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Abstract

Let G be a locally finite, finitary group and F ∗(G) the group generated by the
Hirsch-Plotkin radical of G and the components of G. Our main theorem asserts that
CG(F ∗(G)) ≤ F ∗(G).

1 Introduction

The main purpose of this paper is to extend the concept of the generalized Fitting group
from finite groups to locally finite, finitary groups. Recall that a group G is called locally
finite if every finite subset of G lies in a finite subgroup. G is called finitary if there exist
a field K and a faithful KG-module V so that [V, g] is finite dimensional for all g ∈ G. G
is quasi-simple if it is perfect, and G/Z(G) is simple. A component of G is a non-trivial
quasi-simple, subnormal subgroup of G. The layer E(G) is defined as the group generated
by the components of G. It is easy to see that distinct components of a group commute.
Thus E(G)/Z(E(G)) is semisimple, that is the ( restricted) direct product of simple groups.

Assume for the moment that G is finite. Then the Fitting group F (G) is the largest
nilpotent normal subgroup of G and the generalized Fitting group F ∗(G) is defined as
F (G)E(G). A well known theorem ( see for example [As] ) asserts that CG(F ∗(G)) ≤ F ∗(G).
This means that the group G/Z(F (G)) is a subgroup of the automorphism of F ∗(G). Thus
a finite group G can be well described in terms of F ∗(G). As the strucure of F ∗(G) is fairly
simple compared with the structure of an arbitray finite group, this explains the importance
of the generalized Fitting group in the theory of finite groups.

An infinite group G does not necessarily have a largest nilpotent normal subgroup,
but it does have a unique maximal locally nilpotent, normal subgroup, the Hirsch-Plotkin
radical (see [Ro, page 58]. We denote the Hirsch Plotkin radical by LN (G) and define the
generalized Fitting group F ∗(G) of G to be the product LS(G)E(G). The reader should
notice that the generalized Fitting group of a group can be trivial. Indeed this is the
case for free groups of rank at least two and even for some infinite, locally finite, groups.
Surprisingly the situation is much better for locally finite, finitary groups. Indeed, we will
prove:

Theorem A Let G be a locally finite, finitary group. Then CG(F ∗(G)) ≤ F ∗(G).

Similar but different results have been obtained independently by V.V Belyeav [Be,
Theorem A] and R.E Phillips [Ph].

As I was kindly reminded by W. Gaschütz, for finite groups the generalized Fitting
group can also be described as the set of elements which induce inner automorphism on
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each chief-factor of the group. 5.11 below implies that same is true for locally finite, finitary
groups.

In section 4 we prove that the elements in locally finite, finitary groups have a purely
group theoretical property we call bounded. ( See the end of the introduction for the relevant
definitions ). In section 5 we prove a structure theorem for arbitray locally finite bounded
groups modulo their largest locally solvable normal subgroup. In section 6 we use this
structure theorem to prove Theorem A. Finally in section 7 we use the methods and results
developed in the earlier sections to show that any locally finite finitary simple group has
a Kegel cover which is unipotent by quasi-simple. This last result also has been proved
independently in [1, Proposition 4.4] and [Be, Theorem B].

Our results depend on the classification of finite simple groups, but only in form of the
Schreier conjecture. That is we assume that the outer automorphism group of every finite
simple group is solvable.

We finish the introduction with a list of some of the notation and conventions used
throughout this paper.

Let H be group and P a group theoretical property. H is called locally P if every finite
subset of H lies in a subgroup of H which property P.

F is a finite group.
G is a locally finite group.
q(F ) is the number of non-abelian composition factors in a given composition series for

F .
Let X ⊆ Aut(F ). Then q(F,X) =

∑n
i=1 q([Fi/Fi−1, X]), where

1 = F0 < F1 < . . . < Fn−1 ≤ Fn < F

is a maximal X-invariant subnormal series for F .
Let X a finite subset of G and n ≥ 0.
H = {H ≤ G|H finite}.
H(X) = {H ∈ H|X ⊆ H},
X is n-bounded if there exists HX ∈ H(X) such that q(F,X) ≤ n for all F ∈ H(HX)

and X is bounded if X is n-bounded for some n.
Bn is the set of n-bounded elements, B∞ is the set of all bounded elements in G, and

G is called bounded if G = B∞.
LS(G) is the subgroup of G generated by all the locally solvable normal subgrous of

G. Note that LS(G) itself is locally solvable and so LS(G) is the largest locally solvable
normal subgroup of G.

G∞ is the group generated by all the perfect finite subgroups of G, i.e G∞ is the smallest
normal subgroup of G such that G/G∞ is locally solvable.

S∗(G) = X∞, where X/LS(G) is group generated by the simple subnormal subgroups
of G/LS(G). Note that X/LS(G) is the largest semisimple normal subgroup of G/LS(G).

S∗0(G) = 1 and S∗n+1(G) is defined inductively by S∗n+1(G)/S∗n(G) = S∗(G/S∗n(G)).
S∗∞(G) =

⋃∞
i=0 S

∗
i (G).
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Put S0
∗(F ) = F∞ and inductively for all i > 0 let Si∗(F ) be smallest normal subgroup of

Si−1
∗ (F ) such that Si−1

∗ (F )/Si∗(F ) is solvable by semisimple. Note that if Si−1
∗ (F ) 6= 1, then

Si∗(F ) < Si−1
∗ (F ). Let s(F ) be the smallest non-negative integer s such that Ss∗(F ) = 1. If

F is solvable, put S∗(F ) = 1, otherwise let S∗(F ) = S
s(F )−1
∗ (F ).

Note that S∗(F ) is a perfect, solvable by semisimple, normal subgroup of F and so
S∗(F ) ≤ S∗(F ). To comprehend the above definitio the reader might verify the following
example (the example also shows that S∗(F ) is in general a proper subgroup of S∗(F )).

Let F = C2 × SL2(5)× Sym(5) oAlt(5). Then
S∗(F ) = SL2(5)×Alt(5)5.
F ′ = S1

∗(F ) = S∗2(F ) = S∗∞(F ) = SL2(5)×Alt(5)5.24.Alt(5).
S2
∗(F ) = S∗(F ) = Alt(5)5.
s(F ) = 2.

Acknowledgement: I would like to thank the Universität Bielefeld and the Universität
Kiel for their hospitality.

2 Preliminaries

Lemma 2.1 Let H be a group with H = E(H) and N a normal subgroup of H. Then
H = CH(N)N .

Proof: Let L be a component of H. If [N,L] ≤ Z(H), then [N,L,L] = 1 [N,L] = 1
and L ≤ CH(N) If [N,L] 6≤ Z(H), then as L/Z(L) is simple, L = [N,L]Z(L) and as L is
perfect, L = [N,L] ≤ N . Thus in both cases, L ≤ CH(N)N .

Lemma 2.2 Let N be normal in F and i ≥ 0, then Si∗(F )N/N = Si∗(F/N).

Proof: Clearly S0
∗(F )N/N = S0

∗(F/N). Suppose i > 0 and put H = Si−1
∗ (F ). By

induction HN/N = Si−1
∗ (F/N). Let P be the inverse image of Si∗(F/N) in F . Then

HN/P ∼= Si−1
∗ (F/N)/Si∗(F/N)

and so HN/P is solvable by semisimple. Since N ≤ P ≤ HN we have HP = HN . Thus

H/H ∩ P ∼= HP/P = HN/P

and we conclude that H/H ∩ P is semisimple by solvable. Therefore Si∗(F ) ≤ H ∩ P ≤ P .
On the other hand

HN/Si∗(F )N ∼= H/H ∩ Si∗(F )N = H/(H ∩N)Si∗(F )

is solvable by semisimple and so P ≤ Si∗(F )N and P = (Si∗(F ) ∩ P )N = Si∗(F )N .

Lemma 2.3 Let H ≤ F with S∗(F ) ≤ H. Then S∗(H) = S∗(F ).
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Proof: We assume without loss that LS(F ) = 1. Put E = S∗(F ). Since LS(F ) =
1, E = F ∗(F ) and E is direct product of the simple subnormal subgroups of F . Since
CF (F ∗(F )) ≤ F ∗(F ) ( see [As]) we get CF (E) = 1. Put K = S∗(H) and note that E ≤ K.
Since [LS(K), E] ≤ LS(E) = 1 we get LS(K) = 1 and K is semisimple. Thus by 2.1
K = CK(E)E = E.

Lemma 2.4 Let x ∈ K ≤ F , and put s = s(〈xK〉). If s ≥ 1 and s(〈xT 〉) ≤ s for every
subgroup T of F with K ≤ T , then S∗(〈xK〉) ≤ S∗(F ).

Proof: Put Y = S∗(〈xK〉). Since Y is perfect it suffices to show Y ≤ S∗(F )LS(F ).
Hence we may assume that LS(F ) = 1. Put L = 〈xKS∗(F )〉 and N = L ∩ S∗(F ). Since
[x, S∗(F )] ≤ N , L = 〈xK〉N . Thus by (2.2), Y N = Ss−1

∗ (L)N . In particular, Y S∗(F ) =
Y NS∗(F ) = Ss−1

∗ (L)S∗(F ). Since Ss∗(L) = 1, Ss−1
∗ (L) is solvable by semisimple and

since Ss−1
∗ (L) and S∗(F ) normalize each other we conclude that also Y S∗(F ) is solvable

by semisimple. Note that both Y and S∗(F ) are perfect and so Y S∗(F ) = S∗(Y S∗(F )).
Furthermore, by 2.3 S∗(Y S∗(F )) = S∗(F ) and so Y ≤ S∗(F ).

Lemma 2.5 Suppose that G = G∞ and G is locally solvable by simple. Then G = 〈xG〉 for
all x ∈ G \ LS(G).

Proof: As G/LS(G) is simple, G = 〈xG〉LS(G). Thus G/〈xG〉 is locally solvable and
G = G∞ ≤ 〈xG〉.

Lemma 2.6 Let L be a non-trivial 1-bounded subgroup of G and P a finite, perfect, solvable
by simple subgroup of G containing L. Then P is 1-bounded.

Proof: Put HP = 〈P,HL〉, let F ∈ H(HP ) and F be a maximal P -invariant subnormal
series for F . Then L acts non-trivial on at most one of the non-abelian factors of F . By 2.5,
P = 〈LP 〉 and so the same is true for P . Let W be a non-abelian factor of F not centralized
by L. Then clearly L and so also P normalizes the components of W . By maximality of F
we conclude that W is simple and so q(F, P ) ≤ 1.

Lemma 2.7 Let F be a non-abelian finite group and M a normal subgroup of F minimal
by inclusion with respect to [M,F ] 6= 1.

(a) Suppose that CF (M) = Z(F ) and Z(F ) is cyclic. Then one of the following holds:

(a.1) M = E(M) and F acts transitively on the components of M .

(a.2) M is p-group for some prime p, M = [M,F ], F/Z(F )M acts faithfully and
irreducibly on M/CM (F ). Moreover, M ∼= Ext(p1+2m) or p = 2 and M ∼= C4 ◦
Ext(21+2m). In particular, F/Z(F )M is isomorphic to a subgroup of Sp2m(p).

(b) Suppose that F is a primitive, tensor indecomposable subgroup of GLn(K), where K
is an algebraicly closed field. Then
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(b.a) CF (M) = Z(F ) and Z(F ) is cyclic.

(b.b) (a.1) or (a.2) holds.

(b.c) M acts irreducible on Kn and in case (a.2) n = pm.

Proof: (a) Since Z(M) ≤ Z(F ), Z(M) 6= M and Z(M) = CM (F ) is the unique
maximal F invariant subgroup of M . In particular, M/Z(M) is semisimple. If M/Z(M) is
not abelian, (1) holds. Thus we may assume that M/Z(M) is an elementary abelian p-group
for some prime p. Clearly F acts irreducible on M/Z(M). If M 6= [M,F ], then [M,F ] ≤
Z(M) and so M/Z(M) is cyclic and M = Z(M), a contradiction. Thus M = [M,F ]. As M
has class two and M/Z(M) is elementary abelian, M ′ is elementary abelian. As Z(M) is
cyclic, this implies |M ′| = p. Moreover, M/M ′ is elementary abelian and so M = Z(M)E
for some E with E ∩Z(M) = Z(E) = M ′ = E′. Thus E is extra-special. If p is odd, M has
exponent p and so |Z(M)| = p and E = M . If p = 2 we get that M has exponent four and
so either Z(M) ∼= C4 or C2. The commutatormap from M/Z(M)×M/Z(M)→M ′ defines
a non-degenerated symplectic form on M/Z(M). Finally, an automorphism of M which
centralizes M/Z(M) and Z(M) is inner and so CF (M/Z(M)) = CF (M)M = Z(F )M and
all parts of (a) are established.

(b) Put V = Kn. As F is primitive, V is the direct sum of isomorphic irreducible
KM -modules. In particular, Z(M) acts by scalars on V , Z(M) ≤ Z(F ) and so M is not
abelian. Futhermore, if Q does not act irreducible, then NGLn(K)(M) does not act tensor
indecomposable on V , a contradiction. Thus M acts irreducible on V and (b.a) holds. In
particular, the assumptions of (a) and therefore (a.1) or (a.2) holds. If (a.2) holds, then
M = Z(M)E with E extra-special of order p1+2m. As M is irreducible, E is irreducible on
V . Thus by [Go, 5.5.5], n = pm.

Lemma 2.8 Let p be a prime and m a postive integer and put n = pm.

(a) 2m < n unless p = 2 and m ≤ 2.

(b) 4m− 2 ≤ n unless p = 2 and m ≤ 3.

(c) n(n− 1)32m−1 ≤ 3n−1 unless n = 2, 3, 4 or 8.

(d) n2(n2 − 1)34m−1 ≤ 32n−1 unless n = 2, 3, 4 or 8.

Proof: This is readily verified.

Lemma 2.9 (a) Let F be a subgroup of Sp4(2). Then q(F ) ≤ 1.

(b) Let F be a subgroup of Sp6(2). Then q(F ) ≤ 2.

(c) Let (p,m) ∈ {(2, 1), (2, 2), (2, 3), (3, 1)} and n = pm. Then GLm(p) has no solvable
subgroup of order larger than 3n−1/n.

(d) Let (p,m) ∈ {(2, 1), (2, 2), (2, 3), (3, 1)} and n = pm. Then Sp2m(p) has no solvable
subgroup of order larger than 32n−1/n2.
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Proof: (a) If q(F ) > 1, F has at least two non-abelian composition factors and so

|F | ≤ 60 · 60 = 3, 600 > 720 = |Sp4(2)|.

(b) Note that |Sp6(2)| = 29 · 34 · 5 · 7 = 1, 451, 520 and so |Sp6(2)|/603 < 7. As Sp6(2)
has no proper subgroup of index less than 7, q(F ) ≤ 2. We remark that, as can be see from
the list of maximal subgroups of Sp6(2), q(F ) ≤ 1, but we do not need this fact.

(c) If n = 2, 3 or 4, then |GLm(p)| ≤ 3n−1/n. So suppose n = 8. The largest solvable
subgroup of GL3(2) has order 24, and 24 ≤ 38−1/8.

(d) If n = 2 or 3, |Sp2m(p)| ≤ 32n−1/n2. If n = 4, then 32n−1/n2 = 37/16 > |Sp4(2)|/6.
The only subgroup of Sp4(2) ∼= Sym(6) of index less than 6 are Alt(6) and Sym(6). If
n = 8, then 32n−1/n2 > |Sp6(2)|/6. As Sp6(2) is simple, it does not have a proper subgroup
of index less then 6.

3 On F ∗(G) for locally finite groups

Lemma 3.1 (a) The locally solvable chief-factors of G are elementary abelian p-groups.

(b) Let C be a chief-series for G. Then LN (G) is the largest subgroup of G centralizing
all the factors of C.

Proof: [KW, 1.B.4, 1.B.10]

Lemma 3.2 Suppose D is a normal subgroup of G and D is a chief-series for G on D such
that D centralizes all the abelian factors of C. Then

(a) [LS(D), D∞] = 1

(b) LS(D) = LN (D).

(c) S∗(D) = E(D)

Proof: Note that by 3.1a the factors of D ∩ LS(D) are abelian and so centralized by
D. Let H be a finite subgroup of D and T a finite subgroup of LS(D) and put F = 〈TH〉.
Then F is finite and H centralizes the factors of D ∩ F . Hence [F,H, i] = 1 for some i ≥ 1.

If H is perfect, we conclude that H centralizes F . Thus (a) holds.
If H = T = F ≤ LS(D), we conclude that H is nilpotent and so (b) holds.
Finally by (a), S∗(D) ∩ LS(D) ≤ Z(S∗(D)) and so (c) holds.

Lemma 3.3 F ∗(G) induces inner automorphism on each chief-factor of G.

Proof: Let X/Y be a chief-factor of G. As F ∗(G)Y/Y ≤ F ∗(G/Y ), we may assume that
Y = 1.

By 3.1b, [X,LN (G)] = 1 and so we may assume that [X,E(G)] 6= 1. Then X =
[X,E(G)] ≤ E(G) and so by 2.1 E(G) = XCE(G)(X).
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Example 3.4 There exists a locally finite group G with G 6= F ∗(G) such that G induces
inner automorphism on all of it chief-factors.

Proof: Let H be a finite, perfect, simple group, I an infinite set, Hi = H for all ∈ I,
E the restricted cartesian product of the Hi, i ∈ I, viewed as a normal subgroup of the
full cartesian product. Pick 1 6= h ∈ H and put hi = h and h∗ = (hi)i∈I . Finally but
G = E〈h∗〉. Then it is easy to check that E = F ∗(G) and G induces inner automorphism
on all of its chief-factors.

4 A bound for q(F, x) in finitary groups

Definition 4.1 (a) Let x ∈ GLK(V ). Then deg(x) = degV (x) = dim[V, x] and

pdeg(x) = pdeg(xZ(GLK(V )) = min
06=λ∈K

deg(λ · x).

(b) A PKG-module is a K-vector space V together with a homomorphism

φ : G→ PGLK(V ).

Lemma 4.2 Let K be an algebraicly closed field, x ∈ PGLn(K) and y ∈ PGLm(K). Then
pdeg(x⊗y) ≥ m ·pdeg(x). In particular, if n,m ≥ 2, then pdeg(x)+pdeg(y) ≤ pdeg(x⊗y).

Proof: Let 0 = V0 ≤ V1 < V2 < . . . Vm−1 < Vm = V be a maximal chain of y-invariant
subspaces in V . As K is algebraicly closed, y acts on each of the Vi/Vi−1 as a scalar. Thus

pdeg(x⊗ y) ≥
m∑
i=1

pdegKn⊗Vi/Kn⊗Vi−1
(x⊗ y) =

m∑
i=1

pdegKn(x) = m · pdeg(x).

To prove the second claim we may assume that pdeg(y) ≤ pdeg(x). Then

pdeg(x⊗ y) ≥ 2 · pdeg(x) ≥ pdeg(x) + pdeg(y).

Lemma 4.3 (a) If F ≤ PGLn(K), then q(F ) ≤ n− 1.

(b) If F ≤ PGLn(K) and x ∈ F , then q(F, x) ≤ 2 · pdeg(x).

Proof: We assume without loss that K is algebraicly closed. Put V = Kn and d =
pdeg(x). We will prove (a) and (b) by induction on n, and for (b) also by induction on
d. Moreover, in (b) we assume without loss that (a) is true and that x is contained in no
proper subnormal subgroup of F . In particular, F = 〈xF 〉.

Suppose that U is a proper F -submodule in V . Then CF (V/U)∩CF (U) is abelian and
so

q(F ) = q(F/CF (V/U)) + q(CF (V/U)CF (U)/CF (U)) ≤
≤ (dimV/U − 1) + (dimU − 1) = n− 2 < n− 1
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Similarly, q(F, x) ≤ 2d.
So we may assume that F acts irreducibly on V . If F is not primitive on V , let ∆ be a

system of imprimitivity for F on V and put k = |∆| and m = n/k.
Then q(F ) = q(F/CF (∆))+q(CF (∆)). Note that F/CF (∆) is isomorphic to a subgroup

of Sym(k) and Sym(k) is isomorphic to a subgroup of GLk−1(K). Thus by induction
q(F/CF (∆)) ≤ k − 2. Moreover, CF (∆) is contained in the direct product of k subgroups
of GLm(K) and hence by induction, q(CF (∆)) ≤ k(m−1) and q(F ) ≤ (k−2)+k(m−1) =
km− 2 < n− 1.

Put t = pdeg∆(x), Γ = C∆(x), U =
∑

Γ and W =
∑

∆ \ Γ. Let l be the number of
non-trivial orbits for x on ∆. As each non-trivial orbit for x in ∆ has at least length 2:

(1) 2l ≤ t

Let X1, X2, ...Xs be an orbit for x on Γ and X =
∑s
i=1Xi. Then X = X1[X,x] and so

dim[X,x] ≥ (s − 1)m. It follows that pdegW (x) ≥ (t − l)m. Thus (t − l)m + pdegU (x) ≤
pdegW (x) + pdegU (x) = d and so :

(2) pdegU (x) ≤ d− tm+ lm

Note that the even permutation module for Sym(k) gives rise to a faithful F/CF (∆)-
module Z with dimZ < n and pdegZ(x) ≤ t− l. Thus by induction :

(3) q(F/CF (∆), x) ≤ 2(t− l)

Since CF (∆)CF (W )/CF (W ) acts faithfully on W , it is contained in the direct product
of at most t copies of GLm(K). Thus (a) implies

(4) q(CF (∆)CF (W )/CF (W )) ≤ t(m− 1)

Since F = 〈xF 〉, x does not fix all the elements of ∆ and so U is a proper subspace of
V . Futhermore, CF (W ) ∩ CF (∆) acts faithfully on U and so by induction:

(5) q(CF (W ) ∩ CF (∆), x) ≤ 2 · pdegU (x)

Note that

q(F, x) ≤ q(F/CF (∆), x) + q(CF (∆)CF (W )/CF (W )) + q(CF (∆) ∩ CF (W ), x)

and so by (3), (4) and (5):

q(F, x) ≤ 2(t− l) + t(m− 1) + 2 · pdegU (x)

Hence by (2)

q(F, x) ≤ 2(t−l)+t(m−1)+2d−2tm+2lm = 2d−t(m−1)+2l(m−1) = 2d−(t−2l)(m−1)
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and so by (1), q(F, x) ≤ 2d.
So we may assume that F acts primitively on V . Suppose that V ∼= U ⊗K W for some

at least 2-dimensional PKF -modules U and W. Then

q(F ) ≤ q(F/CF (U)) + q(F/CF (W )) ≤ (dimU − 1) + (dimW − 1)) ≤
≤ dimU · dimW − 3 = n− 3 < n− 1.

Moreover, by (4.2) pdegU (x) + pdegW (x) ≤ pdeg(x) and so

q(F, x) ≤ q(F/CF (U), x) + q(F/CF (W ), x) ≤ 2 · pdegU (x) + 2 · pdegW (x) ≤ 2d.

So we may assume that F acts tensor indecomposable on V . Since K is algebraicly
closed and F acts primitively on V we conclude that each normal subgroup of F either acts
as scalars or acts irreducibly on V . Let N be a normal subgroup of F minimal with respect
to N 6≤ Z(F ). Then N is irreducible and so CF (N) act as scalars on V . In particular,
CF (N) = Z(F ).

Suppose first that N is not solvable and let ∆ be the set of components of N . Then
N = 〈∆〉. Put e = |∆|. Since the outer automorphism group of every finite simple group is
solvable, CF (∆)/N is solvable. Hence q(F ) = q(F/CF (∆)) + q(N) and so

(6) q(F, x) ≤ q(F ) = q(F/CF (∆)) + e.

If e = 1, then F = CF (∆) and so by (6) q(F ) = 1 ≤ n− 1 and q(F, x) ≤ 1 ≤ 2 ·pdeg(x).
So we may assume that e ≥ 2. As F/CF (∆) ≤ Sym(∆) ≤ GLe−1(K) we conclude by
induction that q(F/CF (∆)) ≤ e− 2. Thus by (6):

(7) q(F, x) ≤ q(F ) ≤ 2(e− 1) ≤ 2e−1

SinceN acts irreducibly on V , V ∼=
⊗
L∈∆ VL as a KN-module, where VL is an irreducible

PKL-module. In particular, dimV ≥ 2e and so by (7) q(F ) ≤ n− 1.
Let L ∈ ∆ with [L, x] 6= 1 and let Λ be the set of all irreducible CN (L)-submodules in

V . Then N acts non trivally on Λ. Suppose that x normalizes all elements of Λ. Since
L ≤ [L, x], N = [L, x]CN (L) and so N acts trivally on Λ, a contradiction. Pick W ∈ Λ with
W 6= W x. Since CN (LLx) normalizes W and W x, CN (LLx) acts on W/W ∩W x. Therefore
dimW/W ∩W x ≥ 2e−2 and so 2e−2 ≤ d. Thus by (7) q(F, x) ≤ 2d.

Suppose next that N is solvable. Then by 2.7 Ñ := N/CN (F ) is an elementary abelian
group of order p2m for some prime p and some positive integer m, N ∼= Ext(p1+2m) or
N ∼= C4 ◦ Ext(21+2m), n = pm and CF (Ñ) = Z(F )N is solvable. Also F/CF (Ñ) is
isomorphic to a subgroup of Sp2m(p) ≤ GL2m(p). By 2.8a either 2m < pm = n, or p = 2
and m ≥ 2. In the first case by induction, q(F ) = q(F/CF (Ñ)) ≤ m − 1 ≤ n − 1. In the
second case 2.9a implies q(F ) ≤ 1 ≤ n− 1.

Let a ∈ F , then [x, a] = x−1xa has pdeg at most 2d. If [N, x] ≤ Z(F ), 〈xF 〉 is solvable
and q(F, x) = 0. So we may assume that [N, x] 6≤ Z(F ). Thus N \Z(F ) contains an element
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y with pdeg(y) ≤ 2d. Then 1 6= [y,N ] ≤ Z(F ) and Z(F ) contains a non-trivial element z
with pdeg(z) ≤ 4d. Since F acts irreducible on V , V = [V, z] and so pm ≤ n ≤ 4d. By 2.8b
2(2m− 1) ≤ pm or p = 2 and m ≤ 3. In the first case by (a)

q(F, x) ≤ q(F ) ≤ q(F/CF (Ñ)) ≤ 2m− 1 ≤ pm/2 ≤ 2d.

In the second case, F/CF (Ñ) is isomorphic to a subgroup of Sp6(2) and so by 2.9b q(F ) ≤
2 ≤ 2d. This completes the proof of Lemma 4.3.

5 The structure of B∞

Lemma 5.1 (a) B∞ is a normal subgroup of G.

(b) Every finite subgroup of B∞ is bounded.

Proof: Let X and Y be n- and m-bounded subsets of G, respectively. Put Z = 〈X,Y 〉
and H = 〈HX ,HY 〉. Let F ∈ H(H) and 1 = F0 ≤ F1... ≤ Fn−1 ≤ Fn = F a chief-series for
F. Then [Fi/Fi−1, Z] = [Fi/Fi−1, X][Fi/Fi−1, Y ] and so q(F,Z) ≤ q(F,X)+q(F, Y ) ≤ n+m.
Thus Z is (n + m)-bounded. In particular, any subgroup of G generated by finitely many
bounded elements is bounded. Thus (a) and (b) follow.

Lemma 5.2 Let x ∈ Bn and K ∈ H(Hx). Put F = 〈xK〉 and s = s(F ).

(a) s ≤ n.

(b) q(F/S∗(F ), x) < n

Proof: Put Ri = Si∗(F )/Si+1
∗ (F ). As F is normal in K, q(F, x) ≤ q(K,x) ≤ n. Since

q(F, x) =
∑s
i=1 q(Ri, x) it suffices to show that q(Ri, x) ≥ 1 for all 1 ≤ i ≤ s. Suppose that

q(Ri, x) = 0 for some 1 ≤ i ≤ s and put Ri = Ri/LS(Ri). Then Ri is a non trivial, perfect,
semisimple group with q(Ri, x) = 0. Thus x centralizes Ri. As K acts on Ri and F = 〈xK〉
we conclude that F centralizes Ri. But then Ri is abelian, a contradiction.

Let B be a normal subgroup of G contained in B∞.
Let x ∈ B. Then by 5.2a there exist d ≥ 0 and Kx ∈ H(Hx) so that s(〈xKx〉) = d and

s(〈xK〉) ≤ d for all K ∈ H(Kx). Let d = d(x) be a minimal such d. Note that x ∈ LS(B)
if and only if d(x) = 0.

Let R be the union of the finite and perfect subgroups U of B such that there exists
KU ∈ H(U) with U ≤ S∗(F ) for all F ∈ H(KU ). Note here that R is a characteristcic
subgroup of B.

S = 〈L ≤ B|L is perfect and 1-bounded 〉.
T = 〈S∗(〈xK〉) | x ∈ B,K ∈ H(Kx)〉.

Lemma 5.3 T ≤ R and if B is not locally solvable, R 6= 1.
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Proof: Let x ∈ B and F ∈ H(Kx). By choice of d and Kx and by 2.4 we have
S∗(〈xK〉) ≤ S∗(F ). Thus S∗(〈xK〉) ≤ R and so T ≤ R.

If B is not locally solvable, there indeed exists x ∈ B with d(x) 6= 0. Hence T 6= 1 and
R 6= 1.

Proposition 5.4 (a) Let L be perfect and 1-bounded. Then for all F ∈ H(HL), L ≤
S∗(F ) and 〈L〈LF 〉〉 is solvable by simple.

(b) Let L be perfect and 1-bounded. Then 〈LG〉 is locally solvable by semisimple and
〈L〈LG〉〉 is locally solvable by simple.

(c) S ≤ R and S is locally solvable by semisimple.

Proof: (a) Put F = F/LS(F ) and E = S∗(F ). Then C
F

(E) = 1 and so [E,L] 6= 1.
Since q(F,L) = 1, we conclude that q(F/E,L) = 0 and since L is perfect, L ≤ E. Similarly,

[E,L] is simple and L ≤ [E,L]. Hence 〈L〈L
F 〉〉 = [E,L] and (a) is proved

(b) By (a) Y = 〈L〈LG〉〉 has a local system of perfect, solvable by simple, finite subgroups.
Hence 2.5 implies Y = 〈yY 〉 for all y ∈ Y \ LS(Y ) and so Y is locally solvable by simple.
Thus 〈LG〉 is locally solvable by semisimple.

(c) By (a) L ≤ R and so S ≤ R. By (b), S is locally solvable by semisimple.

Lemma 5.5 S = R, in particular, if B is not locally solvable, S 6= 1.

Proof: Let U be a perfect finite subgroup of B such that there exists KU ∈ H with
U ≤ S∗(F ) for all F ∈ H(KU ). Let d be minimal with respect to U being d-bounded and
put H = 〈KU ,HU 〉. By the minimality of d there exists F ∈ H(H) with q(F,U) = d. Put
L = 〈U 〈UF 〉〉. Then clearly q(L,U) = q(F,U) = d. Moreover, since U ≤ S∗(F ), it is easy
to see that L/LS(L) is the direct product of d simple, perfect subgroups. Let L1, L2, . . . Lk
be the non trivial, minimal perfect, normal subgroups of 〈UF 〉 and choose notation so that
L = L1L2 . . . Ld.

We will now prove that for all i, Li is 1-bounded, where we choose HLi = F . Let
P ∈ H(F ), Q = 〈UP 〉 and P = P/LS(Q). Since U ≤ S∗(P ), Q is semisimple. Also
L = 〈LU 〉 ≤ Q. Let Q1, Q2, . . . , Ql be the components of Q. Then Q is the direct product
of the Qj ’s. Let Lij be the projection of Li onto Qj and let Lij be the inverse image of
Lij in P . Let M be the group generated by the Lij ’s. Since Lij is a solvable by simple
and is normal in M , M is solvable by semisimple. Note that F normalizes M and so
q(M,U) ≤ q(FM,U) ≤ d.

Suppose that for some 1 ≤ i ≤ d and some j, [Lij , U ] ≤ LS(M). Then L = 〈UL〉 and
[Lij , L] ≤ LS(M). Hence [Lij , Lij ] is solvable. Since Lij is perfect, Lij = 1.

Suppose that for some 1 ≤ i < t ≤ d, and some j, LijLS(M) = LtjLS(M). Since
[Li, Lt] is solvable we conclude [Lij , Lij ] is solvable and again Lij = 1.
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For 1 ≤ i ≤ d put p(i) = |{j | 1 ≤ j ≤ l, Lij 6= 1}|. Since p(i) ≥ 1 we conclude from the
last two paragraphs that

d ≤ q(M,U) ≤
d∑
i=1

p(i) ≤ d.

Hence for all 1 ≤ i ≤ d, p(i) = 1 and q(P,Li) = q(Q,Li) = 1. Thus Li is 1-bounded,
L ≤ S and since U ≤ L,U ≤ S and R ≤ S. By 5.4(c), S ≤ R and so S = R.

S 6= 1 follows now from 5.3.

Lemma 5.6 For all n ≥ 0, 〈Bn ∩ B〉∞ ≤ 〈x ∈ B | d(x) ≤ n〉∞ ≤ S∗n(B). In particular,
B∞ = S∗∞(B).

Proof: The first containment follows from 5.2(a).
Let x ∈ B with d(x) ≤ n. If n = 0, 〈xG〉 is locally solvable and so 〈x ∈ B | d(x) ≤

0〉∞ = 1. So suppose that n ≥ 1. By 5.3 and 5.5, T ≤ S. As d(x) ≤ n, Sn−1
∗ (〈xK〉) ≤

S∗(〈xK〉) ≤ T ≤ S for all T ∈ H(Kx). But this implies that in G/S, d(xS) ≤ n− 1. Thus
the second containment follows by induction on n.

Theorem 5.7 (a) CB(S/LS(S)) = LS(B).

(b) S = S∗(B).

Proof: We may assume without loss that LS(B) = 1. Then S is semisimple and
Z(S) = 1.

Put C = CB(S) and assume that C 6= 1. Then by 5.5 applied to C instead of B, C has
a non-trivial perfect 1-bounded subgroup U . Thus U ≤ S ∩C = Z(S) = 1, a contradiction,
which proves (a).

Since S∗(B) is semisimple, S∗(B) = CS∗(B)(S)S = S.

Proposition 5.8 (a) Let x ∈ Bn. Then at most n of the components of S/LS(S) are
not centralized by x.

(b) B acts finitarily on the set of components of S/LS(S).

Proof: Without loss LS(B) = 1. Let L be component of B not centralized by 〈xHx〉.
Since xHx is finite it is easy to see that there exists a non-trivial, finite perfect, NHx(L)-
invariant subgroup AL of L with the following property:

(1) Let h ∈ Hx such that xh normalizes but does not centralize L. Then [AL, xh] is not
solvable.

Choose the AL’s in such a way that AhL = ALh for all h ∈ Hx. If x does not normalize
L it is easy to see that AL = A′L ≤ [AL, x]. Together with (1) we conclude

(2) If x does not centralize L then [AL, x] ∩ L is not solvable.
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Let ∆ be finite set of components of B none of which is centralized by x. Put Γ =
{Lh|L ∈ ∆, h ∈ Hx} and A = 〈AL | L ∈ Γ〉 =

∏
L∈ΓAL. Then A is a finite subgroup of B

normalized by Hx. By (2), none of groups [AL, x] ∩ L for L ∈ ∆ is solvable and thus

|∆| ≤ q(A, x) ≤ q(AHx, x) ≤ n.

This implies (a). (b) follows immediately from (a).

Lemma 5.9 Let M be a component of B, L ≤M and F a finite subgroup of NG(M). If L
is perfect and 1-bounded, then L is contained in a perfect, 1-bounded, F -invariant subgroup
of M .

Proof: Note that M = 〈L〈LM 〉〉 and so 〈LF 〉 ≤ 〈L〈LT 〉〉 for some T ∈ H. Put
K = 〈F,HL, T 〉, K = K/LS(K) and P = 〈L〈LK〉〉. Then P is perfect and 〈LF 〉 ≤ P .
Furthermore, as L is 1-bounded, P is a component of K. Since F normalizes a non-trivial
subgroup of P , ( namely 〈LF 〉) we conclude that F normalizes P and so also PLS(K). As P
is perfect and subnormal in PLS(K), P = (PLS(K))∞ and so P is F -invariant. Moreover,
by 2.6, P is 1-bounded.

Proposition 5.10 All chief-factors for G on B are semisimple as groups.

Proof: Let Y/X be chief-factor for G on B.
If Y/X is locally solvable, Y/X is semisimple by 3.1(a).
If Y/X is not locally solvable, then LS(Y/X) = 1. Thus by 5.7, Y/X = S∗(Y/X) =

E(Y/X) and again Y/X is semisimple.

We are now able to improve 3.2 for bounded groups:

Proposition 5.11 Let C be a chief-series for G on B. Then F ∗(B) is the largest subgroup
of B inducing inner automorphism on all the factors of C.

Proof: Let D largest subgroup of B inducing inner automorphism on all the factors
of C. Since F ∗(B) ≤ F ∗(G), 3.3implies that F ∗(B) ≤ D.

Let D = D ∩ C. Then D also induces inner automorphisms on all the factors of D.
In particular D centralizes the abelian factors of D and so by 3.2 LS(D) = LN (D) and
S∗(D) = E(D). Let X = CD(E(D). Since S∗(D) = E(D), 5.7 applied to D in place of B,
yields X ≤ LS(D). Thus X ≤ LS(D) = LND ≤ F ∗(D).

Let d ∈ D. By 5.8 d centralizes all put finitely many componets of D. As d induces
inner autmorphisms on D∩E(D), d induces inner automorphism on each component of D.
Thus d ∈ XE(B) ≤ F ∗(D) ≤ F ∗(B). Thus D ≤ F ∗(B) and the proposition is proved.
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6 Proof of Theorem A

In this section we prove Theorem A. For this let G be a locally finite, finitary group. Then
by 4.3, G is bounded. Put B = CG(LN (G)). Then LN (B) = Z(B).

Suppose that LS(B) 6≤ Z(B) and let b ∈ LS(B)\Z(B). Put D = 〈bG〉. Then by [MPP,
Proposition 1], D is solvable and we can choose E ≤ D with E 6≤ Z(B), but E′ ≤ Z(B).
Then E′ ≤ Z(E), E is nilpotent and E ≤ LN (B) ≤ Z(B), a contradcition.

Hence LS(B) = Z(B) and so S∗(B) = E(B) ≤ E(G). Thus by 5.7, CB(E(B)) =
CB(S∗(B)) ≤ LS(B) ≤ Z(B) and so

CG(F ∗(G)) = CG(E(G)LN (G) ≤ CB(E(B)) ≤ Z(B) ≤ F ∗(G).

and Theorem A is proved.

7 On Kegel covers for simple, locally finite, finitary groups

In this chapter we investigate Kegel covers of simple, locally finite, finitary groups. Recall
that a Kegel covers of the locally finite groups G is a set of pairs {(Hi,Mi) | i ∈ I} such
that

(i) For all i ∈ I, Hi is a finite subgroup of G and Mi is a maximal normal subgroup of
Hi.

(ii) For all finite subgroup F of G there exists i ∈ I with F ≤ Hi and F ∩Mi = 1.

We remark that every locally finite, simple group has a Kegel cover. See [KW] for a
proof.

Lemma 7.1 (a) Let F ≤ Sym(n). Then |LS(F )| ≤ 3n−1.

(b) Let F ≤ GLn(K). Then F has a unipotent by abelian normal subgroup U with
|LS(F )/U | ≤ 32n−1.

(c) Let F ≤ GLn(K) and x ∈ F \ LS(F ) with F = 〈xF 〉. Put

t = max{|F/LS(F )| · pdeg(x), 4 · pdeg(x)}.

(c.a) The sum of the dimensions of the non-trivial composition factors for F on Kn

is at most t.

(c.b) F has a unipotent by abelian normal subgroup U with |LS(F )/U | ≤ 32t−1.

(c.c) Any abelian normal subgroup of F/Unip(F ) has rank at most t.
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Proof: Note that (c.b) follows from (c.a) and (b). Furthermore any abelian subgroup
of GLn(K) has, modulo its unipotent part, rank at most n and so (d.c) follows from (c.a).

(a),(b) and (c.a) are proved simultanously by induction on n. We argue similary as
in (4.3). Put V = Kn, Ω = {1, 2, . . . , n}, S = LS(F ) and l = |F/S|. For (b) we assume
without loss that K is algebraicly closed. As in (4.3) we may assume that G acts transitively
on Ω and irrreducibly on V , respectively.

If G acts imprimitively, let ∆ be a maximal system of imprimitivity for G on Ω and V ,
respectively. Put d = |∆| and k = n/d.

In (a) we get

|S| ≤ |LS(CF (∆)||LS(F/CF (∆))| ≤ (3k−1)d3d−1 = 3n−1.

In (b) let W ∈ ∆. By induction NF (W ) has a normal subgroup X containing CF (W )
such that X/CF (W ) is unipotent by abelian and |LS(NF (W ))CF (W )/X| ≤ 32k−1. Put
U =

⋂
g∈F X

g. Then U is unipotent by abelian and

|LS(F )/U | ≤ |LS(CF (∆))/U ||LS(F/CF (∆))| ≤ (32k−1)d3d−1 = 32n−1.

In (c) note that k · deg∆(x) ≤ 2 · pdeg(x). Assume first that S 6≤ CF (∆) and let A be a
minimal normal subgroup of SCF (∆)/CF (∆). Then A is abelian and either xCF (∆) ∈ A
or [A, x] 6= 1. In both cases A contains an element 1 6= y with deg∆(y) ≤ 2 · deg∆(x) ≤
4
k · pdeg(x). Since A acts regularly on ∆ we conclude that d ≤ 4

k · pdeg(x). Thus n =
dk ≤ 4 · pdeg(x) ≤ t. Assume next that S ≤ CF (∆). Since F acts transitively on ∆,
d ≤ |F/CF (∆)| ≤ |F/S| = l, and we conclude that n ≤ lk ≤ l · pdeg(x) ≤ t.

So we may assume that G acts primitively.
In case (b) suppose that V ∼= X⊗K Y for some at least 2-dimensional PKF -modules X

and Y .Then a finite central extension of G acts faithfully on X ⊕ Y and dim(X ⊕ Y ) ≤ n.
Thus by the reducible case, (b) holds. So we may assume in case (b) that V is tensor-
indecomposable.

Let M be normal subgroup of F in S minimal with respect to [M,F ] 6= 1.
In (a), M is an elementary abelian p-group acting regularly on Ω. So n = |M | = pm

for some m and |F/M | is isomorphic to a subgroup of GLm(p). Moreover, F/M acts
irreducible on M and so has no non-trivial unipotent normal subgroup. Note that every
abelian p′ subgroup of GLm(p) has order at most pm − 1 = n− 1. Clearly m < n. Thus by
induction and (b), |S/M | ≤ (n− 1)32m−1 and so |S| ≤ n(n− 1)32m−1. By 2.8c we conclude
that either n(n − 1)32m−1 ≤ 3n−1 or n ∈ {2, 3, 4, 8}. In the first case |S| ≤ 3n−1. In the
second case, 2.9c implies |S/M | ≤ 3n−1/n and again |S| ≤ 3n−1.

In (b) since F is primitive, M is not abelian. Since V is tensor indecomposable and
K is algebraicly closed, M acts irreducibly on V . Thus CF (M) = Z(F ) is cyclic and we
can apply 2.7. We conclude that M ∼= Ext(p1+2m) or M ∼= C4 ◦ Ext(21+2m) for some
m that n = pm and that F/MZ(F ) acts faithfully M/Z(M). Clearly m < n. As every
abelian p′ subgroup of GL2m(p) has order at most p2m − 1 = n2 − 1, we get by induction
that |S/MZ(F )| ≤ (n2 − 1)34m−1. Thus |S/Z(F )| ≤ n2(n2 − 1)34m−1. By 2.8 either
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n2(n2 − 1)34m−1 ≤ 32n−1 or n ∈ {2, 3, 4, 8}. In the first case |S/Z(F )| ≤ 32n−1. In the
second case 2.9d implies that |S/Z(F )M | ≤ 32n−1/p2m and so again |S/Z(F )| ≤ 32n−1.

In (c), M is not abelian and M ′ ≤ Z(F ). As in 4.3 Z(F ) contains a non-trivial element
of pdeg at most 4 · pdeg(x) and thus, n ≤ 4 · pdeg(x) ≤ t.

Theorem 7.2 Let G be a simple, locally finite, finitary group and L a perfect 1-bounded
subgroup of G. Then there exists a finite subgroup H of G containing L such that 〈L〈LF 〉〉
is unipotent by quasisimple for all finite subgroups F of G containing H.

Proof: For F ∈ H(HL) define F̃ = 〈L〈LF 〉〉. For F ∈ H let U(F ) be the set of
unipotent by abelian normal subgroups of F , u(F ) = min{|LS(F )/U ||U ∈ U(F )}, U+(F ) =
{U ∈ U(F )||LS(F )/U | = u(F )}, r(F ) = min{rank(U/Unip(U))|U ∈ U+(F )} and U∗(F ) =
{U ∈ U+(F )|rank(U/Unip(U)) = r(F )}. Replacing L be F̃ for some F ∈ H(HL) we may
assume that L is solvable by simple. Let E be a perfect, solvable by simple, finite subgroup
of G with E = LS(E)L and let x ∈ L \LS(L). By 2.5, E = 〈xE〉 and so by (7.1), u(E) and
r(E) are bounded by a function of |L/LS(L)| and pdeg(x). Hence we can choose E such
that first u(E) and then r(E) is maximal. By 2.6, E is 1-bounded. Thus we may and do
assume that L = E.

As G has a Kegel cover there exists a subgroup R̂ of G and a maximal normal subgroup
M of R̂ so that HL ≤ R̂ and L∩M = 1. Put R = 〈LR̂〉. As L is perfect and 1-bounded, R
is perfect, RM = R̂ and R ∩M = LS(R). In particular, L ∩ LS(R) = 1 and R is solvable
by simple.

Put H = 〈R,HL〉 and let F ∈ H(H). To complete the proof of the theorem we will show
that F̃ is unipotent by quasi-simple. Note first that F̃ is solvable by simple. As R ≤ F̃ we
have L ∩ LS(F̃ ) ≤ L ∩ LS(R) = 1. Put C = [LS(F̃ ), L], D = CL and D = D/C. Then
D = 〈LLS(F̃ )〉, D is perfect, L ∩ C = 1, D ∼= L and LS(D) = LS(L)C. Hence by maximal
choice of u(E) (= u(L)), u(D) ≤ u(L). Let U ∈ U∗(D). Then

|LS(D)/U | = u(D) ≤ u(L) = u(D) ≤ |LS(D)/U | = |LS(D)/UC| ≤ |LS(D)/U |.

Thus C ≤ U , u(D) = u(L),

|LS(L)/U ∩ L| = |LS(L)U/U | = |LS(D)/U | = u(L)

and U ∩ L ∈ U+(L).
Suppose first that U is unipotent. Then [LS(F̃ ), L] is a unipotent normal subgroup of

LS(F̃ ) and so [LS(F̃ ), L] ≤ Unip(F̃ ). Since F̃ = 〈LF̃ 〉 we conclude [LS(F̃ ), F̃ ] ≤ Unip(F̃ )
and F̃ is unipotent by quasisimple.

Suppose next that U is not unipotent. Then r(D) 6= 0 and by maximality of r(E)
(= r(L)), r(L) 6= 0. That is, U ∩L is not unipotent. Let p be a prime and A an elementary
abelian p-subgroup of U∩L with rank(A) = rank(U∩L/Unip(U∩L)). Since U∩L ∈ U+(L),
rank(A) ≥ r(L). For X ≤ LLS(F̃ ), put X∗ = XUnip(U)/Unip(U). As [LS(F̃ ), A,A] ≤
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[C,A] ≤ [U,U ] ≤ Unip(U) we conclude that [LS(F̃ ), A]∗A∗ = 〈ALS(F̃ 〉∗ is an elementary
abelian p-group. Since A is a p- and Unip(C) is a p′-group, Unip(U) ∩ AC ≤ C. Hence
Unip(U)C∩A = C∩A ≤ LS(F̃ )∩L = 1. Thus C∗∩A∗ = 1 and in particular [LS(F̃ ), A]∗∩
A∗ = 1. As rank(U∗) = r(D) ≤ r(L) ≤ rank(A∗), we get [LS(F̃ ), A]∗ = 1 and [LS(F̃ ), A] ≤
Unip(U). Since F̃ = 〈AF̃ 〉, we conclude [LS(F̃ ), F̃ ] ≤ Unip(F̃ ) and F̃ is unipotent by
quasisimple.

Theorem 7.3 Let G be a perfect, simple, locally finite, finitary group.

(a) Let {(Hi,Mi) | i ∈ I} be a Kegel cover for G with Hi/Mi perfecr for all i. Let Ri the
unique minimal normal supplement to Mi in Hi. Then there exists a finite subgroup
H in G so that

{(Ri, Ri ∩Mi) | i ∈ I,H ≤ Hi,H ∩Mi = 1}

is Kegel cover for G and such that all these Ri’s are unipotent by quasisimple.

(b) G has a Kegel cover {(Hi,Mi) | i ∈ I} such that the Hi’s are unipotent by quasisimple.

Proof: Clearly (a) implies (b).
To prove (a) note that by 4.3 and 5.5, G has a finite perfect and 1-bounded subgroup

L. Let H be as in 7.2. Without loss, H ≤ Hi and L∩Mi = 1 for all i ∈ I. Put H∗i = 〈LHi 〉.
It is easy to see that {(H∗i ,H∗i ∩Mi) | i ∈ I} is a Kegel cover for G. By 7.2, H∗i is perfect
and unipotent by simple. In particular, H∗i has no proper normal supplement to LS(H∗i ).
Since H∗iMi = Hi, H∗i ∩Mi = LS(H∗i ). Thus H∗i = Ri and the theorem is proved.
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