Nearly Quadratic Modules

U. Meierfrankenfeld
B. Stellmacher

Department of Mathematics, Michigan State University, East Lansing MI 48840
meier@math.msu.edu
Mathematisches Seminar, Christian-Albrechts- Universität, D24098 Kiel
stellmacher@math.uni-kiel.de

1 Introduction

Let p a prime, G a finite group and $T \in \operatorname{Syl}_{p}(G)$. Then G has characteristic p if $C_{G}\left(O_{p}(G)\right) \leq O_{p}(G)$; and G has local characteristic p if every p-local subgroup of G has characteristic p. This paper is part of a program to understand and classify the finite groups of local characteristic p, see MSS1.

It was shown in [MS1] that in such groups there always exists a maximal p-local subgroup M containing T satisfying one of the following three cases (where Y_{M} is the largest elementary abelian normal p-subgroup of M with $\left.O_{p}\left(M / C_{M}\left(Y_{M}\right)\right)=1\right)$:

1. M is the unique maximal p-local subgroup of G containing T.
2. There exists $A \leq T$ such that $\left[Y_{M}, A\right] \neq 1,\left[\Phi(A), Y_{M}\right]=1$, and

$$
\left|Y_{M} / C_{Y_{M}}(A)\right| \leq\left|A / C_{A}\left(Y_{M}\right)\right| .
$$

3. There exists $A \leq T$ such that $\left[Y_{M}, A\right] \neq 1,\left[\Phi(A), Y_{M}\right]=1$, and
(i) $\left[Y_{M}, A\right] C_{Y_{M}}(A)=[v, A] C_{Y_{M}}(A)$ for every $v \in Y_{M} \backslash\left[Y_{M}, A\right] C_{Y_{M}}(A)$ and $\left[Y_{M}, A, A, A\right]=1$,
(ii) $\left|Y_{M} / C_{Y_{M}}(A)\right| \leq\left|A / C_{A}\left(Y_{M}\right)\right|^{2}$.

The nature of these properties give rise to questions about the embedding of M in G (in case 11), and about the structure of $\bar{M}:=M / C_{M}\left(Y_{M}\right)$ and the $\mathbb{F}_{p} M$-module Y_{M} (in case 2p and (3)).

In case (1) the Local $C(G, T)$-Theorem BHS gives the structure of all maximal p-local subgroups not containing a Sylow p-subgroup of G - and if there are none, then G has a strongly p-embedded subgroup.

In the other two cases one usually assumes that the composition factors of M are known simple groups. Then a forthcoming paper MS2] describes the structure of Y_{M} and \bar{M} in case (2). It generalizes known results about $F F$-modules.

In case (3) results of Guralnick, Lawther and Malle (see GM1, GM2 and GLM] use property (3:ii) to determine \bar{M} and Y_{M} under the additional assumption that $F^{*}(\bar{M})$ is quasisimple and Y_{M} is a simple module. The purpose of our paper is to use property $3: 1$ to determine those \bar{M} and Y_{M} that do not satisfy this additional assumption. In fact, we prove a stronger result giving more information about the action of M on Y_{M}, see Theorem 2. In addition, we do not need to assume that the composition factors of M are known simple groups.

We turn (3:i) into a definition:
Let \mathbb{F} be a field, A a group and V an $\mathbb{F} A$-module. Then V is a nearly quadratic $\mathbb{F} A$-module (and A acts nearly quadratically on V) if $[V, A, A, A]=0$ and

$$
[V, A]+C_{V}(A)=[v \mathbb{F}, A]+C_{V}(A) \text { for every } v \in V \backslash[V, A]+C_{V}(A)
$$

Our main theorems:
Theorem 1 Let \mathbb{F} be field, H a group and V be a faithful semisimple $\mathbb{F} H$-module. Let \mathcal{Q} be the set of nearly quadratic, but not quadratic subgroups of H. Suppose that $H=\langle\mathcal{Q}\rangle$. Then there exists a partition $\left(\mathcal{Q}_{i}\right)_{i \in I}$ of \mathcal{Q} such that
(a) $H=X_{i \in I} H_{i}$, where $H_{i}=\left\langle\mathcal{Q}_{i}\right\rangle$.
(b) $V=C_{V}(H) \oplus \bigoplus_{i \in I}\left[V, H_{i}\right]$.
(c) For each $i \in I,\left[V, H_{i}\right]$ is a faithful simple $\mathbb{F} H_{i}$-module.

Theorem 2 Let H be a finite group, and V a faithful simple $\mathbb{F}_{p} H$-module. Suppose that H is generated by subgroups that act nearly quadratically but not quadratically on V.

Let W a Wedderburn-component for $\mathbb{F}_{p} \mathrm{~F}^{*}(H)$ on V and $\mathbb{K}:=\mathrm{Z}\left(\operatorname{End}_{\mathrm{F}^{*}(H)}(W)\right)$. Then W is a simple $\mathbb{F}_{p} \mathbb{F}^{*}(H)$-module and one of the following holds:
(I) $V=W, \mathbb{K}=\operatorname{End}_{H}(W), \mathrm{F}^{*}(H)=\mathrm{Z}(H) K, K$ a component of H and V is a simple $\mathbb{F}_{p} K$ module.
(II) H, V, W, \mathbb{K} and (if $V=W) H / C_{H}(\mathbb{K})$ fulfil one the thirteen cases in Table 1. Moreover, in case 13. H is not generated by abelian nearly quadratic subgroups.

Some notations used in the above table and through this paper:
All our actions are from the right. We write $a b c$ for $(a b) c, a b . c d$ for $(a b)(c d), a b . c d e . f g$ for $((a b)((c d) e))(f g)$ and so on.

By C_{n}, $\operatorname{Frob}_{n}, D_{n}$ and Q_{n}, respectively, we denote a cyclic, Frobenius, dihedral or quaternion group of order n, and \mathbb{F}_{q} is a finite field of order q.

Let \mathbb{K} be a field and V a \mathbb{K}-space. Then $\Gamma \mathrm{GL}_{\mathbb{K}}(V), \mathrm{GL}_{\mathbb{K}}(V)$ and $\mathrm{SL}_{\mathbb{K}}(V)$, respectively, denotes the group of semilinear \mathbb{K}-isomorphisms, \mathbb{K}-isomorphisms, or \mathbb{K}-isomorphisms with determinant 1 of V.

Let \mathbb{K}_{0} be the base field of \mathbb{K} and V_{0} a \mathbb{K}_{0}-subspace of V such that the map $\tau: V_{0} \otimes_{\mathbb{K}_{0}} \mathbb{K} \rightarrow V$, $v_{0} \otimes k \rightarrow v k$ is a \mathbb{K}-isomorphism. For $\sigma \in \operatorname{Aut}(\mathbb{K})$ let $\tilde{\sigma}$ be the semilinear \mathbb{K}-isomorphism of V with $\left(v_{0} \otimes k\right) \tau \tilde{\sigma}=\left(v_{0} \otimes k \sigma\right) \tau$. Let $\Gamma \mathrm{SL}_{\mathbb{K}}(V)=\left\{g \tilde{\sigma} \mid g \in \operatorname{SL}_{\mathbb{K}}(V), \sigma \in \operatorname{Aut}_{\mathbb{K}}(V)\right\}$. Note that $\Gamma \mathrm{SL}_{\mathbb{K}}(V)$ depends on the choice of V_{0}, but is unique up to conjugation under $\mathrm{GL}_{\mathbb{K}}(V)$.
$\mathcal{P}_{\mathbb{K}}(V)$ is the set of 1 -dimensional \mathbb{K}-subspaces of V. For $\mathrm{X}=\mathrm{SL}, \mathrm{GL}, \Gamma \mathrm{GL}$ and $\Gamma \mathrm{SL}$ define $\mathrm{PX}_{\mathbb{K}}(V)=\mathrm{X}_{\mathbb{K}}(V) / Z$, where Z is the kernel of the action of $\mathrm{X}_{\mathbb{K}}(V)$ on $\mathcal{P}_{\mathbb{K}}(V)$, so $Z=\mathrm{Z}\left(\mathrm{GL}_{\mathbb{K}}(V) \cap\right.$ $\left.\mathrm{X}_{\mathbb{K}}(V)\right)$. If $\mathbb{K}=\mathbb{F}_{q}$ and $V=\mathbb{F}_{q}^{n}$ we write $\mathrm{X}_{n}(q)$ or $\mathrm{X}_{n}\left(\mathbb{F}_{q}\right)$ for $\mathrm{X}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q}^{n}\right)$.

Table 1: The exceptional nearly quadratic modules

	H	V	W	\mathbb{K}	$H / C_{H}(\mathbb{K})$	conditions
1.	$\left(C_{2} 2 \mathrm{Sym}(m)\right)^{\prime}$	$\left(\mathbb{F}_{3}\right)^{m}$	\mathbb{F}_{3}	\mathbb{F}_{3}	-	$m \geq 3, m \neq 4$
2.	$\mathrm{SL}_{n}\left(\mathbb{F}_{2}\right)$ \ $\operatorname{Sym}(m)$	$\left(\mathbb{F}_{2}^{n}\right)^{m}$	\mathbb{F}_{2}^{n}	\mathbb{F}_{2}	-	$m \geq 2, n \geq 3$
3.	$\mathrm{Wr}\left(\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right), m\right)$	$\left(\mathbb{F}_{2}^{n}\right)^{m}$	\mathbb{F}_{2}^{n}	\mathbb{F}_{4}	-	$m \geq 2$
4.	Frob $_{39}$	\mathbb{F}_{27}	V	\mathbb{F}_{27}	C_{3}	
5.	$\Gamma \mathrm{GL}_{\mathrm{n}}\left(\mathbb{F}_{4}\right)$	\mathbb{F}_{4}^{n}	V	\mathbb{F}_{4}	C_{2}	$n \geq 2$
6.	$\Gamma \mathrm{SL}_{\mathrm{n}}\left(\mathbb{F}_{4}\right)$	\mathbb{F}_{4}^{n}	V	\mathbb{F}_{4}	C_{2}	$n \geq 2$
7.	$\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right) \times \mathrm{SL}_{n}\left(\mathbb{F}_{2}\right)$	$\mathbb{F}_{2}^{2} \otimes \mathbb{F}_{2}^{n}$	V	\mathbb{F}_{4}	C_{2}	$n \geq 3$
8.	$3 \cdot \operatorname{Sym}(6)$	\mathbb{F}_{4}^{3}	V	\mathbb{F}_{4}	C_{2}	
9.	$\mathrm{SL}_{n}(\mathbb{K}) \circ \mathrm{SL}_{m}(\mathbb{K})$	$\mathbb{K}^{n} \otimes \mathbb{K}^{m}$	V	any	1	$n, m \geq 3$
10.	$\mathrm{SL}_{2}(\mathbb{K}) \circ \mathrm{SL}_{m}(\mathbb{K})$	$\mathbb{K}^{2} \otimes \mathbb{K}^{m}$	V	$\mathbb{K} \neq \mathbb{F}_{2}$	1	$m \geq 2$
11.	$\mathrm{SL}_{n}\left(\mathbb{F}_{2}\right)$ 乙 C_{2}	$\mathbb{F}_{2}^{n} \otimes \mathbb{F}_{2}^{n}$	V	\mathbb{F}_{2}	1	$n \geq 3$
12.	$\left(C_{2} \text { 乙 } \operatorname{Sym}(4)\right)^{\prime}$	$\left(\mathbb{F}_{3}\right)^{4}$	V	\mathbb{F}_{3}	1	
13.	$\mathrm{SU}_{3}(2)^{\prime}$	\mathbb{F}_{4}^{3}	V	\mathbb{F}_{4}	1	

Let L be a group and m an integer with $m>1$. Then $\operatorname{Wr}(L, m)$ denotes the augmented wreathproduct of L with $\operatorname{Sym}(m)$. That is, $\operatorname{Wr}(L, m)$ is the normal closure of $\operatorname{Sym}(m)$ in L 2 $\operatorname{Sym}(m)$. An elementary argument shows that $L 2 \operatorname{Sym}(m) / \operatorname{Wr}(L, n) \cong L / L^{\prime}$, so $\operatorname{Wr}(L, n)=L$ 2 $\operatorname{Sym}(n)$ if L is perfect.

The proof of Theorem 1 is straight forward. It is entirely based on an elementary property of groups A that act nearly quadratically but not quadratically on a module V : If V is the direct sum of two A-submodules, then A acts trivial on one of them (see 2.9). This also indicates that non-quadratic nearly quadratic action has some properties stronger than quadratic action.

The proof of Theorem 2 uses two well-known facts: For every finite group $H, \mathrm{~F}^{*}(H)$ is the central product of subgroups N_{1}, \ldots, N_{r}, where N_{i} is either a component of H or $N_{i}=O_{q}(H), q$ a prime divisor of $\mathrm{F}(H)$, and for every finite dimensional simple $\mathrm{F}^{*}(H)$-module V, V can be written as a tensor product of N_{i}-modules V_{i}.

If in addition V is also an $\mathbb{F} H$-module, the action of H on V can be described explicitly by means of this tensor decomposition. It turns out that the action of a nearly quadratic subgroup on such a tensor decomposition is very restricted. This is then used to determine the exceptions given in Theorem 2

Similar arguments also give the following theorem, which is a generalization of a result of Chermak Ch .

Theorem 3 Let G be a finite group, K a component of G and V a faithful $\mathbb{F} G$-module. Suppose that there exists a p-subgroup $A \leq G$ with $\left|A / C_{A}(K)\right|>2$ acting nearly quadratically on V. Then $\left|A / \mathrm{N}_{A}(K)\right| \leq 2$ and either $A \leq \mathrm{N}_{G}(K)$, or $p=2$ and $K / O_{2}(K) \cong \mathrm{SL}_{n}(2)$ or $\mathrm{SL}_{2}\left(2^{m}\right)$.

We would like to remark all the results in this paper are proved without using the classification of finite simple groups. In fact, apart from text book results, the proofs are selfcontained.

2 Cubic and Nearly Quadratic Action

In this section A is a group, \mathbb{F} is a field and V an $\mathbb{F} A$-module.
Definition 2.1 V is a
(a) quadratic $\mathbb{F} A$-module if $[V, A, A]=0$,
(b) cubic $\mathbb{F} A$-module if $[V, A, A, A]=0$,
(c) nearly quadratic $\mathbb{F} A$-module if V is a cubic $\mathbb{F} A$-module such that

$$
[V, A]+C_{V}(A)=[v \mathbb{F}, A]+C_{V}(A) \text { for every } v \in V \backslash[V, A]+C_{V}(A)
$$

In the corresponding cases we also say that A acts quadratically, cubically and nearly quadratically on V.

Definition 2.2 $Q_{V}(A)$ is the sum of all quadratic $\mathbb{F} A$-submodules of V (and so the largest quadratic $\mathbb{F} A$-submodule of V).

Definition 2.3 A system of imprimitivity for A in V is a set Δ of \mathbb{F}-subspaces of V such that
(i) $|\Delta|>1$ and $\Delta^{A}=\Delta$, and
(ii) $V=\bigoplus \Delta\left(=\bigoplus_{W \in \Delta} W\right)$.

Definition 2.4 Let \mathbb{K} be a field extension of \mathbb{F} such that V is also a \mathbb{K}-vector space, and let σ : $A \rightarrow \operatorname{Aut}(\mathbb{K})$ be a homomorphism. Then V is a semi-linear $\mathbb{K} A$-module with respect to σ provided that $v k a=v a . k \sigma$ for every $k \in K, a \in A$ and $v \in V$. Set $A_{\mathbb{K}}:=\operatorname{ker} \sigma$ and $\mathbb{K}_{A}:=C_{\mathbb{K}}(A \sigma)$.

Lemma 2.5 Let V be a quadratic $\mathbb{F} A$-module. Then V is a nearly quadratic \mathbb{F} A-module.
Proof: \quad Since A is quadratic, $[V, A] \leq C_{V}(A) \leq[v \mathbb{F}, A]+C_{V}(A)$ for all $v \in V$.

Lemma 2.6 Let V be a nearly quadratic $\mathbb{F} A$-module and W be an $\mathbb{F} A$-submodule of V. Then the following hold:
(a) Either $W \leq[V, A]+C_{V}(A)$ or $[V, A] \leq[W, A]+C_{V}(A)$.
(b) Either $Q_{V}(A)=V$ or $Q_{V}(A)=[V, A]+C_{V}(A)$.
(c) W and V / W are nearly quadratic $\mathbb{F} A$-modules.
(d) A is quadratic on W or on V / W.

Proof: (a) If $W \not \leq[V, A]+C_{V}(A)$ the definition of nearly quadratic implies $[V, A] \leq[W, A]+$ $C_{V}(A)$.
(b) Since A is cubic, $[V, A]+C_{V}(A) \leq Q_{V}(A)$. Since A is quadratic on $Q_{V}(A),\left[Q_{V}(A), A\right] \leq$ $C_{V}(A)$. By (a) with $W:=Q_{V}(A)$ either $Q_{V}(A) \leq[V, A]+C_{V}(A)$ or $[V, A] \leq\left[Q_{V}(A), A\right]+C_{V}(A)$. In the first case $[V, A]+C_{V}(A)=Q_{V}(A)$. In the second case $[V, A] \leq C_{V}(A)$, so A acts quadratically on V and $V=Q_{V}(A)$.
(c) and (d) We first show that $\bar{V}:=V / W$ is a nearly quadratic $\mathbb{F} A$-module. Let $v \in V$ with $\bar{v} \notin[V, A]+C_{\bar{V}}(A)$. Since $\overline{[V, A]+C_{V}(A)} \leq[\bar{V}, A]+C_{\bar{V}}(A)$ we get that $v \notin[V, A]+C_{V}(A)$. Thus $[V, A] \leq[v \mathbb{F}, A]+C_{V}(A)$ and $[\bar{V}, A] \leq[\bar{v} \mathbb{F}, A]+C_{\bar{V}}(A)$. Hence \bar{V} is nearly quadratic for A.

To show that A is nearly quadratic on W and is quadratic on W or V / W we may assume that A is not quadratic on W, so $W \not \leq Q_{V}(A)$. Then by (a) and (b) $[V, A] \leq[W, A]+C_{V}(A)$. It follows that $[\bar{V}, A] \leq \overline{C_{V}(A)}$ and A is quadratic on \bar{V}. Hence (d) holds.

Moreover, $Q_{V}(A)=[V, A]+C_{V}(A)=[W, A]+C_{V}(A)$ and so $Q_{W}(A)=W \cap Q_{V}(A)=[W, A]+$ $C_{W}(A)$. Hence if $w \in W$ with $w \notin[W, A]+C_{W}(A)$, then $w \notin Q_{V}(A)=[V, A]+C_{V}(A)$ and so $[V, A] \leq[\mathbb{F} w, A]+C_{V}(A)$. Thus $[W, A] \leq[V, A] \cap W \leq[w \mathbb{F}, A]+C_{W}(A)$, and W is nearly quadratic. So also (C) is proved.

Lemma 2.7 Let V be a cubic $\mathbb{F} A$-module and put $A_{0}=C_{A}\left(Q_{V}(A)\right)$. Then the following hold:
(a) A_{0} acts quadratically on V.
(b) For $z \in \mathbb{Z}, a \in A$ and $v \in V$ with $[v, a, a]=0$,

$$
[v, a] z=\left[v, a^{z}\right]=[v z, a]
$$

(c) If A acts quadratically on V, then $A / C_{A}(V)$ is an elementary abelian char \mathbb{F}-group. ${ }^{1}$
(d) $A_{0} \unlhd A$, and A / A_{0} and $A_{0} / C_{A}(V)$ are elementary abelian char \mathbb{F}-groups.
(e) If char $\mathbb{F}=0$, then all non-trivial elements in $A / C_{A}(V)$ have infinite order. If char \mathbb{F} is a prime, then $A / C_{A}(V)$ is a char \mathbb{F}-group.

Proof: (a): Since A is cubic, $\left[V, A_{0}\right] \leq[V, A] \leq Q_{V}(A) \leq C_{V}\left(A_{0}\right)$.
(b): Note that $[v, a]$ is centralized by a and v. So (b) follows from Gor, II2.2(i)]
(c): Since $[V, A, A]=0=[A, V, A]$ the Three Subgroup Lemma gives $[A, A, V]=0$. So $A / C_{A}(V)$ is abelian. Now let $a \in A$ and $v \in V$ with $[v, a] \neq 0$. Let i be a positive integer and put $p:=\operatorname{char} \mathbb{F}$. By (b) $\left[v, a^{i}\right]=[v, a] i$. If $p>0$ we conclude that $\left[v, a^{p}\right]=0$ and if $p=0$, then $\left[v, a^{i}\right] \neq 0$. So $a C_{A}(V)$ has order p in $A / C_{A}(V)$ if $p>0$ and infinite order if $p=0$.
(d): This follows from (c), since A acts quadratically on $Q_{V}(A)$ and A_{0} acts quadratically on V. (e) follows immediately from (d).

Lemma 2.8 Let $a \in A$ and $v \in V$. Suppose that char $\mathbb{F}=2$. Then $\left[v, a^{2}\right]=[v, a, a]$ and $\left[V, a^{2}\right]=$ $[V, a, a]$.

Proof: This follows for example since $(a-1)^{2}=a^{2}-1$ in $\operatorname{End}_{\mathbb{F}}(V)$.

[^0]Lemma 2.9 Let V be a nearly quadratic, but not quadratic $\mathbb{F} A$-module and X and Y be $\mathbb{F} A$ submodules of V such that $V=X \oplus Y$. Then at least one of the submodules X and Y is centralized by A.

Proof: \quad Since $V=X \oplus Y$ and V is not quadratic at least one of the summands, say X, is not a quadratic $\mathbb{F} A$-module. Then by 2.6 (a), (b)

$$
[V, A]+C_{V}(A)=[X, A]+C_{V}(A)=Q_{V}(A)
$$

In particular, $[V, A, A]=[X, A, A] \leq X$ and $[Y, A, A] \leq Y \cap X=0$. Hence $Y \leq Q_{V}(A)=$ $[X, A]+C_{V}(A)$ and $[Y, A] \leq Y \cap[X, A, A] \leq Y \cap X=0$.

Lemma 2.10 Suppose that Δ is a system of imprimitivity for A in V. Let Δ_{1} be an orbit for A on Δ and $\Delta_{0} \subseteq \Delta_{1}$. Then each of following conditions implies that $\Delta_{0}=\Delta_{1}$.

1. $\bigoplus \Delta_{0} \cap C_{V}(A) \neq 0$.
2. A is cubic and $\bigoplus \Delta_{0} \cap[V, A, A] \neq 0$.
3. A is quadratic and $\bigoplus \Delta_{0} \cap[V, A] \neq 0$.

Proof: Put $U=\bigoplus \Delta_{0}$. Observe that each of the conditions (2) and (3) imply (1), so we may assume that $C_{U}(A) \neq 0$. For $X \in \Delta$ let π_{X} be the projection of V onto X. Set

$$
\Delta_{2}:=\left\{X \in \Delta_{1} \mid C_{U}(A) \pi_{X} \neq 0\right\}
$$

Since $U \pi_{X}=0$ for all $X \in \Delta_{1} \backslash \Delta_{0}$ we have $\Delta_{2} \subseteq \Delta_{0}$. Since $\Delta_{2} \neq \emptyset$ and Δ_{2} is A-invariant we conclude that $\Delta_{2}=\Delta_{1}$ and so also $\Delta_{0}=\Delta_{1}$.

Lemma 2.11 Let V be a quadratic $\mathbb{F} A$-module, Δ a system of imprimitivity for A in $V, \Delta_{1} a$ non-trivial orbit for A on Δ, and $W \in \Delta_{1}$. Then $\left|\Delta_{1}\right|=\operatorname{char} \mathbb{F}=\left|A / C_{A}\left(\bigoplus \Delta_{1}\right)\right|=2$.

Proof: Let $W \in \Delta_{1}$ and $B=N_{A}(W)$. Then $\{W\} \neq \Delta_{1}$ and so by $2.103, W \cap[V, A]=0$. In particular, $[W, B]=0$.

Let $a \in A \backslash B$. Then $0 \neq[W, a] \leq W+W^{a}$ and so by $\left.2.10,3\right), \Delta_{1}=\left\{W, W^{a}\right\}$ and $|A / B|=2$. In particular, $B \unlhd A$ and $B=C_{A}\left(\bigoplus \Delta_{1}\right)$, so

$$
\left|\Delta_{1}\right|=\left|A / C_{A}\left(\bigoplus \Delta_{1}\right)\right|=2
$$

Moreover, 2.7 gives char $\mathbb{F}=2$.

Lemma 2.12 Let V be a cubic $\mathbb{F} A$-module, Δ a system of imprimitivity for A in V, Δ_{1} a non-trivial orbit for A on Δ, and $W \in \Delta_{1}$. Then
(a) $A / C_{A}\left(\bigoplus \Delta_{1}\right)$ is an elementary abelian p-group for some prime p.
(b) $p=\operatorname{char} \mathbb{F} \in\{2,3\}$.
(c) One of the following holds:

1. $\left|A / C_{A}\left(\bigoplus \Delta_{1}\right)\right|=\left|\Delta_{1}\right| \leq 4$ and $N_{A}(W)=C_{A}\left(\bigoplus \Delta_{1}\right)=C_{A}\left(\Delta_{1}\right)$
2. $p=\left|\Delta_{1}\right|=2$ and $N_{A}(W)=C_{A}\left(\Delta_{1}\right)$ acts quadratically on $\bigoplus \Delta_{1}$.

Proof: We may assume without loss that $V=\bigoplus \Delta_{1}$ and V is a faithful $\mathbb{F} A$-module. If A is quadratic on V, then the lemma follows from 2.11. Hence we may assume
$\mathbf{1}^{\circ} \quad A$ is not quadratic on V.
Next we prove
$\mathbf{2}^{\circ} \quad$ Suppose char $\mathbb{F}=2$. Then A is an elementary abelian 2-group.
Let $a \in A$ and suppose that $a^{2} \neq 1$. Then there exists $W \in \Delta_{1}$ with $\left[W, a^{2}\right] \neq 0$. Put $\Delta_{0}=\left\{W, W^{a^{2}}\right\}$. By $2.8[W, a, a]=\left[W, a^{2}\right] \leq \bigoplus \Delta_{0}$. Hence 2.10 2 implies that $\Delta_{1}=\Delta_{0}$. Thus $\Delta_{1}=\left\{W, W^{a}\right\}$ and so a^{2} acts trivially on Δ_{1}. But then $W=W^{a^{2}}$ and $\Delta_{1}=\Delta_{0}=\{W\}$, a contradiction.

This shows that $a^{2}=1$ for all $a \in A$, and 1° holds.

$$
\mathbf{3}^{\circ} \quad \text { Let } W \in \Delta_{1} \text { and } a, b \in V \text { with }[W, b, a] \neq 0 . \text { Then } \Delta_{1}=\left\{W, W^{b}, W^{a}, W^{b a}\right\}
$$

Note that $[W, b] \leq W+W^{b}$ and so also $[W, b, a] \leq W+W^{b}+W^{a}+W^{b a}$. Hence 2.10, 2 implies that $\Delta_{1}=\left\{W, W^{b}, W^{a}, W^{b a}\right\}$.

$4^{\circ} \quad\left|\Delta_{1}\right| \leq 4$

By 10 there exist $a, b \in A$ with $[V, b, a] \neq 0$. Since $V=\bigoplus \Delta_{1}$ there exists $W \in \Delta_{1}$ with $[W, b, a] \neq 0$ and so 4° follows from 3°.

Case 1 Suppose that $\left[W, N_{A}(W)\right] \neq 0$ for some $W \in \Delta_{1}$.
Pick $b \in B:=N_{A}(W)$ with $[W, b] \neq 0$ and $a \in A \backslash B$. Since $[W, b] \leq W$ we get $[W, b, a] \neq 0$, so $3{ }^{\circ}$ yields $\Delta_{1}=\left\{W, W^{a}\right\}$ and $|A / B|=2$, in particular $B \unlhd A$. Since $\left.\Delta_{1} \neq\{W\}, 2.102\right\}$ gives $[W, B, B]=0$, so B acts quadratically on $W \oplus W^{a}=V$.

Since A is cubic on V, A is quadratic on $[V, A]$ and thus also on $[W, B] \oplus\left[W^{a}, B\right]$. Hence 2.11, applied to A and $[W, B] \oplus\left[W^{a}, B\right]$, shows that $p=2$. Thus (c:2) holds. By $\sqrt{2}$, A is elementary abelian and so the lemma holds in this case.

Case 2 Suppose that $\left[W, N_{A}(W)\right]=0$ for all $W \in \Delta_{1}$.

Note that $C_{A}\left(\Delta_{1}\right)=1$ in this case. Hence by $4{ }^{\circ} A$ is isomorphic to a subgroup of $\operatorname{Sym}(4)$. Put $p=\operatorname{char} \mathbb{F}$. By 2.7 e,$p>0$ and A is a p-group. Hence (b) holds. Moreover, if $\left|\Delta_{1}\right| \leq 3$ we conclude that $\left|\Delta_{1}\right|=p=|A|$ and the lemma holds. In the other case 44° shows that $\left|\Delta_{1}\right|=4$. Hence $p=2$ and by $\left(2^{\circ}\right), A$ is elementary abelian. Since A acts transitively and faithfully on Δ_{1}, this implies $|A|=4$ and $N_{A}(W)=C_{A}\left(\Delta_{1}\right)=1$ for $W \in \Delta_{1}$. Again the lemma holds.

Lemma 2.13 Let V be a nearly quadratic $\mathbb{F} A$-module, and let Δ be a system of imprimitivity for A in V. Then one of the following holds:

1. A acts trivially on Δ and there exists at most one $W \in \Delta$ with $[W, A] \neq 0$.
2. A acts trivially on Δ and quadratically on V.
3. A acts quadratically on V, char $\mathbb{F}=2$, and $\left|A / C_{A}(W)\right| \leq 2$ for every $W \in \Delta \backslash C_{\Delta}(A)$.
4. A does not act quadratically on $V, A / C_{A}(V)$ is elementary abelian and there exists a unique A-orbit $W^{A} \subseteq \Delta$ with $[W, A] \neq 0$. Moreover, $B:=N_{A}(W)$ acts quadratically on $V, B=C_{A}(\Delta)$ and one of the following holds:
5. char $\mathbb{F}=2,\left|W^{A}\right|=4, \operatorname{dim}_{\mathbb{F}} W=1, B=C_{A}(V)$, and $A / C_{A}(V) \cong C_{2} \times C_{2}$.
6. $\operatorname{char} \mathbb{F}=3,\left|W^{A}\right|=3, \operatorname{dim}_{\mathbb{F}} W=1, B=C_{A}(V)$, and $A / C_{A}(V) \cong C_{3}$.
7. char $\mathbb{F}=2,\left|W^{A}\right|=2$, and $C_{A}(W)=C_{A}(V)$. Moreover, $\operatorname{dim}_{\mathbb{F}} W / C_{W}(B)=1$ and $C_{W}(B)=$ $[W, B]$.

Proof: Suppose first that A acts quadratically on V. Then 2.11 shows that (2) or (3) holds.
Suppose next that A does not act quadratically on V. Pick $W \in \Delta$ with $[W, A] \neq 0$ and set

$$
B:=N_{A}(W), U:=\bigoplus W^{A} \text { and } U_{0}:=\bigoplus C_{\Delta}(A)
$$

By $2.9[E, A]=0$ for all $E \in \Delta \backslash W^{A}$. It follows that $V=U \oplus U_{0}$ and $\left[U_{0}, A\right]=0$. Thus after replacing V by U, we may assume that $\Delta=W^{A}$.

If $W^{A}=W$ then 1^{0} holds. Thus we may assume that $\left|W^{A}\right| \geq 2$. We prove next that
$\mathbf{1}^{\circ} \quad W$ is not the direct sum of two proper $\mathbb{F} B$-submodules.
Suppose that $W=W_{1} \oplus W_{2}$ for some proper $\mathbb{F} B$-submodules W_{1} and W_{2}. Then

$$
V=\bigoplus W_{1}^{A} \oplus \bigoplus W_{2}^{A}
$$

and A acts non-trivially on both direct summands. But this contradicts 2.9 .
Note that we can apply 2.12. In particular, char \mathbb{F} is a prime $p \in\{2,3\}$, and $A / C_{A}(V)$ is an elementary abelian p-group. We now discuss the two cases given in 2.12 c separately.

Suppose that $2.12 \mathrm{c}: 1$ holds. Then $[W, B]=0$, and 1° gives $\operatorname{dim}_{\mathbb{F}} W=1$. In addition $\left|A / C_{A}(V)\right|>2$ since A is not quadratic on V. Thus 4:1) or $4: 2$ holds in this case.

Suppose that $2.12 \mathrm{c}: 2$ holds. Then $|A / B|=2$ and B is quadratic on W, so $[W, B] \leq C_{W}(B)$. Moreover, as above $[W, B] \neq 0$ since A is not quadratic on V. Pick an \mathbb{F}-subspace $W_{1} \leq W$ with $W_{1} \cap C_{W}(B)=[W, B]$ and $W_{1}+C_{W}(B)=W$. Also pick an \mathbb{F}-subspace $W_{2} \leq C_{W}(B)$ with $C_{W}(B)=W_{2} \oplus[W, B]$. Then $W=W_{1} \oplus W_{2}$ and W_{1} and W_{2} are $\mathbb{F} B$-submodules of W. Thus by $1^{\circ}, W_{2}=0$ and so $C_{W}(B)=[W, B]$.

Let $a \in A \backslash B$ and $w \in W \backslash C_{W}(B)$. Put $W_{0}=w \mathbb{F}+C_{W}(B)$ and $V_{0}=\left\langle W_{0}^{A}\right\rangle$. Then $V=W+W^{a}$ and $V_{0}=W_{0}+W_{0}^{a}$.

By $2.6 \mathrm{~b}, Q_{V}(A)=[V, A]+C_{V}(A)$. Since $\left[W_{0}, B\right] \neq 0$ we have $\left[V_{0}, B, A\right] \neq 0$. Thus $V_{0} \not \leq$ $Q_{V}(A)=[V, A]+C_{V}(A)$ and so by 2.6(a), $[V, A] \leq V_{0}=W_{0}+W_{0}^{a}$. This gives

$$
V=W \oplus W^{a}=W+[V, A]=W+W_{0}+W_{0}^{a}=W+W_{0}^{a}
$$

Hence $W^{a}=W_{0}^{a}, W=W_{0}$, and $C_{W}(B)=[W, B]$ is an \mathbb{F}-hyperplane in W. Thus 4:3) holds.

Lemma 2.14 Let \mathbb{K} be a field, $1 \neq A \leq \operatorname{Aut}(\mathbb{K})$, and $\mathbb{E}:=C_{\mathbb{K}}(A)$. Suppose that \mathbb{K} is a cubic EA-module. Then
(a) $p:=\operatorname{char} \mathbb{K} \in\{2,3\}$.
(b) A is an elementary abelian p-group and $A=\operatorname{Aut}_{\mathbb{E}}(\mathbb{K})$.
(c) $\operatorname{dim}_{\mathbb{E}} \mathbb{K}=|A|$ and $\mathbb{K} \cong \mathbb{E} A$ as an $\mathbb{E} A$-module.
(d) One of the following holds:

1. $|A|=2$, A acts quadratically on \mathbb{K} and $[\mathbb{K}, A]=\mathbb{E}$.
2. $|A|=3$, A does not act quadratically on V and $[\mathbb{K}, A, A]=\mathbb{E}$.
3. $A \cong C_{2} \times C_{2}$, A does not act quadratically on $V,[\mathbb{K}, A, A]=\mathbb{E}$ and \mathbb{K} is infinite.

Proof: We consider first the case where A is cyclic. Then $A=\langle\sigma\rangle$ for some $\sigma \in A$ and $C_{\mathbb{K}}(\sigma)=\mathbb{E}$, so $C_{\mathbb{K}}(\sigma)$ is 1 -dimensional over \mathbb{E}. Since σ acts cubically on V we have $(\sigma-1)^{3}=0$. So σ is unipotent with Jordan blocks of size at most 3 . As $\operatorname{dim} C_{\mathbb{K}}(\sigma)=1, \sigma$ has most one Jordan block, so $2 \leq \operatorname{dim}_{\mathbb{E}} \mathbb{K} \leq 3$.

Note that \mathbb{K} over \mathbb{E} is a finite Galois extension since the fixed field of the Galois group $\operatorname{Aut}_{\mathbb{E}}(\mathbb{K})$ is \mathbb{E}, so $|A|=\left|\operatorname{Aut}_{\mathbb{E}}(\mathbb{K})\right|=\operatorname{dim}_{\mathbb{E}} \mathbb{K} \in\{2,3\}$. Since A is cubic we conclude from 2.7 e) that char $\mathbb{E}=|A|$. Let $k \in \mathbb{K} \backslash[\mathbb{K}, A]$. Then it is easy to see that k^{A} is an \mathbb{E}-basis for \mathbb{K} and so $\mathbb{K} \cong \mathbb{E} A$ as an $\mathbb{E} A$-module.

We now consider the general case and use the cyclic case we have treated already. Let $1 \neq \sigma \in A$ and put $\mathbb{L}=C_{\mathbb{K}}(\sigma)$. Then by the cyclic case $p=\operatorname{char} \mathbb{K}=|\sigma|=\operatorname{dim}_{\mathbb{L}} \mathbb{K}$.

Suppose that $p=2$ and A acts quadratically on \mathbb{K} or that $p=3$. If $p=2$, then $\mathbb{L}=[\mathbb{K}, \sigma]$ and if $p=3$, then $\mathbb{L}=[\mathbb{K}, \sigma, \sigma]$. So in any case $\mathbb{L} \leq C_{\mathbb{K}}(A)=\mathbb{E}$. Thus $\operatorname{dim}_{\mathbb{E}} \mathbb{K}=\mathrm{p}$ and also \mid Aut $_{\mathbb{L}}(\mathbb{K}) \mid=p$. Thus $A=\langle\sigma\rangle$ and the lemma holds.

Suppose that $p=2$ and A is not quadratic on \mathbb{K}. Then $A \neq\langle\sigma\rangle$ and there exists $\mu \in A$ with $\mu \notin\langle\sigma\rangle$. On the other hand the cyclic case implies $\mathbb{L}=[\mathbb{K}, \sigma]$. Hence

$$
[\mathbb{L}, \mu] \leq[\mathbb{K}, A, A] \leq C_{\mathbb{K}}(A)=\mathbb{E} \leq \mathbb{L}
$$

so $\mathbb{L}^{\mu}=\mathbb{L}$. Since $\operatorname{Aut}_{\mathbb{L}}(\mathbb{K})=\langle\sigma\rangle,[\mathbb{L}, \mu] \neq 0$. The cyclic case applied to \mathbb{L} in place of \mathbb{K} shows that $\operatorname{dim}_{[\mathbb{L}, \mu]} \mathbb{L}=2$. We conclude that $[\mathbb{L}, \mu]=\mathbb{E}$ and so $\operatorname{dim}_{\mathbb{E}} \mathbb{K}=4$. It follows that $A=\operatorname{Aut}_{\mathbb{E}}(\mathbb{K})$ and $|A|=4$. Since $\sigma^{2}=1$ for all $\sigma \in A, A$ is elementary abelian. Pick $k \in \mathbb{K} \backslash[\mathbb{K}, A]$, then k^{A} is a \mathbb{E}-basis for \mathbb{K} and so $\mathbb{K} \cong \mathbb{E} A$ as an $\mathbb{E} A$-module. Since the automorphism group of a finite field is cyclic, \mathbb{K} is infinite.

Lemma 2.15 Let V be a semi-linear, cubic $\mathbb{K} A$-module. Put $\mathbb{E}=\mathbb{K}_{A}$ and suppose that $\mathbb{E} \neq \mathbb{K}$. Then one of the following holds:

1. $\left|A / C_{A}(V)\right|=\operatorname{char} \mathbb{E}=\operatorname{dim}_{\mathbb{E}} \mathbb{K}=2, A_{\mathbb{K}}=C_{A}(V), A$ is quadratic on V, and as an $\mathbb{E} A$-module V is the direct sum of $\mathbb{E} A$-submodules isomorphic to \mathbb{K}.
2. $\left|A / C_{A}(V)\right|=\operatorname{char} \mathbb{E}=\operatorname{dim}_{\mathbb{E}} \mathbb{K}=3, A_{\mathbb{K}}=C_{A}(V), A$ is not quadratic on V, and as an $\mathbb{E} A$-module, V is the direct sum of $\mathbb{E} A$-submodules isomorphic to \mathbb{K}.
3. $A / C_{A}(V) \cong C_{2} \times C_{2}, A_{\mathbb{K}}=C_{A}(V)$, $\operatorname{char} \mathbb{E}=2, \operatorname{dim}_{\mathbb{E}} \mathbb{K}=4$, \mathbb{K} is infinite, A is not quadratic on V, and as an $\mathbb{E} A$-module, V is the direct sum of $\mathbb{E} A$-submodules isomorphic to \mathbb{K}.
4. $\left|A / A_{\mathbb{K}}\right|=\operatorname{char} \mathbb{E}=\operatorname{dim}_{\mathbb{E}} \mathbb{K}=2$, A is not quadratic on $V, A / C_{A}(V)$ is elementary abelian, and there exists an $\mathbb{E} A$ submodule W of V such that $V \cong W \otimes_{\mathbb{E}} \mathbb{K}$ as an $\mathbb{E} A$-module, $A=C_{A}(W) A_{\mathbb{K}}$, and $A_{\mathbb{K}}$ acts quadratically on V and W.

Proof: We may assume that A acts faithfully on V and $V \neq 0$.

Case $1 \quad$ Suppose that $A_{\mathbb{K}}=1$.

By Zorn's Lemma there exists a subset $\mathcal{B} \subseteq C_{V}(A)$ that is maximal with respect to being linearly independent over \mathbb{K}. Since A is cubic, $C_{V}(A) \neq 0$ and so $\mathcal{B} \neq \emptyset$.

Let U be the \mathbb{K}-span of \mathcal{B} and $b \in \mathcal{B}$. Then $b \mathbb{K}$ is isomorphic to \mathbb{K} as an $\mathbb{E} A$-module. So A acts cubicly on \mathbb{K}. Since $A_{\mathbb{K}}=1, A$ acts faithfully on \mathbb{K} and we can apply 2.14 . It follows that $|A| \leq 4$, A is elementary abelian and, if $|A|=4, \mathbb{K}$ is infinite. Moreover, either

$$
\text { char } \mathbb{E}=|A|=2,[\mathbb{K}, A]=\mathbb{E} \text { and }[\mathbb{K}, A, A]=0, \text { or }|A|>2 \text { and }[\mathbb{K}, A, A]=\mathbb{E}
$$

Suppose that $U \neq V$. Then V / U has an $\mathbb{E} A$-submodule isomorphic to \mathbb{K}. Hence $[V / U, A] \neq 0$, and, if $|A|>2,[V / U, A, A] \neq 0$. So if $|A|=2$ we can choose $v \in[V, A]$ with $v \notin U$, and if $|A|>2$ we can choose $v \in[V, A, A]$ with $v \notin U$.

If $|A|=2$, then char $\mathbb{E}=2$ and A acts quadratically on V. So in any case $v \in C_{V}(A)$. Since U is a \mathbb{K}-subspace, $\mathcal{B} \cup\{v\}$ is linearly independent over \mathbb{K}, a contradiction to the maximality of \mathcal{B}.

Thus $U=V$ and so $V=\bigoplus_{b \in \mathcal{B}} b \mathbb{K}$ is a direct sum of copies of \mathbb{K} as an $\mathbb{E} A$-module. Now 2.14 shows that one of (1), (2) and (3) holds.

Case $2 \quad$ Suppose $A_{\mathbb{K}} \neq 1$.
Note that $\left[V, A_{\mathbb{K}}, A_{\mathbb{K}}\right]$ is a \mathbb{K}-subspace of V centralized by A. Since A does not act \mathbb{K}-linearly on V, we get $\left[V, A_{\mathbb{K}}, A_{\mathbb{K}}\right]=0$. Moreover, $A / A_{\mathbb{K}}$ acts quadratically and faithfully on the non-trivial \mathbb{K}-space $\left[V, A_{\mathbb{K}}\right]$ and so $\left(\right.$ Case 1) shows that $\left|A / A_{\mathbb{K}}\right|=2$ and $\operatorname{dim}_{\mathbb{E}} \mathbb{K}=2$.

Let $a \in A$. By $2.8\left[V, a^{2}\right]=[V, a, a]$. Since $a^{2} \in A_{\mathbb{K}}$ we conclude that $\left[V, a^{2}\right]$ is a \mathbb{K}-subspace centralized by A. Thus $\left[V, a^{2}\right]=0$ and A is elementary abelian. Let $a \in A \backslash A_{\mathbb{K}}$ and put $W:=C_{V}(a)$. Then W is an \mathbb{E}-subspace of V. By (Case 1) applied to $\langle a\rangle, W=[V, a]$. Hence $[W, A]=[V, a, A] \leq$ $C_{V}(A) \leq W$. Hence W is an quadratic $\mathbb{E} A$-submodule of V. Since $a \in C_{A}(W), A=C_{A}(W) A_{\mathbb{K}}$.

By the universal property of the tensor product, there exists an $\mathbb{E} A$-homomorphism $\rho: W \otimes_{\mathbb{E}} \mathbb{K} \rightarrow$ V with $(w \otimes k) \rho=w k$ for all $w \in W$ and $k \in \mathbb{K}$. By Case 1) applied to $\langle a\rangle, \rho$ is a bijection. Thus (4) holds in this case.

3 Tensor Decomposition

Lemma 3.1 Let \mathbb{K} be a field, V a \mathbb{K}-space of dimension at least 2 and \mathbb{F} a subfield of \mathbb{K}, and let $\alpha \in \mathrm{GL}_{\mathbb{F}}(V)$ with $v \mathbb{K} \alpha=v \mathbb{K}$ for all $v \in V$. Then there exists $k \in \mathbb{K}$ with $v \alpha=v k$ for all $v \in V$.

Proof: Let $0 \neq v \in V$. Then by assumption $v \alpha=v k_{v}$ for a unique $k_{v} \in \mathbb{K}$. Let $0 \neq w \in V$. It suffices to show that $k_{v}=k_{w}$.

Suppose first that $v \mathbb{K} \neq w \mathbb{K}$. We have

$$
v k_{v}+w k_{w}=v \alpha+w \alpha=(v+w) \alpha=(v+w) k_{v+w}=v k_{v+w}+w k_{v+w} .
$$

Since v and w are linearly independent over \mathbb{K} we conclude that $k_{v}=k_{v+w}=k_{w}$.
Suppose next that $v \mathbb{K}=w \mathbb{K}$. Since V is at least two dimensional over \mathbb{K} there exists $u \in V \backslash v \mathbb{K}$. Thus by the preceding case $k_{v}=k_{u}=k_{w}$.

Definition 3.2 Let \mathbb{K} be a field, G group and V a quadratic $\mathbb{K} G$-module.
(a) We say that G acts \mathbb{K}-commutator dependently on V if $[v, a] \mathbb{K}=[v, b] \mathbb{K}$ for all $a, b \in G \backslash C_{G}(V)$ and $v \in V$.
(b) Let $\lambda: G \rightarrow(\mathbb{K},+)$ be a homomorphism. We say that G acts λ-dependently on V if there exists $\alpha \in \operatorname{End}_{\mathbb{K}}(V)$ with $\alpha^{2}=0$ and $[v, a]=v \alpha . a \lambda$ for all $a \in G$ and $v \in V$.

Lemma 3.3 Let \mathbb{K} be a field, G a group, and V a quadratic $\mathbb{K} G$-module. Then G acts \mathbb{K}-commutator dependently on V iff G acts λ-dependently on V for some homomorphism $\lambda: G \rightarrow(\mathbb{K},+)$.

Proof: If G acts λ-dependently on V, then clearly G acts \mathbb{K}-commutator dependently on V.
Suppose now that G is \mathbb{K}-commutator dependent on V and fix $a \in G \backslash C_{G}(V)$. Define

$$
\alpha: V \rightarrow V, v \mapsto[v, a] .
$$

Since G is quadratic on $V, \alpha^{2}=0$.
Let $b \in G \backslash C_{G}(V)$. Then by assumption $[v, a] \mathbb{K}=[v, b] \mathbb{K}$ for all $v \in V$. Thus $C_{V}(a)=C_{V}(b)$ and $[V, a]=[V, b]$. Hence we obtain \mathbb{K}-isomorphisms

$$
\beta: V / C_{V}(a) \rightarrow[V, a], v+C_{V}(a) \mapsto[v, a] \text { and } \gamma: V / C_{V}(a) \rightarrow[V, a], v+C_{V}(a) \mapsto[v, b] .
$$

Put $\delta=\gamma \beta^{-1}$. From $[v, a] \mathbb{K}=[v, b] \mathbb{K}$ for all $v \in V$ we conclude that $u \mathbb{K} \delta=u \mathbb{K}$ for all $u \in V / C_{V}(a)$. Thus by 3.1 there exists $k_{b} \in \mathbb{K}$ with $u \delta=u k_{b}$ for all $u \in V / C_{V}(a)$. Hence $u \gamma=u k_{b} \beta=u \beta k_{b}$ for all $u \in V / C_{V}(a)$ and so $[v, b]=[v, a] k_{b}=v \alpha k_{b}$ for all $v \in V$.

For $b \in C_{G}(V)$ put $k_{b}=0$. Define $\lambda: G \rightarrow \mathbb{K}, b \mapsto k_{b}$. Then for all $v \in V$ and $b \in G$, $[v, b]=v \alpha . a \lambda$. Let $b, c \in G$. Using the quadratic action, $[v, b c]=[v, b]+[v, c]$ and so $b c \lambda=b \lambda+c \lambda$. Thus λ is a homomorphism and G acts λ-dependently on V.

Lemma 3.4 Let \mathbb{K} be a field, G a group, $\lambda: G \rightarrow(\mathbb{K},+)$ a homomorphism, and V a λ-dependent $\mathbb{K} G$-module. Let W_{λ} be the $\mathbb{K} G$-module with $W_{\lambda}=\mathbb{K}^{2}$ as \mathbb{K}-space and $(k, l) a=(k, l+k . a \lambda)$ for $a \in G$. Then $V=W \oplus C$, where W and C are $\mathbb{K} G$ submodules of V such that G centralizes C and W is the direct sum of $\mathbb{K} G$-submodules isomorphic to W_{λ}.

Proof: By the definition of λ-dependent there exists $\alpha \in \operatorname{End}_{\mathbb{K}}(V)$ with $\alpha^{2}=0$ and $[v, a]=v \alpha . a \lambda$ for all $v \in V, a \in G$. Choose $\mathcal{V} \subseteq V$ such that $\left(v+C_{V}(G)\right)_{v \in \mathcal{V}}$ is a \mathbb{K}-basis for $V / C_{V}(A)$. For $v \in V$ put $W_{v}=\langle v, v \alpha\rangle_{\mathbb{K}}$. Let C be a \mathbb{K}-subspace of $C_{V}(G)$ with $C_{V}(G)=[V, G] \oplus C$. Then it is readily verified that W_{v} is a \mathbb{K}-subspace of V isomorphic to W_{λ} and $V=C \oplus \bigoplus_{v \in \mathcal{V}} W_{v}$.

Definition 3.5 Let \mathbb{F} be a field and V an \mathbb{F}-space.
(a) A tensor decomposition \mathcal{V} of V is a tuple $\left(\Phi, \mathbb{K},\left(V_{i}, i \in I\right)\right)$ where $\mathbb{F} \leq \mathbb{K}$ is a field extension, $\left(V_{i}, i \in I\right)$ is a finite family of pairwise disjoint \mathbb{K}-spaces, and $\Phi: \bigotimes_{i \in I}^{\mathbb{K}} V_{i} \rightarrow V$ is an \mathbb{F} isomorphism.
(b) A tensor decomposition \mathcal{V} (as in a) is called proper if $|I|>1$ and $\operatorname{dim}_{\mathbb{K}} V_{i} \geq 2$ for all $i \in I$.

Notation 3.6 Let \mathbb{K} be a field and $\left(V_{i}, i \in I\right)$ be a finite family of pairwise disjoint \mathbb{K}-spaces. For $J \subseteq I$ let

$$
V_{J}:=\bigotimes_{j \in J}^{\mathbb{K}} V_{j} \text { and } V^{J}:=V_{I \backslash J}
$$

and for 1-element sets we write V^{i} rather than $V^{\{i\}}$.
Let $\left(u_{i}, i \in I\right)$ be a tuple of elements such that there exists $\pi \in \operatorname{Sym}(I)$ with $u_{i \pi} \in V_{i}$. Then $\otimes_{i \in I} u_{i}$ (or just $\otimes u_{i}$) denotes the element $\otimes_{i \in I} u_{i \pi}$ in $V_{I}=\otimes_{i \in I}^{\mathbb{K}} V_{i}$. (Note here that π and thus $\otimes_{i \in I} u_{i}$ is uniquely determined by the elements $\left(u_{i}, i \in I\right)$ since the spaces V_{i} are pairwise disjoint.) In the same spirit we identify $V_{J} \otimes V^{J}$ with V_{I}.

Definition 3.7 Let G be a group, \mathbb{F} a field and V an $\mathbb{F} G$-module.
(a) A G-invariant tensor decomposition $\mathcal{T}=\left(\Phi, \mathbb{K},\left(V_{i}, i \in I\right), \sigma,\left(g_{i} ; g \in G, i \in I\right)\right)$ of V is a tuple consisting of
(i) a tensor decomposition $\left(\Phi, \mathbb{K},\left(V_{i}, i \in I\right)\right)$ of V;
(ii) an action $I \times G \rightarrow I,(i, g) \mapsto i g$ of G on I;
(iii) a homomorphism $\sigma: G \rightarrow \operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$; and
(iv) a family $\left(g_{i} ; g \in G, i \in I\right)$ of maps such that for each $g \in G$ and $i \in I, g_{i}: V_{i} \rightarrow V_{i g}$ is a $g \sigma$-linear map from V_{i} to $V_{i g}$. such that
(i) $\left(\otimes_{i \in I} v_{i}\right) \Phi g=\left(\otimes_{i \in I} v_{i} g_{i}\right) \Phi$ for all $g \in G$, and
(ii) for each $g, h \in G$ and $i \in I$ there exists an element $\lambda_{i, g, h} \in \mathbb{K}^{\sharp}$ with

$$
g_{i} h_{i g}=(g h)_{i} \lambda_{i, g, h} .
$$

(b) A G-invariant tensor decomposition as in (a) is called strict if $\lambda_{i, g, h}=1$ for all i, g, h, that is if

$$
g_{i} h_{i g}=(g h)_{i}
$$

for all $g, h \in G$ and $i \in I$.
(c) A G-invariant tensor decomposition is called regular if the action of G on I is trivial.
(d) A G-invariant tensor decomposition is called \mathbb{K}-linear if $G \sigma=1$, that is if G acts \mathbb{K}-linearly on V.
(e) A G-invariant tensor decomposition is ordinary if its \mathbb{K}-linear, regular and strict.

Abusing notation we will often say that $\Phi: \bigotimes_{i \in I}^{\mathbb{K}} V_{i} \rightarrow V$ is a G-invariant tensor decomposition of V, assuming that the remaining parts of a tensor decomposition are just as in 3.7a).

Definition 3.8 Let G be a group, \mathbb{K} a field, and $\sigma: G \rightarrow \operatorname{Aut}(\mathbb{K})$ a homomorphism. A projective σ-linear $\mathbb{K} G$-module is a \mathbb{K}-space V together with a map $V \times G \rightarrow V,(v, g) \mapsto v g$, such that the following hold:
(i) For each $g \in G$, the map $V \rightarrow V, v \mapsto v g$, is $g \sigma$-linear.
(ii) For each $g, h \in G$ there exists $\lambda_{g, h} \in \mathbb{K}^{\sharp}$ with

$$
v . g h=v g h \lambda_{g, h}
$$

for all $v \in V$.
In the case $\sigma=1$ (that is $g \sigma=\operatorname{id}_{\mathbb{K}}$ for all $g \in G$) a σ-linear projective $\mathbb{K} G$-module is called projective $\mathbb{K} G$-module.

Lemma 3.9 Let G be a group, \mathbb{F} a field, V an $\mathbb{F} G$-module, and

$$
\mathcal{T}=\left(\Phi, \mathbb{K},\left(V_{i}, i \in I\right), \sigma,\left(g_{i} ; g \in G, i \in I\right)\right)
$$

a G-invariant tensor decomposition. Then the following hold:
(a) G acts on $\bigcup_{i \in I} \mathcal{P}_{\mathbb{K}}\left(V_{i}\right)$ via $v_{i} \mathbb{K} g=v_{i} g_{i} \mathbb{K}$ for all $v_{i} \in V_{i}^{\sharp}$ and $g \in G$.
(b) For each $i \in I, V_{i}$ is a projective σ-linear $\mathbb{K} C_{G}(i)$-module.
(c) For each $g \in G$ and $i \in I, g_{i}: V_{i} \rightarrow V_{i g}$ is a σg-linear isomorphism.

Proof: This follows immediately from the definition of a G-invariant tensor decomposition.

4 Strict Tensor Decompositions

Throughout this section we assume the following hypothesis:
Hypothesis 4.1 Let G be a group, \mathbb{F} a field, V an $\mathbb{F} G$-module, and

$$
\mathcal{T}=\left(\Phi, \mathbb{K},\left(V_{i}, i \in I\right), \sigma,\left(g_{i} ; g \in G, i \in I\right)\right)
$$

a strict G-invariant tensor decomposition of V with $\Phi=\mathrm{id}_{V}$, that is $V=\otimes_{i \in I}^{\mathbb{K}} V_{i}$ and $\Phi=\mathrm{id}_{\otimes V_{i}}$.
Lemma 4.2 Assume Hypothesis 4.1.
(a) G acts on $\bigcup_{i \in I} V_{i}$ via $v g:=v g_{i}$ for all $g \in G$ and $v \in \bigcup_{i \in I} V_{i}$, where i is the unique element in I with $v \in V_{i}$.
(b) Let $i \in I$. Then $C_{G}(i)$ acts σ-semilinear on V_{i}.

Proof: This follows immediately from the definition of a strict tensor decomposition.

Notation 4.3 By 4.2 (a) G acts on $\bigcup_{i \in I} V_{i}$ and we can use the usual notation $C_{W}(B)$ and $C_{B}(W)$ where $W \subseteq \bigcup_{i \in I} V_{i}$ and $B \subseteq G$. Note that if B fixes $v \in V_{i}$, then B also fixes i. (This is even true for $v=0$, since we assumed the V_{i} 's to be disjoint and so have distinct zero vectors.)
$B y$ 4.2 (b), V_{j} is a $\mathbb{F} C_{G}(i)$-module, and we can use the usual notation $\left[V_{j}, B\right]$ for $B \subseteq C_{G}(i)$.
Lemma 4.4 Assume Hypothesis 4.1. For $i \in I$ let U_{i} be a non-trivial \mathbb{F}-subspace of V_{i}. Suppose that there exist $r \in I$ and $B \leq G$ such that

$$
B \not \leq C_{G}(r) \text { and }\left\{\otimes u_{i} \mid u_{i} \in U_{i}, i \in I\right\} \subseteq C_{V}(B)
$$

Then $\operatorname{dim}_{\mathbb{K}}\left\langle U_{r}\right\rangle_{\mathbb{K}}=1$.

Proof: Pick $0 \neq u_{i} \in U_{i}, i \in I$ and $a \in B$ with $r a \neq r$. Then

$$
\otimes u_{i}=\left(\otimes u_{i}\right) a=\otimes u_{i} a_{i}
$$

and so $u_{r} a_{r}=u_{r a} k$ for some $k \in \mathbb{K}^{\sharp}$. Fixing $u_{r a}$ and allowing u_{r} to run through the elements of U_{r}^{\sharp} shows that $U_{r} a_{r} \leq u_{r a} \mathbb{K}$. Thus $\left\langle U_{r} a_{r}\right\rangle_{\mathbb{K}}=u_{r a} \mathbb{K}$ is 1-dimensional \mathbb{K}-space. Since a_{r} is a \mathbb{K}-semilinear isomorphism, also $\left\langle U_{r}\right\rangle_{\mathbb{K}}$ is a 1-dimensional \mathbb{K}-space.

Lemma 4.5 Assume Hypothesis 4.1. Suppose that char $\mathbb{K}=p>0$ and that G is a finite p-group. Let $j \in I$ with $\operatorname{dim}_{\mathbb{K}} V_{j} \geq 2$. Then $C_{G}(V) \leq C_{G}\left(V_{j}\right)$.

Proof: Pick $h \in C_{G}(V)$ and for $i \in I$ pick $0 \neq v_{i} \in V_{i}$. Then

$$
\otimes v_{i}=\left(\otimes v_{i}\right) h=\otimes v_{i} h_{i}
$$

so $v_{j} h_{j} \in v_{j h} \mathbb{K}$.
If $j \neq j h$, then $V_{j} h_{j} \leq v_{j h} \mathbb{K}$, and since h_{j} is a \mathbb{K}-semilinear isomorphism, $\operatorname{dim}_{\mathbb{K}} V_{j}=1$, a contradiction. Hence $j=j h$ and by $3.1 h$ acts via scalar multiplication by a fixed scalar $\lambda \in \mathbb{K}$ on V_{j}. On the other hand, since char $\mathbb{K}=p$ and G is a finite p-group, $C_{V_{i}}(G) \neq 0$ and so $\lambda=1$.

Lemma 4.6 Assume Hypothesis 4.1. Suppose \mathcal{T} is ordinary and that $|I| \geq 2$. Suppose that there exists $r \in I$ such that G acts non-trivially on $\mathcal{P}_{\mathbb{K}}\left(V_{r}\right)$. Then

$$
\operatorname{dim}_{\mathbb{K}} \bigotimes_{r \neq i \in I}^{\mathbb{K}} V_{i} \leq \operatorname{dim}_{\mathbb{K}} V / C_{V}(G)
$$

Proof: Put $W:=V^{r}=\bigotimes_{r \neq i \in I}^{\mathbb{K}} V_{i}$. Then V and $V_{r} \otimes_{\mathbb{K}} W$ are isomorphic $\mathbb{K} G$-modules.
Since G acts non-trivially on $\mathcal{P}_{\mathbb{K}}\left(V_{r}\right)$ there exist $a \in G$ and $v \in V_{r}$ with $v \mathbb{K} \neq v a \mathbb{K}$. Hence

$$
(v \otimes W) a \cap v \otimes W=v a_{r} \otimes W \cap v \otimes W=0
$$

In particular, $v \otimes W \cap C_{V_{r} \otimes W}(a)=0$ and

$$
\operatorname{dim} V / C_{V}(G) \geq \operatorname{dim} V / C_{V}(a) \geq \operatorname{dim} v \otimes W=\operatorname{dim} W
$$

Lemma 4.7 Assume Hypothesis 4.1. Suppose G is transitive on I and $|I| \geq 2$. Fix $r \in I$ and let X_{r} be a proper $C_{G}(r)$-invariant \mathbb{K}-subspace of V_{r}. For $h \in G$ put $X_{r h}:=X_{r} h$ and

$$
X:=\bigotimes_{I}^{\mathbb{K}} X_{i}, \quad U_{i}:=V_{i} \otimes \bigotimes_{j \neq i} X_{j}, \quad U:=\sum_{i \in I} U_{i}, \quad \Delta:=\left\{U_{i} / X \mid i \in I\right\}
$$

Then
(a) U, X and U / X are semi-linear $\mathbb{K} G$-modules,
(b) Δ is a system of imprimitivity for G in U / X,
(c) G acts transitively on Δ.

Proof: Observe that $X_{r h}=X_{r g}$ for $g \in G_{r} h$ since X_{r} is $C_{G}(r)$-invariant. So $X_{r h}$ is well-defined. For $h \in G$

$$
X h=\left(\bigotimes X_{i}\right) h=\bigotimes X_{i h}=\bigotimes X_{i}=X
$$

and similarly

$$
U_{i} h=V_{i} h_{i} \otimes \bigotimes_{j \neq i} X_{j} h_{j}=V_{i h} \otimes \bigotimes_{j \neq i} X_{j h}=V_{i h} \otimes \bigotimes_{k \neq i h} X_{k}=U_{i h}
$$

This shows that X and U are G-invariant, so (a) holds, and that G acts on Δ, so (c) holds.
Observe that $\sum_{j \neq i} U_{j} \leq X_{i} \otimes V^{i}$ and that $\left(X_{i} \otimes V^{i}\right) \cap U_{i}=X$. Thus also $U_{i} \cap \sum_{j \neq i} U_{j}=X$, and (b) holds.

We also need the dual version of the preceding lemma:
Lemma 4.8 Assume Hypothesis 4.1. Suppose G is transitive on I and $|I| \geq 2$. Fix $r \in I$ and let X_{r} be a proper $C_{G}(r)$-invariant \mathbb{K}-subspace of V_{r}. For $h \in G$ put $X_{r h}:=X_{r} h$ and

$$
\tilde{U}:=\sum_{i \neq j \in I} V^{\{i, j\}} \otimes X_{i} \otimes X_{j}, \quad \tilde{U}_{i}=\left(V^{i} \otimes X_{i}\right)+\tilde{U}, \quad \tilde{X}=\sum_{i \in I} U_{i}, \quad \tilde{\Delta}:=\left\{\tilde{U}_{i} / \tilde{X} \mid i \in I\right\}
$$

Then
(a) \tilde{U}, \tilde{X} and \tilde{X} / \tilde{U} are semi-linear $\mathbb{K} G$-modules,
(b) $\tilde{\Delta}$ is a system of imprimitivity for G in \tilde{X} / \tilde{U},
(c) G acts transitively on $\tilde{\Delta}$.

Proof: This can be proved similarly to 4.7 or by applying 4.7 to the dual of V.

Lemma 4.9 Assume Hypothesis 4.1 and in addition:
(i) $|I|=2$.
(ii) \mathcal{T} is ordinary.
(iii) G acts quadratically on V and $V_{i} \neq C_{V_{i}}(G) \neq 0$ for every $i \in I$.

Then the following hold:
(a) For all $i \in I, G$ acts quadratically on V_{i} and $C_{G}(V)=C_{G}\left(V_{i}\right)$.
(b) There exists a homomorphism $\lambda: G \rightarrow \mathbb{K}$ such that G acts λ-dependently on each $V_{i}, i \in I$.

Proof: Let $I=\{i, j\}$. Note that

$$
\left[V_{i}, G\right] \otimes C_{V_{j}}(G)=\left[V_{i} \otimes C_{V_{j}}(G), G\right] \leq C_{V}(G)
$$

so $\left[V_{i}, G, G\right] \otimes C_{V_{i}}(G) \leq[V, G, G]=0$ and thus $\left[V_{i}, G, G\right]=0$. Hence (a) holds.
Let $a, b \in G \backslash C_{G}\left(\bar{V}_{j}\right)$ and $x \in V_{i}$. Then $V_{j} \neq C_{V_{j}}(a) \cup C_{V_{j}}(b)$ and so there exists $y \in V_{j}$ with $[y, a] \neq 0$ and $[y, b] \neq 0$. Then

$$
\begin{equation*}
[x \otimes y, a]=[x, a] \otimes[y, a]+x \otimes[y, a]+[x, a] \otimes y \tag{1}
\end{equation*}
$$

Taking commutators with b and using that G acts quadratically on V_{i}, V_{j} and V we get

$$
\begin{equation*}
0=[x \otimes y, a, b]=[x, b] \otimes[y, a]+[x, a] \otimes[y, b] \tag{2}
\end{equation*}
$$

By the choice of $y,[y, a] \neq 0 \neq[y, b]$ and so (2) implies $C_{V_{i}}(a)=C_{V_{i}}(b)=C_{V_{i}}(G)$ and that $[x, a] \mathbb{K}=[x, b] \mathbb{K}$. Now 3.3 implies that G acts λ_{i}-dependently with respect to α_{i} on V_{i} for some homomorphism $\lambda_{i}: G \rightarrow(\mathbb{K},+)$ and some $\alpha_{i} \in \operatorname{End}_{\mathbb{K}}\left(V_{i}\right)$ with $\alpha_{i}^{2}=0$. By symmetry the same holds for j in place of i.

Recall that $k_{j}:=a \lambda_{j} \neq 0$ since $[y, a] \neq 0$. Thus, after substituting α_{j} by $k_{j} \alpha_{j}$ and λ_{j} by $k_{j}^{-1} \lambda_{j}: g \mapsto k_{j}^{-1} g \lambda_{j}$, we may assume that $a \lambda_{j}=1$ and with a similar argument that $a \lambda_{i}=1$.

Substitution into (2) yields, $b \lambda_{j}=-b \lambda_{i}$. In the case $a=b$ we have $1=-1$ and so char $\mathbb{K}=2$. It follows that $\lambda_{j}=\lambda_{i}$ and the lemma is proved.

Lemma 4.10 Assume Hypothesis 4.1 and in addition:
(i) \mathcal{T} is proper and \mathbb{K}-linear.
(ii) G acts transitively on I.
(iii) $|G|>2$ and V is a faithful quadratic $\mathbb{K} G$-module.

Then char $\mathbb{F}=2,|I|=2$ and for $i \in I, \operatorname{dim}_{\mathbb{K}} V_{i}=2$, and $\left[V_{i}, C_{G}(I)\right]=C_{V_{i}}\left(C_{G}(I)\right)$ is a 1 -dimensional \mathbb{K}-subspace of V_{i}.

Proof: Recall from 2.7 C) that G is an elementary abelian char \mathbb{F}-group. Put $B:=C_{G}(I)$ and fix $r \in I$. Then $B=C_{G}(r)$ since G is abelian and transitive on I.

Let X_{r} be an 1-dimensional $\mathbb{K} B$-subspace of V_{r}. We apply 4.7 with the notation given there. Then Δ is a system of imprimitivity for G in U / X, so we can apply 2.13 . Since G acts transitively on I and quadratically on U / X, we are in case (3) of 2.13 , so char $\mathbb{F}=2,|I|=2$, say $I=\{1,2\}$, and $\left[U_{i}, B\right] \leq X$. As $|G|>2$ we also get that $B \neq 1$. Since the $\mathbb{K} B$-modules U_{j} / X and V_{j} / X_{j} are isomorphic, $\left[V_{j}, B\right]=X_{j}$.

Pick $1 \neq b \in B$ and $a \in G \backslash B$, and put $C_{1}:=C_{V_{1}}(b)$. Then by the quadratic action of G,

$$
\left[C_{1} \otimes V_{2}, b\right]=C_{1} \otimes X_{2} \leq C_{V}(a)
$$

Hence 4.4 shows that $\operatorname{dim}_{\mathbb{K}} C_{1}=\operatorname{dim}_{\mathbb{K}} X_{2}=1$, so also $\operatorname{dim}_{\mathbb{K}} X_{1}=1$. The quadratic action of b on V_{1} gives $C_{1}=X_{1}$ and $\operatorname{dim}_{\mathbb{K}} V_{1}=2$.

5 Tensor Decompositions of Homogeneous Modules

Lemma 5.1 Let \mathbb{F} be finite field, H a group and V a finite dimensional simple $\mathbb{F} H$-module. Recall that V is called absolutely simple if $V \otimes_{\mathbb{F}} \mathbb{E}$ is an simple $\mathbb{E} H$ module for all field extensions $\mathbb{F} \leq \mathbb{E}$.
(a) V is absolutely simple iff $\mathbb{F}=\operatorname{End}_{\mathbb{F} H}(V)$.
(b) Put $\mathbb{K}:=\operatorname{End}_{\mathbb{F} H}(V)$. Then \mathbb{K} is a field and V is an absolutely simple $\mathbb{K} H$-module.

Proof: (a) This is [As, 25.8].
(b) By Schur's Lemma \mathbb{K} is a division ring. As $\operatorname{dim}_{\mathbb{F}} V$ is finite, also $\operatorname{dim}_{\mathbb{F}} \mathbb{K}$ is finite. Now the finiteness of \mathbb{F} shows that \mathbb{K} is finite, so by Wedderburn's Theorem \mathbb{K} is a finite field.

Since \mathbb{F} and \mathbb{K} are commutative we have $\mathbb{F} \leq \mathbb{K}$ and $\mathbb{K} \leq \operatorname{End}_{\mathbb{K} H}(V)$, so $\mathbb{K} \leq \operatorname{End}_{\mathbb{K} H}(V) \leq$ $\operatorname{End}_{\mathbb{F} H}(V)=\mathbb{K}$. Hence by (a), V is absolutely simple.

Lemma 5.2 Let \mathbb{F} be a finite field, G a group, and V a finite dimensional $\mathbb{F} G$-module. Let D and E be subgroups of G such that $[D, E]=1$. Suppose that V is a homogeneous $\mathbb{F} D$-module and X is a simple $\mathbb{F} D$-submodule of V. Then the following hold, where $Y:=\operatorname{Hom}_{\mathbb{F} D}(X, V), \mathbb{K}:=\operatorname{End}_{\mathbb{F} D}(X)$ and $\mathbb{E}:=\mathrm{Z}\left(\operatorname{End}_{\mathbb{F} D}(V)\right)$:
(a) \mathbb{K} is a finite field and Y is a $\mathbb{K} E$-module via

$$
\alpha k: x \mapsto x k \alpha \text { and } \alpha e: x \mapsto x \alpha e \quad(x \in X, \alpha \in Y, k \in \mathbb{K}, e \in E) .
$$

(b) X is an absolutely simple $\mathbb{K} D$-module.
(c) There exists an $\mathbb{F}(D \times E)$-module isomorphism $\Phi: X \otimes_{\mathbb{K}} Y \rightarrow V$ with $(x \otimes \alpha) \Phi=x \alpha$ for all $x \in X$ and $\alpha \in Y$.
(d) For \mathbb{K}-subspaces $Z \leq Y$ the map $Z \mapsto(X \otimes Z) \Phi$ is an E-invariant bijection between the \mathbb{K} subspaces Z of Y and the $\mathbb{F} D$-submodules of V with inverse $U \mapsto \operatorname{Hom}_{\mathbb{F} D}(X, U), U$ an $\mathbb{F} D$ subspace of V.
(e) V is a simple $\mathbb{F} D E$-module iff Y is a simple $\mathbb{K} E$-module.
(f) $\operatorname{End}_{\mathbb{F} D}(V) \cong \operatorname{End}_{\mathbb{K}}(Y)$
(g) $\mathbb{K} \cong \mathbb{E}, X$ is \mathbb{E}-invariant and $\mathbb{K}=\left\{\left.e\right|_{X} \mid e \in \mathbb{E}\right\}$. In particular, X is an absolutely simple $\mathbb{E} D$-module.

Proof: By 5.1 b), \mathbb{K} is a field and X is an absolutely simple $\mathbb{K} F$-module. Statements (a)- da now follows from [As, 27.14].
(e): This is a direct consequence of (d) since a \mathbb{K}-subspace of Y is E-invariant if and only if the corresponding $\mathbb{F} D$-submodule of V is E-invariant.
(f): Let $x \in X, \alpha \in Y$ and $\beta \in \operatorname{End}_{\mathbb{F} D}(V)$. Then the map

$$
\alpha \beta: x \mapsto x \alpha \beta
$$

is in Y, and Y is an $\operatorname{End}_{\mathbb{F} D}(V)$-module. Moreover, for $k \in \mathbb{K}$

$$
x . \alpha \beta k=x k . \alpha \beta=x k \alpha \beta=x . \alpha k . \beta=x . \alpha k \beta
$$

so $\alpha \beta k=\alpha k \beta$ and $\operatorname{End}_{\mathbb{F} D}(V)$ acts \mathbb{K}-linearly on Y. Hence we obtain a ring homomorphism τ : $\operatorname{End}_{\mathbb{F} D}(V) \rightarrow \operatorname{End}_{\mathbb{K}} Y$.

Observe that $X \otimes_{\mathbb{K}} Y$ is an $\operatorname{End}_{\mathbb{K}}(Y)$-module via

$$
(x \otimes \alpha) \delta=x \otimes \alpha \delta \quad\left(x \in X, \alpha \in Y, \delta \in \operatorname{End}_{\mathbb{K}}(Y)\right)
$$

So by (c) V is an $\operatorname{End}_{\mathbb{K}}(Y)$-module with $(x \otimes \alpha) \Phi \delta:=(x \otimes \alpha) \delta \Phi$. Since Φ is an $\mathbb{F}(D \times E)$-module homomorphism this action of $\operatorname{End}_{\mathbb{K}}(Y)$ on V is $\mathbb{F} D$-linear. Hence, we obtain a ring homomorphism $\operatorname{End}_{\mathbb{K}}(Y) \rightarrow \operatorname{End}_{\mathbb{F} D}(V)$ which is inverse to τ. Thus ((\mathbb{f}) holds.
(g) Let $e \in \mathbb{E}$. By (f) $\mathbb{E} \tau=\mathrm{Z}\left(\operatorname{End}_{\mathbb{K}}(Y)\right)=\left\{\operatorname{id}_{Y} k \mid k \in \mathbb{K}\right\}$. So there exists $k \in \mathbb{K}$ with $\alpha . e \tau=\alpha k$ for all $\alpha \in Y$. Hence for all $x \in X$

$$
x \alpha k=x . \alpha k=x(\alpha . e \tau)=x \alpha e .
$$

For $\alpha=\operatorname{id}_{X}$ this gives $x k=x e$. Together with (b) we have (g).

Lemma 5.3 Let \mathbb{F} be a finite field, G a group, and V a finite dimensional simple $\mathbb{F} G$-module. Let X a simple $\mathbb{F}_{p} G$-submodule of V and put $\mathbb{D}:=\operatorname{End}_{\mathbb{F} G}(V)$ and $\mathbb{E}=: \mathrm{Z}\left(\operatorname{End}_{\mathbb{F}_{p} G}(V)\right)$. Then $\mathbb{E} \leq \mathbb{D}$ is a field extension and $V \cong X \otimes_{\mathbb{E}} \mathbb{D}$ as an $\mathbb{D} G$-module.

Proof: \quad Since V is a simple $\mathbb{F} G$-module, $V=\sum_{f \in \mathbb{F}} W f$. Thus V is homogeneous and by 5.2 g) \mathbb{E} is a field and X is an absolutely simple $\mathbb{E} G$-module. Note that $\mathbb{E} \subseteq \operatorname{End}_{\mathbb{F}_{p} G}(V)$ and so $\mathbb{E} \subseteq$ $\operatorname{End}_{\mathbb{F} G}(V)=\mathbb{D}$. Thus by the definition of absolutely simple, $X \otimes_{\mathbb{E}} \mathbb{D}$ is a simple $\mathbb{D} G$-module.

By the universal property of the tensor product there exists a unique \mathbb{E}-linear map $\alpha: X \otimes_{\mathbb{E}} \mathbb{D} \rightarrow V$ with $(x \otimes d) \alpha=x d$ for all $x \in X, d \in \mathbb{D}$. Clearly this map is a $\mathbb{D} G$-homomorphism. Since both $X \otimes_{\mathbb{E}} \mathbb{D}$ and V are simple $\mathbb{D} G$-modules, α is an isomorphism.

Lemma 5.4 Let \mathbb{F} be a finite field, G a group, and V a finite dimensional simple $\mathbb{F} G$-module. Let $\left(D_{i}, i \in I\right)$ be a finite family of subgroups of G with $G=\left\langle D_{i} \mid i \in I\right\rangle$ and $\left[D_{i}, D_{j}\right]=1$ for all $i \neq j \in I$. Put $\mathbb{K}:=\operatorname{End}_{\mathbb{F} G}(V)$. Then the following hold:
(a) For each $i \in I$ there exists an absolutely simple $\mathbb{K} D_{i}$-module V_{i} isomorphic to a $\mathbb{K} D_{i}$-submodule of V, and there exists a $\mathbb{K}\left(X_{i \in I} D_{i}\right)$-isomorphism $\Phi: \otimes_{\mathbb{K}}^{I} V_{i} \rightarrow V$ (where D_{i} acts trivially on V_{j} for $i \neq j$).
(b) For $0 \neq v \in V$ the following two statements are equivalent:

1. For all $i \in I, v \mathbb{K} D_{i}$ is a simple $\mathbb{K} D_{i}$-submodule of V.
2. There exist $0 \neq v_{i} \in V_{i}$ with $v=\left(\otimes v_{i}\right) \Phi$.

Proof: By $5.1 V$ is an absolutely simple $\mathbb{K} G$-module and $\mathbb{K}=\operatorname{End}_{\mathbb{K}}(V)$. By induction on $|I|$ we may assume that $|I|=2$, say $I=\{1,2\}$. Let V_{1} be a simple $\mathbb{K} D_{1}$-submodule of V and put $V_{2}:=\operatorname{Hom}_{\mathbb{K} D_{1}}\left(V_{1}, V\right)$.
(a): Put $\mathbb{E}:=\operatorname{End}_{\mathbb{K} D_{1}}\left(V_{1}\right)$ and note that \mathbb{K} embeds into \mathbb{E}. By 5.2 there exists a $\mathbb{K}\left(D_{1} \times D_{2}\right)$ isomorphism

$$
\Phi: V_{1} \otimes_{\mathbb{E}} V_{2} \rightarrow V \text { with }(w \otimes \alpha) \Phi=w \alpha \quad\left(w \in V_{1}, \alpha \in V_{2}\right)
$$

It follows that $\operatorname{End}_{\mathbb{K}\left(D_{1} \times D_{2}\right)}\left(V_{1} \otimes_{\mathbb{E}} V_{2}\right) \cong \operatorname{End}_{\mathbb{K} G}(V)=\mathbb{K}$. Since \mathbb{E} embeds into $\operatorname{End}_{\mathbb{K}\left(D_{1} \times D_{2}\right)}\left(V_{1} \otimes_{\mathbb{E}}\right.$ V_{2}), we get conclude that \mathbb{K} is isomorphic to \mathbb{E} and V_{1} is an absolutely simple $\mathbb{K} \mathbb{D}_{1}$-module. By symmetry any simple $\mathbb{K} D_{2}$ submodule of V is absolutely simple.

Let $0 \neq v_{1} \in V_{1}$. Then, again by $5.2, V_{2}$ is isomorphic to the $\mathbb{K} D_{2}$-submodule $\left(v_{1} \otimes V_{2}\right) \Phi$ of V, and V_{2} is a simple $\mathbb{K} D_{2}$-module since V is a simple $\mathbb{K} G$-module. It follows that $\left(v_{1} \otimes V_{2}\right) \Phi$ and so also V_{2} is an absolutely simple $\mathbb{K} D_{2}$-module.
(b): Let $0 \neq v \in V$. Suppose first that b:1) holds. Since V is a homogeneous $\mathbb{K} D_{1}$-module, there exists a $\mathbb{K} D_{1}$-isomorphism $\alpha \in V_{2}$ such that $V_{1} \alpha=v \mathbb{K} D_{1}$. Put $v_{1}=v \alpha^{-1}$. Then $\left(v_{1} \otimes \alpha\right) \Phi=v$.

Suppose next that (b:2) holds. Then $v \mathbb{K} D_{1}=\left(v_{1} \otimes v_{2}\right) \Phi \mathbb{K} D_{1}=\left(V_{1} \otimes v_{2}\right) \Phi \cong V_{1}$ as $\mathbb{K} D_{1}$-module. By symmetry $v \mathbb{K} D_{2} \cong V_{2}$ as $\mathbb{K} D_{2}$-module. Thus ($\mathrm{b}: 1$ holds.

Proposition 5.5 Let \mathbb{F} be a finite field of characteristic p, G a finite group, V a finite dimensional $\mathbb{F} G$-module, and I a finite G-set. Further let T be a p-subgroup of G and $\left(D_{i}, i \in I\right)$ be a family of subgroups of G. Put $D:=\left\langle D_{i} \mid i \in I\right\rangle$. Suppose that
(i) $D_{i}^{h}=D_{i h}$ and $\left[D_{i}, D_{j}\right]=1$ for all $i \neq j \in I, h \in H$, and
(ii) V is homogeneous as an $\mathbb{F} D$-module.

Put $\mathbb{K}:=\mathrm{Z}\left(\operatorname{End}_{\mathbb{F} D}(V)\right), J:=I$ if V is a simple $\mathbb{F} D$-module and otherwise $J:=I \uplus\{0\}$, where J is viewed as a G-set with G fixing 0 . Then there exist $\mathbb{K} D_{i}$-modules $V_{i}, i \in I$, a finite dimensional \mathbb{K}-space V_{0} and a G-invariant tensor decomposition $\mathcal{T}=\left(\Phi, \mathbb{K},\left(V_{j}, j \in J\right), \sigma,\left(g_{j}, j \in J, g \in G\right)\right)$ of V such that the following hold:
(a) V_{j} is an absolutely simple $\mathbb{K} D_{j}$-module for $j \neq 0$, and V_{0} is a trivial $\mathbb{K} D$-module. Moreover, every simple $\mathbb{K} D_{j}$-submodule of V is isomorphic to V_{j} as a $\mathbb{K} D_{j}$-module.
(b) $\Phi: \otimes_{\mathbb{K}}^{J} V_{j} \rightarrow V$ is a $\mathbb{K}\left(X_{i \in I} D_{i}\right)$-module isomorphism (where D_{i} acts trivially on V_{j} for $\left.j \neq i\right)$.
(c) \mathcal{T} restricted to T is strict.

Proof: To simplify notation we assume without loss that V is a faithful $\mathbb{F} G$-module and that G is subgroup of $\mathrm{GL}_{\mathbb{F}}(V)$. Let $D_{0}:=\mathrm{GL}_{\mathbb{F} D}(V)$, and for $j \in J$ let R_{j} be the subring of $\operatorname{End}_{\mathbb{F}}(V)$ spanned by \mathbb{K} and D_{j}. By $5.2(\mathrm{f})$, ed (with D_{0} in place of E) V is a simple $\mathbb{F} D D_{0}$-module and so V is an absolutely simple $\mathbb{K} D D_{0}$-module. Thus 5.4 implies:
$\mathbf{1}^{\circ} \quad$ There exist absolutely simple $\mathbb{K} D_{j}$-modules V_{j} and a $\mathbb{K}\left(X_{i \in J} D_{j}\right)$-isomorphism

$$
\Phi: \otimes_{\mathbb{K}}^{J} V_{j} \rightarrow V
$$

Let α_{j} be canonical ring homomorphism from $\mathbb{K} D_{j}$ onto R_{j}. From $\left(\otimes v_{j} d_{j}\right) \Phi=\left(\otimes v_{j}\right) \Phi . \prod d_{j}$ for all $v_{j} \in V_{j}, d_{j} \in D_{j}$ we conclude that $\left(\otimes v_{j} a_{j}\right) \Phi=\left(\otimes v_{j}\right) \Phi . \prod a_{j} \alpha_{j}$ for all $v_{j} \in V_{j}, a_{j} \in \mathbb{K} D_{j}$. This implies ker $\alpha_{j}=\operatorname{Ann}_{\mathbb{K}_{D_{j}}}\left(V_{j}\right)$ and we conclude that

$$
\begin{aligned}
& \mathbf{2}^{\circ} V_{j} \text { can be viewed as simple } R_{j} \text {-module such that }\left(\otimes v_{j} r_{j}\right) \Phi=\left(\otimes v_{j}\right) \Phi . \prod r_{j} \text { for all } v_{j} \in V_{j}, r_{j} \in \\
& R_{j} .
\end{aligned}
$$

Fix $0 \neq w_{j} \in V_{j}, j \in J$. Let $g \in G$ and $j \in J$. By 5.4b, $w R_{j}$ is a simple R_{j}-module. Since g normalizes \mathbb{K} and $D_{j}^{g}=D_{j g}$ we have $R_{j}^{g}=R_{j g}$ and so $w R_{j} g$ is a simple $R_{j g}$-module. Also $w R_{j} g=w g R_{j g}$ and so for $j \in J, w g R_{j g}$ is a simple $R_{j g}$-module. Thus by 5.4 b b there exist $0 \neq u_{j} \in V_{j}, j \in J$, with $w g=\left(\otimes u_{j}\right) \Phi$. The number of elements of the form $\left(\otimes v_{j}\right) \Phi, 0 \neq v_{j} \in V_{j}$, is not divisible by p and so we can and do choose the w_{j} 's such that $w:=\left(\otimes w_{j}\right) \Phi$ is centralized by T. Hence we may also choose $u_{j}=w_{j}$ if $g \in T$.

Let $v_{j} \in V_{j}$. Since V_{j} is a simple R_{j}-module there exists $r_{j} \in R_{j}$ with $v_{j}=w_{j} r_{j}$. Next we show:
$\mathbf{3}^{\circ} \quad$ Let $i \in J$ and $r_{i}, s_{i} \in R_{i}$ with $w_{i} r_{i}=w_{i} s_{i}$. Then $u_{i g} r_{i}^{g}=u_{i g} s_{i}^{g}$.
Put $t_{i}=r_{i}-s_{i}$. Then $w_{i} t_{i}=0$ and by $2^{\circ} w t_{i}=0$. Thus $\left(\otimes u_{j}\right) \Phi t_{i}^{g}=w g t_{i}^{g}=w t_{i} g=0$. Since $t_{i}^{g} \in R_{i g}$ we conclude from 2° that $u_{i g} t_{i}^{g}=0$ and so $u_{i g} r_{i}^{g}=u_{i g} s_{i}^{g}$.

We now define

$$
g_{j}: V_{j} \rightarrow V_{j g} \text { with } v_{j} \rightarrow u_{j g} r_{j}^{g}, \text { where } r_{j} \in R_{j} \text { and } v_{j}=w_{j} r_{j}
$$

Using 33° we get

Clearly g_{j} is a homomorphism between the additive group V_{j} and $V_{j g}$. Next we define a homomorphism $\sigma: G \rightarrow \operatorname{Aut}(\mathbb{K})$. Observe that for fixed $g \in G$,

$$
g \sigma: \mathbb{K} \rightarrow \mathbb{K} \text { with } k \mapsto k^{g}
$$

is an element of $\operatorname{Aut}_{\mathbb{F}}(\mathbb{K})$ and so $g \mapsto g \sigma$ defines the desired homomorphism σ.
Let $k \in \mathbb{K}$. Since $v_{j} k=w_{j} r_{j} k=w_{j} . r_{j} k$ and $r_{j} k \in R_{j}$, the definition of g_{j} shows that

$$
v_{j} k g_{j}=u_{j g}\left(r_{j} k\right)^{g}=u_{j g} r_{j}^{g} k^{g}=v_{j} g_{j}(k . g \sigma) .
$$

Hence g_{j} is $g \sigma$-linear.
To verify (3.7【a) we compute

$$
\begin{align*}
\left(\otimes v_{j} g_{j}\right) \Phi & =\left(\otimes u_{j g} r_{j}^{g}\right) \Phi=\left(\otimes u_{j}\right) \Phi \prod r_{j}^{g}=w g\left(\prod r_{j}\right)^{g}=w\left(\prod r_{j}\right) g \tag{*}\\
& =\left(\otimes w_{j}\right) \Phi\left(\prod r_{j}\right) g=\left(\otimes w_{j} r_{j}\right) \Phi g=\left(\otimes v_{j}\right) \Phi g
\end{align*}
$$

This is 3.7 a).
Let $g, h \in G$ and put $v:=\otimes v_{j}$. Note that $v \Phi . g h=v \Phi g h$ and so using $(*)$ three times

$$
\left(\otimes v_{j}(g h)_{j}\right) \Phi=v \Phi . g h=v \Phi g h=\left(\otimes v_{j} g_{j}\right) \Phi h=\left(\otimes v_{j} g_{j} h_{j g}\right) \Phi .
$$

Since Φ is bijective, this implies:

$$
\otimes v_{j}(g h)_{j}=\otimes v_{j} g_{j} h_{j g}
$$

Thus $v_{j}(g h)_{j} \mathbb{K}=v_{j} g_{j} h_{j g} \mathbb{K}$. Fix j, g and h and put $\delta=g_{j} h_{j g}(g h)_{j}^{-1}$. Then $\delta: V_{j} \rightarrow V_{j}$ is \mathbb{K}-linear and $v_{j} \delta \mathbb{K}=v_{j} \mathbb{K}$ for all $v_{j} \in V_{j}$. If $\operatorname{dim}_{\mathbb{K}} V_{j} \geq 2$ we conclude from 3.1 δ acts as a scalar μ on V_{j}. Obviously the same is true if $\operatorname{dim}_{\mathbb{K}} V_{j}=1$. Thus $g_{j} h_{j g}=\mu(g h)_{j}=(g h)_{j} \lambda$ where $\lambda=\mu$.gh . Hence 3.7 Vb holds.

Therefore $\mathcal{T}=\left(\Phi, \mathbb{K},\left(V_{j}, j \in J\right), \sigma,\left(g_{j} ; g \in G, j \in J\right)\right)$ is a G-invariant tensor decomposition of V.

Let $g \in T$. Recall that we chose $w_{j}=u_{j}$ for such g. Hence for $v_{j}=w_{j}$ we can choose $r_{j}=1$ and so $w_{j} g_{j}=w_{j g}$. For $a, b \in T$ we conclude

$$
w_{j} a_{j} b_{j a}=w_{j a} b_{j a}=w_{j a b}=w_{j}(a b)_{j},
$$

and $\lambda_{j, a, b}=1$. Thus (C) holds.
We remark that 5.5 ($\mathbb{C})$ maybe false if \mathbb{K} is infinite. Indeed, let \mathbb{F} be a finite field of characteristic 2 and $\mathbb{E}=\mathbb{F}(t)$ with t transcendental over \mathbb{E}. Put $\mathbb{K}=\mathbb{E}\left(t^{2}\right), V=\mathbb{E} \otimes_{\mathbb{K}} \mathbb{E}$ and let $\alpha \in \mathrm{GL}_{\mathbb{K}}(V)$ with $(k \otimes l) \alpha=k t \otimes l t^{-1}$ for all $k, l \in \mathbb{E}$. Then $\alpha^{2}=1$ and so $\langle\alpha\rangle$ has order two. Moreover, it is easy to verify that the tensor decomposition $\mathbb{E} \otimes_{\mathbb{K}} \mathbb{E}$ is not strict for $\langle\alpha\rangle$.

6 Tensor Products and Nearly Quadratic Modules

The following hypothesis will be used throughout this section (except in 6.3).

Hypothesis 6.1 Let p be a prime, \mathbb{F} a field of characteristic p, A a finite p-group, J a finite A set, V an $\mathbb{F} A$-module, and $\mathcal{T}=\left(\Phi, \mathbb{K},\left(V_{j}, j \in J\right), \sigma,\left(g_{j} ; g \in A, j \in J\right)\right)$ a strict A-invariant tensor decomposition of V with $\Phi=\operatorname{id}_{V}$. The fixed field of A in \mathbb{K} is denoted by \mathbb{K}_{A}.

Lemma 6.2 Suppose Hypothesis 6.1 holds, \mathcal{T} is proper and ordinary, $J=\{1,2\}$, and V is a nearly quadratic $\mathbb{F} A$-module but not a quadratic $\mathbb{F} A$-module. Then the following hold for $j \in J$:
(a) A acts quadratically and non-trivially on V_{j}. In particular, A is elementary abelian.
(b) $\left[V_{j}, A\right]=C_{V_{j}}(A)$ is a \mathbb{K}-hyperplane of V_{j}.
(c) $[z \mathbb{F}, A]=\left[V_{j}, A\right]$ for all $z \in V_{j} \backslash\left[V_{j}, A\right]$.
(d) $Q_{V}(A)=\left[V_{1}, A\right] \otimes V_{2}+V_{1} \otimes\left[V_{2}, A\right]$ is a \mathbb{K}-hyperplane of V.
(e) One of the following holds:

1. $C_{V}(A)=\left[V_{1}, A\right] \otimes\left[V_{2}, A\right]$ and if $\mathbb{F}=\mathbb{F}_{p}$ then $A=C_{A}\left(V_{1}\right) C_{A}\left(V_{2}\right)$.
2. $\operatorname{dim}_{\mathbb{K}} C_{V}(A)=2$, char $\mathbb{F} \neq 2$, $\operatorname{dim}_{\mathbb{K}} V_{1}=2=\operatorname{dim}_{\mathbb{K}} V_{2}$, and V_{1} and V_{2} are isomorphic as $\mathbb{K} A$-modules.
(f) If $\mathbb{F}=\mathbb{F}_{p}$ then A induces $C_{\mathrm{SL}_{\mathbb{K}}\left(V_{j}\right)}\left(\left[V_{j}, A\right]\right)$ on V_{j}.

Proof: As A is not quadratic on V, by 2.6 $[V, A]+C_{V}(A)$ is the largest quadratic $\mathbb{F} A$ submodule $Q_{V}(A)$ of V. Observe that $Q_{V}(A)$ is \mathbb{K}-subspace of V. Let $J=\{i, j\}$ and put $C_{i}=$ $C_{V_{i}}(A)$.
$\mathbf{1}^{\circ} \quad$ As a \mathbb{K} A-module, $V_{i} \otimes C_{j}$ is the direct sum of $\operatorname{dim}_{\mathbb{K}} C_{j} \mathbb{K} A$-submodules isomorphic to V_{i}.
Let \mathcal{B} be a \mathbb{K}-basis for C_{j}. Then $V_{i} \otimes C_{j}=\bigoplus_{b \in \mathcal{B}} V_{i} \otimes b$ and each $V_{i} \otimes b$ is isomorphic to V_{i} as an $\mathbb{K} A$-module.

$\mathbf{2}^{\circ} \quad A$ acts non-trivially on V_{i}.

Suppose A centralizes V_{i}. Then $C_{i}=V_{i}$ and since $\operatorname{dim}_{\mathbb{K}} V_{i} \geq 2$ we conclude that from (with the roles of i and j reversed) and 2.9, that A centralizes V_{j} and V, a contradiction.
$\mathbf{3}^{\circ} \quad V_{i}$ is not the direct sum of two proper $\mathbb{K} A$-submodules.
Suppose $V_{i}=X \oplus Y$ with X and Y proper $\mathbb{K} A$ submodules of V_{i}. Then $V=X \otimes V_{j} \oplus X \otimes V_{j}$ and so by 2.9. A centralizes one of the summands, say $X \otimes V_{j}$. So by 4.5, A centralizes V_{j}, a contradiction to $\left.2^{\circ}\right)$.
$4^{\circ} \quad A$ acts quadratically on V_{i}, so (a) holds.
Since $\operatorname{dim}_{\mathbb{K}} V_{j} \geq 2$ and A is a p-group, there exists a proper $\mathbb{K} A$-submodule $X \neq 0$ of V_{j}. By 2.6 d , A acts quadratically on $V /\left(V_{i} \otimes X\right)$ or on $V_{i} \otimes X$. Since $V /\left(V_{i} \otimes X\right) \cong V_{i} \otimes\left(V_{j} / X\right)$ we conclude that G acts quadratically on $V_{i} \otimes Y$ where $Y=X$ and $Y=V_{j} / X$, respectively. If $\operatorname{dim}_{\mathbb{K}} Y=1$, then $V_{i} \cong V_{i} \otimes Y$ and 4° holds. If $\operatorname{dim} Y \geq 2$, then 4.9 a shows that G acts quadratically on V_{i}.

$$
\mathbf{5}^{\circ} \quad C_{i}=\left[V_{i}, A\right]
$$

By 44°, $\left[V_{i}, A\right] \leq C_{i}$. Let $C_{i}=X \oplus\left[V_{i}, A\right]$ and $V_{i} /\left[V_{i}, A\right]=C_{i} /\left[V_{i}, A\right] \oplus Y /\left[V_{i}, A\right]$ for some \mathbb{K}-subspaces X and Y of V_{i} with $\left[V_{i}, A\right] \leq Y$. Then $V_{i}=X \oplus Y, Y \neq 0$ and both X and Y are $\mathbb{K} A$-submodules of V_{i}. So by (3°, $X=0$ and $C_{i}=\left[V_{i}, A\right]$.
$6^{\circ} \quad C_{1} \otimes V_{2}+V_{1} \otimes C_{2} \leq Q_{V}(A)$.
By 4°, A is quadratic on V_{i} and so by 1° also on $V_{i} \otimes C_{j}$. Thus $V_{i} \otimes C_{j} \leq Q_{V}(A)$.
$7^{\circ} \quad$ Let $v_{1} \in V_{1}, v_{2} \in V_{2}$ and $a \in A$. Then

$$
\left[v_{1} \otimes v_{2}, a\right]=\left[v_{1}, a\right] \otimes\left[v_{2}, a\right]+v_{1} \otimes\left[v_{2}, a\right]+\left[v_{1}, a\right] \otimes v_{2}
$$

This is readily verified.
Since $V \neq Q_{V}(A)$ there exists $x_{i} \in V_{i}$ with $x_{1} \otimes x_{2} \notin Q_{V}(A)$. By 6° we have $x_{i} \notin C_{i}$.
$8^{\circ} \quad Q_{V}(A)=x_{1} \otimes C_{2}+C_{1} \otimes x_{2}+C_{V}(A)$
By 66° the right-hand-side is contained in the left-hand-side of 88°, and by the definition of nearly quadratic, $Q_{V}(A)=\left[\left(x_{1} \otimes x_{2}\right) \mathbb{F}, A\right]+C_{V}(A)$. Since $\left[V_{i}, A\right] \leq C_{i}$ we conclude from 7° that the left-hand-side is also contained in the right-hand-side.
$\mathbf{9}^{\circ} \quad$ Let $t_{1} \in V_{1}$ with $t_{1} \otimes x_{2} \in Q_{V}(A)$. Then $t_{1} \in C_{1}$.
By 8° there exist $c \in C_{V}(A), c_{1} \in C_{1}$ and $c_{2} \in C_{2}$ such that

$$
t_{1} \otimes x_{2}=x_{1} \otimes c_{2}+c_{1} \otimes x_{2}+c
$$

Taking commutators with a on both sides and using 7° we conclude

$$
\left[t_{1}, a\right] \otimes\left[x_{2}, a\right]+t_{1} \otimes\left[x_{2}, a\right]+\left[t_{1}, a\right] \otimes x_{2}=\left[x_{1}, a\right] \otimes c_{2}+c_{1} \otimes\left[x_{2}, a\right]
$$

Hence 44° gives $\left[t_{1}, a\right] \otimes x_{2} \in V_{1} \otimes C_{2}$. Since $x_{2} \notin C_{2}$ we get $\left[t_{1}, a\right]=0$ and thus $t_{1} \in C_{V_{1}}(A)=C_{1}$.
$\mathbf{1 0}^{\circ} \quad C_{i}$ is a \mathbb{K}-hyperplane of V_{i}.
Since $[V, A, A] \neq 0$, there exists a \mathbb{K}-hyperplane H_{i} of C_{i} with $[V, A, A] \not \leq H_{i} \otimes V_{j}$. Put $\overline{V_{i}}=V_{i} / H_{i}$. Hence by 2.6 c,$V /\left(H_{i} \otimes V_{j}\right) \cong \overline{V_{i}} \otimes V_{j}$ is a nearly quadratic, but not quadratic $\mathbb{F} A$-module. Thus by (50,

$$
\bar{C}_{i}=\overline{\left[V_{i}, A\right]}=\left[\bar{V}_{i}, A\right]=C_{\bar{V}_{i}}(A),
$$

so we may replace V_{i} by \bar{V}_{i} and assume that $\operatorname{dim}_{\mathbb{K}} C_{i}=1$ for $i=1,2$. Thus we need to show that $\operatorname{dim}_{\mathbb{K}} V_{i}=2$.

Assume for a contradiction that $\operatorname{dim}_{\mathbb{K}} V_{i} \geq 3$. By (30), $V_{i} \otimes C_{j} \leq Q_{V}(A)$ and by (8), $\operatorname{dim}_{\mathbb{K}} Q_{V}(A) /\left(C_{i} \otimes x_{j}+C_{V}(A)\right) \leq 1$. Hence $R:=V_{i} \otimes C_{j} \cap\left(C_{i} \otimes x_{j}+C_{V}(A)\right)$ contains a hyperplane of $V_{i} \otimes C_{j}$. Moreover, $C_{i} \otimes C_{j} \leq R$. Let $0 \neq c_{j} \in C_{j}$. Since C_{j} is 1-dimensional, the map $V_{i} \rightarrow V_{i} \otimes C_{j}$ with $v_{i} \rightarrow v_{i} \otimes c_{j}$ is a \mathbb{K}-isomorphism. Since $\operatorname{dim} V_{i} \geq 3$ we have $R \neq C_{1} \otimes C_{2}$ and so there exists $t_{i} \in V_{i}$ with $t_{i} \otimes c_{j} \in R$ and $t_{i} \notin C_{i}$. As C_{j} is 1-dimensional, also $t_{i} \otimes C_{j} \leq R$.

From 9° we get that $t_{i} \otimes x_{j} \notin Q_{V}(A)$, so 8° applies with t_{i} in place of x_{i}; i.e., $Q_{V}(A)=$ $t_{i} \otimes C_{j}+C_{i} \otimes x_{j}+C_{V}(A)$. Since $t_{i} \otimes C_{j} \leq R \leq C_{i} \otimes x_{j}+C_{V}(A)$ this gives $Q_{V}(A)=C_{i} \otimes x_{j}+C_{V}(A)$. Hence $C_{V}(A)$ is a hyperplane of $Q_{V}(A)$ and $\left(V_{i} \otimes C_{j}\right) \cap C_{V}(A)$ is a hyperplane of $V_{i} \otimes C_{j}$ containing $C_{i} \otimes C_{j}$. It follows that $C_{V_{i}}(A)=C_{i}$ is a hyperplane of V_{i} contradicting $\operatorname{dim}_{\mathbb{K}} C_{i}=1$ and $\operatorname{dim}_{K} V_{i} \geq 3$.
11° (b) and (d) hold.
Claim (b) follows from 10° and 55°. In particular, $C_{1} \otimes V_{2}+V_{1} \otimes C_{2}$ is a \mathbb{K}-hyperplane of V. So (6) and (b) imply (d).
12° Suppose that $C_{V}(A)=C_{1} \otimes C_{2}$. Then (c), e:1) and (f) hold.
To prove (c) let $z_{1} \in V_{1} \backslash\left[V_{1}, A\right]$. By (b) $C_{1}=\left[V_{1}, A\right]$ and thus by $\left.9^{\circ}\right) z_{1} \otimes x_{2} \notin Q_{V}(A)$. Hence, we may assume that $z_{1}=x_{1}$.

From 6° and the nearly quadratic action of A we get

$$
C_{1} \otimes x_{2} \leq Q_{V}(A)=\left[\left(x_{1} \otimes x_{2}\right) \mathbb{F}, A\right]+C_{1} \otimes C_{2}
$$

Since by (b) $\left[V_{2}, A\right]=C_{2}, 7^{\circ}$ implies that

$$
\left[\left(x_{1} \otimes x_{2}\right) \mathbb{F}, A\right]+C_{1} \otimes C_{2} \leq\left[x_{1} \mathbb{F}, A\right] \otimes x_{2}+V_{1} \otimes C_{2}
$$

Thus we have

$$
\left[x_{1} \mathbb{F}, A\right] \otimes x_{2} \leq C_{1} \otimes x_{2} \leq\left[x_{1} \mathbb{F}, A\right] \otimes x_{2}+V_{1} \otimes C_{2}
$$

Since $x_{2} \notin C_{2}$ this implies $C_{1} \otimes x_{2}=\left[x_{1} \mathbb{F}, A\right] \otimes x_{2}$. Hence $C_{1}=\left[x_{1} \mathbb{F}, A\right]$, and (C) follows.
The first part of (e:1) is true by assumption, so for the proof of (e:1) and (£) we can assume that $\mathbb{F}=\mathbb{F}_{p}$. Since $\mathbb{F}=\mathbb{F}_{p}$ and A is quadratic on $V / C_{V}(A)$ we have $\left[\left(x_{1} \otimes x_{2}\right) \mathbb{F}, A\right]+C_{V}(A)=$ $\left\{\left[x_{1} \otimes x_{1}, a\right] \mid a \in A\right\}+C_{V}(A)$ and so

$$
C_{1} \otimes x_{2}+x_{1} \otimes C_{2} \leq\left[\left(x_{1} \otimes x_{2}\right) \mathbb{F}, A\right]+C_{1} \otimes C_{2}=\left\{\left[x_{1}, a\right] \otimes x_{2}+x_{1} \otimes\left[x_{2}, a\right] \mid a \in A\right\}+C_{1} \otimes C_{2}
$$

Hence, for every $c_{1} \in C_{1}$ and $c_{2} \in C_{2}$, there exists $a \in A$ with $\left[x_{1}, a\right]=c_{1}$ and $\left[x_{2}, a\right]=c_{2}$. The particular case when $c_{1}=0$ (or $c_{2}=0$) gives (e:1). Moreover, (f) follows.
13° Suppose that $C_{V}(A) \neq C_{1} \otimes C_{2}$. Then (c), e:2) and (f hold.
By (b) and (d),

$$
Q_{V}(A)=C_{1} \otimes C_{2}+C_{1} \otimes x_{2}+x_{1} \otimes C_{2}
$$

Since $C_{1} \otimes C_{2}<C_{V}(A)$ there exist $c_{1} \in C_{1}$ and $c_{2} \in C_{2}$ with $0 \neq c_{1} \otimes x_{2}-x_{1} \otimes c_{2} \in C_{V}(A)$. Hence 7° implies that

$$
\begin{equation*}
c_{1} \otimes\left[x_{2}, a\right]=\left[x_{1}, a\right] \otimes c_{2} \quad \text { for all } a \in A \tag{*}
\end{equation*}
$$

Suppose that $c_{1}=0$. By the choice of x_{1}, there exists $a \in A$ with $\left[x_{1}, a\right] \neq 0$, so $c_{2}=0$, which contradicts $c_{1} \otimes x_{2}-x_{1} \otimes c_{2} \neq 0$. Hence $c_{1} \neq 0$ and similarly also $c_{2} \neq 0$. Then $(*)$ implies that $\left[x_{1}, a\right] \in c_{1} \mathbb{K}$ for all $a \in A$. So by (b) $\operatorname{dim}_{\mathbb{K}} C_{1}=1$ and $\operatorname{dim}_{\mathbb{K}} V_{1}=2$. By symmetry $\operatorname{dim}_{\mathbb{K}} C_{2}=1$ and $\operatorname{dim}_{\mathbb{K}} V_{2}=2$.

Define $\lambda_{i}: A \rightarrow \mathbb{K}$ by $\left[x_{i}, a\right]=c_{i} . a \lambda_{i}$ for all $a \in A$. Then by $(*), a \lambda_{1}=a \lambda_{2}$ and $\lambda_{1}=\lambda_{2}=: \lambda$. Hence V_{1} and V_{2} are isomorphic as $\mathbb{F} A$-modules. Moreover,

$$
C_{V}(A)=C_{1} \otimes C_{2}+\left(c_{1} \otimes x_{2}-x_{1} \otimes c_{2}\right) \mathbb{K}
$$

Let L be the \mathbb{F}-subspace of \mathbb{K} spanned by $A \lambda=\{a \lambda \mid a \in A\}$. Then

$$
Q_{V}(A)=\left[\left(x_{1} \otimes x_{2}\right) \mathbb{F}, A\right]+C_{V}(A)=\left(c_{1} \otimes x_{2}+x_{1} \otimes c_{2}\right) L+\left(c_{1} \otimes x_{2}-x_{1} \otimes c_{2}\right) \mathbb{K}+C_{1} \otimes C_{2}
$$

Let $k \in \mathbb{K}$. Then $x_{1} k \otimes c_{2} \in Q_{V}(A)$, so there exists $\ell \in L$ and $s \in \mathbb{K}$ with
$x_{1} k \otimes c_{2} \in\left(c_{1} \otimes x_{2}+x_{1} \otimes c_{2}\right) \ell+\left(c_{1} \otimes x_{2}-x_{1} \otimes c_{2}\right) s+C_{1} \otimes C_{2}=c_{1}(\ell+s) \otimes x_{2}+x_{1} \otimes c_{2}(\ell-s)+C_{1} \otimes C_{2}$.
This implies $s=-\ell$ and $k=2 \ell$. Since $k \in \mathbb{K}$ was arbitrary we conclude that char $\mathbb{F} \neq 2$ and $L=\mathbb{K}$. Thus (e:2) and (c) hold.

If $\mathbb{F}=\mathbb{F}_{p}$, then $\mathbb{K}=L=A \lambda$ and so also (\mathbb{f}) is proved.

Lemma 6.3 Let V be a semi-linear but not linear $\mathbb{K} A$-module. Suppose that there exists a subfield $\mathbb{F} \leq \mathbb{K}$ such that V is a nearly quadratic $\mathbb{F} A$-module. Then $A / C_{A}(V)$ is elementary abelian and one of the following holds:

1. $[V, A, A]=0,\left[V, A_{\mathbb{K}}\right]=0$, and char $\mathbb{K}=2=\left|A / A_{\mathbb{K}}\right|$.
2. $[V, A, A] \neq 0,\left[V, A_{\mathbb{K}}\right]=C_{V}\left(A_{\mathbb{K}}\right), \operatorname{dim}_{\mathbb{K}} V / C_{V}\left(A_{\mathbb{K}}\right)=1, \mathbb{F}=\mathbb{K}_{A}$, and char $\mathbb{K}=2=\left|A / A_{\mathbb{K}}\right|=$ $\operatorname{dim}_{\mathbb{F}} \mathbb{K}$.
3. $[V, A, A] \neq 0,\left[V, A_{\mathbb{K}}\right]=0, \mathbb{F}=\mathbb{K}_{A}, \operatorname{dim}_{\mathbb{K}} V=1$, and $\operatorname{char} \mathbb{F}=3=\left|A / A_{\mathbb{K}}\right|=\operatorname{dim}_{\mathbb{F}} \mathbb{K}$.
4. $[V, A, A] \neq 0,\left[V, A_{\mathbb{K}}\right]=0, \mathbb{F}=\mathbb{K}_{A}, \operatorname{dim}_{\mathbb{K}} V=1$, $\operatorname{char} \mathbb{F}=2, A / A_{\mathbb{K}} \cong C_{2} \times C_{2}, \operatorname{dim}_{\mathbb{F}} \mathbb{K}=4$, and \mathbb{F} is infinite.

Proof: Without loss V is a faithful $\mathbb{F} A$-module. Put $\mathbb{E}=\mathbb{K}_{A}$. Since A is cubic on V we can apply 2.15 . If A is quadratic on V, then 2.15, 1) applies and gives (1). So we may assume that A is not quadratic.

Suppose first that $\left[V, A_{\mathbb{K}}\right]=0$. Then $2.15(2)$ or (3) applies, and V is as an $\mathbb{E} A$-module the direct sum of $\mathbb{E} A$-submodules isomorphic to \mathbb{K}. Hence by $2.9, V \cong \mathbb{K}$ as an $\mathbb{F} A$-module. Thus by 2.14 (c), $V \cong \mathbb{E} A$ as an $\mathbb{E} A$-module. As an $\mathbb{F} A$-module, $\mathbb{E} A$ is a direct sum of $\operatorname{dim}_{\mathbb{F}} \mathbb{E}$-copies of $\mathbb{F} A$ and so 2.9 gives $\mathbb{F}=\mathbb{E}$. Now 2.15 implies (3) or (4).

Suppose next that $\left[V, A_{\mathbb{K}}\right] \neq 0$. Then 2.15 4) applies, so $p=\left|A / A_{\mathbb{K}}\right|=\operatorname{dim}_{\mathbb{E}} \mathbb{K}=2$, and there exists an $\mathbb{E} A$-module W such that $V \cong W \otimes_{\mathbb{E}} \mathbb{K}$ as an $\mathbb{E} A$-module and $A=A_{\mathbb{K}} C_{A}(W)$. Hence we can apply 6.2 (with \mathbb{E} in place of \mathbb{K}). Note that $[\mathbb{K}, A]=\mathbb{E}$. By 6.2 C], $[\mathbb{K}, A]=[z \mathbb{F}, A]$ for some $z \in \mathbb{K}$. Since $\left|A / A_{\mathbb{K}}\right|=2$ this implies that $[\mathbb{K}, A]$ is 1-dimensional over \mathbb{F}. Hence $\mathbb{E}=\mathbb{F}$. Also by 6.2 b [$W, A]=C_{W}(A)$ is an \mathbb{E}-hyperplane of W. Since $A=A_{\mathbb{K}} C_{A}(W),\left[W, A_{\mathbb{K}}\right]=C_{W}\left(A_{\mathbb{K}}\right)$ is a \mathbb{E}-hyperplane of W. Since $V \cong W \otimes_{\mathbb{E}} \mathbb{K}$ we conclude that $\left[V, A_{\mathbb{K}}\right]=C_{V}\left(A_{\mathbb{K}}\right)$ is an \mathbb{K}-hyperplane of V. Thus (22) holds.

Lemma 6.4 Suppose Hypothesis 6.1 holds, \mathcal{T} is proper and \mathbb{K}-linear, $\left[V_{j}, A\right] \neq 0$ for all $j \in J$, and char $\mathbb{F}=2$. If A acts cubically on V, then $A / C_{A}(V)$ is elementary abelian.

Proof: We may assume that $C_{A}(V)=1$ and that A is not elementary abelian. By 2.7 e A is a 2 -group. Hence there exists $a \in A$ with $a^{2} \neq 1$. Since char $\mathbb{F}=2,2.8$ gives $\left[V, a^{2}\right]=[V, a, a]$ and since A is cubic we conclude that

$$
\begin{equation*}
\left[V, a^{2}\right] \leq C_{V}(A) \tag{*}
\end{equation*}
$$

If A does not act transitively on J, let I be an orbit for A on J and $K:=J \backslash I$. If A acts transitively on J, let A_{0} be a maximal subgroup of A containing a point stabilizer and I and K
be the two orbits of A_{0} on J. In both cases we obtain a strict A-invariant tensor decomposition $V_{I} \otimes_{\mathbb{K}} V_{K} \rightarrow V$. So we may assume that $|J|=2$, say $J=\{1,2\}$. Then a^{2} acts trivially on J. Without loss $\left[V_{1}, a^{2}\right] \neq 0$. We have

$$
\left[V_{1} \otimes C_{V_{2}}\left(a^{2}\right), a^{2}\right]=\left[V_{1}, a^{2}\right] \otimes C_{V_{2}}\left(a^{2}\right)
$$

and so by $(*)$

$$
\begin{equation*}
\left[V_{1}, a^{2}\right] \otimes C_{V_{2}}\left(a^{2}\right) \leq C_{V}(A) \tag{**}
\end{equation*}
$$

Suppose that a acts trivially on J. Then $(* *)$ and 4.5 imply $C_{V_{2}}\left(a^{2}\right)=C_{V_{2}}(a)$. Put $Q_{V}(a):=$ $Q_{V}(\langle a\rangle)$. By $2.8 C_{V_{2}}\left(a^{2}\right)=Q_{V_{2}}(a)$, so

$$
C_{V_{2}}(a)=C_{V_{2}}\left(a^{2}\right)=Q_{V_{2}}(a)
$$

Thus a centralizes V_{2}. Hence $(* *)$ and again 4.5 imply that also $C_{A}(J)$ centralizes V_{2}. It follows that $A \neq C_{A}(J)$ and since $C_{A}(J) \unlhd A, C_{A}(J)$ centralizes V_{1} and V. Thus $|A|=2$, a contradiction.

We have shown that a acts non-trivial on J. Recall that by 4.2 a, A acts on $V_{1} \cup V_{2}$ via $v_{i} a=v_{i} a_{i}$ for all $v_{i} \in V_{i}$. So $\left(v_{1} \otimes v_{2}\right) a=v_{2} a \otimes v_{1} a$. Let $x_{1} \in V_{1}$ with $\left[x_{1}, a^{2}\right] \neq 0$ and $\left[x_{1}, a^{2}, a^{2}\right]=0$. Put $x_{1} a=: x_{2} \in V_{2}$. Then

$$
\begin{align*}
{\left[x_{1} \otimes x_{2}, a\right] } & =\left(x_{1} \otimes x_{2}\right) a-x_{1} \otimes x_{2}=x_{2} a \otimes x_{1} a-x_{1} \otimes x_{2} \tag{***}\\
& =x_{1} a^{2} \otimes x_{2}-x_{1} \otimes x_{2}=\left[x_{1}, a^{2}\right] \otimes x_{2}
\end{align*}
$$

Since A acts quadratically on $\left[V_{1} \otimes V_{2}, A\right], a^{2}$ centralizes $\left[V_{1} \otimes V_{2}, A\right]$, and since a^{2} also centralizes $\left[x_{1}, a^{2}\right]$ we conclude from $(* * *)$ that a^{2} centralizes x_{2}. But then a^{2} also centralizes $x_{1}=x_{2} a^{-1}$, a contradiction.

Proposition 6.5 Suppose Hypothesis 6.1 holds,
(i) $|A|>2, \mathcal{T}$ is proper, and
(ii) V is a faithful nearly quadratic $\mathbb{F} A$-module.

Then A acts \mathbb{K}-linearly on V, A is elementary abelian char \mathbb{F}-group and one of the following holds, where $B:=C_{A}(J)$:

1. A is quadratic on V, and there exists $j \in J$ such that A centralizes V_{i} for all $i \in J \backslash\{j\}$.
2. char $\mathbb{F}=2$, A is quadratic on V, and there exists an A-invariant subset J_{0} in J with $\left|J_{0}\right|=2$ such that A centralizes V_{i} for all $i \in J \backslash J_{0}$. Moreover, one of the following holds:
3. A acts trivially on J_{0} and there exists a homomorphism $\lambda: G \rightarrow(\mathbb{K},+)$ such that V_{j} is a λ-dependent $\mathbb{K} A$-module for all $j \in J_{0}$.
4. A acts non-trivially on $J_{0}, \operatorname{dim}_{\mathbb{K}} V_{j}=2$ and $C_{B}\left(V_{j}\right)=C_{B}(V)$ for all $j \in J_{0}$.
5. $|J|=2$, A is not quadratic on V and for $j \in J,\left[V_{j}, B\right]=C_{V_{j}}(B)$ is a \mathbb{K}-hyperplane of V_{j}. Moreover, one of the following holds:
6. A acts trivially on J, and $\left[V_{j}, A\right]=\left[v_{j} \mathbb{F}, A\right]$ for all $v_{j} \in V_{j} \backslash\left[V_{j}, A\right]$ and $j \in J$.
7. A acts non-trivially on J, char $\mathbb{F}=2, \mathbb{F}=\mathbb{K}$, and $C_{B}\left(V_{j}\right)=C_{B}(V)$ for all $j \in J$.

Proof: The proof is by induction on $|A|$ and $|J|$. Note that $\operatorname{dim}_{\mathbb{K}} V \geq 4$ since $|J| \geq 2$ and $\operatorname{dim}_{\mathbb{K}} V_{j} \geq 2$. First we show:

$\mathbf{1}^{\circ} \quad A$ acts \mathbb{K}-linearly on V.

Assume that $A \neq A_{\mathbb{K}}$. Then we can apply 6.3 . Since $|A|>2$ and $\operatorname{dim}_{\mathbb{K}} V \neq 1$ we are in case $6.3,2$, so $p=2, A_{\mathbb{K}} \neq 1,\left[V, A_{\mathbb{K}}\right]=C_{V}\left(A_{\mathbb{K}}\right)$, and $\operatorname{dim}_{\mathbb{K}} V / C_{V}\left(A_{\mathbb{K}}\right)=1$. If $\left|A_{\mathbb{K}}\right|=2$, then $\operatorname{dim}_{\mathbb{K}}\left[V, A_{\mathbb{K}}\right]=1$ and so $\operatorname{dim}_{\mathbb{K}} V=2$, which contradicts $\operatorname{dim}_{\mathbb{K}} V \geq 4$. If $\left|A_{\mathbb{K}}\right|>2$, then we can apply induction with $A_{\mathbb{K}}$ in place of A. Since $A_{\mathbb{K}}$ acts quadratically on V, one of the cases (1) or (2) holds for $A_{\mathbb{K}}$. In both cases $\left|A_{\mathbb{K}} / A_{\mathbb{K}} \cap B\right| \leq 2$, so $\left[V_{r}, A_{\mathbb{K}} \cap B\right] \neq 0$ for some $r \in J$. Hence 4.6 applied to $A_{\mathbb{K}} \cap B$ shows that $C_{V}\left(A_{\mathbb{K}} \cap B\right)$ is not a \mathbb{K}-hyperplane of V. This contradiction shows that A acts \mathbb{K}-linearly on V.

Case $1 \quad A$ is not transitive on J.
Let L be an orbit of A on J. We choose L in such a way that $|L|$ is minimal and that A centralizes V_{j} for $j \in L$ if this is possible. Put $I:=J \backslash L$. Then $V_{L} \otimes_{\mathbb{K}} V_{I} \cong V$ is an ordinary A-invariant tensor decomposition of V. By $\left(1^{\circ}\right) A$ induces \mathbb{K}-linear transformations on V_{L} and V_{I}.
$\mathbf{2}^{\circ} \quad$ A acts quadratically on V_{L} and V_{I}.
If A acts quadratically on V, then by 4.9 a) A also acts quadratically on V_{L} and V_{I}. If A is not quadratic on V, then 6.2 a shows that A acts quadratically on V_{L} and V_{I}.
3° Suppose that A centralizes V_{L}. Then (1) or (2) of the proposition holds.
Note that by our choice of L and 4.5, $|L|=1$. Moreover, the faithful action of A on V shows that A acts faithfully on V_{I}.

If $|I|=1$, then (1) holds. If $|I|>1$, then by induction on $|J|$ we see that (1) or (2) holds for V_{I} since A is quadratic on V_{I}. But then the same case also holds for V.

$4^{\circ} \quad$ Suppose that A acts non-trivially on V_{L}. Then (2:1) or (3:1) holds.

By our choice of L and 4.5. A does not centralize any V_{i} for $i \in J$ and A acts non-trivially on V_{I}.
Assume first that A acts quadratically on V. Then A is elementary abelian and by 4.9 there exists a homomorphism $\lambda: G \rightarrow(\mathbb{K},+)$ such that V_{L} and V_{I} are λ-dependent as $\mathbb{K} A$-modules. Suppose for a contradiction that $|I| \geq 2$. Then by induction $|I|=2$, and $(2: 1)$ or $(2: 2)$ holds for V_{I}. Let $I=\{i, k\}$.

Suppose that 2:1) holds. Then there exists a homomorphism $\mu: G \rightarrow(\mathbb{K},+)$ such that V_{L} and V_{I} are μ-dependent as $\mathbb{K} A$-module. Let $1 \neq a, b \in A$. As in the proof of 4.9 we can choose μ such that $a \mu=1$. Put $\xi=b \mu$. For $j \in I$ let $x_{j} \in V_{j} \backslash C_{V_{j}}(A)$ and put $y_{j}:=\left[x_{j}, a\right]$. Then

$$
\left[x_{i} \otimes x_{k}, a\right]=x_{i} \otimes y_{k}+y_{i} \otimes x_{k}+y_{i} \otimes y_{k}
$$

and

$$
\begin{aligned}
{\left[x_{i} \otimes x_{k}, b\right] } & =x_{i} \otimes y_{k} \xi+y_{i} \otimes x_{k} \xi+y_{i} \xi \otimes y_{k} \xi \\
& =\left(x_{i} \otimes y_{k}\right) \xi+\left(y_{i} \otimes x_{k}\right) \xi+\left(y_{i} \otimes y_{k}\right) \xi^{2}
\end{aligned}
$$

Since A acts λ-dependently on V_{I}, we also get $\left[x_{i} \otimes x_{k}, b\right]=\left[x_{i} \otimes x_{k}, a\right] \ell$ for some $\ell \in \mathbb{K}$. A comparison of coefficients gives $\xi=\xi^{2}$. So $\xi=1$ and $a=b$. Thus $|A|=2$, a contradiction to the assumptions.

Suppose next that $(2: 2)$ holds. Let $a \in A \backslash C_{A}(I)$. Since $|A|>2$ there also exists $1 \neq b \in C_{A}(i)$. Since $|I|=2, a$ interchanges i and k while b fixes i and k. Let $v_{i} \in V_{i} \backslash C_{V_{i}}(b)$ and $c_{i}:=\left[v_{i}, b\right]$. Put $c_{k}:=c_{i} a_{i}=c_{i} a$ and $v_{k}:=v_{i} a_{i}=v_{i} a$. By 4.2, a and since A is abelian, $\left[v_{k}, b\right]=c_{k}$. Since $\operatorname{char} \mathbb{K}=2$ we have $a^{2}=1, v_{k} a=v_{i}$ and $c_{k} a=c_{i}$. Thus

$$
\left[v_{i} \otimes c_{k}, b\right]=c_{i} \otimes c_{k}
$$

and

$$
\left[v_{i} \otimes c_{k}, a\right]=\left(c_{k} a_{k} \otimes v_{i} a_{i}\right)-\left(v_{i} \otimes c_{k}\right)=c_{i} \otimes v_{k}-v_{i} \otimes c_{k}
$$

Since c_{j} and v_{j} are \mathbb{K}-linearly independent we conclude that $\left[v_{i} \otimes c_{k}, b\right] \mathbb{K} \neq\left[v_{i} \otimes c_{k}, a\right] \mathbb{K}$, a contradiction to 3.3 since A acts λ-dependently on V_{J}.

Thus $|I|=1$ and the minimal choice of $|L|$ gives $|L|=1$. Now $2: 1$ holds.
Assume now that A is not quadratic on V. Then by 6.2 (with $V_{1}=V_{L}$ and $V_{2}=V_{I}$), $C_{V_{I}}(A)=$ $\left[V_{I}, A\right]$ is a \mathbb{K}-hyperplane of V_{I}. Suppose for a contradiction that $|I| \geq 2$. If $\left[C_{A}(I), V_{I}\right] \neq 1$, then by 4.6 (applied to V_{I} and $\left.C_{A}(I)\right), \operatorname{dim}_{\mathbb{K}} V_{I} / C_{V_{I}}\left(C_{A}(I)\right)>1$, a contradiction. Thus $C_{A}\left(V_{I}\right)=C_{A}(I)$ and so $\left|A / C_{A}\left(V_{I}\right)\right|=2$. But then $C_{V_{I}}(A)=\left[V_{I}, A\right]$ is 1-dimensional and $\operatorname{dim}_{\mathbb{K}} V_{I}=2$, a contradiction to $|I| \geq 2$. Hence $|I|=1$, and thus by our choice of L also $|L|=1$. Now 6.2 c) gives (3:1).

Case $2 \quad A$ is transitive on J.
Fix $1 \in J$ and put $B_{1}:=C_{A}(1)$. Since A is a finite p-group, there exists a 1 -dimensional $\mathbb{K} B_{1^{-}}$ submodule X_{1} of V_{1}. We apply 4.7 and 4.8 (with A in place of G) and use the notation introduced there. So we get systems Δ and Δ of imprimitivity for A in U / X and \tilde{X} / \tilde{U}, respectively, on which A acts transitively. Moreover, by $2.6 A$ is nearly quadratic on U / X and \tilde{U} / \tilde{X}. Thus we can apply 2.13 to $U / X, \Delta$ and A (and $\tilde{X} / \tilde{U}, \Delta$ and A).
$5^{\circ} \quad$ Either $|J| \geq 3$ and 2.13 (4:1) or (4:2) holds for Δ and A, or $|J|=2$ and 2.13 (3) or (4:3) holds for Δ and A. In particular $\left[V_{1}, B, B\right] \leq X_{1}$.

This follows from 2.13 using the transitivity of A on Δ.
$\mathbf{6}^{\circ} \quad|J|=2=\operatorname{char} \mathbb{K}$ and $|A / B|=2$, in particular $B_{1}=B \neq 1$.
Suppose that $|J| \geq 3$. Then by $\left(5^{\circ}\right.$ and $2.13 A$ is not quadratic on U / X and not quadratic on \tilde{X} / \tilde{U}. Since $|J| \geq 3$ we have $U \leq U$. Hence A is neither quadratic on U nor on V / U, which contradicts 2.6.

Thus $|J|=2$. It follows that $|A / B|=|J|=2$ and $B_{1}=B$. Moreover, $B \neq 1$ since $|A| \geq 3$.
According to 6° we may assume $J=\{1,2\}$.
$7^{\circ} \quad A$ is elementary abelian and $C_{B}\left(V_{i}\right)=C_{B}(V)$.
By $6{ }^{\circ}$ char $\mathbb{F}=2$. So by 6.4, A is elementary abelian. The transitive action of A on J and 4.2 al also give $C_{B}\left(V_{i}\right) \leq C_{B}(V)$. By $4.5 C_{B}(V) \leq C_{B}\left(V_{i}\right)$ and 7° is proved.
$8^{\circ} \quad$ Suppose that A is quadratic on V. Then (2:2) holds.

This follows from $\left(1^{\circ}\right), 7^{\circ}$ and 4.10 .
$\mathbf{9}^{\circ} \quad$ Suppose that $C_{V_{1}}(B) \neq X_{1}$. Then (2:2) or (3:2) holds.
There exists a 1-dimensional \mathbb{K}-subspace X_{1}^{\prime} of $C_{V_{1}}(B)$ different from X_{1}. Hence by 50 $\left[V_{j}, B, B\right] \leq X_{1} \cap X_{1}^{\prime}=0$, so B acts quadratically on V_{1}. By $6^{\circ}|A / B|=2$ and $B \neq 1$.

Assume first that $C_{V_{1}}(B) \neq\left[V_{1}, B\right]$. Then there exists a non-zero a $\mathbb{K} B$-submodule $Z_{1} \leq C_{V_{1}}(B)$ with $C_{V_{1}}(B)=Z_{1} \oplus\left[V_{1}, B\right]$. Hence, there also exists a $\mathbb{K} B$-submodule $Y_{1} \leq V_{1}$ with $C_{V_{1}}(B) \cap Y_{1}=$ $\left[V_{1}, B\right]$ and $V_{1}=Y_{1} \oplus Z_{1}$. Pick $a \in A \backslash B$ and put

$$
Z_{2}:=Z_{1} a_{1}, Y_{2}:=Y_{1} a_{1}, Y:=Z_{1} \otimes Y_{2}+Y_{1} \otimes Z_{2}, D:=Y_{1} \otimes Y_{2}
$$

By 4.2 a), Y, D and $Z_{1} \otimes Z_{2}$ are $\mathbb{K} A$-submodules of V. Note that
$V=\left(Z_{1} \oplus Y_{1}\right) \otimes\left(Z_{2} \oplus Y_{2}\right)=\left(Z_{1} \otimes Z_{2}\right) \oplus\left(Z_{1} \otimes Y_{2}\right) \oplus\left(Y_{1} \otimes Z_{2}\right) \oplus\left(Y_{1} \otimes Y_{2}\right)=\left(Z_{1} \otimes Z_{2}\right) \oplus Y \oplus D$. 4.5 implies that A neither centralizes Y nor D. Hence, 2.9 shows that A is quadratic on V, and 8° implies $\left(9^{\circ}\right)$.

Assume now that $C_{V_{1}}(B)=\left[V_{1}, B\right]$. Then $X_{1} \leq\left[V_{1}, B\right]$. We apply (50). If 2.13 (4:3) holds for Δ then $\left[U_{1} / X, B\right]$ is a \mathbb{F}-hyperplane of U_{1} / X. Hence $\mathbb{K}=\mathbb{F},\left[V_{1}, B\right]$ is a \mathbb{K}-hyperplane of V_{1} and $3: 2$ follows from 7°. If 2.13 (3) holds for Δ then $\left[V_{1}, B\right]=X_{1}$ and so $C_{V_{1}}(B)=X_{1}$, a contradiction.
10° Suppose that $C_{V_{1}}(B)=X_{1}$. Then (2:2) or (3:2) holds.
If $\operatorname{dim}_{\mathbb{K}} V_{1}=2$, then $\left(7^{\circ}\right)$ implies $(2: 2)$ or $(3: 2)$. Hence we may assume that $\operatorname{dim}_{\mathbb{K}} V_{1} \geq 3$. Let Y be a 3 -dimensional $\mathbb{K} B$-submodule of V_{1}.

Since char $\mathbb{K}=2$, the elementary abelian 2-subgroups of $\mathrm{GL}_{3}(\mathbb{K})$ are quadratic. Hence $[Y, B, B]=$ 0 and since $C_{V_{1}}(B)=X_{1}$ we conclude that $[Y, B]=X_{1}$. Fix $1 \neq b \in B$ with $[Y, b] \neq 0$ and $a \in A \backslash B$. Then $\operatorname{dim}_{\mathbb{K}} Y / C_{Y}(b)=\operatorname{dim}_{\mathbb{K}} X_{1}=1$, so there exists $x, y, z \in Y$ such that

$$
Y=\langle x, y, z\rangle_{\mathbb{K}}, X_{1}=x \mathbb{K},[z, b]=0,[y, b]=x
$$

By $7^{\circ} A$ is abelian and so by 4.2 the map

$$
V_{1} \rightarrow V_{2} \text { with } v_{1} \mapsto v_{1} a=: v_{1}^{\prime}
$$

is a $\mathbb{K} B$-module isomorphism. It is easy to calculate that

$$
x \otimes x^{\prime} \in C_{V}(A), y \otimes y^{\prime} \in C_{V}(a) \text { and }\left[y \otimes z^{\prime}, a\right]=y \otimes z^{\prime}+z \otimes y^{\prime}
$$

This shows that

$$
\left[y \otimes z^{\prime}, a, b\right]=\left[y \otimes z^{\prime}+z \otimes y^{\prime}, b\right]=x \otimes z^{\prime}+z \otimes x^{\prime} \neq 0
$$

Thus $y \otimes z^{\prime} \notin Q_{V}(A)$. Since V is a nearly quadratic $\mathbb{F} A$-module we get for $Y^{\prime}:=Y a_{1}$

$$
\begin{align*}
Q_{V}(A) & =\left[y \otimes z^{\prime}, A\right] \mathbb{F}+C_{V}(A)=\left[y \otimes z^{\prime}, a\right] \mathbb{F}+\left[y \otimes z^{\prime}, B\right] \mathbb{F}+C_{V}(A) \tag{*}\\
& \leq\left(y \otimes z^{\prime}+z \otimes y^{\prime}\right) \mathbb{F}+x \otimes Y^{\prime}+Y \otimes x^{\prime}+C_{V}(A) .
\end{align*}
$$

If $y \otimes y^{\prime} \notin Q_{V}(A)$ then $Q_{V}(A)=\left[y \otimes y^{\prime}, A\right] \mathbb{F}+C_{V}(A) \leq C_{V}(a)$, since $y \otimes y^{\prime} \in C_{V}(a)$. But then $[V, A, a]=0$. Since A is abelian, we get $[V, a, A]=0$, which contradicts $\left[y \otimes z^{\prime}, a, b\right] \neq 0$. Thus we have $y \otimes y^{\prime} \in Q_{V}(A)$, so $(*)$ shows that there exist $u, w \in Y, t \in \mathbb{F}$ and $c \in C_{V}(A)$ such that

$$
y \otimes y^{\prime}=\left(y \otimes z^{\prime}+z \otimes y^{\prime}\right) t+x \otimes u^{\prime}+w \otimes x^{\prime}+c .
$$

Taking the commutator with b on both sides gives

$$
x \otimes x^{\prime}+x \otimes y^{\prime}+y \otimes x^{\prime}=\left(x \otimes z^{\prime}+z \otimes x^{\prime}\right) t+x \otimes\left[u^{\prime}, b\right]+[w, b] \otimes x^{\prime}
$$

and

$$
x \otimes y^{\prime}+y \otimes x^{\prime} \equiv\left(x \otimes z^{\prime}+z \otimes x\right) t+\left(x \otimes x^{\prime}\right) k
$$

for some $k \in \mathbb{K}$. But then x, y, z are not linearly independent in V_{1} which contradicts $\operatorname{dim}_{\mathbb{K}} Y=3$. This contradiction shows 10° and completes the proof of 6.5

7 The Nearly Quadratic Subgroup Theorem

Definition 7.1 Let H be a group, \mathbb{F} a field and V an $\mathbb{F} H$-module. We say that H acts nilpotently on V if there exists a finite ascending series

$$
0=V_{0} \leq V_{1} \leq V_{2} \leq \ldots \leq V_{d-1} \leq V_{d}=V
$$

of $\mathbb{F} H$-submodules such that $\left[V_{i}, H\right] \leq V_{i-1}$ for all $1 \leq i \leq d$.
We say that V is H-reduced if $[V, N]=0$ whenever N is a normal subgroup of H acting nilpotently on V.

Lemma 7.2 Let \mathbb{F} be a field, V a finite dimensional \mathbb{F}-space, and $G \leq \mathrm{GL}_{\mathbb{F}}(V)$. For $U \leq V$ let $L(U)$ be the largest subgroup of $\mathrm{SL}_{\mathbb{F}}(V)$ with $[U, L(U)]=0$ and $[V, L(U)] \leq U$. Suppose that V is G-reduced and there exists 1 -dimensional \mathbb{F}-subspace U of V with $L(U) \leq G$. Then $\left\langle L(U)^{G}\right\rangle=\mathrm{SL}_{\mathbb{F}}(V)$.

Proof: Put $M=\left\langle L(U)^{G}\right\rangle$. We may assume that $\operatorname{dim}_{\mathbb{F}} V>1$ since otherwise $M=\operatorname{SL}_{\mathbb{F}}(V)=1$. Let $\mathcal{P}=\mathcal{P}_{\mathbb{K}}(V)$ be the set of 1-dimensional subspaces of V, and let

$$
\mathcal{P}(M):=\{X \in \mathcal{P} \mid L(X) \leq M\}
$$

As $\operatorname{SL}_{\mathbb{F}}(V)=\langle L(X) \mid X \in \mathcal{P}\rangle$, it suffices to show that $\mathcal{P}(M)=\mathcal{P}$.
Since $[V, L(U)]=U$ we get $[V, M]=\sum_{U \in \mathcal{P}(M)} U$. If $[V, M] \neq V$, then $1 \neq C_{L(U)}([V, M]) \leq$ $\left.C_{M}([V, M])\right) \cap C_{M}(V /[V, M])$, a contradiction since the latter group is normal in M and acts nilpotently on V. Thus $V=[V, M]=\sum_{U \in \mathcal{P}(M)} U$.

Let $U_{1}, U_{2} \in \mathcal{P}(M)$. Then $L\left(U_{1}\right)$ acts transitively on the 1-dimensional subspaces of $U_{1}+U_{2}$ unequal to U_{1}. Hence $\mathcal{P}(M)$ contains all the 1-dimensional subspaces of $U_{1}+U_{2}$. Since $V=$ $\sum_{U \in \mathcal{P}(M)} U$ we conclude that $V=\sum_{U \in \mathcal{P}(M)} U=\bigcup_{U \in \mathcal{P}(M)} U$, and $\mathcal{P}(M)$ contains all the 1dimensional subspaces of V.

Remark 7.3 Let \mathbb{F} be a field, H a group and V be a finite dimensional $\mathbb{F} H$-module. Then H acts on the dual module $V^{*}:=\operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F})$ via

$$
v \cdot w^{*} h:=v h^{-1} \cdot w^{*} \quad\left(h \in H, v \in V, w^{*} \in V^{*}\right)
$$

Put

$$
U^{\perp}:=\left\{w^{*} \in V^{*} \mid U w^{*}=0\right\} \text { and } U^{* \perp}:=\left\{v \in V \mid v U^{*}=0\right\}
$$

where U is an \mathbb{F}-subspace of V and U^{*} an \mathbb{F}-subspace of V^{*}. Elementary linear algebra shows that

$$
\begin{aligned}
& \operatorname{dim}_{\mathbb{F}} U+\operatorname{dim}_{\mathbb{F}} U^{\perp}=\operatorname{dim}_{\mathbb{F}} U^{*}+\operatorname{dim}_{\mathbb{F}} U^{* \perp}=\operatorname{dim}_{\mathbb{F}} V \\
& {[V, U]^{\perp}=C_{V^{*}}(U) \text { and }\left[V^{*}, U\right]^{\perp}=C_{V}(U) \text { for } U \leq H}
\end{aligned}
$$

In particular, if U is a hyperplane of V, U^{\perp} is a 1-dimensional subspace of V and $L(U)=$ $L\left(U^{\perp}\right)$. Hence passing to the dual space V^{*} transforms 7.2 into a statement about reduced subgroups $G \leq \mathrm{GL}_{\mathbb{F}}(V)$ with $L(U) \leq G$ for some hyperplane $U \leq V$. We will refer to this version as the "dual version of 7.2".

Also in 7.5 below we will"dualize" in this way certain steps in the proof.
Proof of Theorem 1; \quad Since V is semisimple, there exist simple $\mathbb{F} H$-submodules $V_{j}, j \in J$, such that $V=\bigoplus_{j \in J} V_{j}$. Let $I=\left\{i \in J \mid\left[V_{i}, H\right] \neq 0\right\}$. Then clearly

$$
V=C_{V}(H) \oplus \bigoplus_{i \in I} V_{i}
$$

For $i \in I$ let $\mathcal{Q}_{i}=\left\{A \in \mathcal{Q} \mid\left[V_{i}, A\right] \neq 0\right\}$. Then by 2.9 each $A \in \mathcal{Q}$ is contained in a unique \mathcal{Q}_{i} and so $\left(Q_{i}\right)_{i \in I}$ is a partition of \mathcal{Q}. Observe that H_{i} centralizes V_{j} for all $i \in I$ and $j \in J$ with $i \neq j$. In particular, V_{i} is a faithful H_{i}-module and $H_{i} \cap\left\langle H_{j} \mid i \neq j \in I\right\rangle=1$. Thus (a) holds. Since V_{i} is a simple $\mathbb{F} H$ module, we conclude that V_{i} is a simple $\mathbb{F} H_{i}$. Since $0 \neq\left[V, H_{i}\right] \leq V_{i}$ we get $V_{i}=\left[V, H_{i}\right]$ and so (b) and (c) hold.

Lemma 7.4 Let \mathbb{K} be a finite field, $\mathbb{F} \leq \mathbb{K}$ a subfield, V a \mathbb{K}-space, $L \leq \mathrm{GL}_{\mathbb{K}}(V)$ such that $L \cong$ $\mathrm{SL}_{2}(\mathbb{F}), V=[V, L], C_{V}(L) \neq 0$ and $V / \bar{C}_{V}(L) \cong W_{0} \otimes_{\mathbb{F}} \mathbb{K}$, where W_{0} is a natural $\mathbb{F S L}_{2}(\mathbb{F})$-module for L. Let $A \in \operatorname{Syl}_{2}(L)$. Put $H=\mathrm{N}_{\mathrm{GL}_{\mathbb{K}}(V)}(A), B=C_{\mathrm{SL}_{\mathbb{K}}(V)}\left(C_{V}(A)\right), Z=\mathrm{Z}\left(\mathrm{GL}_{\mathbb{K}}(V)\right), V_{1}=$ $\left[C_{V}(A), H \cap L\right]$ and $V_{2}=C_{V}(L)$. Then the following hold:
(a) char $\mathbb{F}=2,|\mathbb{F}| \geq 4$ and $V \cong W \otimes_{\mathbb{F}} \mathbb{K}$, where W is a natural $\mathbb{F} \Omega_{3}(\mathbb{F})$-module for L.
(b) $C_{V}(A)=V_{1} \oplus V_{2}$ and $C_{V}(A) \leq[V, B]=[V, A]$ for all $B \leq A$ with $|B| \geq 4$.
(c) If $|\mathbb{F}|>4$, then V_{1} and V_{2} are H-invariant and $H=(H \cap L) Z B=C_{H}\left(V_{2}\right) Z$.
(d) If $|\mathbb{F}|=4$, then $V_{1}^{H}=\left\{V_{1}, V_{2}\right\}$ and $N_{H}\left(V_{1}\right)=(H \cap L) Z B=C_{H}\left(V_{2}\right) Z$.

Proof: If $p:=$ char $\mathbb{F} \neq 2$ or $|\mathbb{F}|=2$, then $\mathrm{F}(L)$ is a non-trivial p^{\prime}-group, $V=C_{V}(\mathrm{~F}(L)) \oplus[V, \mathrm{~F}(L)]$, $C_{V}(L)=C_{V}(\mathrm{~F}(L))$ and $V=[V, L]=[V, \mathrm{~F}(L)]$, a contradiction to $C_{V}(L) \neq 0$.

Thus char $\mathbb{F}=2$ and $q:=|\mathbb{F}| \geq 4$. Let $E \leq A$ with $|E|=4$ and pick $1 \neq e \in E$. Then $C_{V}(L)[V, e]$ is a \mathbb{K}-hyperplane of V. By Dickson's List [Hu, II.8.27] of maximal subgroups of $\mathrm{SL}_{2}(\mathbb{F})$, there exists a maximal subgroup $D \leq L$ with $D \cong D_{2(q+1)}$. As $q+1$ is odd, $D=\left\langle e, e^{g}\right\rangle$ for some $g \in D$ and $E \not \leq D$, in particular $L=\left\langle E, e^{g}\right\rangle$. Since $[V, e, e]=0$ we get $C_{V}(L)+[V, e]=C_{V}(e)$ and $[V, e]$ is 1 -dimensional over \mathbb{K}. Thus $[V, E]$ is at most 2-dimensional and $V=[V, L]=[V, E]+\left[V, e^{g}\right]$ is at most 3-dimensional. Since $C_{V}(L) \neq 0, \operatorname{dim}_{\mathbb{K}} V \geq 3$. Thus $\operatorname{dim}_{\mathbb{K}} V=3, \operatorname{dim}_{\mathbb{K}} C_{V}(L)=1$ and $\operatorname{dim}_{\mathbb{K}}[V, E]=2$. We have $\operatorname{dim}_{\mathbb{K}}\left[V / C_{V}(L), E\right]=1$ and so $C_{V}(L) \leq[V, E]$.

Since $\operatorname{dim}_{\mathbb{K}} C_{V}(L)=1$ for any such V, we conclude that V is unique up to $\mathbb{K} L$-isomorphism (see As, 17.12]). Let W be a natural $\mathbb{F} \Omega_{3}(\mathbb{F})$ module. The $W=[W, L], C_{W}(L)$ is 1-dimensional over \mathbb{F} and $W / C_{W}(L) \cong W_{0}$. Thus $W \otimes_{\mathbb{F}} \mathbb{K}$ fulfills the assumption on V and so $V \cong W \otimes_{\mathbb{F}} \mathbb{K}$. By coprime action $C_{V}(A)=V_{1} \oplus V_{2}$. Hence (a) and (b) hold.

Let q be the L-invariant quadratic form on W and s the corresponding bilinear form. We fix an \mathbb{F}-basis $\left(w_{1}, w_{2}, w_{3}\right)$ satisfying

$$
w_{2} \in C_{W}(L),\left(w_{1}, w_{3}\right) s=1, w_{1} q=w_{3} q=0, w_{2} q=1, w_{1} \in C_{V}(A)
$$

Let $a \in A$ and $w_{3} a=w_{1} f_{1}+w_{2} f_{2}+w_{3} f_{3}, f_{i} \in \mathbb{F}$. Then

$$
1=\left(w_{1}, w_{3}\right) s=\left(w_{1} a, w_{3} a\right) s=\left(w_{1}, w_{3} a\right) s=\left(w_{1}, w_{3} f_{3}\right)=f_{3}
$$

and a similar calculation using $0=\left(w_{3} a\right) q$ yields $f_{2}^{2}=f_{1}$, so $w_{3} a=w_{1} \lambda^{2}+w_{2} \lambda+w_{3}$ for some $\lambda \in \mathbb{F}$. We denote this element of A by a_{λ}.

Let v_{i} be the image of $w_{i} \otimes 1$ in V under the isomorphism from $W \otimes_{\mathbb{F}} \mathbb{K}$ to V. Then $\left(v_{1}, v_{2}, v_{3}\right)$ is an \mathbb{K}-basis for V and the matrix of a_{λ} with respect to this basis is

$$
a_{\lambda} \leftrightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\lambda^{2} & \lambda & 1
\end{array}\right)
$$

Note that B is abelian and $A \leq B$. Thus $Z B \leq H$. Since $Z B$ acts transitively on $V \backslash C_{V}(A)$ we have $H=C_{H}\left(v_{3}\right) Z B$. Let $h \in C_{H}\left(v_{3}\right)$. Since H normalizes $C_{V}(A)=v_{1} \mathbb{K}+v_{2} \mathbb{K}$:

$$
h \leftrightarrow\left(\begin{array}{lll}
a & b & 0 \\
c & d & 0 \\
0 & 0 & 1
\end{array}\right)
$$

for some $a, b, c, d \in \mathbb{K}$ with $a d-c b \neq 0$. Let $\lambda \in \mathbb{F}$. Since $h \in H, h$ normalizes A and so $a_{\lambda} h=h a_{\mu}$ for some $\mu \in \mathbb{F}$. We have

$$
a_{\lambda} h \leftrightarrow\left(\begin{array}{ccc}
a & b & 0 \\
c & d & 0 \\
\lambda^{2} a+\lambda c & \lambda^{2} b+\lambda d & 1
\end{array}\right) \text { and } h a_{\mu} \leftrightarrow\left(\begin{array}{ccc}
a & b & 0 \\
c & d & 0 \\
\mu^{2} & \mu & 1
\end{array}\right)
$$

Hence

$$
\lambda^{2} b+\lambda d=\mu \text { and } \lambda^{2} a+\lambda c=\mu^{2}=\lambda^{4} b^{2}+\lambda^{2} d^{2}
$$

Thus

$$
\lambda c+\lambda^{2}\left(a+d^{2}\right)+\lambda^{4} b^{2}=0 \text { for all } \lambda \in \mathbb{F}
$$

Suppose that $|\mathbb{F}|>4$ and consider the polynomial $f=c x+\left(a+d^{2}\right) x^{2}+b^{2} x^{4}$. Then each $\lambda \in \mathbb{F}$ is a root of f. Since $\operatorname{deg} f \leq 4<|\mathbb{F}|$ we conclude that f is the zero polynomial. Hence $c=0, b=0$ and $a=d^{2}$. From $\mu=\lambda^{2} b+\lambda d=\lambda d$ we conclude that $d \in \mathbb{F}$. Moreover,

$$
h \leftrightarrow\left(\begin{array}{ccc}
d^{2} & 0 & 0 \\
0 & d & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
d & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & d^{-1}
\end{array}\right)\left(\begin{array}{ccc}
d & 0 & 0 \\
0 & d & 0 \\
0 & 0 & d
\end{array}\right)
$$

and so $h \in(H \cap L) Z$. Thus $H=(H \cap L) B Z$. Since $(H \cap L) B \leq C_{H}\left(V_{2}\right)$ we see that (c) holds.
Suppose next that $|\mathbb{F}|=4$. Then $\lambda^{4}=\lambda$ for all λ in \mathbb{F}. Thus $\lambda\left(c+b^{2}\right)+\lambda^{2}\left(a+d^{2}\right)=0$. Hence $f=\left(c+b^{2}\right) x+\left(a+d^{2}\right) x^{2}$ is the zero polynomial and so $c=b^{2}$ and $a=d^{2}$. From $\lambda^{2} b+\lambda d=\mu \in \mathbb{F}$ for all $\lambda \in \mathbb{F}$ we conclude that $b, d \in \mathbb{F}$. Moreover, $0 \neq a d-b c=a^{3}-b^{3}$. Since $u^{3}=1$ for all $0 \neq u \in \mathbb{F}$ we have $a=0$ or $b=0$. If $a=0$, then $v_{1} h=v_{2} b \in V_{2}$ and if $b=0$ then $v_{1} h=v_{1} a \in V_{1}$. Thus $V_{1}^{H}=\left\{V_{1}, V_{2}\right\}$. Also if $b=0$ then as above $h \in(L \cap H) B Z \leq C_{H}\left(V_{2}\right) Z$ and so dd holds.

Proposition 7.5 Let H be a finite group, \mathbb{K} a finite field and V faithful finite dimensional $\mathbb{K} H$ module. Put

$$
\mathcal{H}=\left\{A \leq H \mid C_{V}(A)=[V, A] \text { and } \operatorname{dim} V / C_{V}(A)=1\right\}
$$

Suppose that $H=\langle\mathcal{H}\rangle$. Then $C_{H}\left(V / C_{V}(H)\right)=O_{p}(H)$ and $C_{V}(H)$ is the unique maximal $\mathbb{K} H$ submodule of V. Moreover, put $\bar{V}=V / C_{V}(H), \widetilde{H}=H / C_{H}(\bar{V})$, $p=\operatorname{char} \mathbb{K}$, and $n=\operatorname{dim}_{\mathbb{K}}(\bar{V})$. Then one of the following holds:

1. $p=2, n=2$, and $\widetilde{H} \cong D_{2 m}$ for some odd integer m with $m>3$.
2. $p=3, n=2, \mathbb{F}_{9} \leq \mathbb{K}$, and $\widetilde{H} \cong \mathrm{SL}_{2}(5)$.
3. $p=2, n=3, \mathbb{F}_{4} \leq \mathbb{K}$ and $\widetilde{H} \cong 3$. $\operatorname{Alt}(6)$.
4. $\widetilde{H} \cong \mathrm{SL}_{n}(\mathbb{F})$ for some subfield \mathbb{F} of \mathbb{K}. Moreover, $\bar{V} \cong W \otimes_{\mathbb{F}} \mathbb{K}$ for a natural $\mathbb{F} \tilde{H}$-module W.

Proof: Let

$$
\mathcal{H}^{*}=\left\{A \leq H \mid C_{V}(A)=[V, A] \text { and } \operatorname{dim}_{\mathbb{K}} C_{V}(A)=1\right\}
$$

and let \mathcal{A} and \mathcal{A}^{*} be the set of maximal elements of \mathcal{H} and \mathcal{H}^{*}, respectively. By $\mathcal{H}_{L}, \mathcal{A}_{L}, \mathcal{H}_{L}^{*}$ and \mathcal{A}_{L}^{*} we denote the set of elements of $\mathcal{H}, \mathcal{A}, \mathcal{H}^{*}$ and \mathcal{A}^{*} contained in $L \leq H$.

We now proceed by induction on n. First we show:
$\mathbf{1}^{\circ} \quad$ Let $B \in \mathcal{H}$ and T be a p-subgroup of H with $[B, T]=1$. Then $C_{V}(B) \leq C_{V}(T), B T \in \mathcal{H}$, and if $B \in \mathcal{A}$, then $T \leq B$.

Let $1 \neq b \in B$. Then $[V, b]$ is a 1 -dimensional \mathbb{K}-space normalized by T and so $[V, b, T]=0$. Since $C_{V}(B)=[V, B]$ we get $C_{V}(B) \leq C_{V}(T)$. Hence $C_{V}(B)=C_{V}(B T)=[V, B T]$ and $B T \in \mathcal{H}$. If $B \in \mathcal{A}$ this gives $B T=B$.
$\mathbf{2}^{\circ} \quad$ Let $L \leq H$ such that $L=\left\langle\mathcal{H}_{L}\right\rangle$. Then $C_{V}(L)$ is the unique maximal $\mathbb{K} L$-submodule of V.
Let U be a $\mathbb{K} L$-submodule of V with $U \not \leq C_{V}(L)$. Then there exists $A \in \mathcal{H}_{L}$ with $[U, A] \neq 0$. Since $\operatorname{dim}_{\mathbb{K}} V / C_{V}(A)=1$ we have $V=U+C_{V}(A)$. Thus $C_{V}(A)=[V, A]=[U, A] \leq U$ and so $V=U$.
$\mathbf{3}^{\circ} \quad$ Let $L \leq H$ such that $L=\left\langle\mathcal{H}_{L}\right\rangle$. Then $V / C_{V}(L)$ is an absolutely simple $\mathbb{K} L$-module and $O_{p}(L)=C_{L}\left(V / C_{V}(L)\right)$.

Put $\hat{V}:=V / C_{V}(L)$. It follows from 22° that \hat{V} is simple $\mathbb{K} L$-module. Let $A \in \mathcal{H}_{L}$ and put $\mathbb{D}=\operatorname{End}_{\mathbb{K} L}(\hat{V})$. Then

$$
|\mathbb{D}| \leq|\hat{V} /[\hat{V}, A]|=|V /[V, A]|=|\mathbb{K}|
$$

and so $\mathbb{D}=\mathbb{K}$. Thus by 5.1 a, \tilde{V} is absolutely simple. Moreover, $O_{p}(L) \leq C_{L}(\hat{V})$. Since $C_{L}(\hat{V})$ centralizes $C_{V}(L)$ and $V / C_{V}(L)$ we get that $C_{L}(\hat{V})$ is a p-group and so 3° holds.

Since each $B \in \mathcal{H}$ is contained in some $A \in \mathcal{A}, H=\langle\mathcal{A}\rangle$. Let $A, B \in \mathcal{A}$ such that B normalizes A. By 2°) applied to $A B$ in place of $H, C_{V}(A) \leq C_{V}(A B)$. Thus $C_{V}(A)=C_{V}(B)$ and so $A B \in \mathcal{H}$. By maximality of A and B we get $A=A B=B$. Thus A is weakly closed in H. In particular, any Sylow p-subgroup of H contains a unique member of \mathcal{A}. So 4 4° holds.

If $n \leq 1$, then (4) holds with $\mathbb{K}=\mathbb{F}$. If $n=2$ the Proposition follows from Dickson's List of subgroups of $\mathrm{SL}_{2}(\mathbb{K})$ Hu, II.8.27]. Replacing V be \bar{V} and H by \tilde{H} we may assume from now on:
$5^{\circ} \quad V$ is a faithful simple $\mathbb{K} H$ module and $n \geq 3$.
Let V^{*} be the $\mathbb{K} H$-module dual to V. If X is an $\mathbb{K} H$-submodule of V^{*}, then X^{\perp} is a $\mathbb{K} H$ submodule of V. So by (5) V^{*} is a simple $\mathbb{K} H$-module. For $A \in \mathcal{H}^{*}$, observe that $\operatorname{dim}_{\mathbb{K}} C_{V^{*}}(A)=$ $n-1$ and $C_{V^{*}}(A)=\left[V^{*}, A\right]$. Hence, the elements of \mathcal{H}^{*} act on V^{*} as the elements of \mathcal{H} act on V. In particular any statement proved for \mathcal{H} and subgroups generated by elements of \mathcal{H} also gives rise to a dual statement with \mathcal{H} and V replaced by \mathcal{H}^{*} and V^{*}.

Since $C_{V}(H)=0$ and $\operatorname{dim} V / C_{V}(A)=1$ for all $A \in \mathcal{A}$, there exists $L \leq H$ with $L=\left\langle\mathcal{A}_{L}\right\rangle$ and $\operatorname{dim} C_{V}(L)=1$. Let \mathcal{L} be the set of such subgroups of H. Similarly let \mathcal{L}^{*} be the set of all subgroups L^{*} such that $L^{*}=\left\langle\mathcal{A}_{L}^{*}\right\rangle$ and $\operatorname{dim}_{\mathbb{K}} C_{V^{*}}\left(L^{*}\right)=1$.
$6^{\circ} \quad$ Suppose $L \in \mathcal{L}$ with $O_{p}(L)=1$. Then $n=3, p=2, L \cong \mathrm{SL}_{2}(\mathbb{F})$ for some subfield \mathbb{F} of \mathbb{K} with $4 \leq|\mathbb{F}|, \mathcal{A}_{L}=\operatorname{Syl}_{p}(L)$ and $V \cong W \otimes_{\mathbb{F}} \mathbb{K}$ for a natural $\mathbb{F} \Omega_{3}(\mathbb{F})$-module W for L.

By induction the theorem holds for L in place of H. By $\left.2^{\circ}\right) V$ is indecomposable as a $\mathbb{K} L$ module. In particular, $O_{p^{\prime}}(L)=1$. We conclude that Case (4) of 7.5 holds for L, so $L \cong \mathrm{SL}_{n-1}(\mathbb{F})$ for some subfield $\mathbb{F} \leq \mathbb{K}$.

Let $A \in \mathcal{A}_{L}$ and put $P^{*}=N_{L}\left(C_{V}(A)\right)$ and $P=C_{P^{*}}\left(V / C_{V}(A)\right)$. Note that P^{*} acts simply on $O_{p}\left(P^{*}\right)$. Since A is weakly closed in H and $A \leq O_{p}\left(P^{*}\right)$ we conclude that $A \unlhd P^{*}$ and $A=O_{p}\left(P^{*}\right)$. If $n=3$, then 7.4 a) implies that 6° holds.

Suppose that $n>3$. Then $A=O_{p}\left(P^{*}\right)$ is natural module for $P / O_{p}\left(P^{*}\right) \cong \mathrm{SL}_{n-2}(\mathbb{F})$. Let $x \in V \backslash C_{V}(A)$. Then $[x, A] \cong A / C_{A}(x) \cong A$ as an $\mathbb{F}_{p} P$-module. Thus $[x, A]$ is a nontrivial simple module for P. Hence $[V, A]=\sum_{v \in V}[v, A]$ is a sum of non-trivial simple $\mathbb{F}_{p} P$-modules and so $C_{[V, A]}(P)=0$. But this contradicts $C_{V}(L) \leq C_{V}(A)=[V, A]$ and $\operatorname{dim}_{\mathbb{K}} C_{V}(L)=1$.
$7^{\circ} \quad$ Suppose $L \in \mathcal{L}$ with $O_{p}(L)=1$. Fix $A \in \mathcal{A}_{L}$.
(a) If T is a p-subgroup of H with $L \leq N_{H}(T)$, then $T=1$.
(b) Let $L \leq R \in \mathcal{L}$. Then $L=R$.
(c) Let $\mathcal{L}_{-}(A)=\left\{R \in \mathcal{L} \mid A \leq R, O_{p}(R)=1\right\}$. If $|A|=4$, then $\left|\mathcal{L}_{-}(A)\right| \leq 2$ and if $|A|>4$, then $\mathcal{L}_{-}(A)=\{L\}$.
(d) There exists $R \in \mathcal{L}$ with $O_{p}(R) \neq 1$.

Since $A \cap T \leq O_{p}(L)=1$ and by $\left.4{ }^{\circ}\right) A$ is weakly closed in $L,[A, T]=1$. Thus by $\left.1^{1}\right], T \leq A$ and so $T \leq A \cap T=1$. Hence (a) hold.

In particular, if $L \leq R \in \mathcal{L}$, then $O_{p}(R)=1$. Hence by 6°, both L and R are isomorphic to $S L_{2}(|A|)$ and so $L=R$. Thus (b) holds.

Put $V_{1}:=\left[C_{V}(A), N_{L}(A)\right]$ and $V_{2}:=C_{V}(L)$. Let $R \in \mathcal{L}_{-}(A)$. By $6{ }^{\circ} N_{R}(A)=O^{2}\left(N_{R}(A)\right)$, so 66° and 7.4 imply that $N_{R}(A)$ normalizes V_{1} and V_{2}. Since there are only two proper $\mathbb{K} N_{R}(A)$ submodules of $C_{V}(A)$, we conclude that $C_{V}(R)=V_{1}$ or $C_{V}(R)=V_{2}$. In the second case $\langle R, L\rangle \in \mathcal{L}$ and so by (b), $R=L$. So suppose $C_{V}(R)=V_{1}$, then $V_{2}=\left[C_{V}(A), N_{R}(A)\right]$. Put $P=N_{H}(A) \cap$ $N_{H}\left(V_{2}\right)$. From the action of $R \cong \mathrm{SL}_{2}(|A|)$ on V we conclude that $\left|P / C_{P}\left(V_{2}\right)\right| \geq|A|-1$. On the other hand since $P \leq \mathrm{SL}_{\mathbb{K}}(V)$ and $V_{2}=C_{V}(L), 7.4$ implies that $P \leq \mathrm{Z}\left(\mathrm{SL}_{\mathbb{K}}(V)\right) C_{P}\left(V_{2}\right)$ and so $\left|P / C_{P}\left(V_{2}\right)\right| \leq 3$. Thus $|A|=4$. Moreover by b, R is unique in \mathcal{L} with $C_{V}(R)=V_{1}$ and so (c) holds.

Suppose that $O_{p}(R)=1$ for all $R \in \mathcal{L}$. Let $B \in \mathcal{A}$ with $B \not \leq L$. Then $B \neq C$ for every $C \in \mathcal{A}_{L}$. Hence $\left.C_{V}(C) \neq C_{V}(B)\right)$. From 6° we get $n=3$, so $\langle C, B\rangle \in \mathcal{L}$. Again by 6° $\langle C, B\rangle \cong \mathrm{SL}_{2}(\mathbb{F}),\langle C, B\rangle \in \mathcal{L}_{-}(B)$ and $\mathcal{A}_{L \cap\langle C, B\rangle}=\{C\}$. Thus $\langle C, B\rangle \neq\langle D, B\rangle$ for all $B \neq D \in \mathcal{A}_{L}$. Thus $\left|\mathcal{L}_{-}(B)\right| \geq\left|\mathcal{A}_{L}\right|>2$, a contradiction to (C).
$8^{\circ} \quad$ Suppose $L \in \mathcal{L}$ with $O_{p}(L) \neq 1$. Then there exists a simple $\mathbb{F}_{p} L$-module W and a subfield $\mathbb{F} \leq \mathbb{K}$ with $\mathbb{F} \cong \operatorname{End}_{L}(W)$ such that the following hold:
(a) $B \in \mathcal{H}^{*}$ for every $1 \neq B \unlhd L$ with $B \leq O_{p}(L)$.
(b) $O_{p}(L) \in \mathcal{A}^{*}$ and $\left|O_{p}(L)\right|=|A|$ for $A \in \mathcal{A}$.
(c) $O_{p}(L)$ is a minimal normal subgroup of L.
(d) $|A|=|\mathbb{F}|^{n-1}$ and $\left|A \cap O_{p}(L)\right|=|\mathbb{F}|$ for $A \in \mathcal{A}_{L}$.
(e) $L / O_{p}(L) \cong \mathrm{SL}_{n-1}(\mathbb{F})$, and $O_{p}(L)$ is a natural module for $\mathbb{F}_{p} \mathrm{SL}_{n-1}(\mathbb{F})$.
(f) $V / C_{V}(L) \cong Y \otimes_{\mathbb{F}} \mathbb{K}$ as an $\mathbb{F}_{p} L$-module, and Y is a natural $\mathbb{F}_{p} S_{n-1}(\mathbb{F})$-module for L dual to $O_{p}(L)$.
(g) $H=\left\langle\mathcal{H}^{*}\right\rangle$.

By $2^{\circ} V / C_{V}(L)$ is a simple $\mathbb{K} L$-module. Hence $\operatorname{dim}_{\mathbb{K}} C_{V}(L)=1$ implies that $[V, B]=C_{V}(L)=$ $C_{V}\left(O_{p}(L)\right)=C_{V}(B)$ for every non-trivial normal subgroup B of L contained in $O_{p}(L)$, in particular, $B \in \mathcal{H}^{*}$. This is a).

Now let B be a minimal normal subgroup of L in $O_{p}(L)$. Then B is a simple $\mathbb{F}_{p} L$-module. There exists an $\mathbb{F}_{p} L$-submodule $W \leq V$ and a maximal $\mathbb{F}_{p} L$-submodule U of $C_{V}(L)$ such that $C_{V}(L) \leq W$, $W / C_{V}(L)$ is a simple $\mathbb{F}_{p} L$-module, and $[W, B] \not \leq U$. Then $B^{*}:=W / C_{V}(L)$ is as an $\mathbb{F}_{p} L$-module dual to B. It follows that $O_{p}(L)=B B_{0}$, where $B_{0}:=C_{O_{p}(L)}(W / U)$ and $B \cap B_{0}=1$.

Put $\mathbb{F}:=\operatorname{End}_{L}\left(B^{*}\right)$. Then B and B^{*} are also $\mathbb{F} L$-modules. By $\left(3^{\circ}\right), V / C_{V}(L)$ is an absolutely simple $\mathbb{K} L$-module and so by $5.3 V / C_{V}(L) \cong B^{*} \otimes_{\mathbb{F}} \mathbb{K}$ as an $\mathbb{F}_{p} L$-module. Let $A \in \mathcal{A}_{L}$. Since $\left[V / C_{V}(L), A\right]=C_{V / C_{V}(L)}(A)$ is a \mathbb{K}-hyperplane of $V / C_{V}(L),\left[B^{*}, A\right]=C_{B^{*}}(A)$ is an \mathbb{F} hyperplane of B^{*}. Hence duality shows that $\operatorname{dim}_{\mathbb{F}}[B, A]=C_{B}(A)$ is 1-dimensional over \mathbb{F}; in particular, $\left|A / C_{A}(B)\right| \leq\left|B / C_{B}(A)\right|$. Moreover, $[B, A] \leq A$ since A is weakly closed in H by 40, so

$$
[B, A]=C_{B}(A)=B \cap A
$$

By the dual version of $1{ }^{\circ}$, $\left[V, C_{A}(B)\right] \leq[V, B]=C_{V}(L)$ and so $A \leq O_{p}(L)$. This gives $C_{A}(B)=$ $A \cap O_{p}(L)$ and

$$
\begin{aligned}
|A|=\left|A / C_{A}(B) \| C_{A}(B)\right| & \leq\left|B / C_{B}(A)\right|\left|A \cap O_{p}(L)\right|=|B / B \cap A|\left|A \cap O_{p}(L)\right| \\
& \leq\left|O_{p}(L) / O_{p}(L) \cap A\right|\left|A \cap O_{p}(L)\right|=\left|O_{p}(L)\right| .
\end{aligned}
$$

By the dual version of 44° all elements of \mathcal{A}^{*} are conjugate and so have the same order. Together with 4° we conclude

$$
|A| \leq\left|O_{p}(L)\right| \stackrel{\sqrt[|a|]{\leq}}{\leq}\left|A^{*}\right| \text { for every } A \in \mathcal{A} \text { and every } A^{*} \in \mathcal{A}^{*}
$$

The dual version of $\left(7^{\circ}\right)\left(\right.$ d) shows that there exists $L^{*} \in \mathcal{L}^{*}$ such that $O_{p}\left(L^{*}\right) \neq 1$. This leads to a dual version of the above chain of inequalities. Thus also $\left|A^{*}\right| \leq|A|$, and $|A|=\left|O_{p}(L)\right|$; in particular $O_{p}(L) \in \mathcal{A}^{*}$. This is (b).

Moreover, $\left|O_{p}(L) / A \cap O_{p}(L)\right|=|B / A \cap B|$ and so $O_{p}(L)=B\left(A \cap O_{p}(L)\right)$; in particular, $\left[O_{p}(L), A\right] \leq B$. Since this holds for all $A \in \mathcal{A}_{L},\left[O_{p}(L), L\right]=B$. Now the above factorization $O_{p}(L)=B B_{0}$ yields $\left[B_{0}, L\right]=1$ and then with the Three Subgroups Lemma $\left[V, B_{0}\right]=0$ and $B_{0}=1$. This is (C).

By induction the theorem holds for $V / C_{V}(L)$ and L. If we are not in case 4 we conclude that $|A B / B|<\left|B / C_{B}(A)\right|$, a contradiction. Thus 4olds. So $L / O_{p}(L) \cong \mathrm{SL}_{n-1}(\mathbb{F})$ and $B=O_{p}(L)$ is a natural $\mathbb{F}_{p} \mathrm{SL}_{n-1}(\mathbb{F})$-module. In particular $\left|\widehat{O}_{p}(L)\right|=|\mathbb{F}|^{n-1}$, so by (\mathbb{C}) also $|A|=|\mathbb{F}|^{n-1}$. Hence (e) and (d) are proved.

We have shown already that $V / C_{V}(L) \cong B^{*} \otimes_{\mathbb{F}} \mathbb{K}$. Hence (f) follows from (e).
By the dual version of (b) $O_{p}\left(L^{*}\right) \in \mathcal{A}$, where as above $L^{*} \in \mathcal{L}^{*}$ with $O_{p}\left(L^{*}\right) \neq 1$. Hence 40 shows that

$$
H=\left\langle O_{p}\left(L^{*}\right)^{H}\right\rangle \leq\left\langle L^{* H}\right\rangle=\left\langle\mathcal{H}^{*}\right\rangle
$$

and (g) follows.

$$
\mathbf{9}^{\circ} \quad \text { Let } A \in \mathcal{A} \text { and put } L_{A}^{*}:=\left\langle\mathcal{A}_{N_{H}(A)}^{*}\right\rangle . \text { Then } L_{A}^{*} \in \mathcal{L}^{*} \text { and } A=O_{p}\left(L_{A}^{*}\right) \text {. }
$$

By $\left(7^{\circ}\right)(\mathrm{d})$ there exists $R^{*} \in \mathcal{L}^{*}$ with $O_{p}\left(R^{*}\right) \neq 1$. By $\left(8^{\circ}\right)(\mathrm{b}), O_{p}\left(R^{*}\right) \in \mathcal{A}$ and so by 4^{0} we may assume that $O_{p}\left(R^{*}\right)=A$. Thus $A \leq R^{*} \leq L_{A}^{*}$. Note that $A \leq O_{p}\left(L_{A}^{*}\right)$. Since L_{A}^{*} normalizes $[V, A]$ we have $\left[V, L_{A}^{*}\right]=[V, A]$ and so $L_{A}^{*} \in \mathcal{L}^{*}$. Thus by (e), $\left|R^{*}\right|=\left|L_{A}^{*}\right|$ and so $R^{*}=L_{A}^{*}$ and $A=O_{p}\left(L_{A}^{*}\right)$.

$\mathbf{1 0}^{\circ}$ Let $A, B \in \mathcal{A}$ with $A \neq B$. Then exactly one of the following holds.

1. There exists $D \in \mathcal{A}^{*}$ with $D \leq N_{H}(A)$ and $B \leq N_{H}(D)$.
2. $\langle A, B\rangle \in \mathcal{L}$ and $O_{p}(\langle A, B\rangle)=1$.

Pick $L \in \mathcal{L}$ with $\langle A, B\rangle \leq L$. Suppose that $D:=O_{p}(L) \neq 1$. Then by $\left.8^{\circ}\right)(\mathrm{b}), D \in \mathcal{A}^{*}$. Clearly $B \leq N_{H}(D)$ and since $A D$ is a p-group and A is weakly closed, $D \leq N_{H}(A)$. Thus (11) holds.

Suppose that $O_{p}(L)=1$. Then by $\sqrt{6^{\circ}}, L=\langle A, B\rangle$ and so $(2\rangle$ holds.
Suppose for a contradiction that (11) and (2) hold. Since D is weakly closed by $4{ }^{\circ}$, $A \leq N_{H}(D)$ and so $L \leq N_{H}(D)$, a contradiction to 7° (a).

We now divide the proof into three cases.
Case 1 Suppose that $O_{p}(L)=1$ for some $L \in \mathcal{L}$. Then (3) holds.
By $66^{\circ} n=3, p=2$ and $L \cong \mathrm{SL}_{2}(\mathbb{F})$ for a subfield \mathbb{F} of \mathbb{K} with $|\mathbb{F}|=|A|$. Let $A \in \mathcal{A}_{L}$. By 7° there exists $R \in \mathcal{L}$ with $O_{p}(L) \neq 1$ and by 4° we can choose R such that $A \leq R$. Suppose that $\left|A \cap O_{p}(R)\right|>2$. Then by 7.4 b$]\left[V, A \cap O_{p}(R]=[V, A]\right.$. But this is a contradiction since by 8° (b) $\left[V, O_{p}(R)\right]$ is 1-dimensional while $[V, A]$ is a hyperplane. Thus $\left|A \cap O_{p}(R)\right|=2$. By (e),
$R / O_{p}(R) \cong \mathrm{SL}_{2}(\mathbb{E})$ for some subfield \mathbb{E} of \mathbb{K}. Moreover, $|A|=|\mathbb{E}|^{2}$ and $\left|A \cap O_{p}(R)\right|=|\mathbb{E}|$. Thus $|\mathbb{E}|=2$ and $|\mathbb{F}|=|A|=4$.

By $\left(9^{\circ}\right), N_{H}(A) \neq N_{H}\left(C_{V}(L)\right)$. So $N_{H}(A)$ does not normalizes L. Thus 7°) (c) implies that $\left|\mathcal{L}_{-}(A)\right|=2$. Each $T \in \mathcal{L}_{-}(A)$ is isomorphic to $\mathrm{SL}_{2}(4)$ and so contains four elements of \mathcal{A} other than A. So there exist eight elements of \mathcal{A} that satisfy $10^{\circ}(2)$ together with A.

By 9°) and 8° (e), $L_{A}^{*} \cong \operatorname{Sym}(4)$ and so there exist exactly three $D \in \mathcal{A}^{*}$ with $D \leq N_{H}(A)$. Similarly there exist exactly three elements $B \in \mathcal{A}$ with $B \leq N_{H}(D)$, two of which are different from A. If $B \neq A$, then $\langle A, B\rangle=L_{D}$ and so $D=O_{p}(\langle A, B\rangle)$ is uniquely determined by A and B. Thus there are $6=2 \cdot 3$ elements of \mathcal{A} that satisfy (10ㅇ) together with A. This shows that $|\mathcal{A}|=1+6+8=15$.

Since $N_{L}(A) \cong \operatorname{Alt}(4)$ and $L_{A}^{*} \cong \operatorname{Sym}(4)$ we have $N_{L}^{*}(A) \not \leq Z(H) N_{L}(A)$. Thus 7.4 implies $\left|N_{H}(A) / Z(H) N_{L}(A)\right|=2$. Since $\left|N_{L}(A)\right|=12$ and $N_{L}(A) \cap Z(H)=1,\left|N_{H}(A) / \mathrm{Z}(H)\right|=2 \cdot 12=24$ and $|H / \mathrm{Z}(H)|=24 \cdot 15=360$. Since $|L \mathrm{Z}(H) / \mathrm{Z}(H)|=|L|=60$ we have $|H / L \mathrm{Z}(H)|=6$ and so $H / \mathrm{Z}(H) \cong \operatorname{Alt}(6)$. The elements of order three in L_{A}^{*} act fixed-point freely on $C_{V}(A)$, but the elements of order three in $N_{L}(A)$ do not. Thus $N_{L}(A) \not \leq L_{A}^{*}$ and $\mathrm{Z}(H) \neq 1$, so $|\mathrm{Z}(H)|=3$. Therefore $H \sim 3$. Alt(6), $\mathbb{F}_{4} \leq \mathbb{K}$ and (3) holds in this case.

Case 2 Suppose that $O_{p}(L)=1$ for some $L \in \mathcal{L}^{*}$. Then (3) holds.
By duality the above argument also applies to \mathcal{L}^{*}. Thus, also in this case (3) holds.
Case 3 Suppose that $O_{p}(L) \neq 1$ for all $L \in \mathcal{L} \cup \mathcal{L}^{*}$. Then (4) holds.
Let \mathbb{F} be as in $\left(8^{\circ}\right)$. By 4° and $8^{\circ}(\mathrm{d}),|\mathbb{F}|$ and so also \mathbb{F} is independent of the choice of $L \in \mathcal{L}$. Let

$$
\mathcal{W}=\left\{x \in V \backslash\{0\} \mid x \in C_{V}\left(A^{*}\right) \text { for some } A^{*} \in \mathcal{A}^{*}\right\} \text { and } \mathcal{W}_{0}:=\mathcal{W} \cup\{0\}
$$

For $x \in \mathcal{W}$ let $A_{x}^{*} \in \mathcal{A}^{*}$ with $x \in C_{V}\left(A_{x}^{*}\right)$ and observe that A_{x}^{*} is uniquely determined by x since $C_{V}\left(A_{x}^{*}\right)=x \mathbb{K}$. Define the relation ' \sim ' on \mathcal{W} by

$$
x \sim y: \Longleftrightarrow x \mathbb{F}=y \mathbb{F} \text { or } y \in\left[x, A_{y}^{*}\right] .
$$

Since $x \mathbb{F}=x \mathbb{F}, \sim$ is reflexive.
11 ${ }^{\circ} \quad$ Let $x, y \in \mathcal{W}$ with $x \sim y$. Then $y \sim x$ and $x \mathbb{F}+y \mathbb{F} \subseteq \mathcal{W}_{0}$. Moreover, if in addition $x \mathbb{F} \neq y \mathbb{F}$, then $\left\langle A_{x}^{*}, A_{y}^{*}\right\rangle / C_{\left\langle A_{x}^{*}, A_{y}^{*}\right\rangle}(x \mathbb{F}+y \mathbb{F}) \cong \mathrm{SL}_{2}(\mathbb{F})$ and $x \mathbb{F}+y \mathbb{F}$ is a natural $\mathbb{F S L}_{2}(\mathbb{F})$-module for $\left\langle A_{x}^{*}, A_{y}^{*}\right\rangle$, in particular $y \mathbb{F}=\left[x, A_{y}^{*}\right]$.

If $x \mathbb{F}=y \mathbb{F}$, then clearly $y \sim x$ and $x \mathbb{F}+y \mathbb{F} \subseteq \mathcal{W}_{0}$. So we may assume that $x \mathbb{F} \neq y \mathbb{F}$ and $y \in\left[x, A_{y}^{*}\right]$. Put $R^{*}:=\left\langle A_{x}^{*}, A_{y}^{*}\right\rangle$ and $V_{1}:=x \mathbb{K}+y \mathbb{K}$, and pick $L^{*} \in \mathcal{L}^{*}$ with $R^{*} \leq L^{*}$. Let $z \in\{x, y\}$. Observe that R^{*} normalizes V_{1}. From $\left(8^{\circ}\right)$ applied to L^{*} we conclude that $R^{*} / C_{R}^{*}\left(V_{1}\right) \cong \mathrm{SL}_{2}(\mathbb{F})$ and $V_{1} \cong W_{1} \otimes_{\mathbb{F}} \mathbb{K}$ for some natural $\mathbb{F S L}_{2}(\mathbb{F})$-module W_{1} of R^{*}; in particular, $C_{W_{1} \otimes_{\mathbb{F}} \mathbb{K}}\left(A_{z}^{*}\right)=$ $C_{W_{1}}\left(A_{z}^{*}\right) \otimes_{\mathbb{F}} \mathbb{K}$.

Since $z \in C_{V_{1}}\left(A_{z}^{*}\right), z \leftrightarrow w_{z} \otimes \ell_{z}$ for some $w_{z} \in W_{1}$ and $\ell_{z} \in \mathbb{K}$. On the other hand $W_{1} \otimes \ell_{x}$ is R^{*}-invariant and $y \in\left[x, A_{y}^{*}\right]$, so $w_{y} \otimes \ell_{y} \in W_{1} \otimes \ell_{x}$. Thus $x \mathbb{F}+y \mathbb{F} \leftrightarrow W \otimes \ell_{x}$, in particular $x \mathbb{F}+y \mathbb{F}$ is invariant under R^{*}. Hence $x \mathbb{F}+y \mathbb{F}$ is natural $\mathrm{SL}_{2}(\mathbb{F})$-module for R^{*} and R^{*} acts transitively on $(x \mathbb{F}+y \mathbb{F})^{\sharp}$. It follows that $x \mathbb{F}+y \mathbb{F} \subseteq \mathcal{W}_{0},\left[x, A_{y}^{*}\right]=y \mathbb{F}$ and $x \in\left[y, A_{x}\right]$. So 11° holds.
$12^{\circ} \sim$ is an equivalence relation on \mathcal{W}.

We already have proved that \sim is reflexive and symmetric. To show that \sim is transitive, let $x, y, z \in \mathcal{W}^{\sharp}$ with $x \sim y$ and $y \sim z$. If $x \mathbb{F}=y \mathbb{F}$ and $y \mathbb{F}=z \mathbb{F}$, then $x \mathbb{F}=y \mathbb{F}$. If $x \mathbb{F}=y \mathbb{F}$ and $y \mathbb{F} \neq z \mathbb{F}$, then $x \in y \mathbb{F} \leq y \mathbb{F}+z \mathbb{F}$ and by $\left.11^{\circ}\right],\left[x, A_{z}^{*}\right]=z \mathbb{F}$ and so $x \sim z$. So we may assume that $x \mathbb{F} \neq y \mathbb{F}$ and similarly that $y \mathbb{F} \neq z \mathbb{F}$.

Put $V_{1}:=x \mathbb{K}+y \mathbb{K}, R^{*}:=\left\langle A_{x}^{*}, A_{y}^{*}\right\rangle$. and $N=\mathrm{N}_{H}\left(V_{1}\right)$. Then $\left\langle\mathcal{A}_{N}^{*}\right\rangle \leq L^{*}$ for some $L^{*} \in \mathcal{L}^{*}$ and 8° gives that $\left\langle\mathcal{A}_{N}^{*}\right\rangle=R^{*}$. By $11^{\circ}\left\langle y^{R^{*}}\right\rangle=x \mathbb{F}+y \mathbb{F}$.

Suppose first that $z \in V_{1}$. Then $V_{1}=z \mathbb{K}+y \mathbb{K}$ and by symmetry $R=\left\langle\mathcal{A}_{N}^{*}\right\rangle=\left\langle A_{z}^{*}, A_{x}^{*}\right\rangle$ and $\left\langle y^{R^{*}}\right\rangle=z \mathbb{F}+y \mathbb{F}$. Hence by $11^{\circ}, x \sim z$.

Suppose next that $z \notin V_{1}$. Note that $C_{V}\left(C_{A_{y}^{*}}(x)\right)=V_{1}$. Thus $C_{V}\left(C_{A_{y}^{*}}(x)\right) \neq C_{V}\left(C_{A_{y}^{*}}(z)\right)$. Since both $C_{V}\left(C_{A_{y}^{*}}(x)\right)$ and $C_{V}\left(C_{A_{y}^{*}}(z)\right)$ are \mathbb{F}-hyperplanes of A_{y}^{*} we conclude that $A_{y}^{*}=C_{A_{y}^{*}}(x) C_{A_{y}^{*}}(z)$. Thus

$$
\left[z+V_{1}, C_{A_{y}^{*}}\left(V_{1}\right)\right]=\left[z, C_{A_{y}^{*}}(x)\right]=\left[z, A_{y}^{*}\right]=y \mathbb{F}
$$

By 11° there exists $g \in R^{*}$ with $y^{g}=x$. Since $\left[V, R^{*}\right] \leq V_{1}$ we have $\left(z+V_{1}\right)^{g}=z+V_{1}$. So conjugating the preceding line by g gives

$$
\left[z+V_{1}, C_{A_{x}^{*}}\left(V_{1}\right)\right]=x \mathbb{F}
$$

Hence $x \in\left[z, A_{x}^{*}\right]$ and $x \sim z$. Thus 12° holds.
$\mathbf{1 3}^{\circ}$ Let W_{0} be an equivalence class of \sim. Then $W:=W_{0} \cup\{0\}$ is an \mathbb{F}-subspace of V, H normalizes W, H induces $\mathrm{SL}_{\mathbb{F}}(W)$ on V, and $V \cong W \otimes_{\mathbb{F}} \mathbb{K}$ as an $\mathbb{K} H$-module.

It follows from 11° that W is an \mathbb{F}-subspace of V. Let $x \in W, A^{*} \in \mathcal{A}^{*}$ with $\left[x, A^{*}\right] \neq 0$, and $y \in\left[x, A^{*}\right]^{\sharp}$. Then $A_{y}^{*}=A^{*}$ and $x \sim y$. So $y \in W$ and $\left\langle\mathcal{A}^{*}\right\rangle$ normalizes W. Now $\left.8^{\circ}\right)(\mathrm{g})$ implies that H normalizes W. Note that A_{y}^{*} induces $C_{\mathrm{SL}_{\mathbb{F}}(W)}(W / x \mathbb{F})$ on W. Hence by 7.2 , H induces $\mathrm{SL}_{\mathbb{F}}(W)$ on W. In particular, $\mathbb{F}=\operatorname{End}_{\mathbb{F} G}(W)$. By $\left(3^{\circ}\right), V$ is absolutely simple and so by $5.3 V \cong W \otimes_{\mathbb{F}} \mathbb{K}$. Hence 13° holds.
13° completes the proof for Case 3) and for the Proposition.
Proof of Theorem 2; Let \mathcal{Q} be the set of subgroups that act nearly quadratically but not quadratically on V. To simplify notation we view H as a subgroup of $\mathrm{GL}_{\mathbb{F}_{p}}(V)$. By assumption $H=\langle\mathcal{Q}\rangle$.

Put $F:=\mathrm{F}^{*}(H)$ and $\mathbb{F}:=\mathbb{F}_{p}$. Let Δ be the set of Wedderburn components of F on V, and for $A \in \mathcal{Q}$ let

$$
\Delta_{A}:=\{W \in \Delta \mid[W, A] \neq 0\} .
$$

Since V is a simple H-module, Clifford Theory ensures that $V=\bigoplus \Delta$. Observe that Δ is a system of imprimitivity if $|\Delta|>1$.

Let $W \in \Delta$ and $A \in \mathcal{Q}$. Put

$$
N:=\mathrm{N}_{G}(W), \tilde{N}:=N / C_{G}(W), A_{W}:=\mathrm{N}_{A}(W), E:=\left\langle A_{W}^{N}\right\rangle
$$

By Clifford Theory W is a simple $\mathbb{F} N$-module. By $5.2(\mathbb{f}) \mathbb{K}$ is a finite field. We now divide the proof into several cases.

Case $1 \quad$ The case $V \neq W$.

Since H acts transitively on Δ and $H=\langle\mathcal{Q}\rangle$ there exists $A \in \mathcal{Q}$ with $A \neq A_{W}$. Hence $\left|\Delta_{A}\right|>1$, and 2.13 can be applied. Since A is not quadratic on V, we are in case 2.13.4.

Clearly $|W|>2$ since $C_{V}(F)=0$. Hence 2.13 4) shows that A is elementary abelian and either
(i) $p=3, A_{W}=1$ and $|W|=|A|=\left|\Delta_{A}\right|=3$; or
(ii) $p=2,\left|A / A_{W}\right|=\left|\Delta_{A}\right|=2, C_{W}\left(A_{W}\right)=\left[W, A_{W}\right]$, and $\left|W / C_{W}\left(A_{W}\right)\right|=2$.

Put $m:=|\Delta|$ and let $a \in A \backslash A_{W}$. Suppose that (ii) holds. Then a acts as 3 -cycle on Δ. It follows that $H / C_{H}(\Delta)$ is a transitive subgroup of $\operatorname{Sym}(\Delta)$ generated by 3 -cycles. Hence $H / C_{H}(\Delta) \cong \operatorname{Alt}(\Delta)$ and $m \geq 3$.

Put $D:=\mathrm{N}_{\mathrm{GL}(\mathbb{F}(V)}(\Delta)$. Then $D \cong C_{2} \imath \operatorname{Sym}(m)$ and $O^{3^{\prime}}(D)=D^{\prime} \sim 2^{m-1} \operatorname{Alt}(m)$. Put $X:=$ $C_{D^{\prime}}(\Delta)$. Then $F \leq X$ and $D^{\prime}=X H$. Moreover, X is an elementary abelian 2-group, $X=\left[X, D^{\prime}\right]$, and $X / C_{X}(D)$ is isomorphic to the simple constituent of the \mathbb{F} Alt (m)-permutation module. Since $F \not \leq Z(H)$ we conclude that $F=X$ and $H=D^{\prime}$. If $m=4$, the $O_{2}\left(D^{\prime}\right) \not \leq X$. So $m \neq 4$ and the first case of Theorem 2 holds.

Suppose that (ii) holds. Then $H / C_{H}(\Delta)$ is a transitive subgroup of $\operatorname{Sym}(\Delta)$ generated by 2cycles and so $H / C_{H}(\Delta) \cong \operatorname{Sym}(\Delta)$. Also $\left|A_{W}\right|=\left|\left[w, A_{W}\right]\right|=\left|\left[W, A_{W}\right]\right|$ for $w \in W \backslash C_{W}\left(A_{W}\right)$ and thus $\left|A_{W}\right|=\left|C_{W}\left(A_{W}\right)\right|$. Since W is a simple $\mathbb{F} N$-module, the dual version of 7.2 implies that $\widetilde{E} \cong \mathrm{SL}_{\mathbb{F}}(W)$. Since $C_{V}(F)=0, \widetilde{F} \neq 1$, and since \widetilde{E} normalizes \widetilde{F} we conclude that either $\operatorname{dim}_{\mathbb{F}} W>2$ and $\widetilde{F}=\widetilde{E}$ or $\operatorname{dim}_{\mathbb{F}} W=2$ and $\widetilde{F}=\widetilde{E}^{\prime} \cong C_{3}$.

Assume first that $n:=\operatorname{dim}_{\mathbb{F}} W>2$. Then there exists a component K of H such that $F=$ $K C_{F}(W)$ and $C_{F}(W)=C_{F}(K)$. Suppose that K is A-invariant, then $K A_{W}$ also induces $\mathrm{SL}_{\mathbb{F}}\left(W^{a}\right)$ on W^{a}. Moreover, $C_{F}(W)=C_{F}(K)=C_{F}\left(W^{a}\right)$, and W and W^{a} are isomorphic F-modules since A_{W} centralizes a hyperplane in both. This contradicts the fact that W and W^{a} are distinct Wedderburn components. Thus, we have that $K \neq K^{a}$. It follows that $F \cong K^{m} \cong \mathrm{SL}_{n}(\mathbb{F})^{m}$ and the second case of theorem 2 holds.

Assume now that $n=2$. Put $D:=\mathrm{N}_{\mathrm{GL}_{\mathbb{F}}(V)}(\Delta)$. Then $D \cong \operatorname{SL}_{2}(2)$ 亿 $\operatorname{Sym}(m)$. Let D_{1} be the image of $\mathrm{Wr}\left(\mathrm{SL}_{2}(2), m\right)$ in D under this isomorphism. Put $B=C_{D}(\Delta) \cong \mathrm{SL}_{2}(2)^{m}$ and $B_{1}=B \cap D_{1}$. Since A centralizes each $W_{0} \in \Delta \backslash \Delta_{A}$ and A is elementary abelian we have that $A \leq D_{1}$. Each 2-subgroup of B acts quadratically on V and so each member of \mathcal{Q} acts non-trivially on Δ. Thus $H \leq D_{1}$ and $D_{1}=B_{1} H$. It follows that $B_{1}=B^{\prime}\left\langle A_{W}^{H}\right\rangle$ and $D_{1}=B^{\prime} H$. Note that $1 \neq F \leq B^{\prime}$. We claim that $F=B^{\prime}$. If $m>2$, then D and so also H acts simply on B^{\prime}. Hence $B^{\prime}=F$. If $m=2$, then $\left|B^{\prime}\right|=3^{2}$. But C_{3} has a unique non-trivial simple module over \mathbb{F} and W is a Wedderburn component for F, so also $|F|>3$ and again $F=B^{\prime}$.

From $F=B^{\prime}$ we conclude that $H=D_{1}$ and so the third case of Theorem 2 holds.

Case $2 \quad$ The case $V=W$, and H not \mathbb{K}-linear on V.
Since $H=\langle\mathcal{Q}\rangle$, there exists $A \in \mathcal{Q}$ such that A is not \mathbb{K}-linear on V. Hence we can apply 6.3 Since A is not quadratic on V and \mathbb{K} is finite, we are either in case 6.32) or (3). If 6.3) holds, then $|\mathbb{K}|=27$, and it is easy to see that case 4 of Theorem 2 holds.

Assume now that $6.3(2)$ holds. Then A is elementary abelian and

$$
\begin{equation*}
|\mathbb{K}|=4,\left[V, A_{\mathbb{K}}\right]=C_{V}\left(A_{\mathbb{K}}\right),\left|A / A_{\mathbb{K}}\right|=2, \text { and }\left|V / C_{V}\left(A_{\mathbb{K}}\right)\right|=4 \tag{*}
\end{equation*}
$$

In particular $A_{\mathbb{K}} \neq 1, \operatorname{dim}_{\mathbb{K}} V>1$, and $A_{\mathbb{K}}$ acts quadratically on V. Let $E_{1}=\left\langle A_{\mathbb{K}}^{H}\right\rangle$. We apply 7.5 . If 7.5 1] holds, then H is a subgroup of $\Gamma \mathrm{GL}_{2}(4),|A|=4$ and $E_{1} \cong D_{6}$ or D_{10}. Since A is elementary abelian we get $A \cap O_{2}(H) \neq 1$, a contradiction. Thus, we get from 7.5 that either $E_{1} \cong \mathrm{SL}_{\mathbb{K}}(V)$,
$E_{1} \cong \mathrm{SL}_{\mathbb{F}}(U)$ where U is an \mathbb{F}-space with $V \cong U \otimes_{\mathbb{F}} \mathbb{K}$ as an $\mathbb{F} E_{1}$-module, or $\operatorname{dim}_{\mathbb{K}} V=3$ and $E_{1} \cong 3 \cdot \operatorname{Alt}(6)$.

In the first case $\Gamma \mathrm{GL}_{\mathbb{K}}(V) / E_{1} \cong \operatorname{Sym}(3)$ and so either $H=\Gamma \mathrm{GL}_{\mathbb{K}}(V)$, or $\left|H / E_{1}\right|=2$ and $H=\Gamma \mathrm{SL}_{\mathbb{K}}(V)$. In the second case $\mathrm{N}_{\mathrm{GL}_{\mathbb{F}}(V)}\left(E_{1}\right) \cong \mathrm{SL}_{2}(\mathbb{F}) \times \mathrm{SL}_{\mathbb{F}}(U)$ and so, since H acts simply on V and is generated by 2 -groups, $H \cong \mathrm{SL}_{2}(\mathbb{F}) \times \mathrm{SL}_{\mathbb{F}}(U)$. In the last case $\mathrm{N}_{\Gamma \mathrm{GL}_{\mathbb{K}}(V)}\left(E_{1}\right) \cong 3 \cdot \operatorname{Sym}(6)$ and so $H \cong 3 \cdot \operatorname{Sym}(6)$. It follows that Case $5,6,7$ or 8 of Theorem 2 holds.

We may assume from now on that $V=W$ and H acts \mathbb{K}-linearly on V. In particular, $\mathrm{Z}(F)=$ $\mathrm{Z}(H)$. Let \mathcal{I} be the set of all $X \unlhd F$ such that either X is a component of H or $X=O_{q}(H)$ with $X^{\prime} \neq 1, q$ a prime. Put $D:=\langle\mathcal{I}\rangle$ and $\mathbb{D}:=\mathrm{Z}\left(\operatorname{End}_{\mathbb{F} D}(V)\right)$. Next we show:
$\mathbf{1}^{\circ} \quad \mathrm{Z}(F)=\mathrm{Z}(H)=F \cap \mathbb{K}, F=\mathrm{Z}(H) D$ and $\mathbb{D} \subseteq \mathbb{K}$. In particular, H acts \mathbb{D}-linearly on V.
The definition of \mathcal{I} and $Z(H)=Z(F)$ imply that $F=\mathrm{Z}(F)\langle\mathcal{I}\rangle=Z(H) D$ and $\mathrm{Z}(H)=\mathrm{Z}(F)=$ $F \cap \mathbb{K}$. Since $D \leq F, \operatorname{End}_{\mathbb{F} F}(V) \subseteq \operatorname{End}_{\mathbb{F} D}(V)$. Since $\mathrm{Z}(F) \subseteq \operatorname{End}_{\mathbb{F} D}(V)$ and $F=\mathrm{Z}(F) D, \mathbb{D} \subseteq$ $\operatorname{End}_{\mathbb{F} F}(V)$ and so $\mathbb{D} \subseteq \mathrm{Z}\left(\operatorname{End}_{\mathbb{F} F}(V)\right)=\mathbb{K}$. Thus all parts of 1° are proved.
$\mathbf{2}^{\circ} \quad$ Let $A \in \mathcal{Q}$. Then $[D, A] \neq 1$.
Otherwise 1° implies that $[F, A]=1$ and so $A \leq \mathrm{Z}(F)$ and $A \leq O_{p}(F)=1$, a contradiction.
$\mathbf{3}^{\circ} \quad V$ is a simple $\mathbb{F} D$-module and $\mathbb{K}=\mathbb{D}=\operatorname{End}_{\mathbb{F} D}(V)$.
Suppose for a contradiction that V is not a simple $\mathbb{F} D$-module. Since V is a homogeneous $\mathbb{F} F$ module and $F=Z(F) D, V$ is a homogeneous $\mathbb{F} D$-module. We apply 5.5 with $I=\{1\}, T:=A \in \mathcal{Q}$, $D_{1}=D$, and \mathbb{D} in place of \mathbb{K}. Hence there exists an H-invariant tensor decomposition \mathcal{T} with $\Phi: \otimes_{j \in J} V_{j} \rightarrow V$ where $J=\{0,1\}, H$ acts trivially on J, V_{1} is a simple $\mathbb{D} D$-module, V_{0} is a trivial $\mathbb{D} D$-module and $\Phi: V_{0} \otimes_{\mathbb{D}} V_{1} \rightarrow V$ is a $\mathbb{D} D$-isomorphism. Moreover, \mathcal{T} is strict when restricted to A.

Since V is a simple $\mathbb{F} H$-module we conclude that V_{0} and V_{1} are simple projective $\mathbb{D} H$-modules. By $\left(2^{\circ}\right), D \neq 1$ and so D is non-abelian. Thus $\operatorname{dim}_{\mathbb{D}} V_{1} \geq 2$ and if $\operatorname{dim}_{\mathbb{D}} V_{1}=2$, then $|\mathbb{D}|>2$. Since V is not a simple $\mathbb{F} D$-module, $\operatorname{dim}_{\mathbb{D}} V_{0} \geq 2$. Thus \mathcal{T} is proper, regular and \mathbb{D}-linear, and \mathcal{T} is proper and ordinary when restricted to A. In particular 6.2 applies with $G:=A, J$ in place of $\{1,2\}$ (and \mathbb{D} in place of \mathbb{K}).

It follows from 6.2 b and (f) that $\left[V_{j}, A\right]$ is a \mathbb{D}-hyperplane of V_{j} and A induces $C_{\mathrm{SL}_{\mathbb{D}}\left(V_{i}\right)}\left(\left[V_{j}, A\right]\right)$ on V_{j} for $j=0,1$. Thus the dual version of 7.2 shows that $\left\langle A^{H}\right\rangle$ induces $\mathrm{PSL}_{\mathbb{D}}\left(V_{j}\right)$ on $\mathcal{P}_{\mathbb{D}}\left(V_{j}\right)$. Since D is normal in H and acts faithfully on V_{1} we conclude that $D \cong \mathrm{SL}_{\mathbb{D}}\left(V_{1}\right)^{\prime}$. Put $Z:=C_{H}\left(\mathcal{P}_{\mathbb{D}}\left(V_{1}\right)\right)$. Using 1°, $[Z, F]=[Z, D] \leq Z \cap D \leq \mathrm{Z}(D) \leq \mathrm{Z}(F) \leq \mathrm{Z}(H)$. But $C_{H}(F / \mathrm{Z}(H)) \leq F$ and so $Z=\mathrm{Z}(F)=\mathrm{Z}(H)$. Hence $H / \mathrm{Z}(H)$ is isomorphic to a subgroup of $\mathrm{P}_{\mathrm{GL}}\left(\mathrm{GL}_{\mathbb{D}}\left(V_{1}\right)\right.$ containing $\mathrm{PSL}_{\mathbb{D}}\left(V_{1}\right)^{\prime}$. Since F acts trivially on $\mathcal{P}_{\mathbb{D}}\left(V_{0}\right)$ we see that $H / C_{H}\left(\mathcal{P}_{\mathbb{D}}\left(V_{0}\right)\right)$ is isomorphic to a section of $\mathrm{P}_{\mathrm{GL}}^{\mathbb{D}}\left(V_{1}\right) / \mathrm{PSL}_{\mathbb{D}}\left(V_{1}\right)^{\prime}$. Therefore $H / C_{H}\left(\mathcal{P}_{\mathbb{D}}\left(V_{0}\right)\right)$ is solvable. On the other hand $H / C_{H}\left(\mathcal{P}_{\mathbb{D}}\left(V_{0}\right)\right)$ contains a subgroup isomorphic to $\mathrm{PSL}_{\mathbb{D}}\left(V_{0}\right)$. Hence $p=2$ or $3, \mathbb{D}=\mathbb{F}$ and $\operatorname{dim}_{\mathbb{D}} V_{0}=2$. In particular, $\mathrm{PCGL}_{\mathbb{D}}\left(V_{1}\right)=\mathrm{PGL}_{\mathbb{D}}\left(V_{1}\right)$. Since $\mathrm{PSL}_{\mathbb{D}}\left(V_{0}\right)$ is not abelian, we conclude that $\mathrm{PGL}_{\mathbb{D}}\left(V_{1}\right) / \mathrm{PSL}_{\mathbb{D}}\left(V_{1}\right)^{\prime}$ is not abelian. Hence $\mathrm{SL}_{\mathbb{D}}\left(V_{1}\right) \neq \mathrm{SL}_{\mathbb{D}}\left(V_{1}\right)^{\prime}$, $\operatorname{dim}_{\mathbb{D}} V_{1}=2, \mathbb{D}=\mathbb{F}$, and $\operatorname{PGL}_{\mathbb{D}}\left(V_{1}\right) / \operatorname{PSL}_{\mathbb{D}}\left(V_{1}\right)^{\prime} \cong \operatorname{Sym}(3)$. Thus $H / C_{H}\left(\mathcal{P}_{\mathbb{D}}\left(V_{0}\right)\right)$ has order at most 6 . But $\mathrm{PSL}_{\mathbb{D}}\left(V_{0}\right) \cong$ $\mathrm{PSL}_{2}(3)$ has order 12, a contradiction.

Therefore V is a simple $\mathbb{F} D$-module. It follows that $\operatorname{End}_{\mathbb{F} D}(V)$ is a field, $\mathbb{D}=\operatorname{End}_{\mathbb{F} D}(V), \mathbb{K} \subseteq \mathbb{D}$ and $\mathbb{K}=\mathbb{D}$.

Case 3 The case $H \mathbb{K}$-linear on $V,|\mathcal{I}| \geq 2$, and V a simple $\mathbb{F} D$-module.

Let D_{1}, \ldots, D_{r} be the distinct elements of the set \mathcal{I} and put $I:=\{1, \ldots, r\}$. Since H acts on \mathcal{I} by conjugation, I is an H-set with respect to the induced action; i.e., $D_{i g}:=D_{i}^{g}$ for $g \in H$. Hence, the module V, I and \mathcal{I} satisfy the conditions (i) and (iii) of 5.5 (with $T:=A \in \mathcal{Q}$ and H in place of G) for the case that V is a simple $\mathbb{K} D$-module. Thus there exists an H-invariant tensor decomposition \mathcal{T} with $\Phi: \bigotimes_{I} V_{i} \rightarrow V$, where V_{i} is a simple $\mathbb{K} D_{i}$-module and trivial $\mathbb{K} D_{j}$-module for $i, j \in I$ with $i \neq j$. Moreover, Φ is a $\mathbb{K}\left(D_{1} \times \ldots \times D_{r}\right)$-module isomorphism and the decomposition restricted to A is strict. Since each D_{i} is non-abelian, $\operatorname{dim}_{\mathbb{K}} V_{i} \geq 2$ for each $i \in I$. By assumption of the current case, $|I| \geq 2$. So \mathcal{T} is proper. Since A is not quadratic, $|A|>2$, and we are allowed to apply 6.5 Again since A is not quadratic, one of the following holds:

Case 3p (a) $|I|=2, I$ is a trivial A-set, and $\left[V_{i}, A\right]=C_{V_{i}}(A)=\left[v_{i}, A\right]$ is a \mathbb{K}-hyperplane of V_{i} for $v_{i} \in V_{i} \backslash\left[V_{i}, A\right]$ and $i \in I$.

Case 3] (b) $\quad|I|=2, I$ is a non-trivial A-set, $\mathbb{K}=\mathbb{F}$, and $\left[V_{i}, B\right]=C_{V_{i}}(B)$ is a \mathbb{K}-hyperplane of V_{i} for $i \in I$, where $B:=C_{A}(I)$.

Put $H_{0}:=C_{H}(I)$ and $B:=C_{A}(I)$ and let $I=\{i, j\}$. Since V_{i} is a simple $\mathbb{K} D_{i}$-module, V_{i} is a simple projective $\mathbb{K} H_{0}$-module.

Thus the dual version of 7.2 shows $\left\langle B^{H}\right\rangle$ induces $\mathrm{PSL}_{\mathbb{K}}\left(V_{i}\right)$ on $\mathcal{P}_{\mathbb{K}}\left(V_{i}\right)$. Since H_{0} normalizes D_{i} and D_{i} acts faithfully on V_{i} we conclude that $D_{i} \cong \mathrm{SL}_{\mathbb{K}}\left(V_{i}\right)^{\prime}$. If $\mathrm{SL}_{\mathbb{K}}\left(V_{i}\right)$ is perfect for $i=1$ and 2 we see that one of the Cases 9,10 and 11 of Theorem 2 holds. So suppose $\mathrm{SL}_{\mathbb{K}}\left(V_{i}\right)$ is not perfect for some $i \in I$. Since D_{i} is not abelian, $\mathbb{K}=\mathbb{F}=\mathbb{F}_{3}$ and $\operatorname{dim}_{\mathbb{K}} V_{i}=2$. Thus $D_{i}=O_{3}(H)$. Hence $D_{j} \neq O_{3}(H)$ and so $\operatorname{dim}_{\mathbb{K}} V_{j} \geq 3$ and $D_{j} \cong \mathrm{SL}_{\mathbb{K}}\left(V_{j}\right)$. It follows that Case 10 of Theorem 2 holds.

Case 4 The case $H \mathbb{K}$-linear on V, V a simple $\mathbb{F} D$-module, $|\mathcal{I}|=1$, and D not solvable.
Since $|\mathcal{I}|=1$ and D is not solvable, D is a component of G. By $1^{\circ} F=\mathrm{Z}(H) D$ and so Theorem 2 holds.

Case $5 \quad$ The case $H \mathbb{K}$-linear on V, V a simple $\mathbb{F} D$-module, $|\mathcal{I}|=1$ and D solvable.
Since $|\mathcal{I}|=1$ and D is solvable there exists a prime r such that $D=\mathrm{O}_{r}(G)$. Put $K=[D, A]$. By coprime action, $D=C_{D}(A) K$ and since $F=\mathrm{Z}(H) D, F=C_{F}(A) K$. So $K=[K, A], K A=$ $\left\langle A^{K}\right\rangle=\left\langle A^{F}\right\rangle$ and $K \unlhd F A$. We choose a normal subgroup R of $F A$ contained in D that is minimal with $[R, A] \neq 1$.
$4^{\circ} \quad R=[R, K A] \leq K$ and either R is elementary abelian, or $C_{R}(A)=\mathrm{Z}(R)$ and A acts simply on $R / \mathrm{Z}(R)$.

Note that $\left[R,\left\langle A^{K}\right\rangle\right]$ is a normal subgroup of $F A$ contained in R. Since $[R, A, A]=[R, A] \neq 1$, the minimality of R gives $R=\left[R,\left\langle A^{K}\right\rangle\right]=[R, K A] \leq K$.

As $[R, F]=[R, D]<R$ the minimality of R gives $[R, F, A]=1$. So $[R, F] \leq C_{R}(A)$ and $C_{R}(A)$ is a normal subgroup of $F A$. Hence F centralizes $R / C_{R}(A)$ and the minimality of R implies that A acts simply on $R / C_{R}(A)$. Since $F A$ normalizes $C_{R}(A),\left\langle A^{F}\right\rangle=A K$ centralizes $C_{R}(A)$ and so $C_{R}(A)=C_{R}(K A) \leq \mathrm{Z}(R)$. If R is non-abelian, the minimality of R yields $C_{R}(A)=\mathrm{Z}(R)$. If R is abelian, then $R=[R, A] \times C_{R}(A)$. Hence $\left[\Omega_{1}(R), A\right] \neq 1$ and $\Omega_{1}(R)=R$. So R is elementary abelian.
$5^{\circ} \quad 1 \neq C_{R}(F) \subseteq \mathbb{K}$; in particular $|\mathbb{K}|>2$.
Since R is a normal subgroup of $D=O_{r}(F), C_{R}(F)=C_{R}(D) \neq 1$. By the definition of \mathbb{K}, $C_{R}(F) \subseteq \mathbb{K}$ so $|\mathbb{K}|>2$.
$6^{\circ} \quad V$ is a simple $\mathbb{F} K A$-module.
Let V_{1} be a simple $\mathbb{F} K A$-submodule of V. Since V is simple $\mathbb{F} F$-module and $F=C_{F}(A) K$ we get $V=\left\langle V_{1}^{C_{F}(A)}\right\rangle$. So V is a direct sum of A-submodules isomorphic to V_{1}. Since A is nearly quadratic but not quadratic, 2.9 shows that $V=V_{1}$.
$7^{\circ} \quad$ Suppose that V is not a homogeneous $\mathbb{F} R$-module. Then Case 10 or 12 of Theorem 2 holds.
Let Δ be the set of Wedderburn components for $\mathbb{F} R$ on V. Then Δ is a system of imprimitivity for $F A$ on V. Since V is a simple $\mathbb{F} D$-module, D acts transitively on Δ. Thus $|\Delta|$ is a power of r. We apply 2.13 .

Let $U \in \Delta$. By $\left(6^{\circ}\right) V$ is a simple $\mathbb{F} K A$-module. Hence $K A$ acts transitively on Δ and $\mathrm{N}_{K A}(U)$ acts simply on U. Also $[U, R] \neq 0$ since $C_{V}(R)=0$. This excludes the case $2.13(4: 1)$. The transitivity on Δ and the non-quadratic action of A on V excludes the cases 2.13, 1), 2.13 (2), and $2.13(3)$. Moreover, if 2.13 4:3) holds, then $\left|U / \mathrm{C}_{U}\left(\mathrm{~N}_{A}(U)\right)\right|=2$ and so $|\mathbb{K}|=2$, which contradicts (50).

Thus we are left with case $2.13(4: 2)$. In this case $p=3=|U|=|A|, \mathbb{K}=\mathbb{F}$ and A acts as a 3 -cycle on Δ. On the other hand, $K A=\left\langle A^{K}\right\rangle$ acts transitively on Δ, so $K A / \mathrm{C}_{K A}(\Delta) \cong \operatorname{Alt}(\Delta)$. The solvability of $K A$ gives $|\Delta|=3$ or 4 , and since $|\Delta|$ is a power of $r, r=2$ and $|\Delta|=4$. Thus $F A$ is a subgroup of $\mathrm{N}_{\mathrm{GL}(V)}(\Delta) \cong C_{2}$ 乙 $\operatorname{Sym}(4)$. Since $R \leq \mathrm{C}_{H}(\Delta)$ and by $4{ }^{\circ} R=[R, K A]$ we conclude that $R=[R, K A] \cong C_{2}^{3}$ and $K A \cong 2^{3}: \operatorname{Alt}(4)$. This shows that $K \cong Q_{8} \circ Q_{8}$, $F \leq C_{H}(\Delta) K$ and $F \cap \mathrm{SL}_{\mathbb{K}}(V)=K$. Thus $K \unlhd H$ and $H \leq \mathrm{N}_{\mathrm{GL}_{\mathbb{K}}(V)}(K) \sim\left(\mathrm{GL}_{2}(3) \circ \mathrm{GL}_{2}(3)\right) .2$. Since $H=\langle\mathcal{Q}\rangle=O^{3^{\prime}}(H)$ we conclude that either $H=K A$ and Case 12 of Theorem 2 holds or $H \cong \mathrm{SL}_{2}(3) \circ \mathrm{SL}_{2}(3)$ and Case 10 holds.

We may assume from now on that V is a homogeneous $\mathbb{F} R$-module. By $5.2 \mathbb{E}:=\mathrm{Z}\left(\operatorname{End}_{R}(V)\right)$ is a field and so $F A$ acts \mathbb{E}-semi-linearly on V.

$8^{\circ} \quad A$ acts \mathbb{E}-linearly on V, and R is not abelian.

Suppose A does not act \mathbb{E}-linearly on V. Since A is not quadratic on $V, 6.32$) or (3) holds. In both cases $\operatorname{dim}_{\mathbb{F}} \mathbb{E}=p$ and so $|\operatorname{Aut}(\mathbb{E})|=p$. Since D is an r-group, $\mathbb{E} \subseteq \operatorname{End}_{\mathbb{F} D}(V)$. So by (3^{3}, $\mathbb{E} \subseteq \mathbb{K}$. But A acts \mathbb{K}-linearly on V. Thus A is \mathbb{E}-linear.

If R is abelian, then $R \subseteq \operatorname{End}_{R}(V) \cap R \subseteq \mathbb{E}$ and $[R, A]=1$, a contradiction.
$\mathbf{9}^{\circ} \quad$ Suppose V is a homogeneous but not simple $\mathbb{F} R$-module. Then Case 10 or 12 of Theorem 2 hold.

By 5.5 there exists a $K A$-invariant tensor decomposition $\Phi: V_{0} \otimes_{\mathbb{E}} V_{1} \rightarrow V$ such that $V \cong V_{0} \otimes_{\mathbb{E}} V_{1}$ as an $\mathbb{E} R$-module, V_{1} is a simple $\mathbb{E} R$-module and V_{0} is a trivial $\mathbb{E} R$-module. Since R is not abelian, $\operatorname{dim}_{\mathbb{E}} V_{1}>1$, and since V is not a simple R-module, $\operatorname{dim}_{\mathbb{E}} V_{0}>1$. Moreover, by $8^{\circ} A$ acts \mathbb{E}-linearly on $V_{0} \otimes_{\mathbb{E}} V_{1}$. Hence one of the two cases in 6.5 3) hold.

In both cases the dual version of 7.2 shows $K A=\left\langle A^{K}\right\rangle$ induces $\mathrm{PSL}_{\mathbb{E}}\left(V_{i}\right)$ on $\mathcal{P}_{\mathbb{E}}\left(V_{i}\right)$. Since R is solvable, $p=2$ or $3, \mathbb{E}=\mathbb{F}$ and $\operatorname{dim}_{\mathbb{E}} V_{i}=2$. Since R is non-abelian, $p=3$ and $R \cong Q_{8}$. Hence $F A \leq \mathrm{N}_{\mathrm{GL}_{\mathbb{K}}(V)}(R) \cong \mathrm{GL}_{2}(3) \circ \mathrm{GL}_{2}(3)$. Since A is not quadratic on V, A is not contained in any of the normal $\mathrm{GL}_{2}(3)$'s. Since A normalizes F we get that $F \leq O_{2}\left(\mathrm{GL}_{2}(3) \circ \mathrm{GL}_{2}(3)\right) \cong Q_{8} \circ Q_{8}$ and then since F acts simply on $V, F \cong Q_{8} \circ Q_{8}$. Thus $H \leq \mathrm{N}_{\mathrm{GL}_{\mathbb{K}}(V)}(F) \cong\left(\mathrm{GL}_{2}(3) \circ \mathrm{GL}_{2}(3)\right) .2$. It follows that Case 10 or 12 of the Theorem holds.
$\mathbf{1 0}^{\circ}$ Suppose V is a simple $\mathbb{F} R$-module. Then Case 13 of the Theorem 2 holds.

By $8^{\circ} R$ is non-abelian, and by $4^{\circ} \bar{R}:=R / \mathrm{Z}(R)$ is a simple A-module. Let X be maximal abelian normal subgroup of A. Put

$$
\mathcal{Y}=\left\{C_{X}(U) \mid U \text { a simple } X \text {-submodule of } \bar{R}\right\}
$$

For $Y \in \mathcal{Y}$ let

$$
\left.\bar{R}_{Y}=\langle U| U \text { a simple } X \text {-submodule of } \bar{R} \text { with } C_{X}(U)=Y\right\rangle
$$

Then \bar{R}_{Y} is a sum of Wedderburn components for X on \bar{R} and so

$$
\bar{R}=\bigoplus_{Y \in \mathcal{Y}} \bar{R}_{Y}
$$

Suppose for a contradiction that $|\mathcal{Y}| \geq 2$. For $Y \in \mathcal{Y}$ let R_{Y} be the inverse image of \bar{R}_{Y} in R. Let $Y, Z \in \mathcal{Y}$ with $Y \neq Z$. We claim that $\left[R_{Y}, R_{Z}\right]=1$. Without loss $Y \not \leq Z$. Hence $\bar{R}_{Z}=\left[\bar{R}_{Z}, Y\right]$ and thus $R_{Z} \leq \mathrm{Z}(R)[R, Y]$. Since $R^{\prime} \leq \mathrm{Z}(R) \leq C_{R}(Y),\left[R, C_{R}(Y), Y\right]=1$. Also $\left[C_{R}(Y), Y, R\right]=1$ and so the Three Subgroups Lemma implies $\left[[Y, R], C_{Y}(R)\right]=1$. Since $\left.R_{Y} \leq C_{R}(Y)\right)$ and $R_{Z} \leq[R, Y] \mathrm{Z}(R)$ the claim is proved.

Note that $R=\left\langle R_{Y} \mid Y \in \mathcal{Y}\right\rangle$. If R_{Y} is abelian we would conclude $R_{Y} \leq \mathrm{Z}(R)$, a contradiction. So R_{Y} is not abelian. Each R_{Y} is normal in R and so $R A$ acts on \mathcal{Y} and on $\left\{R_{Y} \mid Y \in \mathcal{Y}\right\}$ by conjugation. Since V is a simple $\mathbb{E} R$-module, 5.5 yields an $R A$-invariant tensor decomposition $\bigotimes_{Y \in \mathcal{Y}}^{\mathbb{E}} V_{Y} \cong V$, which is strict for A and where each V_{Y} is a faithful simple $\mathbb{E} R_{Y}$-module. Since R_{Y} is non-abelian $\operatorname{dim}_{\mathbb{E}} V_{Y} \geq 2$. 6.5 now implies that A is abelian. Thus $X=A, \bar{R}$ is a simple X-module and $|\mathcal{Y}|=1$, a contradiction.

We have proved that $|\mathcal{Y}|=1$. Let $\mathcal{Y}=\{Y\}$. Then $[\bar{R}, Y]=1$. Since $[\mathrm{Z}(R), A]=1$ coprime action gives $C_{A}(\bar{R}) \leq C_{A}(R) \subseteq A \cap \mathbb{E} \leq O_{p}(R A)=1$. Thus $Y=1$ and X is cyclic. Let $|X|=p^{n}$ with $n \in \mathbb{N}$.

Suppose $p^{n} \geq 4$. Since X acts cubically on V, Hall-Higman's Theorem B [Gor, 11.1.1] shows that there exists $n_{0} \leq n$ with

$$
p^{n-n_{0}}\left(p^{n_{0}}-1\right) \leq 3
$$

and $p^{n_{0}}-1=r^{k}$ for some positive integer k. Since $r^{k} \geq r \geq 2$, we get $p^{n-n_{0}}=1, n=n_{0}, p^{n}-1 \leq 3$ and $p^{n} \leq 4$.

It follows that $|X|=p^{n} \leq 4$ and if $|X|=4$, then $r=3$.
Suppose for a contradiction that $X=A$. Since X is cubic but not quadratic on V the Jordan Canonical Form for A on V shows that $V \cong V_{0} \otimes_{\mathbb{F}} \mathbb{K}$ and $V_{0}=V_{1} \oplus V_{2}$, where V_{1}, V_{2} are $\mathbb{F} A$ submodules of V_{0} with $\operatorname{dim}_{\mathbb{F}} V_{1}=3$ and $\left[V_{1}, A, A\right] \neq 0$. Since \mathbb{K} is a direct sum of 1 -dimensional \mathbb{F}-subspaces, V is as an $\mathbb{F} A$-module the direct sum of copies of V_{0}. Thus by $2.9, \mathbb{F}=\mathbb{K}$ and so $1 \neq \mathrm{Z}(R) \subset \mathbb{F}^{\sharp}$. Hence $p \neq 2,|X|=3=p$ and $r \neq 3$. Thus $|\mathbb{F}|=3,|\mathrm{Z}(R)|=2$ and $r=2$. Since A has order 3 and acts simply on $R / \mathrm{Z}(R)$ we have $|R / \mathrm{Z}(R)|=4$ and $R \cong Q_{8}$. Now Q_{8} has a unique faithful simple module over \mathbb{F}_{3} and this module has dimension 2. Thus $\operatorname{dim}_{\mathbb{F}} V=2$ and A acts quadratically on V, a contradiction.

Thus $A \neq X$. Since $C_{A}(X) \leq X$ we conclude that $|X|=4, r=3$ and $A \cong D_{8}$ or Q_{8}. In the first case A has a non-cyclic maximal abelian normal subgroup, a contradiction. Therefore $A \cong Q_{8}$. Let $v \in V \backslash Q_{V}(A)$. Then $[V, A] \leq[v, A]+C_{V}(A)$ by the nearly quadratic action of A. Since A is quadratic on $\bar{V}:=V / C_{V}(A)$ we have $A^{\prime} \leq C_{A}(\bar{V})$ and

$$
[\bar{V}, A]=\{[\bar{v}, a] \mid a \in A\} \leq\left|A / C_{A}(\bar{v})\right| \leq\left|A / A^{\prime}\right|=4
$$

As $[\bar{V}, A]$ is a \mathbb{K}-space we get $|\mathbb{K}| \leq 4$. By $\sqrt{\circ}|\mathbb{K}|>2$ and so $|\mathbb{K}|=4$ and $\operatorname{dim}_{\mathbb{K}}[\bar{V}, A]=1$. In particular, $\left|A / C_{A}(\bar{v})\right|=4$ and $C_{A}(\bar{v})=A^{\prime}$. So for every $a \in A \backslash A^{\prime}$ and every $v \in V \backslash Q_{V}(A),[\bar{v}, a] \neq 0$ and thus $C_{\bar{V}}(a)=[\bar{V}, A]=[\bar{V}, a]$. Since $[\bar{V}, a]$ is 1-dimensional we conclude that $\bar{V} / C_{\bar{V}}(a)$ is 1dimensional, and so $C_{\bar{V}}(a)=[\bar{V}, a]$ gives $\operatorname{dim}_{\mathbb{K}} \bar{V}=2$. This implies that $Q_{V}(A)$ is a \mathbb{K}-hyperplane of V and $\operatorname{dim}_{\mathbb{K}} V / C_{V}(A)=2$. Since A^{\prime} centralizes $Q_{V}(A)$ this show that $C_{V}\left(A^{\prime}\right)=Q_{V}(A)$.

Put $Q:=[R, A]$ and let $g \in Q \backslash Z(Q)$. Then $Q A=\left\langle A, A^{\prime g}\right\rangle$. Since $C_{V}(Q)=0$ we get $C_{V}(A) \cap C_{V}\left(A^{\prime g}\right)=0$ and so $\operatorname{dim}_{\mathbb{K}} V=3$. Since the Sylow 3 -subgroup of $\mathrm{SL}_{3}(4)$ is extra special of order 27 we conclude that $Q=D=O_{3}(H) \sim 3^{1+2}$ and $H=\mathrm{N}_{\mathrm{SL}_{\mathbb{K}}(V)}(Q) \sim 3^{1+2} . Q_{8}$. Hence Case 13 of Theorem 2 holds.

Proof of Theorem 3: We may assume without loss that $A \nsubseteq N_{G}(K)$. Let W be composition factor for $H:=\langle K, A\rangle$ on V with $[W, K] \neq 0$. By 2.6 ch, W is a nearly quadratic A-module. Note also that $H=\left\langle A^{K}\right\rangle$.

If A is not quadratic on W we conclude from Theorem 2 that $p=2, K / C_{K}(W) \cong \operatorname{SL}_{n}(2)$, $W \neq[W, K]$ and and $[W, K]$ is a Wedderburn component for $\mathrm{F}^{*}(H)$-module on V Thus by (i) and (ii) in Case 1 of the proof of Theorem 2 we conclude that $\left|A / N_{A}([W, K])\right|=2$ and so also $\left|A / N_{A}(K)\right|=2$. Hence Theorem 3 holds in this case.

Suppose that A is quadratic on W. Let $L=\left\langle K^{A}\right\rangle$. Then $H=L A$. Let U be a Wedderburn component for L on W. Then $W=\left\langle U^{A}\right\rangle$. From $\left|A / C_{A}(K)\right|>2$ we have $\left|A / C_{A}(W)\right|>2$, and 2.11 implies that $U=W$. So W is a homogeneous $\mathbb{F}_{p} L$-module. For example by 5.2 d), the number of simple $\mathbb{F}_{p} L$-modules in W is not divisible by p, so one of them is normalized by \vec{A}. Since $H=L A$ acts simply on W, W is a simple $\mathbb{F}_{p} L$-module. Let $K^{A}=\left\{K_{1}, K_{2}, \ldots K_{r}\right\}$ and $I=\{1, \ldots, r\}$. Then $|I| \geq 2$ and A acts transitively on I via $K_{i a}=K_{i}^{a}$. By 5.5 there exists a H-invariant tensor decomposition $V \cong \bigotimes_{i \in I}^{\mathbb{K}} V_{i}$, where V_{i} is a simple $\mathbb{K} K_{i}$-module and a trivial $\mathbb{K} K_{j}$ for $i, j \in I$ with $i \neq j$. Thus by $4.10, p=2,|I|=2, \operatorname{dim}_{\mathbb{K}} V_{i}=2$ and $\left[V_{i}, C_{A}(I)\right] \neq 1$. Now 7.5 shows that $K / C_{K}(W) \cong \mathrm{SL}_{2}\left(2^{m}\right)$.

Thus $K / C_{K}(W) \cong \mathrm{SL}_{n}(2)$ or $\mathrm{SL}_{2}\left(2^{m}\right)$. Since this holds for all non-trivial composition factors of K on $V, K / O_{2}(K) \cong \mathrm{SL}_{n}(2)$ or $\mathrm{SL}_{2}\left(2^{m}\right)$.

References

[As] M. Aschbacher,Finite Group Theory Cambridge studies in advanced mathematics 10, Cambridge University Press, (2000) New York
[BHS] D. Bundy, N. Hebbinghaus, B. Stellmacher, The local $C(G, T)$ theorem. J. Algebra 300 (2006), no. 2, 741-789.
[Ch] A. Chermak, Quadratic action and the $\mathcal{P}_{G}(V)$-theorem in arbitrary characteristic, J. Group Theory 2 (1999), $1-13$.
[Gor] D. Gorenstein, Finite Groups, Chelsea (1980) New York.
[Hu] B. Huppert, Endliche Gruppen I, Springer (1983) Berlin.
[GM1] R.M. Guralnick, G. Malle, Classification of 2F-Modules, I, J. Algebra 257, 2002, 348 372.
[GM2] R.M. Guralnick, G. Malle, Classification of $2 F$-modules. II. Finite groups 2003, 117-183, Walter de Gruyter GmbH \& Co. KG, Berlin, 2004.
[GLM] R.M. Guralnick, R. Lawther, G. Malle, $2 F$-modules for nearly simple groups, J. Algebra 307 (2007), no. 2, 643-676.
[MS1] U. Meierfrankenfeld, B. Stellmacher, F-stability in finite groups, Transactions AMS (to appear)
[MS2] U. Meierfrankenfeld, B. Stellmacher, The general FF-module theorem, preprint.
[MSS1] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, Groups of local characteristic p, An overview, in Groups, combinatorics \& geometry (Durham, 2001), p155-192, World Sci. Publ., River Edge, NJ, (2003.)
[MSS2] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, The structure theorem, preprint.

[^0]: ${ }^{1}$ Here an elementary abelian m-group is an abelian group all of its non-trivial elements have order m, if m is a prime, and infinite order if $m=0$.

