
A note on the cohomology of finitary modules

U. Meierfrankenfeld

May 17, 2002

In this note we prove the following three theorems on the cohomology of finitary modules
in terms of the cohomology of a local system of subgroups:

Theorem 1 Let G be a group, K a field, V a finitary KG-module and L a local system of
subgroups of G. Suppose that, for all H ∈ L, V is completely reducible as a KH-module.
Then [V,G] is completely reducible as a KG-module.

Theorem 2 Let G be a group, D a division ring, V a finitary DG-module, L a local
system of subgroups of G and H an extension of V by G, (i.e. H/V ∼= G). Suppose that
the following holds for all L in L:

(i) The extension of V by L in H splits.

(ii) V/CV (L) is finite dimensional.

(iii) H1(L, V ) is finite dimensional.

Then H splits over V .

Theorem 3 Let G be a group, D a division ring, L a local system of subgroups of G, W a
DG-module and V a DG-submodule of W such that W = V +CW (H) for all H ∈ L. Then
there exists a canonical DG-monomorphism from W/CW (G) to [V ∗, G]∗, where Y ∗ denotes
the dual of a module Y .

We remark that conditons (ii) and (iii) in Theorem 2 are automatically fulfilled if all
members of L are finite groups generated by elements whose order is coprime to the char-
acteristic of D.

Proof of Theorem 1: Let H ∈ L. Then [V,H] = [V,H,H] and so [V,G] = [V,G,G].
Hence we may assume that V = [V,G]. Let W be the sum of all the irreducible KG-
submodules in V , where W = 0 if G has no irreducible submodules in V . We need to show
that W = V .

So suppose that V 6= W . Then [V,G] 6≤ W and we may assume that [V,H] 6≤ W
for all H ∈ L. Let H ∈ L and let IH be the set of irreducible KH-submodules I in
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[V,H] with I 6≤ W . For I ∈ IH let m(I) be supremum of all positive integers t such
that It is isomorphic to a KH-submodule of V . Pick h ∈ H with [I, h] 6= 0. Then
m(I) · degI(h) ≤ degV (h). In particular, m(I) is finite. Note that there exists a unique
KH-submodule Î in V isomorphic to Im(I), namely Î is the submodule generated by all
the H submodules in V isomorphic to I. Let K(I) = HomKH(I, I) and d(I) = dimK K(I).
Since dimK [I, h] = dimK(I)[I, h] · dimK K(I), d(I) ≤ degV (h) and so d(I) is finite. Let m
be the minimum of all m(I), I ∈ IH ,H ∈ L and d the minimum of all d(I), I ∈ IH ,H ∈
L,m(I) = m.

Pick H ∈ L and I ∈ IH with m(I) = m and d(I) = d. Without loss H ≤ F for all
F ∈ L. Let F ∈ L. Since V is completely reducible as a KF -module, there exists J ∈ IF
such that I is isomorphic to a KH submodule of J . Let a be a positive integer such that Ia

is isomorphic to a KH-submodule of J . Then Ia·m(J) is isomorphic to a KH-submodule of
V and so a ·m(J) ≤ m. By minimal choice of m, m ≤ m(J). Thus a = 1 and m(J) = m.
In particular, Î ≤ Ĵ and there exists a unique KH-submodule U in J isomorphic to I.
Hence K(J) acts on U and restriction K(J) |U of K(J) to U is contained in K(U). Since
dimK K(U) = dimK K(I) = d ≤ dimK K(J), we conclude that K(J)|U = K(U). It is now
easy to see that every irreducible KH submodule of Î lies in an irreducible KF -submodule
of Ĵ . Hence 〈IF 〉 is an irreducible KF -module for all F ∈ L and 〈IG〉 is an irreducible KG-
submodule in V not contained in W . This contradiction completes the proof of Theorem
1.

The following definition and lemma are used in the proof of Theorem 2.

Definition 4 (a) Let R be a ring, A a set, M an R-module and for a ∈ A let ρa : A→M
be a bijection. Then A is called an affine R-module provided that for all a, b, c in A,
ρa(b) + ρb(c) = ρa(c).

(b) Let R be a ring, A and B affine R-modules and π : A→ B. Then π is called an affine
R-homomorphism if for some a in A and b in B, ρbπρ−1

a is a R-homomorphism of
modules.

(c) Let R be a ring and A an affine R-module. A subset B of A is called an affine
R-submodule if ρa(B) is a R-submodule of M for some a in A.

Remark: Let M be an R-module and define ρx : M → M,y → y − x. Then M is an
affine R-module. Moreover, if A is any affine R-module with M as underlying module, then
for all a in A, ρa is an isomorphism of affine R-modules. Finally if a, b are in A and C is
a subset of A, then ρa(C) = ρb(C) + ρa(b) and so C is an affine submodule if and only if
ρa(C) is the coset of a R-submodule in M.

Lemma 5 Let G be a group, R a ring and V an RG-module. Let AG be the set of comple-
ments to V in V >/ G. Then
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(a) AG is an affine R-module.

(b) Let H ≤ G, then the canonical map from AG to AH is affine.

(c) Let IG = {Gv | v ∈ V }. Then IG is an affine RG submodule of AG, IG ∼= V/CV (G)
and AG/IG ∼= H1(G,V ).

Proof of the Lemma: Identify V and G with their images in the semidirect product
V >/ G. So V >/ G = V G.

(a) Let MG the set of functions f : V G/V → V with f(ab) = f(a)b
−1

+ f(b) for all
a, b in V G/V , i.e MG is the set of derivations for G on V . Note that MG is an R-module
via (r · f)(a) = r · f(a). For K,L in AG define ρK(L) ∈ MG by ρK(L)(V a) = v, whenever
a ∈ K and v ∈ V with va ∈ L. Then ρK is a bijection from AG onto MG (see for example
[As, 17.1]).

Let K,L,N be in AG and a in K. Put b = ρK(L)(V a)a and c = ρL(N)(V b)b. Then
V a = V b = V c, b ∈ L , c ∈ N and c = ρL(N)(V a)ρK(L)(V a)a. Thus ρK(L) + ρL(N) =
ρK(N). (Here we write the binary operation on V multiplicatively whenever V is regarded
as a subgroup of V >/ G).

(b) For L in AG let π(L) = L ∩ V H. Then its is easy to check that ρHπρ−1
G is just the

restriction map MG →MH , φ→ φV H/V . Thus π is affine.
(c) Define α : V →M by α(v)(a) = va − v. Then kerα = CV (G) and α(V ) = ρG(IG) is

the set of inner derivations. In particular H1(G,V ) = M/α(V ) ∼= AG/IG and (c) holds.

Proof of Theorem 2: Let L ∈ L. By (i) we may view V >/ L as a subgroup of H
and by part (a) of the Lemma , AL is a affine D-module and by (ii),(iii) and Part (c) of the
Lemma, AL is finite dimensional. For L and K in L with L ≤ K let πK,L be the affine map
defined in Part (b) of the Lemma . We claim that the inverse limit of (πK,L)L≤K is not
empty. Note that finite dimensional affine D-modules fulfill the descending chain condition
on affine subspaces and so a set of affine subspaces whose intersection is empty has a finite
subset whose intersection is empty. Moreover, images and inverse images of affine subspaces
under affine maps are affine. Now the proof in [KW, 1K1] that inverse limits of non-empty
finite sets are not empty carries over word for word, except that ”subset” has to be replaced
by ”affine subspace”. Let (CL)L∈Λ be an element in the inverse limit. Then

⋃
{CL|L ∈ L}

is a complement to V in H and Theorem 2 is proved.

Proof of Theorem 3: For X ≤ V ∗ let X⊥ = {v ∈ V |x(v) = 0 for all x ∈ X}. We will
first prove that:

(∗) For all K ≤ G, [V ∗,K]⊥ = CV (K).

Indeed, let x ∈ V ∗, k ∈ K and v ∈ V . Then

[x, k](v) = (xk − x)(v) = xk(v)− x(v) = x(vk
−1

)− x(v) = x([v, k−1])

It follows that v ∈ [V ∗,K]⊥ if and only if [v,K] ≤ V ∗⊥ = 0 and so if and only if v ∈ CV (K).
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Let H ∈ L. Define a map aH : W → [V ∗,H]∗ by aH(w)(x) = x(u) where x ∈
[V ∗,H], w ∈ W and u ∈ V with w ∈ u + CW (H). Note that by (*) this definition does
not depend on the choice of u. If K ≤ H with K ∈ L then CW (H) ≤ CW (K) and so
w ∈ u + CW (K) and aH(w)(x) = aK(w)(x) for all x ∈ [V ∗,K]. Define a : W → [V ∗, G]∗

by a(w)(x) = aH(w)(x) whenever w ∈ W,x ∈ [V ∗, G] and H ∈ L with x ∈ [V ∗,H]. By
the preceeding observation and since L is a local system this definition does not depend
on the choice of H. Let w ∈ W with a(w) = 0. Then aH(w) = 0 for all H ∈ L and so
u ∈ [V ∗,H]⊥, where u is as above. By (*), u ∈ CV (H) and so w ∈ CW (H) for all H ∈ L.
Thus ker a = CW (G). It remains to show that a is a DG-homomorphism. Clearly a is
D-linear. Let w, x, u and H be as above and g ∈ G. We may assume without loss that
g ∈ H. Then wg ∈ ug + CW (H) and so

a(wg)(x) = aH(wg)(x) = x(ug) = xg
−1

(u) =

= aH(w)(xg
−1

) = a(w)(xg
−1

) = a(w)g(x).

Thus a(wg) = a(w)g and a is a DG-homomorphism, completing the proof of Theorem
3.
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