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There are a number of results on finite groups that are proved by counting involutions;
the Brauer-Fowler Theorem [BF] and the Thompson Order Formula (cf. 45.6 in [FGT])
are perhaps the two most important examples. In a less well known paper [B], Bender
introduces an involution counting technique useful in analyzing small groups where
more traditional local analysis is often ineffective. In particular Bender’s approach can
sometimes be used to calculate the order of a group with one class of involutions; we
recall that the Thompson Order Formula does not apply to such groups.

In this note we use Bender’s approach to prove:

Theorem 1. Assume M is a nontrivial TI-subgroup of the finite group G, let M∗ =
NG(M), and assume M∗ = MCM∗(z) for some involution z ∈M∗ and CG(x) is of odd
order for each x ∈M#. Then one of the following holds:

(1) M E G.

(2) n(G) ≤ |G : M |, where n(G) denotes the number of involutions in G.

(3) G ∼= PGL2(m) or L2(m) for some power m of some prime p, M is an elementary
abelian p-group of order m, and m ≡ 1 mod 4 if G ∼= L2(m).

(4) G ∼= L2(2e) for some integer e > 1 and M is cyclic of order 2e + 1.

(5) There exists a positive integer d such that G is the split extension of an elementary
abelian group of order 22d by M∗, and M∗ is dihedral of order 2(2d + 1).
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See [FGT] for the definition of basic notation and terminology. For example T is a
TI-subgroup of G if distinct conjugates of T in G intersect trivially; O(G) is the largest
normal subgroup of G of odd order; G# = G−{1} is the set of nontrivial elements of G.

Notice that if conclusion (2) holds then |M | ≤ |CG(t)| for each involution t in G,
while if G has one class of involutions then conclusion (2) of Theorem 1 is equivalent to
|M | ≤ |CG(z)|.

The next lemma provides subgroups to which Theorem 1 can be applied. It is a slight
variation on the penultimate theorem in [Br]. Given a group G, define the commuting
graph of G to be the graph ∆ with vertex set G# and g adjacent to h if gh = hg. Write
d(g, h) for the distance from g to h in ∆ and let ∆i(g) = {h ∈ ∆ : d(g, h) = i}.

Lemma 2. Let G be a finite group, z an involution in G, and 1 6= x an element of G
inverted by z. Assume

(i) d(z, x) ≥ 3, and

(ii) if d(z, x) = 3 then z inverts no member of ∆2(z) ∩∆(x).

Set M = CG(x). Then

(1) M = CG(y) for each y ∈M#, so d(z, x) =∞.

(2) M is a TI-subgroup of G.

(3) M is abelian of odd order and inverted by z.

(4) M∗ = NG(M) is a Frobenius group with kernel M and complement CM∗(z).

(5) M is a Hall subgroup of G.

In a group G with one class of involutions, if one has good control over the centralizer
of an involution then one can usually obtain strong information about the centralizers of
elements at distance 1 from involutions, and hence also some information about elements
at distance 2. Lemma 2 and Theorem 1 supply information about centralizers of elements
at distance greater than 2 that are inverted by involutions.

Finally to illustrate how Theorem 1 and Lemma 2 can be applied, we give a short,
elementary proof of the following well known result:

Theorem 3. Let G be a finite group containing an involution z such that T = CG(z) is
dihedral of order 8. Then one of the following holds:

(1) G = TO(G).

(2) G ∼= S4 ∼= PGL2(3).

(3) G ∼= S5 ∼= PGL2(5).
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(4) G ∼= L3(2) ∼= PSL2(7).
(5) G ∼= A6 ∼= PSL2(9).

Bender gives a similar proof of a slightly weaker result in [B]. Theorem 1 makes possible
only a small simplification in Bender’s treatment, but such simplifications become more
crucial in larger examples.

Local characterizations like Theorem 2 of small groups in the existing literature
typically involve extensive use of exceptional character theory and block theory. In
addition to supplying simplified proofs for such results, another advantage to an approach
involving involution counting is the elimination or reduction in appeals to character
theory.

Section 1. A lemma of Bender

Let G be a finite group and J the set of involutions in G. For S ⊆ G, let n(S) = |J ∩S|
be the number of involutions in S. Following Bender in [B], given a subgroup M of G,
define

f = f(G,M) =
n(G)
|G : M |

− 1.

Observe

(1.1) n(G) > |G : M | iff f(G,M) > 0.

Write G/M for the coset space of cosets Mg, g ∈ G, and represent G by right
multiplication on G/M .

Again following Bender, given a nonnegative integer m, define

bm = bm(G,M) = |{C ∈ G/M − {M} : n(C) = m}|.

Observe that for each m, M acts on the set of cosets C of M with n(C) = m.
The following lemma of Bender in [B] is one of the fundamental tools in this paper;

its proof is easy and elementary.

(1.2) (Bender) Assume M ≤ G with n(G) > |G : M |. Then

b1 = f−1(n(M) +
∑
i>1

(i− 1)bi − 1− b0)− 1− b0 −
∑
i>1

bi.
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Section 2. The proof of Theorem 1

Throughout this section we assume the hypotheses of Theorem 1. Continue the
notation of the previous section. In addition for x ∈ G let I(x) be the set of involutions
in G inverting x. Set m = |M |. Recall m2(G) is the 2-rank of G; that is m2(G) = k

where 2k is the maximal order of an elementary abelian 2-subgroup of G.

(2.1) (1) M is abelian of odd order and inverted by z.
(2) I(y) ⊆Mz = zM for all y ∈M#.
(3) J ∩M∗ = zM .
(4) m2(M∗) = 1.
(5) CM∗(z) is a complement to M in M∗ and [z,M∗] = M .

Proof. Let W = CG(M). By hypothesis CG(y) is of odd order for each y ∈ M#, so
m is odd, W is of odd order, and CM (i) = 1 for each involution i ∈ M∗. Thus (1)
holds. If i ∈ I(y) then i ∈ M∗ as M is TI. Then i inverts M , so zi ∈ W . Hence as
|W | is odd, i ∈ zW . But by hypothesis, M∗ = MCM∗(z), so W = MCW (z), and hence
i ∈ zM = Mz. Therefore (2) holds. Further as CM (i) = 1 for each i ∈ J ∩M∗, (2)
implies (3). As m2(M〈z〉) = 1, (3) implies (4). As M∗ = MCM∗(z) and CM (z) = 1, (5)
holds.

(2.2) (1) Mz is the unique coset C of M such thatn(C) > 1.
(2) n(Mz) = m.

Proof. Suppose C ∈ G/M with n(C) > 1. Then there are distinct involutions i, j ∈ C.
Then ij ∈M# is inverted by i and j, so by 2.1.2, i, j ∈ I(ij) ⊆Mz; that is C = Mz, so
(1) holds. Part (2) follows from parts (1) and (2) of 2.1.

During the remainder of the section we assume that neither conclusion (1) nor conclusion
(2) of Theorem 1 hold. Thus n(G) > |G : M | and G 6= M∗ = NG(M). Let a = |M∗ : M |,
r = |CG(z)|/a and N = |G : M∗|. Observe a = |CM∗(z)|.

Recall the definition of the parameters bi = bi(G,M) from the previous section.

(2.3) (1) b1 = f−1(m− (b0 + 2))− (b0 + 2), and
(2) b0 < m− 2.

Proof. As n(G) > |G : M |, we can apply 1.1 to conclude f > 0 and appeal to 1.2. By
2.2, bi = 0 except when i is 0, 1, or m; also n(M) = 0 and bm = 1. Thus (1) follows from
1.2. As b1 ≥ 0, (1) implies (2).
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(2.4) Let g ∈ G−M∗ and set D = M∗ ∩M∗g. Then
(1) n(Mg) = 1 and n(M∗g) = a.
(2) D is a complement to M in M∗ inverted by the involution t ∈Mg, D contains a

unique involution i, and D = CM∗(i).
(3) M ∩M∗g = 1.
(4) N − 1 = m(r − 1).
(5) |G| = Nma = (m(r − 1) + 1)ma.
(6) b1 = am(r − 1).

Proof. If n(Mg) 6= 1 then n(Mg) = 0 by 2.2.1. However as M ∩Mg = 1, the orbit on
G/M of Mg under M is of length m, so b0 ≥ m, contrary to 2.3.2. Further M∗g is the
union of a cosets of M , so n(M∗g) = a, establishing (1).

Next by 2.1.3, zG ∩M∗ = zM
∗
, so CG(z) is transitive on the set Γ of fixed points of

z on G/M∗. (cf. 5.21 in [FGT]) Thus |Γ| = |CG(z) : CM∗(z)| = |CG(z)|/a = r. Let
U = M∗g∩J ; by (1), U is of order a. Thus for j ∈ U , the set U of elements of D inverted
by j is {uj : u ∈ U} of order a. By (1), U is a set of coset representatives for M in M∗g,
so as M∗j = M∗g and D ≤M∗, we conclude:

M∗ =
⋃
u∈U

Muj = MU = MD.

In particular D is of even order so as j acts on D, D contains an involution i centralizing
j. Now by 2.1.5, i inverts M , so M ∩ D = [M ∩ D, i]. Also by 2.1.5 applied to M∗g,
[M ∩D, i] ≤ [M∗g, i] ≤Mg, so M ∩D ≤M ∩Mg = 1. Thus D is a complement to M in
M∗, so |D| = a = |U | and hence D = U . As D = U , D is inverted by j, so D is abelian.
Thus D ≤ CM∗(i), so D = CM∗(i) and as m2(M∗) = 1, i is the unique involution in D.
Therefore (2) and (3) hold.

For each g ∈ G−M∗, M∗ ∩M∗g is the stabilizer in M∗ of M∗g ∈ G/M∗, so by (2),
M∗g is fixed by a unique involution of M∗. Thus by 2.1.3, G/M∗ −{M∗} is partitioned
by the m sets FixG/M∗(zx)− {M∗}, x ∈M . This establishes (4).

Next |G : M∗| = N and |M∗| = ma, so (5) follows from (4). Similarly |G : M | = aN ,
while by (1), |G : M | = a+ b1. Then (4) implies (6).

(2.5) (1) Either
(i) For some integer e > 2, CG(z) ∼= E2e , a = 2, and r = 2e−1, or
(ii) r = 2 and CM∗(z) is inverted by an involution in CG(z)− CM∗(z).
(2) In case (i):
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(a) |G| = 2m(m(2e−1 − 1) + 1).

(b) |G : CG(z)| = m(m(2e−1 − 1) + 1)/2e−1.

(c) |J | = m(2e − 1).

(3) In case (ii):

(a) |G| = m(m+ 1)a.

(b) |G : CG(z)| = m(m+ 1)/2.

(c) |J | = m(a+ 1).

Proof. If CG(z) ≤M∗ then r = 1, so N = 1 by 2.4.4, contradicting G 6= M∗. Thus there
is g ∈ CG(z)−M∗. Let A = M∗ ∩M∗g; then CM∗(z) = A by 2.4.2. By 2.4.1, there is an
involution t ∈Mg, and by 2.4.2, t inverts A. Further g ∈ CM (z)t = {t}, so each element
of CG(z)−A is an involution inverting A. Thus (1ii) holds if r = 2. If r > 2 there exists
h ∈ CG(z) − A with hg /∈ A. Thus hg inverts and centralizes A, so A is of exponent 2,
and then A = 〈z〉 by 2.1.4, so (1i) holds. Hence (1) is established.

Observe that as |CG(z)| = ar, |G : CG(z)| = Nm/r by 2.4.5. Also by 2.4.1 and 2.4.6,
|J | = n(M) + b1 = m+ am(r − 1). Then (2) and (3) are easy calculations, given 2.4.

(2.6) Assume case (ii) of 2.5.1 holds and let A = CM∗(z). Then

(1) G is 2-transitive on G/M∗ and M is regular on G/M∗ − {M∗}.
(2) A is cyclic and semiregular on M .

(3) a = (m− 1)/2 or m− 1.

(4) m is a power of a prime p and M is an elementary abelian p-group.

(5) If a = m− 1 then G has two classes of involutions and G ∼= PGL2(m).

(6) If a = (m− 1)/2 then G has one class of involutions and G ∼= L2(m) with m ≡ 1
mod 4.

Proof. By 2.5.3, |G : M∗| = m+ 1, while by 2.4.3, M is semiregular on G/M∗ − {M∗},
so (1) holds. Suppose 1 6= X ≤ A with 1 6= CM (X). As CM (z) = 1, z /∈ X, so as
m2(A) = 1, X is of odd order. By (1), CM (X) is regular on Fix(X)−{M∗} and by 2.5.2
there is an involution t ∈ G−M∗ inverting X, so CMt(X) is regular on Fix(X)−{M∗t}.
Thus Y = 〈CM (X), CMt(X)〉 is 2-transitive on Fix(X) and Y ≤ CG(X). Thus there
is g ∈ CG(X) with cycle (M∗,M∗t). This is impossible as A〈t〉 is the global stabilizer
of this set and each g ∈ At inverts X, so g /∈ CG(X) as X is of odd order. Thus A is
semiregular on M , so as A is abelian, A is cyclic; that is (2) holds.

By 2.5.3, |J | = m(a+1) and |zG| = m(m+1)/2, so m(m+1)/2 ≤ m(a+1), and hence
a ≥ (m− 1)/2. But by (2), a divides m− 1, so (3) holds. Further if a = (m− 1)/2 then



COUNTING INVOLUTIONS 7

J = zG, so G has one class of involutions and m ≡ 1 mod 4 as a is even. If a = m− 1,
then A is regular on M#, so G is sharply 3-transitive on G/M∗ by (1). In any event, A
is irreducible on M , so (4) holds.

In each case G is determined up to isomorphism by a result of Zassenhaus [Z], but we
do not need Zassenhaus’ result. Rather we argue as follows:

Suppose a = m − 1. Regard M as an s-dimensional vector space over Fp; then A

is a cyclic subgroup of GL(M) regular on M#, so A is determined up to conjugation
in GL(M). Hence M∗ = MA and its action on Ω = G/M∗ are determined up to
equivalence. Let S = Sym(Ω). In particular a generator x of A is an a-cycle on Ω−{M∗},
so CS(A) = A× 〈τ〉, where τ is a transposition in S with cycle (M∗M∗t), and NS(A) =
〈τ〉×B, whereB = NS(A)M∗ is the split extension ofA byAut(A). ThusA is of index 2 in
a unique dihedral subgroup D of S such that D � B. Therefore G = 〈M∗, t〉 = 〈M∗, D〉
is determined up to conjugation in S. Then as PGL2(m) satisfies the hypotheses of G,
it follows that G ∼= PGL2(m), so (5) holds.

So assume a = (m − 1)/2. Then G has one class of involutions and satisfies the
hypotheses of Theorem 3.5 in Chapter 13 of [G]. Then that result says G ∼= L2(m), so
(6) holds.

(2.7) Assume case (i) of 2.5.1 holds. Then
(1) Either
(a) G has one class of involutions, m = 2e + 1, and |G| = 2e(22e − 1), or
(b) G has more than one class of involutions, m = 2d + 1, and |G| = 22d+1(2d + 1),

where d = e− 1.
(2) If G has one class of involutions then G ∼= L2(2e).
(3) If G has more than one class of involutions then G = RM∗, where R = O2(G) ∼=

E22d .
(4) M is cyclic.

Proof. By 2.5.2:

m(m(2d − 1) + 1)
2d

= |zG| ≤ |J | = m(2d+1 − 1),

so
m(2d − 1) ≤ 2d(2d+1 − 1)− 1 = (2d − 1)(2d+1 + 1),

and hence

(*) m ≤ 2d+1 + 1 = 2e + 1.
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Indeed if G has one class of involutions then the inequality in (*) is an equality, so
m = 2e + 1 and hence |G| = 2e(22e − 1) by 2.5.2, so (1a) holds in this case. Further
CG(z) ∼= E2e in 2.5.1.i, so as G has one class of involutions, CG(i) ∼= E2e for each i ∈ J .
Therefore (2) holds by Exercise 16.1 in [FGT]. In particular the unique subgroup of G
of order 2e + 1 is cyclic, so (4) holds.

Thus we may assume G has more than one class of involutions. Then the inequality
in (*) is strick; that is m < 2e + 1. However by 2.5.2,

|G : CG(z)| = m(m(2d − 1) + 1)
2d

so
0 ≡ m(2d − 1) + 1 ≡ 1−m mod 2d,

and hence m = 2d + 1. Thus (1b) holds by 2.5.2.
Let i ∈ J − zG; then i inverts no element of M# as M is a TI-subgroup of G and all

involutions in M∗ are in zG. Indeed as |G| = (2d + 1)22d+1 and M is a TI-subgroup, all
elements in G# of odd order are in conjugates of M , so i inverts no element of G# of
odd order. Let R = O2(G); it follows from the Baer-Suzuki Theorem (cf. 39.6 in [FGT])
that i ∈ R. As CG(x) is of odd order for each x ∈ M#, M is semiregular on R. Thus
if V is a nontrivial M -chief section on R, |V #| ≡ 0 mod 2d + 1, so |V | ≥ 22d. Then as
|G| = 22d|M∗|, it follows that R ∼= E22d and M∗ is a complement to R in G. Thus (3)
holds. Finally as M is abelian and semiregular on R, (4) holds.

Observe that 2.5-2.7 complete the proof of Theorem 1.

Section 3. The proof of Lemma 2

In this section we assume the hypotheses of Lemma 2. By (i), CM (z) = 1, so z inverts
M and (3) holds. Let y ∈ M#. Then d(z, y) ≥ d(z, x) − 1, so if d(z, x) > 3 then
d(z, y) ≥ 3. On the other hand if d(z, x) = 3 then as z inverts y, d(z, y) ≥ 3 by (ii). As
M is abelian, M ≤ CG(y) and as d(z, y) ≥ 3, z inverts CG(y), so CG(y) is abelian. Thus
CG(y) ≤M , so (1) holds. Then (1) implies (2).

Let i be an involution in M∗. By (1), CM (i) = 1, so i inverts M . Thus iz ∈ CG(M) =
M , so i ∈Mz. Thus J ∩M∗ = Mz = zM , so CM∗(z) is a complement to M in M∗ by a
Frattini argument. Further for r ∈ CM∗(z)#, CM (r) = 1 by (1), so (4) holds. Finally by
(4), M is a Hall subgroup of M∗, while for p ∈ π(M) and P ∈ Sylp(M), NG(P ) ≤ M∗

by (2), so P ∈ Sylp(G). Thus (5) holds.
This completes the proof of Lemma 2.
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Section 4. The proof of Theorem 3

In this section we assume the hypotheses of Theorem 3. As 〈z〉 = Z(T ) is characteristic
in T and T ∈ Syl2(CG(z)), T ∈ Syl2(G). Let A1 and A2 be the two 4-subgroups of T and
let Gi = NG(Ai). If z is strongly closed in T with respect to G, then applying Thompson
transfer to the cyclic subgroup of index 2 in T , O2(G) has cyclic Sylow 2-subgroups.
Therefore (1) holds. (cf. 39.2 in [FGT]) Thus we may assume zg ∈ A1 − 〈z〉.

As 〈z〉 = [T,A1] and 〈zg〉 = [T g, A1], H = 〈T, T g〉 ≤ G1 and H induces L2(2) on A1.
Thus as A1 = CG(A1), G1 = H ∼= S4. If A1 is strongly closed in T with respect to G,
then by Thompson transfer, O2(G1) = O2(G)∩G1. Let L = O2(G). Then A1 ∈ Syl2(L)
and L has one class of involutions with CL(z) = A1 ∼= E4. It follows from Exercise 16.1
in [FGT] that L ∼= A4 or A5, and then that (2) or (3) holds. Thus we may assume A1

is not strongly closed in T with respect to G, so G has one class of involutions and by
symmetry, G2 ∼= S4.

Suppose x ∈ G# is of odd order and inverted by an involution. As G has one class
of involutions, we may assume z inverts x. As CG(z) is a 2-group, d(z, y) =∞ for each
y ∈ G# of odd order. Thus we conclude from Lemma 2 that X = CG(x) is a TI-subgroup
of odd order inverted by z and satisfies the hypotheses of the group “M” in Theorem 1.
Therefore by Theorem 1, either |X| ≤ |CG(z)| = 8, or G satisfies one of conclusions (3)-
(5) of Theorem 1. In the latter case as G has one class of involutions and CG(z) ∼= D8,
we conclude (4) or (5) holds. Thus we may assume |CG(x)| = 3 or 5 for each x ∈ G# of
odd order inverted by an involution. In particular if Xi ∈ Syl3(Gi) then as Xi is inverted
by an involution in T , Xi = CG(Xi), so NG(Xi) = NGi(Xi) ∼= S3.

Let M = G1; as |M | > |T |, we may apply 1.2 to M . As G has one class of involutions,

f =
|G : T |
|G : M |

− 1 =
|M |
|T |
− 1 = 2.

Further if y ∈M# then either NG(〈y〉) ≤M , or y is one of the six involutions in M−A1.
Thus if u is an involution in G −M then n(Mu) > 1 iff u centralizes one of these six
involutions y, in which case 〈y〉 = M ∩Mu, so n(Mu) = 2. Hence bm = 0 for m > 2 and
b2 = 6. Then as n(M) = 9, it follows from 1.2 that

b1 = f−1(n(M) + b2 − b0 − 1)− b2 − b0 − 1 =
9 + 6− b0 − 1

2
− 6− b0 − 1 =

−3b0
2

.

Thus as b1 ≥ 0, we conclude b1 = b0 = 0. Therefore |G : M | = 1 + b2 = 7. Now we
conclude G ∼= L3(2) by any one of a number of means. For example G is 2-transitive
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on G/Gi for i = 1, 2, so the coset geometry of G on the family {G1, G2} is a projective
plane of order |Gi : G1 ∩G2| − 1 = 2. As it is an elementary exercise to show there is a
unique plane of order 2, G = L3(2) is the group of automorphisms of that plane.

This completes the proof of Theorem 3.
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