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Abstract

Call a group G hypersolvable if it has an ascending series with G/Cg(A) solvable
for each factor A of the series. In this paper we establish some basic facts about
hypersolvable groups. We also prove that if G is a perfect Fitting p-group such that
every proper subgroup is contained in a proper normal subgroup, then G has a proper
non-hypersolvable subgroup.

1 Introduction

Let D be a class of pairs (B, A) such that B is a group acting faithfully on the group A.
Let G be a group acting on a group N. A G-invariant normal series A of N is called a
D-series for G on N if (G/Cx(A), A) € D for all factors A of A.

An ascending D-series for G on N is called a hyper-D series. If such a series exists
we say that G acts hyper-D on N. G is hyper-D means that G acts hyper-D on G. If
Gi1, Go are classes of groups, then (G1,G2) denotes the class of pairs (B, A) with B € Gy,
A € Gs and B acting faithfully on A. We denote the class of all groups with x. So (x, *)
denotes the class of all pairs of groups (B, A) with B acting faithfully on A.

Consider the case N = G. Observe that hyper-(x,abelian) groups are the hyper-
abelian groups and hyper-(1,%x) groups are the hypercentral groups. We say that G
is hypersolvable if G is hyper-(solvable,x). This notation might be slightly mislead-
ing since one probably would be tempted to define a hypersolvable group to be a
hyper-(x,s0lvable) group. But as the hyper-(*,solvable) groups are just the hyperabelian
groups such a definition would not be of much use. Similarly we define a hypernilpotent
group to be a hyper-(nilpotent,x)-group.

Unwinding the definitions we see that a group G is hypersolvable if and only if G
has a normal ascending series A such that G/Cq(A) is solvable for all factors A of A.



We say that G acts strongly hyper-D on N if for all G-invariant M <1 N there exists
a G-invariant M < M < N with (G/Cq(M /M), M/M) € D.

In section 2 we establish some basic facts about hyper-D groups. In particular, we
show that if D is closed under quotients, then G acts hyper-D on N if and only if G
acts strongly hyper-D on N.

In section 3 we investigate hyper-(G, x)-groups, where G is a countable union of
group varieties.

In section 4 we apply Theorem 3.9 to obtain commutator conditions which charac-
terize hypersolvable and hypernilpotent groups.

In section 5 it is shown that the class of hypersolvable groups lies strictly between
the classes of hypercentral-by-solvable and hypercentral-by-(residually solvable) groups.
Similarly we show that the class of hypernilpotent groups lies strictly between the classes
of hypercentral-by-nilpotent and hypercentral-by-(residually nilpotent) groups.

Recall that a Fitting group is a locally (nilpotent and normal) group, that is a group
in which every finitely generated subgroup lies in a nilpotent, normal subgroup. We
say that a group G is NNC-proper if G is not the normal closure of a proper subgroup.
NNC-proper Fitting p-groups are considered in [AOl] and given a criterion for these
groups to be non-perfect. In Theorem 7.3 we prove that every NNC-proper, perfect,
Fitting p-group has a proper non-hypersolvable subgroup.

As a supplement to Theorem 7.3, in section 8 we provide some conditions which
ensure that a group is NNC-proper.

2 Basic Properties of hyper-D groups

Let D C (x*, %) (that is a class of pairs (A4, B) of groups A and B with A acting faithfully
on B, which is closed under isomorphism). We say that D is closed under subgroups if
for all (A, B) € D, all D < A and all D-invariant E < B we have (D/Cp(E), E) € D.
We say that D is closed under quotients if for all (A, B) € D and all A-invariant F < B,
(A/C4(B/E),B/E) € D. A group G is finitely hyper-D if it has a finite hyper-D-series.

Lemma 2.1 Let D C (x,%) and let G be acting hyper-D on N.

(a) Suppose that D is closed under subgroups. Let H < G and let M be an H-invariant
subgroup of N. Then H acts hyper-D on M.

(b) Suppose that D is closed under quotients and that M is a G-invariant normal
subgroup of N. Then G acts hyper-D on N/M.

Proof: Let (N,)o be a hyper-D series for G on N.

(a) Just observe that (M N N, ), is a hyper-D series for H on M.

(b) Since quotients of ascending series are again ascending series, (N,M /M), is a
hyper-D series for G on N/M. O

Lemma 2.2 Let D C (x,%) and let G be acting on N.
(a) If G acts strongly hyper-D on N, then G acts hyper-D on N.

(b) If D is closed under quotients, then G acts strongly hyper-D on N if and only if
it acts hyper-D on N.



Proof: (a) Define Ny = 1. If « is a limit ordinal, put N, = U,@<a Ng. fa=p0+1

and Ng # N, put N, = Ng. Then (N, )q is a hyper-D series on N.
(b) Follows from (a) and 2.1(b). O

Lemma 2.3 Let D C (x,%) and let G be acting on N. Suppose that there exists a
G-invariant normal ascending series on N such that G acts hyper-D on each of the
factors. Then G acts hyper-D on N. In particular, if (N;,i € I) is a family of groups
with G acting hyper-D on each N;, then G acts hyper-D on @,.; Ni.

Proof: For the first statement use the series on the factors to refine the given series
to a hyper-D series.

For the second statement well-order I such that I has a maximal element. For
i € I define N;" = @D,<;N;j and N; = P;_; N;. Then {N;7,N' | i€ I}is G-
invariant normal ascending series on @, ; N; with factors N;"/N;” = N;. So the second
statement follows from the first. O

Proposition 2.4 Let G be any class of groups.

(a) Suppose G is closed under quotients. Then hypercentral-by-G groups are hyper-
(G, *) and nilpotent-by-G groups are finitely hyper-(G, ).

(b) Hyper-(G,*) groups are hypercentral-by-(residually G). If G is closed under finite
subdirect products then finitely hyper-(G, *)-groups are nilpotent-by-G.

(¢) If G is closed under quotients and finite subdirect products, then the nilpotent-by-
G-groups are exactly the finitely hyper-(G,*) groups.

Proof: (a) Let H < G such that H is hypercentral and G/H € G. Let Z be the
hypercentral series for H. Then Z is G-invariant. If Z is a factor of Z, then [Z, H] =1
and so G/Cg(Z) is a quotient of G/H. Thus G/Cg(Z) € G. Also G/Cq(G/H) is a
quotient of G/H and so Z U {G} is a hyper-(G, ) series for G. If H is nilpotent, Z is
finite and (a) is proved.

(b) Let A = (Aqy)a be a hyper-(G, )-series for G and put

H = {Cc(A)| A a factor of A}.

Since G/Cq(A) € G for all factors A, G/H is subdirect product of members of
G and so residually-G. Moreover (A, N H),, is a hypercentral series for H and so H
is hypercentral. If A is finite and G is closed under finite subdirect products, then
G/H € G and H is nilpotent. So (b) holds.

(c) Follows from (a) and (b). O

3 Countable unions of group varieties

For n € N, F(n) denotes the free group on n-generators xi,xsa,...,o,. Let G be
a group, m € N U {oo} with m > n and g = (g;)72; € G™. Then there exists a
unique homomorphism ¢4 : F(n) — G with z; — g; for all 1 < i < n. Given a



word w € F(n) we write w(g) for ¢4(w). So if w = z;, x4, ... 2, with 1 <ip <n, then
w(g) = i, Giy - - - Gi,, - ' m < n weview F(m) as a subgroup of F(n). Let m = m(w) € N
be minimal with w € F(m). Let F := |J_, F(n) and let W be the set of subsets of F.

n=1
So the elements of W are sets of words.

Put G* := (w(g) | g € G™) and note that G* is a normal subgroup of G. For a set
W eWlet G = (G | w € W). Let G(W) be the class of groups G with GV = 1,
that is G(W) is the variety defined by W.

Proposition 3.1 Let W € W and let G be a group. Then G is hyper-(G(W), %) if and
only if GV is hypercentral.

Proof: Let N <G. Then G/N € G(W) if and only if G¥ < N if and only if G/N is
residually G(W). Thus the proposition follows from 2.4. O

Definition 3.2 Let W = (W;)2, € W™ be a sequence of sets of words.
(a) W is decreasing if FWi+r < FWi for all i.
(b) W is almost decreasing if for all i,j € Z+ there ewists k > j with FWx < FWs,
(¢) GW) = U, G(W)).
Lemma 3.3 Let G be group.
(a) Let V,\W € W with FV < FW. Then GV < GW.
(b) Let W € W™ be almost decreasing. Then (G")22, is almost decreasing, that is
fori,j € ZT there exists k > j with GVx < GWi.

Proof: (a) Let g € GV. Then g € HV for some finitely generated subgroup H of G.
Let a : F — H be an onto homomorphism. Then HY = o(FY) < a(FV) = H" and
soge HV <GW.

(b) follows from (a). O

Definition 3.4 Let G be a group acting on a group N, W € W™ and o an ordinal.
(a) Define H, = Hyp! (G, N) inductively as follows:

H, = 1 ifa=0
H, = Uﬁ<a Hg if 0 £ « is a limit ordinal
Ho/Ho1= Cpnju, (IN,GV¥]G"*) if o = B+ k with

B a limit ordinal and k € 7.

(b) 6 = §W (G, N) is the least ordinal such that Hs = Hg for all 8 > 6. Moreover,
Hpr(G7N) := Hy

(c) A hyper-W series is a hyper-(G(W),x) series and a hyper-W group is a hyper-
(GW),*) group.

If « = 8+k, 8 alimit ordinal and k € ZT, then H,/H,_1 is the largest N-invariant
subgroup of N/H,_; centralized by G"*.

Define HypY (G) = Hyp) (G, G) and Hyp" (G) = Hyp" (G, G). If there is no doubt
about the group G and the sequence W in question define H, = HypZV (G).



Proposition 3.5 Let G be a group and W € W>.
(a) (Hgy)a is a hyper-W series for G on Hyp" (G).
(b) Let A< G and (Aa)a be a hyper-W series for G on A.
(a) For every ordinal « there exists an ordinal o with A, < Hy+. In particular,
A <Hyp"(@).
(b) If W is almost decreasing we can choose a* such that a* = o + ny, for some
na € N and no = 0 if a is a limit ordinal.
(¢c) G is hyper-W if and only if G = Hyp" (G).

Proof: (a) Let « = 8+ k for some limit ordinal 8 and some k € Z*. Then G"*
centralizes H,/H,_1. Hence G/Cq(Hy/Ha-1) € G(Wy) C G(W) and (a) holds.
(b) By induction we may assume that for all § < « there exists 8* with Ag < Hg-.
Suppose first that « is a limit ordinal. Let a* be the least ordinal with a < a* and
Ha* = UB<0¢ Hg* Then

Ao = J 45 € |J Hp- = Ho-

B<a B<a

Moreover, if for all 5 < a, 5* = 8+ ng for some ng € N then o* = a. So (b:a) and
(b:b) hold for .

Suppose next that a = S+ k for some limit ordinal 8 and some k € Z*. Since (A4)a
is hyper-W there exists i € Z* with [A,,G"'] < Aq_1.

Assume that W is almost decreasing. By induction A,_1 < Hy—14p,_, for some

Na—1 € ZT. Since W is almost decreasing there exists n € ZT with n > k + n,_; and
GWr < GWi, Then

[Ay, G < [A0, GV ] < Ay 1 < Ho14m,_, = Hgih—14ny < Hgyn—1.

Thus Ay < Hgipn = Ho4n—k and (b:b) holds with no =n — k.
Assume next that W is not almost decreasing. Let « be the smallest limit ordinal
with (a« — 1)* <+. Then

[AaaGWi] < Aa,1 < H(a—l)* < H’y < H’y+i71

and so Ay < Hyy;. Thus (b:a) holds.
(c) Follows from (a) and (b). O

Definition 3.6 (a) Fori=1,2 let w; be a word and m; = m(w;). Put

[wi, wa] = [wi((2:)iZ ) s w2((Tm, 44)i2 )| € F(ma +m)
[wy,wa] is called the outer commutator of wi and w,.
(b) Following Mchres [M3, (3) Definition/, outer commutator words are inductively
defined as follows:
(a) w = x; is the only outer commutator word with m(w) = 1.

(b) If m(w) > 1 then w is an outer commutator word provided that there exist
outer commutator words wi, we with m(w;) < m(w) and w = [wq,ws].



(c) Let w € F", n € NU {cc}. Then w € F" is inductively defined as follows:
71)1 =T and ’LZJH_l = [w,,wz]

(d) Let W € W", n € NU{oc}. Then W: € Wt is inductively defined as follows:
Wy ={z1} and Wiy1 = {[v,w] | v € W;,w € W;}.

For example, [z123, x123] = [123, x3273]. Note that m([wy,w]) = m1 + ma. Also
Wis1 = {wip1 |w € Xj=1 W;}. To improve readability we sometimes write w™ for 1.
Lemma 3.7 Let G be a group, w € F*®°, g € G* and i € Z™.

(a) Put n=m(w;) and m = m(w;). Then

Wit1(g) = [Wi(g), wi( (gn+j)}n=1 )

b) Let N < G. If w;i(g) € N then also w;(g) € N for all j > i.
j
(¢) Let W € W=, Then GWit1 = [GWi, GWi] < GWi N GWi.

In particular, W is decreasing.

Proof: (a) By definition w;41 = [w;, w;]. So (a) follows from the definition of the
outer commutator.
(b) and (c) follow from (a). O

Definition 3.8 (a) Let W € W*. Then H(W) is the class of groups G such that
for all g € G™ and all w € X2, W; there exists n € Z* with w,(g) = 1 (or
equivalently for all g € G™, there exists n € Z* with w,(g) = 1 for all w, € W,.)

(b) Let D C (x,%). Then HD is the class of hyper-D-groups. FD is the class of
finitely hyper-D-groups.

Observe that G(W) is the class of groups G for which there exists n € Z* with
wp(g) =1 for all g € G* and all w,, € W,,. Thus G(W) C H(W).

Theorem 3.9 Let W € W™>. Then

(a) G(W) C F(G(W),*) with equality if W is almost decreasing.
(b) H(W) C H(G(W), %) with equality if W is almost decreasing.

Proof: Suppose that GWn =1 for some n. Then by 3.7(c)
1=G"n <@V 1< . .<g" <™ =qg

is a finite hyper-W series on G. Thus G(W) C F(G(W), ).

Let. G be a group which is not hyper-W. We will show that G is also not contained
in H(W). By 2.2 there exists N <9 G such that

(%) Con(G") =1foralln e Zt.

Let g1 € G\ N. Note that z1(g1) = g1 ¢ N. Suppose inductively that we already
found (g;)7*; € G™ and w; € Wy, 1 < i < k with wi((g:);*,) ¢ N. Then by (*)



[k ( (g:)i=, ), GW*] £ N and there exist wy € W), and (gnk+j);n:(71”k) € G™wr) with

[k (90) 1% 1 Wi ( (G 4) ) )]  N. Put nypq = g +m(wy). Then by 3.7(a),

W1 ((90);i 27" ) ¢ N
Put g = (9:)§2; and w = (w;)$2;. Then wy(g) # 1 for all k and so G ¢ H(W). Thus
H(W) C H(G(W), *).

Suppose next that W is almost decreasing. We will prove the second assertions in
(a) and (b) simultaneously. Let G be hyper-W and let (A, )a<, be any hyper-W series
on G. Let i € ZT. If p is finite let V; = W; and H; = G;. If p is infinite pick w; € W;
and ¢g; € G and put H; = {¢;} and V; = {w;}

Let g € ¥;2, H; and w € X;-, V;. Then w1(g1) = g1 € G = A4,. So we can choose an
ordinal o minimal such that there exists n € Z* with 1, (g9) € G, for all w € X2, V;
and g € ;2| H;.

We will show that &« = 0. Suppose that « = g + 1 for some ordinal (5. Since
G/Cc(An/Ap) € G(W), there exists m € Z*t with [A,, G"m] < Ag. Since W is almost
decreasing we may assume m > n. Let w € X;o, Vi. Then w,(g) € A, and m > n. So
by 3.7(b), wm(g) € As. Hence

wm—i—l(g) € [wm<g)7GWM] < [ACHGWW] < Ag

for all w € ¥;2, V; and g € X;=, H;, a contradiction to the minimal choice of . Thus «
is a limit ordinal.

Suppose that « # 0. Then p is infinite and so by our choice of V;, |V;| = 1 = |H;
and there exist a unique w € }72, V; and a unique g € X;; H;. Since Ay = Ug., 4p
there exists 8 < a with w,(g) € Ag, a contradiction to the choice of a.

Thus o = 0 and so w,(g) =1 for all w € \;°, V.

If p is finite, V; = W; and H; = G;. Thus G = 1 and G € G(W). So (a) is proved.

In any case, wy,(g) = 1 shows that G € H(W) and (b) holds. O

The following example shows that the inclusions in 3.9 may be proper if W is not
almost decreasing:

Let G = Sym(3), * = =z, Wi = {2?} and W; = {z} for i > 2. Then w =
(2%, z,2,2,...) is the unique element in ¥;=, W;. Also 1 < Alt(3) < Sym(3) is a finite
hyper-(G(W), *) series. Thus Sym(3) € F(G(W),*) C H(G(W), *).

Put ¢ = ((12),(123),(12),(12),(12),...). Then wi(g9) = ¢1 = (12), wa(g) =
[(12), (123)?] = (123), w3(g) = [(123), (12)] = (123) and so for all n > 2, W, (g) = (123).
Thus w,(g) # 1 for all n and Sym(3) ¢ H(W). Since G(W) C H(W) we see that
G(W) # F(G(W), ) and H(W) # H(G(W, %).

On the other hand, given an arbitrary W € W define
V= (Wla Wl; W27 Wh WQa W37 Wl7 W27 W3a W47 le .. )

Then clearly V is almost decreasing. For any group G, G(W) only depends on {WV; |
i €77} and so G(W) = G(V). Thus by 3.9

G(V) = F(G(W),*) and H(V) = H(G(W), *).



4 Hypersolvable and hypernilpotent groups

Definition 4.1 (a) 7(0) = (x1)$2, and inductively (i + 1) = (i)~

(b) ¢ is the unique sequence of words with ¢ = b. So ¢p1 = x and inductively
Git1 = [bi, dil.

It might be worthwhile to list the first few terms of the above sequence of words:

7(0): a4 T T T
(1) @ [71, 2] [[x1, 2], 23] [[[z1, 22], 23], 24]
7(2): @ [v1,w2] ([0, 22, (23, 24]] (l[z1, 2], [23, 24]], [[25, T6], 27]]]

¢ a1 [vi,w2] ([w1, @2 x5, 24]]  ([[21, 22, [23, 24]], [[25, 26], [27, 28]]]

Lemma 4.2 (a) Let N(0) be the class of trivial groups and inductively let N'(n + 1)
be the class of milpotent-by-N(n) groups. Then G(7(n)) = N(n). In particular,
G(7(1)) the class of nilpotent groups.

(b) G(@) is the class of solvable groups.

(c) H(7(1)) is the class of hypercentral groups and H(7(2)) is the class of hypernilpo-
tent groups.

(d) H(e) is the class of hypersolvable groups.
Proof: (a)Let w € F* be decreasing. By 3.9(a), G(w) = F(G(w), *) and so by 2.4(c):
(%) G(w) is the class of nilpotent-by-G(w)groups.

Clearly G(7(0))) is the class of trivial groups. Since 7(1) = 7(0),, (*) says that
G(7(1)) is the class of nilpotent-by-trivial groups and so the class of nilpotent groups.
Hence G(7(1)) = N(1). Inductively suppose that G(7(n)) = N(n). So (*) implies that
G(7(n+1)) is the class of nilpotent-by-N(n) groups. Thus G(7(n+1)) = N(n+1) and
(a) holds.

(b) We have G = G** = G(® and so inductively

GPi+1 = [G¢'i,G¢i] — [G(i_l),G(i_l)] — G,

Hence G(¢;) is the class of solvable groups of derived length less than ¢ and (b) holds.
(c) and (d) follow from (a), (b) and 3.9(b). O

Lemma 4.3 Let G be a group and w an outer commutator word. Put m = m(w).
Then G < Gv.

Proof: For m = 1 we have w = x1 = ¢1. If m > 1, then w = [wy, ws] where wy, we
are outer commutator words with m; := m(w;) < m. So

G(me,fl é Gd)'mi S Gwz

and thus
Gom — [G¢m,—1,G¢m_1] < [GWr,GY] = Gv.



Corollary 4.4 Let w be a sequence of outer commutator words. Then
H(w) € H(G(w), %) € H(¢).

Proof: The first statement follows from 3.9(b). Now let G be a group with a hyper-
(G(w), *) series and T a factor of that series. Then [T,G**] = 1 for some k. By 4.3
[T, G™)] =1 for some m and so G is hypersolvable. Thus by 4.2(d), G € H(®). O

5 Examples

In this section we construct various examples of groups which are hyper-(G, x) for some
class G of groups. By 2.4 we know that any such group is hypercentral-by-(residually
G). The next proposition gives a partial converse:

Example 5.1 Let G be a class of groups, (H;,i € I) a family of members of G and H
a subdirect product of (H;,i € I). Fori € I let A; be a group with H; acting on A;.
Suppose that

(i) H is hyper-(G,*).
(ii) For eachi € I, A; is abelian and H; acts faithfully on A;.
(iii) For each 1 # N < H, there exists i € I such that N does not act hypercentrally on
A;.
Put A = @@ A;. Note that H acts on A; via its projection onto H; and so also

acts on A. Put G = AH. Then G is hyper-(G, ). Moreover, any hypercentral normal
subgroup of G is contained in A.

Proof: Since G/Cq(A;) = H; € G, G acts hyper-(G, ) on A;. So by 2.3, G is hyper-
(G,*) on A. Also G/A = H is hyper-(G, ) and hence by 2.3 G is hyper-(G, *).

Let M < G with M £ A. Then AM = AN for some 1 # N < H. By (iii) there
exists i € I such that N does not act hypercentrally on A;. So N also does not act
hypercentrally on [A4;, N]. Since A is abelian, [4;, N] = [A;, M] < M and M does not
act hypercentrally on [A;, M]. Thus M is not hypercentral. O

Example 5.2 Let G be a class of groups and H a group. Suppose H is residually-G and
hyper-(G, x). Then there exists a hyper-(G,*) group G and an abelian normal subgroup
A of G such that G/A = H and such that every hypercentral normal subgroup of G is
contained in A.

Proof: Let M = {M < H | G/M € G}. Since H is residually-G, (M = 1. In
particular, H is a subdirect product of (G/M | M € M). For M € M put Ay =
Z|G/M]. Then A, is an abelian group with G/M acting faithfully on A,; by right
multiplication. Let 1 # N < H and choose M € M with N £ M. Then N does not act
hypercentrally on Ajs (indeed if NM /M is infinite, C4,, (N) = 0 and if NM /M is finite,
choose a prime p with p{|NM /M| and observe that N does not act hypercentrally on

So 5.1 completes the proof. O



Example 5.3 For each prime p there exists a locally finite, hypersolvable p-group which
is not hypercentral-by-solvable.

Proof: Forl < k € Nlet Hy, be a solvable p-group of derived length k with Z(Hy) = 1.
Let Ay, = F,H), and H = EBZOZQ Hy. Let 1 # N < H and choose k such that the
projection Nj of N in Hy, is not trivial. If Ny, is finite, Hy/C\, (Hy) is a finite p-group
acting on the finite p-group Ny and so Cn, (Hy) # 1, contrary to Z(Hy) = 1. So Ny, is
infinite. Hence C4, (N) =1 and N does not act hypercentrally on A;. Put A = &P Ax
and G = AH. 5.1 now completes the proof. O

Example 5.4 For each prime p there exists a hypernilpotent, 3-step elementary abelian,
p-group G which is not hypercentral-by-hypercentral.

Proof: Let F be an infinite field of characteristic p.

Let W be a vector space over F with basis (w;,7 € N). For i € Nlet i = Z;io b;;27
with b;; € {0,1}. For j € N and f € F define t;; € GLr(W) by t;¢(w;) = w; + fw; 0
if bi]‘ =0 and tjf(wi) = wW; if bij =1.

Let T; = {t;s | f € F}. Then Tj is an infinite elementary abelian p-group isomorphic

o (F,+). Also [T}, Ty] =1 for all j,k and so also T =: (T} | j € Z*) is an elementary
abelian p-subgroup of GL(W).

Define W; = (Fwy | k > 2%). Then clearly W; is an FT-submodule of W and so W;
is a normal subgroup of the semidirect product H = WT. Moreover, W/W; is finite
dimensional and H/W; is nilpotent. Since (o2, W; = 1, H is residually nilpotent.

Let 1 # N < H. We prove next that
(*) there exists k such that NW}, /W}, is infinite.

Since Cyg(W) = W either [N;W] # 1 or N < W. In either case there exists
1#ne NNW. Let n = Zi:ok‘iwi with k; € F and pick j € N with 27 > [. Put
m = 22:0 kjw; 9i. Then t;f(n) = n+ fm. Since F is infinite and fm ¢ W44 for all
0 # f € F we conclude that (*) holds for k = j + 1.

Since H is a p-group, (*) implies Z(H) = 1 and so H is not hypercentral. Since
H/Cyg(W) 2 T is abelian and H/Cy(H/W) = 1 we conclude that 1 < W < H is a
hypernilpotent series on H. Therefore H is hypernilpotent.

Let A; = F,[H/W;] and put A = @;2, A;. Then A is an elementary abelian p-group.
Choose k as in (*). Then Cy4,(N) =1 and so N does not act hypercentrally on Ay.
Therefore the assumptions of 5.1 are fulfilled. Thus G = AH = AW is hypernilpotent
and every hypercentral normal subgroup of G is contained in A. Since G/A = H is not
hypercentral, G is not hypercentral-by-hypercentral. O

Many thanks to Jon Hall who simplified the description of the action of T on W in
the preceding lemma.
6 Mohres’ Lemma
Fix a group G and let F be the set of finitely generated subgroups of G. For H, K < G let

FH)={FeF|H<E}and F(H,K)={FEe€ F(H) | E£K}. Put D(H,K) =G
if F(H,K) = 0, and D(H,K) = (\F(H, K), otherwise. If the group G in question
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needs to be emphasized, we will also use the notations Fg, Dg(H, K),... in place of
F.D(H,K),...

For K < G let K° < G be such that (K¢) < K° and K°/(K®) is the hypercenter
of G/{K®%).

Lemma 6.1 Let G be a group and K < G.
(a) Let E < G and put D = D(E,K). Then E < D, F(E,K) = F(D,K) and
D =D(D, K).
(b) K =K° if and only if K <G and Z(G/K) = 1.
(¢c) Let K < L < K°. Then L° = K°. In particular (K%)° = K° = (K°)°.
(d) Suppose G is perfect. Then [K°,G] < (KY). Moreover, G = (KY) if and only if
G=K°.

Proof: (a) Clearly E < D. Let E < H € F with H « K. Then by definition of D,
D < H and so F(E,K) C F(D, K). Clearly F(D,K) C F(E, K) and so (a) holds.

(b) is obvious.

(c) Clearly (K%)° = K° and (LY) < K°. So we may assume that both K and L
are normal in G. Since K°/K is hypercentral for G also K°/L is hypercentral for G.
Thus K° < L°. Since L°/K° and K°/K are hypercentral for G, L°/K is hypercentral
for G and so L° < K°.

(d) The first statement holds since the hypercenter of a perfect group is its center.
The second follows from the first. O

The following lemma and its corollary have been abstracted from the proof of [M3,
(4)Lemma].

Lemma 6.2 (Mohres’ Lemma) Let G be an NNC-proper, perfect group. Let U € F
and a € G\ U. Then one of the following holds.

1. There exists N <G and a ¢ V € F(U) with a € D(V,N).
2. Let « be any outer commutator word and a ¢ V€ F(U). Then

G=(H"|ad HeFV)).

Proof: We assume that (1) and (2) are both false. Since (1) is false:
(*) a¢D(V,N)forall NG andalla ¢V e F(U).

Since (2) is false, there exist an outer commutator word o with m(a) minimal and
a gV e FU)such that K := (H* |a ¢ He F(V)) # G. Let N = K°. Since G is
NNC-proper, G # (K%) and so by 6.1(d), N # G.

Suppose that m(a) = 1, that is @ = 1. From (*), a € D(V, N) and so there exists
H e F(V) witha ¢ H and H £ N, a contradiction to H = H** = H* < K < N.

Thus m(«) # 1 and so there exist outer commutator words 8 and v with a = [, 7].
By the minimal choice of m(a), G = (H? | a ¢ H € F(V)) and so there exists
a¢ He F(V)with H? £ N. Since Z(G/N) =1, [H?,G] £ N. Again by the minimal
choice of m(a), G = (R | a ¢ R € F(H)) and thus there exists a ¢ R € F(H) with
[HP,R] £ N. Since H < R, H? < RP and so R* = [R’, R7] £ N, a contradiction to
R*<K<N. O
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Corollary 6.3 Let G be an NNC-proper, perfect group. Let U € F and a € G\ U.
Then one of the following holds:

1. There exist NG and a ¢ V € F(U) with a € D(V,N).

2. Let w = (w;)$2, be any sequence of outer commutator words. Then there exists
g € G™ such that a ¢ (U, g) and wy(g) # 1 for all k € Z*. In particular, there
exists a non-hypersolvable H < G with a ¢ H and U < H.

Proof: Suppose that (1) is false. Then 6.2(2) holds. In particular, there exists g; €
G\ Z(G) with a ¢ (U, ¢1). Put my, = m(wy) and ni = m(y). Let k € Z* and suppose
inductively that we have found

(*) gi € Giy1 < i < ng such that a ¢ Uy := (U,g;,1 < i < ng) and hy :=
W ((9:)iL1) ¢ 2(G).

Note that (*) holds for k = 1. Since G is perfect and hy, ¢ Z(G), [hy, G] £ Z(G).
So by 6.2(2), applied with & = wy and V = Uy, there exists Hy € F(Uy) such that
a ¢ Hy and [hy, H'*] £ Z(G). Hence we can choose gy, +; € Hy, 1 < i < my, with
with [hg, we( (gne+i)ics )] € Z(G). Thus hyp1 ¢ Z(G). Moreover Ugt1 < Hy and so
a € Uk+1-

By induction (*) holds for all £ € N. Put g = (¢;)72;. Then wi(g) # 1 for all
keZ".

In the special case w; = ¢;, 4.2(d) shows that (U, g) is not hypersolvable. O

7 Perfect NNC-proper Fitting p-groups

In this section we prove that every perfect, NNC-proper, Fitting p-group has a proper
non-hypersolvable subgroup.

Lemma 7.1 Let G be a nilpotent p-group. Let H be a normal subgroup of G such that
G/H is an infinite elementary abelian p-group. Let U be a finite subgroup of G and let
a € G\U. Then there exists a subgroup V of G such that U <V,a &V and V/VNH
1s infinite.

Proof: [M2, (6)Satz]. O

Corollary 7.2 Let G be a perfect Fitting p-group. Then U = D(U,N) for all finite
subgroups U of G and all N < G.

Proof: Suppose U # D(U,N) for some finite U < G and some N < G. Let U <
D < D(U, N) with D finite. Since G is perfect, G/N is not nilpotent. As G is a Fitting
group, (D®)N/N is nilpotent. Thus G' # (DY) N and we may assume that D < N. Also
G # N° and so we may assume N = N°. Since G/N is a Fitting group, there exists a
non-trivial abelian normal subgroup E/N in G/N. Choose g € E\ N with g? € N and
put M = (D%, ¢g%). Then M is nilpotent, M/M N N = MN/N is elementary abelian
and U <D <Dpy(UMNN).

Suppose that M/MNN is infinite. Pick a € D\U. Then by 7.1 (applied with G = M
and H = N N M) there exists U < V < M with a ¢ V and V/V N (M N N) infinite.
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Pick v € V\ (M N N). Then (U,v) <V and so a ¢ (U,v). Hence a ¢ D(U,M N N), a
contradiction to a € D.

Thus M/M N N is finite. So also MN/N is finite. Since G is perfect, we get
[M,G] < N and M < N° = N, a contradiction to g € M \ N. O

Proposition 7.3 Let G be a NNC-proper, perfect, Fitting p-group. Let U be a finite
subgroup of G and a € G\ U. Then there exists a non-hypersolvable subgroup H of G
witha ¢ H and U < H.

Proof: From 7.2 V = D(V, N) for all finite subgroups V of G. Thus 6.3(1) does not
hold and so 6.3(2) does. O

8 Normal closure of subgroups

Let S be a set of subgroups of a group G. We say that G is NNC-S if G # (S%) for
all S € S (here NNC stands for “not normal closure”). Note that this is the case if
and only if every member of S lies in a proper normal subgroup of G. If G is a class
of groups, we say that G is NNC-G if G is NNC-S, where § = {S < G| S € G}. So
G is NNC-abelian if G is not the normal closure of an abelian subgroup. G is strongly
NNC-G if each non-trivial quotient of G is NNC-G. We say that G is NNC-proper if G
is NNC-P where P is the set of proper subgroups of G. We say G is NNC-centralizers
if G is NNC-C where C = {C¢(z) | 1 # = € G}. Note that G is NNC-centralizer if and
only if G # (HY) for all H < G with Z(H) # 1.

The goal of this section is to prove Proposition 8.4, which provides conditions which
imply that G is NNC-proper.

Lemma 8.1 Let G be a group and i € Z+. Then the following are equivalent:
(a) G is strongly NNC-abelian.
(b) G is strongly NNC-solvable.
(¢c) Let K < G. Then G = (K) if and only if G = ((K")%).

Proof:

(a) implies (b): Let H be a non-trivial quotient of G and let S be a solvable subgroup
of H. By induction on the derived length of S, N := (S'H) £ H. Since SN/N is abelian,
H/N # (SN/NH) and so also H # (SH).

(b) implies (c): Put N := ((K)). Clearly G # (K€) implies N # G. Now
suppose N # G. Since KN/N is solvable, (b) implies G/N # (KN/N%) and so
(K%) £ G.

(c) implies (a): Let H = G/N be a non-trivial quotient of G and A = K/N an
abelian subgroup of G/N. Then K) < N < G and so G # ((K)%). Thus by (c)
G # (KY) and so also H # (Af). O

Definition 8.2 Let G be a group. Then Sol*(H) = Hyp?(G).

Observe that by 4.2 and 3.5 Sol*(H) is the largest normal subgroup of G on which G
acts hypersolvablely.

13



Lemma 8.3 Let G be an NNC-centralizer and strongly NNC-abelian group. Then G #
(K%Y for all K < H such that Sol*(K) # 1. In particular, G is NNC-hypersolvable.

Proof: Let K < G with Sol"(K) # 1. Then there exists a non-trivial normal subgroup
A of K such that K/Ck(A) is solvable. Let 1 # x € A. Then Ck(A) < Cg(x) and
since G is NNC-centralizer we get N := (Cx(A)®) # G. Then KN/N is solvable.
Since G is strongly NNC-abelian, 8.1 implies that G is strongly NNC-solvable. Thus
G/N # (KN/N€) and G # (K%). O

Proposition 8.4 Suppose G is NNC-centralizer and that one of the following holds:
(i) G is minimal non-hypercentral.
(i) G is minimal non-hypersolvable and strongly NNC-abelian.

Then G is NNC-proper.

Proof: Let K be a proper subgroup of G.
If (i) holds, K is hypercentral. Hence Z(K) # 1 and since G is NNC, G # (K©).
If (ii) holds, then K is hypersolvable and so Sol*(K) = K # 1. Thus by 8.3,
G # (KY). O

Corollary 8.5 FEvery non-trivial, NNC-centralizer, strongly NNC-abelian, perfect Fit-
ting p-group has a proper non-hypersolvable subgroup.

Proof: Suppose G is a counterexample. Since G is non-trivial and perfect, G is not hy-
persolvable. So G is minimal non-hypersolvable. Thus 8.4 implies that G is NNC-proper.
But then the assumption but not the conclusion of 7.3 are fulfilled, contradiction. [
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