ≥ 2. So T is proper. Since A is not quadratic, |A| > 2, and we are allowed to
apply 6.5. Again since A is not quadratic, one of the following holds:

(Case 3)(a) |I| = 2, I is a trivial A-set, and [Vi, A] = CVi
(A) = [vi, A] is a K-hyperplane of Vi

for vi ∈ Vi \ [Vi, A] and i ∈ I.

(Case 3)(b) |I| = 2, I is a non-trivial A-set, K = F, and [Vi, B] = CVi(B) is a K-hyperplane of
Vi for i ∈ I, where B := CA(I).

Put H0 := CH(I) and B := CA(I) and let I = {i, j}. Since Vi is a simple KDi-module, Vi is a
simple projective KH0-module.

Thus the dual version of 7.2 shows 〈BH〉 induces PSLK(Vi) on PK(Vi). Since H0 normalizes Di

and Di acts faithfully on Vi we conclude that Di
∼= SLK(Vi)′. If SLK(Vi) is perfect for i = 1 and 2

we see that one of the Cases 9, 10 and 11 of Theorem 2 holds. So suppose SLK(Vi) is not perfect
for some i ∈ I. Since Di is not abelian, K = F = F3 and dimK Vi = 2. Thus Di = O3(H). Hence
Dj 6= O3(H) and so dimK Vj ≥ 3 and Dj

∼= SLK(Vj). It follows that Case 10 of Theorem 2 holds.

Case 4 The case H K-linear on V , V a simple FD-module, |I| = 1, and D not solvable.

Since |I| = 1 and D is not solvable, D is a component of G. By (1◦) F = Z(H)D and so Theorem
2 holds.

Case 5 The case H K-linear on V , V a simple FD-module, |I| = 1 and D solvable.

Since |I| = 1 and D is solvable there exists a prime r such that D = Or(G). Put K = [D,A].
By coprime action, D = CD(A)K and since F = Z(H)D, F = CF (A)K. So K = [K, A], KA =
〈AK〉 = 〈AF 〉 and K E FA. We choose a normal subgroup R of FA contained in D that is minimal
with [R,A] 6= 1.

4◦ R = [R,KA] ≤ K and either R is elementary abelian, or CR(A) = Z(R) and A acts simply
on R/ Z(R).

Note that [R, 〈AK〉] is a normal subgroup of FA contained in R. Since [R,A, A] = [R,A] 6= 1,
the minimality of R gives R = [R, 〈AK〉] = [R,KA] ≤ K.

As [R,F ] = [R,D] < R the minimality of R gives [R,F, A] = 1. So [R,F ] ≤ CR(A) and CR(A)
is a normal subgroup of FA. Hence F centralizes R/CR(A) and the minimality of R implies that
A acts simply on R/CR(A). Since FA normalizes CR(A), 〈AF 〉 = AK centralizes CR(A) and so
CR(A) = CR(KA) ≤ Z(R). If R is non-abelian, the minimality of R yields CR(A) = Z(R). If R
is abelian, then R = [R,A] × CR(A). Hence [Ω1(R), A] 6= 1 and Ω1(R) = R. So R is elementary
abelian.

5◦ 1 6= CR(F ) ⊆ K; in particular |K| > 2.

Since R is a normal subgroup of D = Or(F ), CR(F ) = CR(D) 6= 1. By the definition of K,
CR(F ) ⊆ K so |K| > 2.
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6◦ V is a simple FKA-module.

Let V1 be a simple FKA-submodule of V . Since V is simple FF -module and F = CF (A)K we
get V = 〈V CF (A)

1 〉. So V is a direct sum of A-submodules isomorphic to V1. Since A is nearly
quadratic but not quadratic, 2.9 shows that V = V1.

7◦ Suppose that V is not a homogeneous FR-module. Then Case 10 or 12 of Theorem 2 holds.

Let ∆ be the set of Wedderburn components for FR on V . Then ∆ is a system of imprimitivity
for FA on V . Since V is a simple FD-module, D acts transitively on ∆. Thus |∆| is a power of r.
We apply 2.13.

Let U ∈ ∆. By (6◦) V is a simple FKA-module. Hence KA acts transitively on ∆ and NKA(U)
acts simply on U . Also [U,R] 6= 0 since CV (R) = 0. This excludes the case 2.13(4:1). The
transitivity on ∆ and the non-quadratic action of A on V excludes the cases 2.13(1), 2.13(2), and
2.13(3). Moreover, if 2.13(4:3) holds, then |U/ CU (NA(U))| = 2 and so |K| = 2, which contradicts
(5◦).

Thus we are left with case 2.13(4:2). In this case p = 3 = |U | = |A|, K = F and A acts as a
3-cycle on ∆. On the other hand, KA = 〈AK〉 acts transitively on ∆, so KA/CKA(∆) ∼= Alt(∆).
The solvability of KA gives |∆| = 3 or 4, and since |∆| is a power of r, r = 2 and |∆| = 4. Thus
FA is a subgroup of NGLK(V )(∆) ∼= C2 o Sym(4). Since R ≤ CH(∆) and by (4◦) R = [R,KA]
we conclude that R = [R,KA] ∼= C3

2 and KA ∼= 23 : Alt(4). This shows that K ∼= Q8 ◦ Q8,
F ≤ CH(∆)K and F ∩ SLK(V ) = K. Thus K E H and H ≤ NGLK(V )(K) ∼ (GL2(3) ◦ GL2(3)).2.
Since H = 〈Q〉 = O3′(H) we conclude that either H = KA and Case 12 of Theorem 2 holds or
H ∼= SL2(3) ◦ SL2(3) and Case 10 holds.

We may assume from now on that V is a homogeneous FR-module. By 5.2 E := Z(EndR(V )) is
a field and so FA acts E-semi-linearly on V .

8◦ A acts E-linearly on V , and R is not abelian.

Suppose A does not act E-linearly on V . Since A is not quadratic on V , 6.3(2) or (3) holds. In
both cases dimF E = p and so |Aut(E)| = p. Since D is an r-group, E ⊆ EndFD(V ). So by (3◦),
E ⊆ K. But A acts K-linearly on V . Thus A is E-linear.

If R is abelian, then R ⊆ EndR(V ) ∩R ⊆ E and [R,A] = 1, a contradiction.

9◦ Suppose V is a homogeneous but not simple FR-module. Then Case 10 or 12 of Theorem 2
hold.

By 5.5 there exists a KA-invariant tensor decomposition Φ : V0⊗EV1 → V such that V ∼= V0⊗EV1

as an ER-module, V1 is a simple ER-module and V0 is a trivial ER-module. Since R is not abelian,
dimE V1 > 1, and since V is not a simple R-module, dimE V0 > 1. Moreover, by (8◦) A acts E-linearly
on V0 ⊗E V1. Hence one of the two cases in 6.5(3) hold.

In both cases the dual version of 7.2 shows KA = 〈AK〉 induces PSLE(Vi) on PE(Vi). Since R
is solvable, p = 2 or 3, E = F and dimE Vi = 2. Since R is non-abelian, p = 3 and R ∼= Q8. Hence
FA ≤ NGLK(V )(R) ∼= GL2(3) ◦GL2(3). Since A is not quadratic on V , A is not contained in any of
the normal GL2(3)’s. Since A normalizes F we get that F ≤ O2

(
GL2(3) ◦GL2(3)

) ∼= Q8 ◦Q8 and
then since F acts simply on V , F ∼= Q8 ◦ Q8. Thus H ≤ NGLK(V )(F ) ∼= (GL2(3) ◦ GL2(3)).2. It
follows that Case 10 or 12 of the Theorem holds.

10◦ Suppose V is a simple FR-module. Then Case 13 of the Theorem 2 holds.

41



By (8◦) R is non-abelian, and by (4◦) R := R/ Z(R) is a simple A-module. Let X be maximal
abelian normal subgroup of A. Put

Y = {CX(U) | U a simple X-submodule of R}.

For Y ∈ Y let

RY = 〈U | U a simple X-submodule of R with CX(U) = Y 〉.

Then RY is a sum of Wedderburn components for X on R and so

R =
⊕
Y ∈Y

RY .

Suppose for a contradiction that |Y| ≥ 2. For Y ∈ Y let RY be the inverse image of RY in R. Let
Y,Z ∈ Y with Y 6= Z. We claim that [RY , RZ ] = 1. Without loss Y � Z. Hence RZ = [RZ , Y ] and
thus RZ ≤ Z(R)[R, Y ]. Since R′ ≤ Z(R) ≤ CR(Y ), [R,CR(Y ), Y ] = 1. Also [CR(Y ), Y,R] = 1 and so
the Three Subgroups Lemma implies [[Y, R], CY (R)] = 1. Since RY ≤ CR(Y )) and RZ ≤ [R, Y ] Z(R)
the claim is proved.

Note that R = 〈RY | Y ∈ Y〉. If RY is abelian we would conclude RY ≤ Z(R), a contradiction.
So RY is not abelian. Each RY is normal in R and so RA acts on Y and on {RY | Y ∈ Y}
by conjugation. Since V is a simple ER-module, 5.5 yields an RA-invariant tensor decomposition⊗E

Y ∈Y VY
∼= V , which is strict for A and where each VY is a faithful simple ERY -module. Since

RY is non-abelian dimE VY ≥ 2. 6.5 now implies that A is abelian. Thus X = A, R is a simple
X-module and |Y| = 1, a contradiction.

We have proved that |Y| = 1. Let Y = {Y }. Then [R, Y ] = 1. Since [Z(R), A] = 1 coprime
action gives CA(R) ≤ CA(R) ⊆ A ∩ E ≤ Op(RA) = 1. Thus Y = 1 and X is cyclic. Let |X| = pn

with n ∈ N.
Suppose pn ≥ 4. Since X acts cubically on V , Hall-Higman’s Theorem B [Gor, 11.1.1] shows

that there exists n0 ≤ n with

pn−n0(pn0 − 1) ≤ 3

and pn0 −1 = rk for some positive integer k. Since rk ≥ r ≥ 2, we get pn−n0 = 1, n = n0, pn−1 ≤ 3
and pn ≤ 4.

It follows that |X| = pn ≤ 4 and if |X| = 4, then r = 3.
Suppose for a contradiction that X = A. Since X is cubic but not quadratic on V the Jordan

Canonical Form for A on V shows that V ∼= V0 ⊗F K and V0 = V1 ⊕ V2, where V1, V2 are FA-
submodules of V0 with dimF V1 = 3 and [V1, A, A] 6= 0. Since K is a direct sum of 1-dimensional
F-subspaces, V is as an FA-module the direct sum of copies of V0. Thus by 2.9, F = K and so
1 6= Z(R) ⊂ F]. Hence p 6= 2, |X| = 3 = p and r 6= 3. Thus |F| = 3, |Z(R)| = 2 and r = 2. Since
A has order 3 and acts simply on R/ Z(R) we have |R/ Z(R)| = 4 and R ∼= Q8. Now Q8 has a
unique faithful simple module over F3 and this module has dimension 2. Thus dimF V = 2 and A
acts quadratically on V , a contradiction.

Thus A 6= X. Since CA(X) ≤ X we conclude that |X| = 4, r = 3 and A ∼= D8 or Q8. In the
first case A has a non-cyclic maximal abelian normal subgroup, a contradiction. Therefore A ∼= Q8.
Let v ∈ V \ QV (A). Then [V,A] ≤ [v,A] + CV (A) by the nearly quadratic action of A. Since A is
quadratic on V := V/CV (A) we have A′ ≤ CA(V ) and

[V ,A] = {[v, a] | a ∈ A} ≤ |A/CA(v)| ≤ |A/A′| = 4.

42



As [V , A] is a K-space we get |K| ≤ 4. By (5◦) |K| > 2 and so |K| = 4 and dimK[V ,A] = 1. In
particular, |A/CA(v)| = 4 and CA(v) = A′. So for every a ∈ A\A′ and every v ∈ V \QV (A), [v, a] 6= 0
and thus CV (a) = [V ,A] = [V , a]. Since [V , a] is 1-dimensional we conclude that V /CV (a) is 1-
dimensional, and so CV (a) = [V , a] gives dimK V = 2. This implies that QV (A) is a K-hyperplane
of V and dimK V/CV (A) = 2. Since A′ centralizes QV (A) this show that CV (A′) = QV (A).

Put Q := [R,A] and let g ∈ Q \ Z(Q). Then QA = 〈A,A′g〉. Since CV (Q) = 0 we get
CV (A) ∩ CV (A′g) = 0 and so dimK V = 3. Since the Sylow 3-subgroup of SL3(4) is extra special of
order 27 we conclude that Q = D = O3(H) ∼ 31+2 and H = NSLK(V )(Q) ∼ 31+2.Q8. Hence Case
13 of Theorem 2 holds. �

Proof of Theorem 3: We may assume without loss that A � NG(K). Let W be composition
factor for H := 〈K, A〉 on V with [W,K] 6= 0. By 2.6(c), W is a nearly quadratic A-module. Note
also that H = 〈AK〉.

If A is not quadratic on W we conclude from Theorem 2 that p=2, K/CK(W ) ∼= SLn(2),
W 6= [W,K] and and [W,K] is a Wedderburn component for F*(H)-module on V Thus by (i)
and (ii) in Case 1 of the proof of Theorem 2 we conclude that |A/NA([W,K])| = 2 and so also
|A/NA(K)| = 2. Hence Theorem 3 holds in this case.

Suppose that A is quadratic on W . Let L = 〈KA〉. Then H = LA. Let U be a Wedderburn
component for L on W . Then W = 〈UA〉. From |A/CA(K)| > 2 we have |A/CA(W )| > 2, and 2.11
implies that U = W . So W is a homogeneous FpL-module. For example by 5.2(d), the number of
simple FpL-modules in W is not divisible by p, so one of them is normalized by A. Since H = LA
acts simply on W , W is a simple FpL-module. Let KA = {K1,K2, . . . Kr} and I = {1, . . . , r}.
Then |I| ≥ 2 and A acts transitively on I via Kia = Ka

i . By 5.5 there exists a H-invariant tensor
decomposition V ∼=

⊗K
i∈I Vi, where Vi is a simple KKi-module and a trivial KKj for i, j ∈ I with

i 6= j. Thus by 4.10, p = 2, |I| = 2, dimK Vi = 2 and [Vi, CA(I)] 6= 1. Now 7.5 shows that
K/CK(W ) ∼= SL2(2m).

Thus K/CK(W ) ∼= SLn(2) or SL2(2m). Since this holds for all non-trivial composition factors of
K on V , K/O2(K) ∼= SLn(2) or SL2(2m). �
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