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Abstract

Define a finite simple group J to be of Js-type (or simply Jy) provided that J contains an
involution z with

Cy(z) ~ 2i+123Aut Matao.
The purpose of this paper is to give the first computer free construction of a group of Js-
type. In addition we achieve yet another uniqueness proof for groups of Js-type via the simple
connectedness of the 2-local geometry of such a group.

1 Introduction

Initial evidence for the existence of groups of Jy-type was given by Z. Janko in [10]. He has shown
that the order o(J4) of such a group is

86,775, 571,046,077,562,880 = 221 . 3% .5.7.11%.23-.29-31 - 37 - 43,

determined its conjugacy classes and much of the p-local structure. J. Conway, S. Norton, J. Thomp-
son and D. Hunt used this information to determine the character table of J; and, in particular,
proved the existence of an irreducible (irrational) complex character of degree 1333. Looking at
the 2-modular reduction of this character J. Thompson conjectured the existence of an irreducible
112-dimensional representation of J4 over GF(2). Based on this conjecture S. Norton with the help
of D. Benson, J. Conway, R. Parker and J. Thackray constructed Jy as a subgroup of GLj12(2).
Their construction is outlined in [13], discussed in more detail in [3] and depends on the use of a
computer. In [12], W. Lempken gave explicit generators for Jy as a subgroup of GL13335(11). The
proof that the group generated is in fact Jy relies on its existence.

Definition 1.1 Let I be a set of sizen. A (finite) amalgam of rank n ( over I) is a tuple (A; M;,i €
I;*;,i € T) where A is a finite set, M; is subset of A and *; is binary operation defined on M; so
that the following conditions hold:

(i

)
(i) A= UjerM;;
)
)

(M;, *;) is a group for every i € I;

(iil) NierM; #0;
iv) ifx,y e MyNM; fori,j €1 then x*;y=x%,y.
J J

We will write (M; | ¢ € I) for the amalgam A as above (since A = U;erM;, there is no need
to refer to A explicitly). Whenever x and y are in the same M; there product x x; y is defined
and it is independent of the choice of i. We will normally write this product simply by xy. Since
B := N;erM; is non-empty, one can easily see that B contains the identity element of (M;,*;) for
every ¢ € I. Moreover, these identity elements must be equal. The reader may notice that a more



common definition of amalgams in terms of morphisms is essentially equivalent to the above one.
For J C I we put M; = Nje;M;. We will write, for instance M;;i instead of My, ;) and consider
M;; as a subgroup in M; and Mj; as a subgroup of M;. An amalgam of rank 3 will also be called
a triangle of groups. The isomorphism of amalgams is defined in the obvious way. Let (M, ) be
a group, {M; | i € I} be a family of subgroups in M and #; be the restriction of * to M;. Then
(M; | i € I) is an amalgam. This is the most important example of amalgam but it is not difficult
to construct an amalgam which is not isomorphic to a family of subgroups in a group.

Definition 1.2 A group M is said to be a completion of an amalgam (M; | i € I) if there is a
mapping ¢ of U;erM; into M such that

(i) M is generated by the image of ¢;

(ii) for every i € I the restriction of ¢ to M; is a group homomorphism with respect to *; and the
group operation in M.

If ¢ is injective then the completion M is said to be faithful.
Definition 1.3 A triangle (M, Mo, M3) of groups is called a Jy-triangle provided that

(i) M, is the semidirect product of the Mathieu group Matay of degree 24 and the 11-dimensional
Todd module;

(ii) My is the semidirect product of L5(2) and the exterior square of a natural module of Ls(2);
(111) ‘OQ(M:;)‘ =215 and Mg/OQ(Mg) = Sym(S) X L3(2),
(IV) ‘MQ/M21| = 3]., |M3/M31| = 5, |M3/M32| =10 and |M23/B‘ =3.

It was shown in [10] (cf. Theorem A (4), (6), (9)) that every group of Jy-type is a faithful
completion of a Jy-triangle of groups. This and the existence of the complex character of degree
1333 serve as motivation for our construction of J4. The principal steps are as follows:

Step 1: Show that there exists a Jy-triangle of groups.
Step 2: Show that GL1333(C) contains a faithful completion of a Jy-triangle of groups.
Step 3: Show that any faithful completion of a Jy-triangle of groups is a group of Jy-type.

Steps 1 and 2 are realized in Lemma 5.9 and Theorem 7.1, respectively. Step 3 was done in
[2] (as the main step in the uniqueness proof for J;) and independently in [8]. Both these proofs
were achieved by establishing the simple connectedness of the 2-local geometry of Jy; hence rely on
the existence of J; and do not suit our purposes. In order to establish the existence of J; we need
to carry out Step 3 without assuming that J; exists. In this form Step 3 is realized in Section 8
(cf. Theorem 8.26) and the proof is necessarily more complicated than the proofs in [2] and [8]. In
particular our proof uses extremely detailed information about the 2-local geometries of Matoy and
M(thQ .

Although we do not need the uniqueness of J; to establish its existence, we include a uniqueness
proof since it can be achieved with only little extra effort. Namely, we prove in Lemma 5.7 that any
two Jy-triangles are isomorphic and within the realization of Step 3 (c¢f. Theorem 8.26) we show
that every faithful completion of a Jy-triangle is finite and that its order is equal to o(Js). Since
every completion of an amalgam is a quotient of the universal completion, this immediately implies
that the unique Jy-triangle of groups has a unique faithful completion, namely the universal one.



2 Preliminaries

Our notation concerning groups is mostly standard. The symmetric, alternating and Mathieu group
of degree n are denoted by Sym(n), Alt(n) and Mat,, respectively. By writing G ~ A;As...A,, we
mean that G has a normal series

1<xGi1<..<G, =G

such that G;/G;_1 = A;. We write p® for a p-group of order p%; p®t a2+ Fan for paipaz  pan and
21121 for the extraspecial group of order 2!72" and of type ¢ € {+,—}. Throughout the paper
3 - Alt(6) denotes the non-split extension of Alt(6) by a centre of order 3 and 3 - Sym/(6) stands for
the extension of 3 - Alt(6) by an outer automorphism which induces a transposition on the Alt(6)-
quotient. Given a subgroup H in a group G we denote by G/H the set of right cosets of H in
G.

Definition 2.1 Let G be a group, K <G, G = G/K and V a GF(2)G-module of dimension n with
kernel K. Then

(i) if G = L,(2) then V is called a natural L, (2)-module for G;

(i) if G = Q,(2) and G fives a non-degenerate quadratic form of plus type on V then V is called
a natural QY (2)-module for G;

(iii) if G = Sym(5), n = 4 and G’ preserves a GF(4)-structure on V, then V is called a natural
T'Ly(4)-module for G;

(iv) if G' = 3. Alt(6) and n = 6, then V is called a hexacode module for G.
The module dual to V' will be denoted by V*.

Notation 2.2 Let (M; | ¢ € I) be an amalgam. Then for i,j € I we put Q; = O2(M;), QF =
O23(M;), Zi = Z(Q:) and Tij = O2(M;j).

Definition 2.3 Let I be a set of size n and let I' be an undirected n-partite graph without loops,
whose parts are I';, i € I. This means that if a € I'; is adjacent to b € I'j then i # j. Let d the usual
distance function on I'. Then

(i) if a € Ty, then a is said to be of type i;

(ii) a path of type ny —no — ... — ny is a tuple (a1, as,... ,ax) of vertices in T such that a; is of
type n; and a; is adjacent to a;11; we denote such a path by

ay as ag

ny —Ng —...— Ng;
(iii) a non-degenerate path (or nd-path) is a path (a1, as,...,ax) such that a;—1 is neither equal
nor adjacent to a;y1;
(iv) let ACT and a,aq,...,a, €T, then

Alaras ...a,) = {b € A |b is adjacent to a; for all 1 <i <n}.

Definition 2.4 Let M be a group and (M; | i € I) a tuple of subgroups of M.



(i) The coset graph T =T (M; M; | i € I) is the graph with vertez set the disjoint union of the sets
;= M/M;,i € I and where two vertices are adjacent if they are distinct and have non-empty
intersection. Note that the I'; are parts of T' and that M acts on I' by right multiplication.

(ii) A flag in T is a set of pairwise adjacent vertices. The type of a flag is the set of types of its
elements.

(ili) Let a € I'. Then T'(a) is the graph whose vertices are the neighbours of a in I' and two vertices
are adjacent in T'(a) if and only if they are adjacent in T.

(iv) Let a € T. Then the graph T*(a) on the neighbours of a in T is defined as follows. Assume
without loss that a = M;. Let b, c be adjacent to a, where b = M;r and c = Mys with r,s € M;.
Then b is adjacent to c in T*(a) if and only if j # k and M;;r N Myys #0.

(v) T is called geometric if for all a € T the graphs T'(a) and T*(a) are equal.

(vi) If a,b,c,... are vertices of ', then Myp.... denotes their elementwise stabilizer in M. If a € T
then Qa = OZ(Ma): QZ = 02,3(Ma) and Zg = Z(Qa)-

(vii) Let a,b,c €. Then / abc = |cMav].

We remark that if b, ¢ are adjacent in I'*(a) then they are also adjacent in I'(a). Furthermore,
I'*(M;) is isomorphic to T'(M;; M;; | j € T\ {i}).

Lemma 2.5 Let " be as in 2.4.
(i) Let{a;,aj,ar} be a flag in T where a; is of type l. Then the following statements are equivalent:

a) ap and a, are adjacent in I'*(a,) for every z € {i,j, k} with {z,y,z} = {i, 5, k};

(€) a; NajNay #9;

(a)
(b) az and ay are adjacent in T*(a,) for some z € {i,j,k} with {z,y,z} = {i,7,k};
)
(d) (ai,aj,ay) is conjugate to (M;, M;, My).

(ii) T is geometric if and only if M acts transitively on each set of flags of size three of a given
type, that is if and only if all flags {a;,a;,ar} in T fulfill the equivalent conditions in ().

Proof. (i) Clearly (a) implies (b). To show that (b) implies (c) we assume without loss that
ap = My, a; = M;r and a; = M;s for some r,s € M. Since a; and a; are adjacent in I'*(ag),
O# M;;r N Mjs C M; N M;r N Mys = a;Na;Nag and so (c) holds. Clearly (c) implies (d), and (d)
implies (a).

(ii) By the remark preceding this lemma, I' is geometric if and only if (a) holds. O

Throughout the paper we will refer to the following easy principle concerning a set of size five.

Lemma 2.6 Let I'y be a 5-element set and 'y be the set of 2-element subsets in I'y. Let I be the
bipartite graph on I'y UT'y where a € T'y is adjacent to b € T'y if and only if a is not contained in b.
Suppose that a € Ty and b € Ty are adjacent. Put R,(b) =T1 \ (bU{a}). Then every c € T'1 \ {a}
is adjacent to exactly one of b and R, (b).



Proof. This is clear since b, R, (b) is a partition of I'y \ {a}. O
The next lemma contains some information on cohomologies of some small modules.

Lemma 2.7 (i) Let E = Ly(2) and V be a natural QF (2)-module for E. Then |[HY(V)| = 2,
H2(V) = 0.

(ii) Let E = Ly4(2) and V be a natural Ly(2)-module for E. Then H(V) = 0.
(iii) Let E = L3(2) and V be a natural L3(2)-module for E. Then |[HY(V)| = 2.

Proof. [4] and [11]. O

The following lemma describes the actions of various subgroups of Ls(2) on the vectors of the
exterior square of a natural L5(2)-module.

Lemma 2.8 Let V be a 5-dimensional GF(2)-space and M = GL(V), so that M = L5(2). Let
Vi < V3 <V wheredim Vi =1, dim V53 = 2. Let M; = Ny (V;), i =1 and 3, B= M; N M3 and as
usual let V* denote the dual of V. Then

(i) M has precisely two orbits H(2) and H(s) on the set of hyperplanes in /\2 V*; the hyperplanes
in H(2) are indexzed by the 2-spaces of V' and the hyperplanes in H(s) are indexed by the pairs
(W, s), where W is a hyperplane in V' and s is a non-degenerate symplectic form on W ;

(ii) if H € H(s) then Ny (H) ~ 2*Sym(6);

(iii) the orbits of My1; Ms; B on H(s) are of lengths 420 and 448; 84, 112 and 672; 84, 112, 224
and 448, respectively;

(iv) let H be a hyperplane from the orbit of length 84 of B on H(s); if N, N1, N3, and Ny are the
normalizers of H in M, My, M3 and B, respectively, then

N:N,NO and NIQNOZ(N{mNo)(NéﬂNo),

(v) the orbits of Ms on H(2) are of lengths 1, 42 and 112; the action of B on the Ms-orbit of
length 42 is intransitive.

Proof. (i) By the definition of the exterior square /\2 V*, its hyperplanes are in one-to-one
correspondence with the non-zero symplectic forms on V*. Hence (i) follows from the following well
known facts: (a) any two non-degenerate symplectic forms on a finite dimensional vector space are
isomorphic, (b) any vector space with a non-degenerate symplectic form is even dimensional and (c)
there is exactly one non-degenerate symplectic form on a vector space with 4 elements.

(ii) Let W be a hyperplane in V, s a non-degenerate symplectic form on W and R = Ny (W, s).
Then clearly Cr(W) = Cy (W) is elementary abelian of order 2* and R/Cr(W) = Sp4(2) = Sym(6).

(iii) Note that R acts transitively on the set of 1-spaces in W and Cgr(W) acts regularly on
the set of 1-spaces in V '\ W. Thus RN M; ~ 2*(Cy x Sym(4)) if Vi < W and RN M; = Sym(6)
otherwise. Moreover, R has three orbits on the set of 2-spaces in V, distinguished by V3 < W and V3
is singular with respect to s; V3 < W and V3 is non-degenerate with respect to s; and V3 £ W. The
corresponding shapes of RN M3 are 24(Co x Sym(4)), 24(Sym(3) x Sym(3)) and 2(Cy x Sym(4)).
Finally R has four orbits on the set of pairs of incident 1- and 2-spaces corresponding to the following
four cases: V3 < W and V3 is singular with respect to s; V3 < W and is non-degenerate with respect
tos; Vi < W and V3 £ W; and V; £ W. The corresponding shapes of RN B are 24(Cy x Dg),



24(Cy x Sym(3)), 2(Cy x Sym(4)) and Cy x Sym(4). Thus we have described the orbits of R on
1- and 2-spaces in V' and also on the incident pairs of such subspaces. This immediately gives us
all the orbits of My, M3 and B on H(s) and the corresponding stabilizers. That the lengths of the
orbits are as given in (iii) is now a trivial computation.

(iv) Let H correspond to (W, s). Then V3 < W and V3 is singular with respect to s. Notice that
Cn(W) 2 W as N-module and in particular, Cn (W) = [Cn (W), N3] < N§ < N’. Thus (iv) holds
if and only if it holds modulo Cn(W). But N;/Cn(W) 2 Cy x Sym(4) for i = 1,3 and Ny/Cn (W)
is a Sylow 2-subgroup of N/O3(N) = Sym(6). Now (iv) is readily verified.

(v) There is one 2-space equal to V3, 42 = 3 - 14 2-spaces intersecting V3 in a 1-space and
112 = 7 - 16 2-spaces which intersect V3 trivially. Since some 2-spaces in the orbit of length 42
contain V7 while others do not, B does not act transitively on the Ms-orbit of length 42. O

3 Mat24

We assume that the reader is familiar with the basic properties of the unique Steiner system S of
type (5,8,24) (see for instance [1] or [9]). Let Q be the set of size 24 underlying S and let T's denote
the block set of §. This means that I'y is a collection of 8-element subsets of 2 called octads such
that every 5-element subset of (2 is in a unique octad. In particular [Ts| = (34)/(8) = 759. A triple
of pairwise disjoint octads is called a trio. Every 4-element subset T' of {2 is contained in a unique
sextet, which is a partition of  into six 4-element subsets T = T, T5, ..., Tg called tetrads such that
T;UTj el forall 1 <i<j<6.

Let I'3 denote the set of trios, let I'y denote the set of sextets and let I' = I's UT'3 UT'4. Define a
graph on I' as follows: a trio is adjacent to an octad if it contains the octad; a sextet is adjacent to
an octad if the octad is the union of two of the tetrads in the sextet; and a sextet is adjacent to a
trio if it is adjacent to all of the three octads in the trio.

Throughout this section M will stand for the automorphism group of & which is the Mathieu
group Matoy of degree 24. Let «, 8 and y be pairwise adjacent octad, trio and sextet respectively, i.e.
a maximal ﬂag inl. If Y= {Tl, TQ, T T6} we can put o = T1 UTQ and ﬂ = {Tl UTQ, TgUT4, T5UT6}.
Let My = My, Ms = Mg and My = M, (the stabilizers in M of «, 8 and -, respectively). Then
(My, M5, My) is a triangle of groups and M is a faithful completion of this triangle. Since M is flag
transitive on I, T' 2 T'(M; My, M3, My). We have chosen the index set {2, 3,4} rather then {1, 2,3}
since My, M3, My will correspond to Mio, M3 and M4 in later sections.

We will need the following information on classes of elements in M of order 2 and 3 which can
be deduced either from Section 21 in [1] together with the permutational characters of M on T'g, I's
and I'y given in [5] or from Sections 2.12 - 2.14 in [9].

Lemma 3.1 (i) M has two classes, 2a and 2b of involutions and two classes, 3a and 3b of ele-
ments of order 3.

(ii) Ift € 2a then t is 2-central, Cps(t) ~ 2i_+6L3(2), t fizes: 8 elements of Q forming an octad, 71
octads, 99 trios and 91 sextets.

(iii) If s € 2b then s is non-2-central, Cp(s) ~ 211F4Sym(5), Crs(s) fizes a unique sextet, s fizes:
15 octads, 75 trios and 51 sextets.

(iv) If x € 3a then Cp(x) = 3 - Alt(6), = does not commute with a 2b-involution and fizes: 21
octads, 15 trios and 16 sextets.



(v) If y € 3b then Cp(y) = Cs5 x L3(2), y commutes with a 2b-involution, acts fixed-points freely
on the set of octads and fizes 15 trios and 7 sextets. O

The basic properties of the triangle (Ma, M3, My) and of its completion M are given in the
following lemma (cf. Section 19 in [1] or Section 2.10 in [9]).

Lemma 3.2 (i) |[M/Ms| = |Ta| = 759, My ~ 2*L4(2) and Q2 is a natural Ly(2)-module for Ma,
Q2 is 2a-pure, My acts as Alt(8) = L4(2) on the elements in a and as the doubly transitive
affine group AGL4(2) on the elements outside ., in particular My splits over Qs.

(ii) |M/Ms| = |T3| = 3795; M3 ~ 25(Sym(3) x L3(2)), Q3 & D1 ® Do, where Dy and Do are
natural Lo(2)- and L3(2)-modules for M3, respectively; Ms has two orbits on Q3# with lengths
21 and 42, consisting of involutions of type 2a and 2b, respectively and if y € Q% \ Q3 then y
is of type 3b and acts fived-point freely on Q3.

(iii) |M/My| = |T4| = 1771, My ~ 293 - Sym(6), Q4 is a hexacode module for My, My has two
orbits on Qf with lengths 45 and 18, consisting of involutions of type 2a and 2b, respectively,
if x € Q} \ Qq then x is of type 3a and acts fized-point freely on Q4, My induces Sym(6) on
the tetrads constituting v and the kernel induces Alt(4) on the elements in each tetrad.

(iv) | Ms/Mas| =7, |Ms/Mag| = 3, | My/Maa| = 15 and |Msa/B| = 3.
(V) Maa/Qo ~ 2*(Sym(3) x Sym(3)) and Ma3/Q2 ~ 2°L3(2).
(vi) M34/Q3 = Sym(3) x Sym(4) and Mas/Qs = Sym(2) x L3(2).
(vii) Maa/Q} = Msa/Q% = Sym(4) x Sym(2).
) Q2N Q5] =38, [Q2N Q4| =4 and |Q3 N Q4] = 16. U

(viii

Comparing 3.1 and 3.2 one can observe the following. If ¢ is an involution in ()3, s is an involution
in the orbit of length 18 of M, on QZ’E, x is an element of order 3 in @} and y is an element of order
3 in @3, then

CM(t) = CMz (t)7 CM<S> = CM4(S)? CM(J;) = C'1\/14 (S)a CM(y) = CM3 (y)
As a direct corollary of 3.2 we have the following.

Lemma 3.3 (i) Ms acts on I's(a) and Ty(«) of size 15 and 35 as it acts on the 3- and 2-spaces
in Qq, respectively;

(i1) M3 acts onTo(B) and T4(B) of size 3 and 7 as it acts on the 1-spaces in Dy and on the 2-spaces
in Do, respectively;

(iii) My acts on Ta(y) and Ty(vy) of size 15 each as it acts on the 2-element subsets of v (considered
as the set of siz tetrads) and on the partitions of v into three pairs. O

Lemma 3.4 Let B = My N M3 N My be the stabilizer in M of the flag F = {«,3,7}. Let S be a
Sylow 2-subgroup of B which is also a Sylow 2-subgroup of M.

(i) « is the unique octad, (B is the unique tetrad and vy is the unique sextet stabilized by S.



(ii) Let H be a mazimal subgroups of M containing S. Then H = M; fori =2, 3 or 4.

(iii) Let P be any subgroup of M containing S and let z denote the unique non-trivial element in
Z(S). Then one of the following holds:

P is the normalizer of a subflag in F.

P| =219.32 and P = Q3Ch,(2).
P|=21.3.7 and P = Cp(2).

P| 2103 and P = Q3%S, Car,(2) or Oy, (2).

(a)
(b) |
(c) |
(d) |
(e) P
Proof. (ii) follows from [6], (i) follows from (ii) while (iii) follows from the structure of My, M;
and M, as given in 3.2 (compare [15]). O

In subsequent sections we will need detailed information about the graph I' and the action of M
on this graph. For this purpose for every i € {2,3,4} we describe the orbits of M; on the vertex
set of I'" and for any two such orbits A and B we calculate the number n;(A, B) of vertices in B
adjacent in I" to a given vertex a € A and finally determine how these vertices split into orbits under
the stabilizer of @ in M;. It is clear that n;(A, B) is zero unless A C T';, B C I'y, for j # k and that
|A|-n;(A, B) = |B|-n;(B,A). Finally for ¢ # j there is a natural correspondence between the orbits
of M; on I'; and the orbits of M; on I';.

Let I'j(m, i) denote an orbit of length m of M; on I';. It turns out that for every i,j € {2,3,4}
the orbits of M; on T'; all have different lengths so the orbit I';(m, i) is well defined. The information
on the orbits of M; on I' is presented in the diagram D;(Matz4). In this diagram the orbit I';(m, 1)
is denoted by m; and the numbers n;(A4, B) and n;(B, A) are attached to the edge joining A with
B. When such a number is presented as a sum this indicates that there is more than one orbit of
M; N M, (where a € A) on the vertices in B adjacent to a. Moreover the summands give the lengths
of these orbits. The complete proof of the diagrams (originally given in the early version of the
present work) can be found in Section 3.7 of [9].






D4 (Mat24)

We will need the following refinement of the information given on the diagram Ds(Matay).
Lemma 3.5 Let b € I'3(2688,3). Then Mg, N Qy =1 and Mg, = Sym(4).

Proof. |Mgap| = |Ms|/2688 = 24 by direct calculation. By D3z(Mata4) the subgroup Mg, acts
transitively on I'o(b) and has two orbits in I'4(b) with lengths 1 and 6. Since the action of Mg
on T'4(b) is a subgroup of L3(2), we conclude that the action is isomorphic either to Sym(4) or to
Alt(4). Let K be the kernel of the action of Mg, on I'4(b). Then either K = 1 and Mg, = Sym(4) or
|K| =2 and Mg,/K = Alt(4). Assume the latter. Then K = Z(Ma,) and as Mg, acts transitively
on I's(b), K < Q. By symmetry we get K = Q3 N Qp and so Cp(K) contains two elementary
abelian groups of order 2° (namely Qs and @) intersecting in a group of order 2 (namely K). But
this contradicts to the structure of Cjs(K) given by 3.1 (i) - (iii). O

Let P be the GF(2)-permutation module of M on €2, that is the space of all the subsets of
with addition performed by the symmetric difference operator. The octads from I's generate in P a
12-dimensional subspace Yy known as the Golay code. The Golay code consists of: the empty set,
the set Q itself, 759 octads, 759 complements of octads and 2576 dodecads. The latter are 12-element
subsets of (2 transitively permuted by M. The stabilizer of a dodecad is the Mathieu group Mati
of degree 12 and it induces two non-equivalent 5-fold transitive actions on the dodecad and on its
complement, which is also a dodecad. The setwise stabilizer of a pair of complementary dodecads is
isomorphic to Aut Matyo. The empty set together with the whole set 2 constitute the unique proper
M-submodule in Yy. The quotient Y of Yy over this submodule is called the irreducible Golay code
module (of dimension 11). Let P, denote the subspace in P of even subsets of . Then Yy < Py
and X = P /Y} is the module dual to Y which is called the irreducible Todd module (of dimension
11). The following information can be found for instance in [1, 19.8].

Lemma 3.6 (i) The orbits of M on the non-zero vectors of Y (on the hyperplanes of X) are of
length 759 and 1288. The vectors in these orbits are indexed by the octads and the complemen-
tary pairs of dodecads, respectively.
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(ii) The orbits of M on the non-zero vectors of X (on the hyperplanes of Y) are of length 276 and
1771. The vectors in these orbits are indexed by the 2-element subsets of Q) and by the sextets,
respectively. O

Lemma 3.7 (i) Fori=2, 3 and 4,
1< Cx(Ql) < [X7Ql] <X
s the unique composition series for M; on X ;

(ii) Cx(Q2) is isomorphic the exterior square of Qa2, [X,Q2]/Cx(Q2) is isomorphic to Qo and
[ X/[X, Q]| = 2.

(iii) Let Dy and Dy be as in 3.2 (ii). Then Cx(Q3) is dual to Do, [X,Q3]/Cx(Q3) is isomorphic
to D1 ® Dy and X/[X, Q3] is isomorphic to Ds.

(iv) |Cx(Q4)| =2, [X,Q4]/Cx(Q4) is isomorphic to the dual of Q4 and |X/[X,Q4]| = 2*.

Proof. The irreducible Todd module is dual to the irreducible Golay code module. Hence the
result can be obtained by dualizing some of the information found in Sections 19 and 20 of [1]. O

Let D be the set of dodecads and H be the set of complementary pairs of dodecads. Recall that
if N(h) is the stabilizer of h € H in M then N(h) & Aut Mat,2 and N (h) = Matys is the subgroup
of index 2 in N(h) which preserves each of the dodecads constituting h. We are interested in the
orbits on H of My, M3 and Mos.

Lemma 3.8 M, acting on the set D of dodecads has three orbits Do, Dy and Dg with lengths 448,
1680 and 448, respectively. If d; € D; and K; is the stabilizer of d; in My then |d; N a| = i,
Ky =2 K¢ = Sym(6) and Ky ~ 2°Sym(3).

Proof. [1, 19.6] O

Lemma 3.9 Let N = Aut Mat,s and Na, N3 and Naz subgroups of N such that | No| = |N3| = 27-3,
Ngg = 27 and N23 = N2 N Ng. Then N23 N N = (N23 N Né)(NQg N Né)

Proof. For Z < N let Z* = ZN N'. Then N* = Matyo, [N/N*| =2 and |[N*|; = 2°. Thus N,
is a Sylow 2-subgroup of N* and |N3| = |Nj| = 25-3. It follows ( see for example [15]) that Nj and
Nj are two maximal subgroups of N* containing Nj;. Choose notation such that Z(Nj) # 1. Thus
by the structure of Ny and N3, O2(Ny) < N3', O2(N3) N Ni' £ O2(N3) and [N3;/O02(N3)| = 2.
Thus Nj5 = O3(N3)(O2(N3) N N3') = (Nazg N N3')(Nag N N3). O

Lemma 3.10 Let H be the set of complementary pairs of dodecads and for h € H let N(h), Na(h),
Ns3(h) and Nog(h) denote the stabilizers of h in M, My, Ms and Mas, respectively.

(i) My has precisely two orbits Hy(2) and H2(2) on H, where |H1(2)] = 840 and |H2(2)| =
448. M3 has precisely three orbits H1(3), Ha(3), and Hs(3) on H, where |[H1(3)| = 168,
|H2(3)| = 672 and |H3(3)| = 448. Mas has precisely four orbits Hy, Ho, Hs and Hy on H,
where |Hy| = 168, |Ha| = 224, |H3| = 448 and |Hy| = 448. Moreover, H1(2) = H; U Hy U Hs,
H2(2) = H4, H1(3) = H17 H2(3) = H2 U H4 and H3(3) = Hg.

(ii) Ifh S Hl, then N(h) = NQg(h)N(h)/ and NQS(h)ﬂN(h/)/ = (N23(h)ﬂN2(h)/)(Ngg(h)ﬂNg(h)l).
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(111) Ifh € Hs, then N3(h) = N23(h)N3(h)/.

Proof. (i) The lengths of the orbits of M on H follow directly from 3.8. Observe also that
No(h) < N(h)' (that is Na(h) fixes the two dodecads forming h) if and only if h € Hy(2).

Let A be the octad graph, that is a graph on I'; in which two octads are adjacent if they are
disjoint. For a vertex z of A let A%(x) denote the set of vertices which are at distance i from x in
A. Tt is well known and also easily seen from the diagram Ds(Matay) that

Al(a) =T3(30,2), A?%(a) = T2(280,2), A%(a) =T'5(448,2)

and that .
|land|=0, 4, 2 if € A'(a) for i=1, 2, 3.

By 3.6 we can and will identify AUH with the set of non-zero vectors in the irreducible Golay code
module Y. Let e € A%(a). Then as « and e intersect in 2 elements, the symmetric difference of o and
e is a dodecad intersecting c in 6 elements. Thus a+e € Hy(2) and since |A3(a)| = |H2(2)| = 448, we
have a one-to-one correspondence between Ho(2) and A3(«). By Do(Matay), M,e acts transitively
on I'z(a). Thus Ma3 acts transitively on A3(«) and hence also on Hy = Hy(2).

Let h € Hy(2). Then Ny(h) has order 27 - 3 and the intersections of « with the dodecads in
h form a partition of « into two sets of sizes 4. Thus No(h)Qn./Quis contained in a subgroup
24(Sym(3) x Sym(3)) of M,/Q. and so normalizes a 2-subspace Us in Q.. Note that Q, fixes 4
points in each of the two dodecads, Q, < Matg = Qg. As Q, is elementary abelian, Q, N N(h) has

order at most two. It follows that Na(h)Q./Qa has order 2¢ - 3 and U, e Qo N N(h) has order 2,
Uy < Uy and Qo Na(h) = Np, (Ur) N Ny, (Uz). Thus the orbits of Q. on H;(2) are in one-to-one
correspondence with the pairs (Uy, Us), where U; is a i-space in @, and U; < Us. This immediately
implies that M,s has three orbits Hy, Hy and H3 on H;(2) corresponding to the following three
possibilities: (1) Uy < Qo NQp, (2) Uz £ QuNQp and U1 < Qo NQp and (3) U1 £ Qo N Q5.
Now it is straightforward to calculate that |Hy| = 7-3-8 = 168, |Ha| = 28 -1-8 = 224 and
|Hs| = 28-2-8 = 448. (Notice that | Qo N Qg |= 8 by 3.2 (i).)

Let L be the elementwise stabilizer in M of the octads in A(3). Then L is of index 2 in Mo
and normal of index 6 in M3. Hence each of the following holds ( for the last statement note that
M = (M, M3) acts transitively on H):

e For every i, L either acts transitively on H; or has two orbits of the same length.

e Every Ms-orbit in H is the union of [ of the orbits of equal lengths for L in H where [ €
{1,2,3,6}.

e There exists an Ms-orbit on H which has non-empty intersecting with both H;(2) and Hy(2).

It is easy to check that these three conditions uniquely determine the fusion of the Ms3-orbits
into Ms-orbits.

(ii) and (iii): Let h € Hy. As N(h) & Aut Maty2, |[N(h)/N(h)'| = 2. Moreover, |N(h)/Nas(h)]
is odd and so the first statement in (ii) holds. (iii) follows from a similar argument. By (i) we can
apply 3.9 and so also the second part of (ii) holds. O

By [7] M has a 45-dimensional irreducible module V over the field C of complex numbers. Let
X be the corresponding character. Define V;(3) = Cy(Q3) and Va(3) = [V, Qs].

Lemma 3.11 (i) Let z be a 2-central involution in M. Then x(z) = —3, Cy(z) is 21-dimensional
and [V, 2] is 24-dimensional.
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(ii) Cv(Q2) =0 and Cy(H) is 3-dimensional for each hyperplane H of Q2.
(iii) V = V1(3) ® Va(3), V1(3) is 3-dimensional and V5(3) is 42-dimensional.

(iv) Cyy(3)(H) = 0 for any hyperplane of Q3 containing Q2 N Q3, while Cy, sy (H) is 1-dimensional
for any hyperplane of Q3 not containing any of the three conjugates of Q2 N Q3 under Ms.

Proof. (1) The value for x(z) is taken directly from the character table of Matss in [7]. Since
dim Cy (z) + dim[V, z] = 45 and dim Cy (z) — dim[V, z] = x(z) (i) holds.

(ii) Let d = dim[V, Q2] and e = dim Cly,q,)(H ), where H is any hyperplane in Q2. Since M; acts
transitively on the fifteen hyperplanes in @2, e is well defined and d = 15e. Let 1 # z € Q2. Then
exactly eight of the hyperplanes in Q2 do not contain z and so 24 = dim[V, z] = 8e. Thus e = 3,
d=45,V = [V,Q2] and (ii) holds.

(iii) and (iv) By 3.2 (iii) the orbits of M3 on Q3# are of length 21 and 42 and by a dual argument
the orbits of M3z on the hyperplanes of Q3 are of length 21 and 42. In particular, dim[V,Qs] is
divisible by 21. Moreover, by (ii) Cy(Q2 N Q3) has dimension 3 and so dim Cy(Q3) < 3. Thus
dim V4 (3) = 3 and dim Va(3) = 42. Let H be a hyperplane in Qg with f = dim Cy, (3 (H) # 0.
Then either |[HM2| = 42 and f = 1; or |[HM3| = 21 and f = 2. In particular H is unique up to
conjugation. Suppose that |[HM3| = 21. Let 1 # z € Q2 N Q3. Then it is easy to see that z lies in
exactly 7+ 3+ 3 = 13 of the elements of H™3 and so dim[V, z] = f - (21 — 13) = 16, a contradiction
to (i). Thus |HM3| = 42 and the lemma is proved. O

Lemma 3.12 (i) My acts irreducibly on V and as My-module V = V1 (3) ®can, CMs.

(ii) Vi(3) and Va(3) are irreducible Ms-modules of dimension 3 and 42, respectively, and stay
irreducible when restricted to Maz or O%(Mag).

(iii) Cary (VA(3)) = Oa,3(Ms) and Ms acts faithfully on Va(3).

Proof. By 3.11 (ii), V1(3) = Cy(Q2 N Q3) is a Wedderburn component for Q2 on V. Moreover,
since Ma3 is maximal in Ma, Moz = Ny, (Q2 N Q3) = Np, (V1(3)) and so the second statement
in (a) holds. Moreover, Mj is irreducible on V if and only if Mas is irreducible on V;(3). Since

L 0O?(My3) acts transitively on the 42 hyperplanes in Q3 which have fixed-points in V5(3), L
acts irreducibly on V5(3). Suppose that L does not act irreducibly on V;(3). Since V;(3) has odd
dimension and |Ma3/L| = 2 we conclude that Mas does not act irreducibly on V7 (3). Thus Ma3 has
a 1- or 2-dimension submodule in V;(3) and M> has a 15- or 30-dimensional submodule in V. But
this contradicts the fact that V2(3) is a 42-dimensional irreducible L-module. Hence L is irreducible
on V1(3) and (i) and (ii) are proved.

To prove (iii) recall that Mz ~ 2°(Sym(3) x L3(2)). Note that Q2N Q3 is a hyperplane in Q2 and
centralizes V7 (3). Since Q2 acts fixed-point freely on V' we conclude that Q2Q3/Q3 inverts Vi (3).
Furthermore, Oz 3(Ms3) = [Ms3, Q2] and so Oz 3(M3) centralizes V4(3). Hence either Cyy, (V1(3)) =
O2,3(Ms) or Mj centralizes V;(3). But in the later case M3 is not irreducible on V;(3). The second
statement in (iii) holds since Q3 is the unique minimal normal subgroup of M3 and does not centralize
Va(3). O

4 Matgg

Definition 4.1 (i) A Matay-triangle is a triangle of groups (My, Ma, M3) such that
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(a) My ~ 2*Alt(6), My ~ 23L3(2) and Mz ~ 2*Sym(5).
(b) ‘MQ/M23| = |M2/M12| = 7, |M3/M13‘ =5 and ‘M23/B| =3.

(ii) An Aut Matag-triangle is a triangle of groups (Ml, M, Mg) such that

(a) My ~ 24Sym(6), My ~ 2*Ls(2) and Ms ~ 25Sym(5).
(b) [Mz/Mas| = |Ms/Mys| = 7,|Ms/Mys| =5 and |Mas/B| = 3.

Lemma 4.2 Let (M, Ma, M3) be a Matas-triangle. Then the following assertions hold.
(i) B is a Sylow 2-subgroup of My and B = (Q1 N M2)Q2Q3.

(il) M13/Qs = Sym(4) and Ma3/Qs = Sym(3) x Sym(2).

)
)
(iil) Mi2/Q2 = Ma3/Qo = Sym(4).

(iv) Q1 £ My and My3/Q1 = M12Q1/Q1 = Sym(4).

(V) [@Q1NQ2[ =2, [Q1NQ3[ =4, [Q2N Q3] =4 and Q1 N Q2 < Q1N Q3.
(vi) T2 = (Q1 N M2)Q2, T3 = Q1Qs3, T3 = Q2Qs.

Proof. Since M3 has a unique class of subgroups of index 5, Mi3/Qs = Sym(4). Similarly
Sym(4) 2 Mi2/Qa = Mi3/Q1 = Ma3/Qo and B is a Sylow 2-subgroup of Ms. Since |Ma3/B| = 3,
M>3 has an orbit of length 3 on the cosets of Mi3 in M3. Thus Ma3Q3/Q3 is contained a subgroup
Sym(3) x Sym(2) of M3/Qs. As Msz has index 10 in M3 and Sym(3) x Sym(2) has index 10 in
Sym(5) we conclude that Q3 < Maz and Ma3/Qs = Sym(3) x Sym(2). As|Qs| > |Q2|, @s £ Q2 and
since Mas acts irreducibly on Th3/Q2, we conclude that Ths = Q2Q3 and |Q2NQs| = 4. Suppose that
Qg = Ql' Then T23 = QQQg, = QQQl is normalized both by M12 and Mgg. Since Mgi = NM2 (Tgi)
for ¢ = 1 and 3, this means that M3 = Mas, a contradiction to |Mas/B| = 3. Thus Q3 # Q1,
T13 = Qng and |Q1 n Q3| =4. So Ql S 02(M13) S MéQ;}, Ql ﬁ M12 and as no element of Q1
acts as a 2-cycle on M3/Mj3, Q1 N Mz £ Q2. Hence Tio = Q2(Q1 N Mis) and |Q2 N Q1| = 2. Since
B = Ty5T53, the last statement in (i) holds and the proof is complete. O

We remark that a similar lemma holds for Aut Matso-triangles. Indeed the only changes neces-
sary are that in part (iv), Sym(4) has to be replaced by Sym(2) x Sym(4) and in part (v), Q2 N Q3
has order 8 and not 4.

As in the previous section let S be the Steiner system of type (5,8,24) and let p, g be a pair of
elements from the basic set . In this section M and M will denote the elementwise and the setwise
stabilizers of {p, ¢} in the automorphism group Matay of S, respectively. This means that M is the
Mathieu group Matay of degree 22 with [M] = 27-32.5-7-11 and M is the automorphism group
of M.

Let v be a sextet 11,75, ...,Ts in S such that p and ¢ are in the same tetrad (say in 77). Let «
and (3 be disjoint octads adjacent to 7 such that {p,q} C a (say a =T1 UTs and 8 = T3 UTy). Let
M, Mg and M, be the stabilizers in M of «, # and v, respectively. Similarly define Ma,]\;lg and
M.,. The following lemma can be deduced directly from 3.2 (cf. Section 3.4 in [9]).

Lemma 4.3 (i) (M., Mg, M,) is a Matas-triangle.
(ii) (Ma, Mg, M.,) is an Aut Matas-triangle. O
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It is easy to deduce from the main result in [16] that every Aut M atas-triangle with a faithful
completion is isomorphic to (]\/A[a, Mg, M’v) and that M is the unique completion of the triangle. In
order to explain the deduction we need some definitions.

Recall that the Petersen graph has 2-element subsets of a fixed 5-set as vertices and two subsets
are adjacent if they are disjoint. The Petersen graph has 10 vertices, 15 edges and Sym(5) is its
automorphism group.

Definition 4.4 Let = = = U 23 U E3 be a 3-partite graph and suppose that for a; € 2, 1 < i <3
the following conditions hold.

(1) |Z2(a1)] = 2, |Es(a1)| = 3 and every vertex from Eg(a1) is adjacent to every vertex from
53((11).

(ii) E1(az) are the points and Ez(az) are the lines of a projective plane of order 2 with the natural
adjacency relation.

(iii) Z1(ag) are the edges and Za(as3) are the vertices of the Petersen graph with the natural adja-
cency relation.

Then Z is called a rank 3 Petersen type geometry.

Theorem 4.5 Up to isomorphism there are exactly two rank 3 flag-transitive Petersen type geome-
tries: Z(Mataa) and Z(3Mataz). A flag-transitive automorphism group is isomorphic to M or M

for Z(Matas) and to 3M or 3M (non-split extensions) for Z(3Mataz). The stabilizer of a vertex
from =3 in M and 3M is 2*Sym(5) while in M and 3M it is 2°Sym(5).

Proof. [16]. O

Lemma 4.6 (i) Every Matas-triangle with a faithful completion is isomorphic to (Ma, Mg, M.,)
and M 1is the unique faithful completion of this triangle.

(i) Every Aut Matas-triangle with a faithful completion is isomorphic to (M, Mg, Mv) and M is
the unique faithful completion of this triangle.

Proof. (i) Let (M1, M2, Ms) be a Matao-triangle with a faithful completion N. Define a triangle
(Nl,NQ,N3) by N1 = 6'1\41 (Ql N QQ), N2 = M2 and N3 = Mg. Then N1 ~ 24Sym(4) by 4.2 and
since My = (Ny, Mi3), N is also a faithful completion of (N7, Na, N3). Let 2 = T'(N; Ny, N3, N3).
Then it is easy to check using the information in 4.2 that I' is a rank 3 Petersen type geometry
on which N acts flag-transitively. By 4.5 and since N3 = M3 ~ 24Sym(5) we have N = M or
N = 3M, but in the latter case My ~ 243 - Alt(6). Hence N =2 M and (M, Mo, M3) is isomorphic
to (Ma, Mg, M‘Y)

(ii) is proved similarly. O

The coset graph I' = I'(M; My, My, M3) (which coincides with F(M; Ml,MQ,Mg)) possesses a
natural description in terms of the Steiner system S and a pair p, ¢ of distinguished elements from
the basic set Q. Namely, I'; are the hezads which are octads containing {p, ¢} with p and ¢ removed;
Ty are the octets which are the octads disjoint from {p, ¢} and I's are the pairs which are 2-element
subsets of 2\ {p,q}. A hexad and an octet are adjacent if they are disjoint; the adjacency between
the hexads and pairs is via inclusion, finally an octet is adjacent to a pair {r, s} if it is the union
of two tetrads from the sextet containing {p,q,r,s}. Below we present the diagrams D;(M atas)
describing the orbits of M; on I' and the adjacencies between the vertices in these orbits. These
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diagrams are analogous to the diagrams D;(Matss). The proofs of the diagrams can be found in
Section 3.9 in [9].
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We need some further refinement of the information given on the above diagrams.

Lemma 4.7 (i) Let a € T'1(32,3). View I's(a) as the set of points in a 4-dimensional symplectic
space S over GF(2) with Ma/Qa acting as the full group of automorphisms. Then ]\wa fizes a
non-degenerate quadratic form Q of minus type on S and I'3(40,3) is the set of singular points
of Q. In particular, for each b € T'y(a), there is a unique ¢ € I's(ab) NT'3(40,3).

(i) Q4 act regularly on T'1(32,3).

Proof. Note that any subgroup of index 32 in MA, is isomorphic Sym(5) and so in particular
Mva = Sym(5) and @, acts regularly on I't(32,3). Thus the lemma follows directly from the
diagram Ds(Mataz) and elementary properties of the 4-dimensional symplectic GF(2)-geometry. O

Lemma 4.8 Let ¢ € T5(160,3). Then M.,.Q./Q. = Sym(3) x Cy, Q.N M, =1 and Q.N M, = Cs.

Proof. By Ds(Matas), yUc is not contained in a hexad. In particular v and ¢ are disjoint. Thus
there exists exactly two hexads a; and ag such that ¢ C a; and v Na; #@0. Thus M, normalizes a
subset of size two of the five hexads adjacent to ¢. Thus MA,CQC/QC is contained in a Sym(3) x Cy
subgroup of M./Q.. Let t € Q. N M,. Then ¢ normalizes a; and fixes v Na; for i = 1,2 and also
fixes the two elements in ¢. Thus ¢ fixes three elements in a;. Since M,, /Qq, = Alt(6), t does not
induce a 2-cycle on a1 and thus fixes a; elementwise. Since ¢ also fixes the pomt as N~y outside of a;
we conclude t = 1 and Q. N M, = 1. Thus |Q. N M, | < 2. Since |M,.Q./Q.| <12 and |M,.| = 24
the lemma is established.

5 Jy-triangles

In this section we establish the existence and uniqueness of a Jy-triangle of groups. We follow
notation from Section 1.
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Lemma 5.1 Let (My, My, M3) be a Jy-triangle. Let K1 = Matoes be a complement to Q1 in My;
Ky = L5(2) be a complement to Q2 in My and let L be the unique normal subgroup in Ms such
that M3/L = Syms. Let S be the Steiner system of type (5,8,24) such that Q1 is the irreducible
Todd module associated with the action of K1 on S and (3) be an Ms-set of size 5 such that
Cr, (2(3)) = L. Then

(i) there are subsets 21(3) and Q2(3) in Q(3) of size 1 and 2 respectively with 1 (3) € Q2(3) such
that M3y = N, (21(3)) and Mse = Ny, (Q22(3)); in particular,

M31/Q3 = Sym(4) x L3(2), M32/Q3 = Cy x Sym(3) x Lz(2) and B/Q3 = Cy x Cy x L3(2),
moreover, Q1 N Q2 < Q3 and T13 £ Ms;

(i) there is a natural Ls(2)-module V(2) of Mz, a 1-space V1(2) and a 2-space V3(2) in V(2) with
V1(2) < V3(2) such that Moz = Ny, (V3(2)) and May = Ny, (V1(2)); in particular,

M23/Q2 ~ 26(Sym(3) X L3(2)), Mgl/QQ ~ 24L4(2) and B/Q2 ~ 23+3+1L3(2);

(iii) there is an octad v and a trio 8 containing a such that M12Q1 = Ny, () and Mys = N, (8);
in particular,

Mi3/Q1 ~ 2°(Sym(3) x Lg(2)), M12Q1/Q1 ~ 2*L4(2) and BQ1/Q1 ~ 2°T3F L3(2),
moreover, |Q1/Q1 N Ma| = 2;
(iv) For all i # j, Mij acts irreducibly on T;;/Q;.
(v) Tz = Q1Q3, Tog = Q2Q3 and Ts = (Q1 N M2)Qs.

(Vi) 1Q2/Q2 N Qs| =2, |Q2/Q1 N Qa| = 2* and Q, is isomorphic to N> V(2)* where V(2) is as in
(ii).

(vil) ®(Q3) = Z(Q3) is a natural L3(2)-module for M3z and Q3/®(Q3) = Dy ® Dy, where Dy is a
natural T'Lo(4)-module for M3 and Dy is dual to Z(Q3).

(vili) L = O2(B).
(ix) Nar, (QiNQy) = Myj if (4,5) # (1,2) and Nar, (Q1 N Q2) = Q1 My».

Proof. Since |M3/Mi3| = 5 and M3 has a unique class of subgroups of index 5, we can put
Q(3) = Ms/Msy so that L = Ngenr, M3, . Since |Msa/B| = 3, M3z has on orbit of length 3 on (3).
Thus M3oL/L is contained in a Sym(3) x Cy-subgroup of M3/L. Since the index of Ms3 in M3 and
the index of Sym(3) x Cy in Syms are both 10, we conclude that L < Mss and M3a/L = Sym(3) x Cs.
In particular, L < B and since |M33/B| = 3 we have B/L = Cy x C5. This implies that B/L contains
2—CyC1€S and so B/L 7& OQ(Mgl/L) As OQ(Mgl/L) = T31L/L we get T31 z B and T13 g M2 which
gives (i).

For (ii) let 7 € {1,3} and let V(2) be some natural Ls(2)-module for Ms. Since |My/Mas| = 155
and |Ms/Ma1| = 31, Ms; contains a Sylow 2-subgroup of Ms. In particular, Q2 < Msy; and My
is the normalizer of some flag in V(2). Since |My/Ms| = 31, Ma; = N, (V1(2)) for some 1- or
4-space V1(2) in V(2). Replacing V(2) by its dual if necessary we may assume that V1(2) is a
1-space. Since |May/Mas| = 155, Mas = N, (V3(2)) for some 2- or 3-space V3(2) in V/(2). Since
|Mas/Mas N Mia| = |Mas/B| = 3 which is odd, V1(2) < V3(2) and V3(2) is a 2-space. Thus (ii) holds.
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(iii) Since | My /My3| = 3795, M;3 contains a Sylow 2-subgroup of M; and so by 3.4 M3 = Ny, (5)
for some trio # in S. Suppose that Q1 < Q3. Since |Q1]| > |Q2], @1 £ Q2. By (ii) M2 acts
irreducibly on T12/Q2 and so T2 = Q1Q2. Hence T12 = Q1Q2 < Q3Q2 < Th3 a contradiction
since by (ii) Th3 centralizes V3(2) but Ti2 does not. Thus Q1 £ Q3 and so by (i), Q1Q3 = T13 and
Ql g MQ. Hence Ql ﬁ Mlg, |Q1/Q1 M Mgl = 2, |M1/M12Q1| = 759 and by 34, M12Q1 = ]\/v]w1 (Oé)
for some octad a. Also [M13/Q1B| = 3. By 3.2, M135/Q1 has a unique class of subgroups of index 3
and so BQ1 = Ny, (a*) for some octad o* in §. By 3.4 (ii) BQ; fixes a unique octad, so a = a*
and (iii) holds.

(iv) follows from (i), (ii) and (iii).

We already proved that Q1 Q3 = T13. Now (T13L/L)# contains no 2-cycles and by (i) Q1 N Mo %
To3. Thus Q1 N My £ Q2 and by (iv), (Q1 N M2)Q2 = T12. Since |Q3| > [Q2], Q3 £ Q2 and by (iv)
Q2Q3 = ng and (V) holds.

By (v) and (i) [Q2/(Q2 N Q3)| = [Q2Q3/Q3] = [T23/Q3] = 2, by (v) and (iii) |Q2/(Q2 N Q1) =
|T12/Q1] = 2* and by (i) Q2 N Q1 < Q3. By the definition of Jy-triangle Qs is isomorphic either
to A V(2) or to A>V(2)*. Since My = Nag, (Vi(2)) for a 1-space Vi(2) in V(2), the only proper
subspace in ()2 normalized by M5 has dimension 4 in the former case and dimension 6 in the latter
case. Since Q1 N Q2 is a 6-space (vi) follows.

Let Z3 = Cg,(Q3). Since Ti3 = Q1Qs, we have Z3 = Cq, (Th3). Since Qi is the irreducible
Todd module, by 3.7 Z3 has order 22 and Z3 < Q1 N Q3. By 3.7 (iii) Z(Q3) < Z3 and hence
Z3 = Z(Qg) By (IV) and (V) (I)(Qg) < Ql N QQ. Since Z3 < Ql n QQ < Ql N Qg, since M3 acts
irreducibly on Q1 N Q3/Z5 and since M3; normalizes ®(Q3) we conclude that ®(Q3) < Z3. On the
other hand by 3.7 [Q1 N Q3,Q3] = Z3 and so ®(Q3) = Z3. By 3.7, (Q1 N Q3)/Z5 is the unique
proper M3i-submodule in Q3/Z3. Moreover, all composition factors for L on Q3/Z3 are dual to Z3
and the elements of order three in Cjy,, (Z3) act fixed-point freely on Q3/Zs. By (ii) Q2 N Q3/Z5
is the unique proper Mss-submodule in Q3/Z35 and since Q1 N Q2 < Q2 N Q3, Q1 N Q3 # Q2 N Qs.
Thus Mj acts irreducible on Q3/Z3 and (vii) holds.

(viii) By (i) |B/L| = 4 and by (vii) O?(L) = L. Thus (viii) holds.

(ix) Clearly Q; N Q; is normal in @Q;M;; and the latter is equal to M;; unless (¢,7) = (1,2). On
the other hand in each case Q;M;;/Q; is maximal in M, /Q; and hence the result follows. O

Our next result will be used as a characterization of Mjs.
Lemma 5.2 Fori=1 and 2 let X; be a group generated by subgroups Z;, A;, B; and R; such that
(i) R; is isomorphic to L4(2);
(ii) Z;, A; and B; are elementary abelian 2-groups of order 26, 2% and 2%, respectively;

(iil) R; normalizes Z;, A;, and B;, A; and B; are isomorphic natural L4(2)-modules for R; and Z;
s isomorphic to the exterior square of A;, that is Z; is a natural 93(2)—m0dule for R;;

(iv) Z; centralizes A; and B;;
Then

(a) there exists an isomorphism from X1 onto Xo mapping Y1 to Yo forY = Z, A, B and R;
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(b) Out X; is elementary abelian of order 22.

Proof. Fix i € {1,2} and put Y = Y; for Y € {X,R,A,B,Z}. Pick 1 # a € A and put
P = Cg(a). Note that A, B and Z are absolutely irreducible GF(2)R-modules and so there
exist unique GF(2)R-isomorphisms ¢ : A — B and ® : /\2A — Z. Define £ : Ax A — Z by
&(v,w) = [v, p(w)]. Since A is irreducible and [A4, B] # 1, [a, B] # 1. Note that [a, B] and B/Cg(a)
are isomorphic as GF(2) P-modules. Moreover, P fixes no non-zero vector in Z and so [a, ¢(a)] = 1.
Thus &(a,a) = 1 and so £ extends to a GF(2) R-homomorphism Z : A> A — Z. Thus Z = 1 and so
[v, p(w)] = Y(v Aw) for all v, w € A. It is now clear that (a) holds.

Put Q = ABZ. By 2.7 all complements to Q/Z in X/Z are conjugate in X/Z and ZR has
two classes of complements to Z. Thus X has two classes of complements to @@ and it follows
easily from (a) that there exists an automorphism of X interchanging these two classes. Let « be
an automorphism of X normalizing R. Since the module for R dual to A is not involved in @, «
induces an inner automorphism on R. So we may assume that o centralizes R.

Let C/Z be the unique irreducible R-submodule in Q/Z different from AZ/Z and BZ/Z. We
claim that R does not normalize a complement to Z in C. First notice that if a complement in C
exists, it should consist of the elements bgp(b),b € A, since ag(a) is the only element in C invariant
under the maximal parabolic P in R. However these elements are not closed under multiplication,
since

ap(a)bp(b) = abg(ab)[¢(a), b]

and the factor [¢(a),d] is non-trivial when a # b. Thus the claim follows.

By the claim A* £ C and {A, B} = {A%, B*}. Again by (a) there exists an automorphism of X
normalizing R and interchanging A and B. So we may assume that o normalizes A and B. Since «
centralizes R and since A, B and Z are absolutely irreducible GF(2) R-modules, « centralizes A, B
and Z and « is the identity automorphism. O

Let V(2) be a 5-dimensional GF(2)-space, K3 = GL(V(2)) = L5(2) and MS$ be the semidirect
product of Q3 := A’ V(2)* and K§ with respect to the natural action. Let V;(2) be a I-space in
V(2), K3, be the stabilizer of V1(2) in K5 and Mz, be the subgroup in M5 which is the semidirect
product of Q3 and K3;. Let S be a Steiner system of type (5,8,24), K7 = Aut S & Matag, QF be
the 11-dimensional Todd module associated with the action of K7 on & and M7 be the semidirect
product of  and M7. Let a be an octad in S, K7, be the stabilizer of o in K7, H; be the unique
hyperplane in @ stabilized by K7, (compare 3.2 and 3.7) and My, be the subgroup in M7 which is
the semidirect product of H; and K7,.

Lemma 5.3 Let X; = Z;A; B;R; the group introduced in 5.2, then
(i) there is an isomorphism of M3, onto X; which sends K3, onto A;R;;
(i) there is an isomorphism of My, onto X; which sends KYy onto A;R;.

Proof. By 2.8 and the obvious duality there is an orbit H(2)* of L5(2) on the set of vectors in
Q5 indexed by the 3-spaces in V(2). Let Ay = O2(K3;), @3, = O2(M3;) and R a complement to
As in K§, normalizing a complement U to V;1(2) in V(2). Then Ry is isomorphic to L4(2) and As
is the kernel of the action of K3, on the set of subspaces in V(2) containing V2(1). This means that
Ay is dual to U and the latter is canonically isomorphic to V' (2)/V1(2). The elements from H(2)*
corresponding to 3-spaces containing V;(2) are centralized by A, and by a standard property of
exterior squares they generate an Rg-submodule Zs; in ()§ isomorphic to /\2 As. The elements from
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H(2)* corresponding to 3-spaces taken from U generate a complement Bs to Zs; in Q3 normalized
by Ry and isomorphic to As. In particular Zy; = Cqg(Az2) = Z(Q3,). Moreover, M3, = Z3 Ay Ba Ry
and (i) follows.

Next, let Ay = O2(K{y) and Zi1p = Cge(A1). Let t € Q7 \ Hy. By 3.2 and 3.7 (i) A; acts
regularly on the elements in tH;/Z15. Put Ry = NK{)2 (tZ12). Then by the Frattini argument R; is
a complement to Ay in K7,. In particular Ry & L4(2). Put By = Atl. Since t normalizes Z19R;
and Z12R; normalizes Ay we conclude that Z15 Ry normalizes B;. Thus B; is Rj-invariant. Clearly
Ay and B; are isomorphic as Ri-modules and by 3.7 Z15 is isomorphic to the exterior square of A;.
Moreover, My, = Z12A1B1 Ry and so by 5.2 we obtain (ii). O

Lemma 5.4 With M7y, Ms, My, and My, as above there exists a unique amalgam (M7, Ms) such
that M7 N M3 = M7, = M3, and K7y = K3;.

Proof. By 5.3 there is an isomorphism of M7, onto M3, which sends K7, onto K3, and hence the
existence follows. In order to prove the uniqueness it is sufficient to show that for every automorphism
o of M7, there is an automorphism ¢ of M7 which normalizes M7, such that the restriction of § to
M7y, coincides with o. This is certainly true if ¢ is an inner automorphism and by 5.2 (b) and 5.3 the
outer automorphism group of MY, is of order 22. Thus it is sufficient to present a subgroup M, in
the automorphism group of M7, containing the inner automorphisms such that My, (identified with

a subgroup of inner automorphisms of M?) has trivial centralizer in M; and N ar, (MT2) /M7y = 22,

Let Q) be the 12-dimensional GF (2) Mp-module obtained from the 24-dimensional permutational
module on the element set Q of the Steiner system S modulo the 12-dimensional Golay code. Let M,
be the semidirect product of Ql and K7. Then Ml contains M7 as a subgroup of index 2. It is well
known (cf. [1] or [9]) that K¢ has four orbits on Q¥ with lengths 24, 276, 2024 and 1771 indexed by
1-, 2-, 3-element subsets of Q2 and by the sextets, respectively. This shows that CQl(K D9) =1 and

hence Cy; (M7,) = 1. On the other hand it is clear that M7, is a normal subgroup of index 22 in
the subgroup in M; which is the semidirect product of Ql and K7, and the result follows. O

In view of the preceding lemma we may and do identify M7, with M3, and K7, with K3;.

Lemma 5.5 Let (My, My, M3) be a Jy-triangle of groups. There exists an isomorphism r of the
amalgam (M7, MS3) as in 5.4 onto the subamalgam (M, Ms).

Proof. By 1.3 (i), (ii) there are isomorphisms 1 : MY — M; and ko : M§ — M. By 5.1 (ii) and
(iii) these isomorphisms can be chosen in such a way that that x(Mypy) = Mi2 and k(Ms;) = Ma;.
Now the uniqueness statement in 5.4 ensures existence of the isomorphism x of amalgams. O

Notice that at this stage we do not know whether or not a Jy-triangle of groups exists but we do
know that the rank two amalgam (M7, Ms) exists.

Let 3 be a trio containing the octad a. Put Mp; = Nage(8), B® = My, N M7y, L° = O%(B°),
Mgy = Nug (L°), Q35 = O2(M3), Q3 = O2(L°) and Z3 = Z(Q3).

Lemma 5.6 (i) L° = O**(M7p;), MPy = Nage(L°), L°/Q5 = Ls(2), L° splits over Q3, Q3NQ3 <
Hy £ 17, Q7NQ5 = [QF, Q3] Qfy = Q1Q3, Z5 = ©(Q3) = (Q3)" = Cqo3(QT3), Z3 is a natural
L3(2)-module for L° and Q%/Z3 is the direct sum of four natural L3(2)-modules dual to Z3.

(ii) Mgy = Nagg(V3(2)) where V3(2) is some 2-space in V(2) containing V1(2).

(iil) Mypy/L° = Sym(4) and Mss/L° = Sym(3) x Cs.
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(iv) B® = Ms; N M3s, B°/L° = Cy x Cy and B® is not normal in M{s.
(V) CMf (LO) =1= C’]\/[éj (LO).

(vi) the isomorphism & in 5.5 can be chosen in such a way that k(Y°) =Y for Y = B, L, M3,
M23, Qg and Zg.

Proof. Let L' be the kernel of the action of M7; on the three octads in 3. Since O%(B®) fixes the
two octads in 3 different from «, L° < L' < B® and so L° = O?(L') < M?,. Since M7, is maximal
in My, MP3 = Npe(L°). The remaining statements in (i) now follow from 3.2 and 3.7 (i) - (iii).

Recall that we identified M7, and My;. Since « is contained in 15 trios, B° has index 15 in M7,.
Thus B® = Naye, (V3(2)) where V3(2) is 2- or 4-space in V(2) containing Vi (2). If V3(2) is a 4-space
then B°/Q5$ is an extraspecial group of order 27 extended by L3(2). Since L° = O?(L°) = O*(B®)
we conclude that L° has a chief factor isomorphic to Cs, a contradiction to (i). Thus V3(2) is a
2-space and L° = O?(B°) = O*(Cg(V3(2))). This means that L° is normal in Npze(V3(2)) and
since the latter is maximal in M3 it must be equal to Mg; = Nyze(L°) and (ii) follows.

(iii) By 3.2, Mp/L°QS = Sym(3) and by 3.7 (iii) QF/QS N Q% is isomorphic to the natural
Ls(2)-module for M7y. Thus M75;/L° = Sym(4). In Ms we compute that Ms;/L°Q5 = Sym(3),
M3, splits over L°Q3 and |Q35/Q% N Q3| = 2. Thus Ms,/L° = Sym(3) x Cs.

(iv) Clearly B® = Nye, (L°) = M, N M7y = Mgy N Mss = Ng (Vi(2), V3(2)). Hence we compute
in M3 that B°/L° = Cyx Cy. Since Q5 € My, we have B° # Q9L°. Since QYL°/L° = O2(M7;/L°),
B° is not normal in M7;.

(v) is readily verified in M7 (see 3.2) and M5.

Finally (vi) follows from (i) - (v) and 5.1. O

Let M3 be the universal completion of the amalgam (M7s, Ms;) (which is the free amalgamated
product of My and Mg; over B°) and let (M7, M3, M) be a triangle of groups where M7 N M7 =
M for 1 <4 < j <3. We are ready to prove the uniqueness statement for Js-triangles.

Lemma 5.7 Every Jy-triangle of groups is isomorphic to the triangle (M7, MS, M$ /N), where N =
Crg (L°).

Proof. Let (My, M3, M3) be a Jy-triangle of groups, k£ be an isomorphism of (M7, MJ) onto
(My, M) as in 5.5, satisfying the condition in 5.6 (vi). Since Mj is generated by the subgroups
M3y, Mso there is a mapping of (M7, M3, MS) onto (M, Ms, M3) whose restriction to My U Mg
coincides with x and whose restriction to My is a homomorphism x onto Ms3. Thus the isomorphism
type of (My, Ma, M3) is uniquely determined by the kernel N of x. We claim that N = Cpze (L°).
On the one hand, N and L° are normal subgroups in M$ and N N L° = 1 since the restriction of
# to L° is an isomorphism onto L, hence N < Cig(L°). On the other hand by 5.6 (v) and since
M3 /L = Sym(5) we have Ci, (L) = 1 and hence N > Cjze (L°). Thus the claim follows and implies
the result. O

For the remainder of the section we identify (M;, My, M3) with (M7, Ms, Mg /N) where N =
Cug (L°). In order to prove the existence we have to show that this is in fact a Jy-triangle of groups.
For this we have to show that M3/L = Sym(5). By the definition M3 is the subgroup in Aut L
generated by My3 and M3 (identified with their isomorphic images in Aut L). We need the following
preliminary result.

Lemma 5.8 Let S be the symmetric group Sym(6) of degree 6. Let Hy and Hy be subgroups in S
with Hy = Sym(4), Hy = Sym(3) x Cy and Hy N Hy =2 Cy x Cy. Then (Hy, Ha) = Sym(5).
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Proof. Let A; and As be representatives of the conjugacy classes of Sym(5) subgroups in S.
Put Q; = S/A;, i = 1,2. We choose representatives ki, ko and ks of the conjugacy classes of
involutions in S so that k; acts as a transposition on €; for ¢« = 1,2 and ks € S" = Al¢(6). Then
Cs(k1) =2 Cs(ke) =2 Sym(4) x Cy and Cs(ks) = Dg x Cy. There are two conjugacy classes of Sym(4)
subgroups in S not contained in S’. We choose representatives B; and By of these classes so that
B; is the elementwise stabilizer in S of a pair of cosets from €2;, or equivalently, that B; contains a
conjugate of k;, i = 1,2. Applying the symmetry with respect to the full automorphism group of S,
we assume that the central involution in Hs is k1. Then Hs acting on 2; fixes a coset, say a and
H; N Hs fixes two such cosets, say a and (3. Since H; contains k1, it is a conjugate of By and hence
fixes two cosets from ;. Clearly these cosets must be « and . This means that (Hy, Hy) fixes «
and obviously it is the whole stabilizer of « in S, isomorphic to Sym(5). O

Lemma 5.9 Let M3 be the subgroup of Aut L generated by Mys and Mys. Then Ms/L = Sym(5).
In particular, (M, Ma, M) is Jy-triangle of groups.

Proof. We will use the information about M3 and Ms3 obtained in 5.6 without further reference.
Let U be a complement to Q3 in L and S a Sylow 7-subgroup of U. Since Z3 is a natural module for
L, M3 induces only inner automorphism on L/Q3 and so M3 = Cpr,(S)L. Put C = Cp, (Q3/Z3) N
Chr,(Z3) and E = Ce(S). Then C = Q3E. Let e € E. Then the map

£:Q3/25 — Zs, xZ3— [x,€]

is a GF'(2)S-homomorphism. Since Q3/Z3 is the direct sum of four L3(2)-modules dual to Z3, none
of the S-composition factors in QJ3/Z3 are isomorphic to Zs. Hence the image of £ is the identity
and E centralizes Q3. In particular, [U, E] < CL(Q3) = Z3, E normalizes Z3U and E acts faithfully
on Z3U. By 2.7 Z3U has two classes of complements and so |E| < 2 and |C/Q3| < 2.

Put D = Cu,(Z3) and M3 = M3/C. Then D centralizes L/Qs and D acts faithfully on
Q3/Z3. Thus there exists a faithful four dimensional GF(2)D-module R so that as D-module
Q)3/Z3 is isomorphic to the direct sum of three copies of R. Let D; = Cy,,(Z3) = M;3 N D. Notice
that M3 = D X l_/7 Mi3 = El‘ X .Z/ and M3 = <M13,M23>. Thus D = <D1,D2>, .D_l = Sym(4),
Dy = Sym(3) x Cy and Dy N Dy = Cy x Co. By 3.7 (iii) Q1 N Q3 is the only M;z-invariant subgroup
between Z3 and Q3. Similarly, Qs is uniserial as GF(2) Maz-module and Q2 N Q3 is the only Moz-
invariant subgroup between Z3 and Q3. In addition Q2 N Q3 has index 2 in Q2 and @1 N Q2 has
index 2% in Q2. Thus Q1 N Q2 N Q3 # Q2N Q3 and Q1 N Q3 # Q2 N Q3. Hence D acts irreducibly
on R.

We claim that D preserves on R a non-degenerate symplectic form. Notice that Q3 is non-abelian
and D centralizes Q5 = Z3. Let X < Z3 with |X| =4 and Q% £ X. Let Y be maximal in Q3 with
respect to the condition [Q3,Y] < X. Let W/Y be an irreducible D-submodule of Q3/Y and let K
be maximal in Q3 with [IW, K] < X. Then we obtain a non-degenerate D-invariant bilinear map

¢ WY x Qs/K — Z3/X = GF(2)

(WY, qK) = [w,q|X.

Hence by linear algebra, 3/ K is isomorphic to the dual of W/Y and so irreducible. On the other
hand all composition factors of D in Q)3/Z3 are isomorphic to R. Hence ¢ induces a D-invariant
non-degenerate bilinear map

¥:RxR— GF(2).
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It remains to show that we can choose 1 to be a symplectic form. Define ¥*(z,y) = ¥(x,y) +
Y(y,x). Then clearly ¥*(z,y) is symmetric and ¢*(z,z) = 0. As D acts irreducibly on R, either
Y*(z,y) = 0 for every z,y € R or ¢* is non-degenerate D-invariant symplectic form. Suppose that
¥* is trivial. In this case ¢ is symmetric. In particular, {r € R | ¥(r,r) = 0} forms a D-invariant
subspace of index at most 2 in R. As R is irreducible we conclude that ¢(r,7) = 0 for all r € R
and so ¢ is a symplectic form and the claim follows. Thus D is a subgroup in Sp4(2) = Sym(6)
generated by D; = Sym(4) and Dy = Sym(3) x Cy with Dy N Dy = Oy x Cy. Hence D = Sym(5)
by 5.8.

Notice that Ms3/C = DL/C, and |Ms3/M;3C| = 5. Since Mys/L = Sym(4) does not contain
normal subgroups of order 2, M3 N C < Q3 and hence Mi3/Qs is a complement to C'/Q3 in
Mi3C/Qs. Thus by Gaschiitz’s theorem, M3/Q3 splits over C//Qs. Since D; = D}(D; N D3)Q3 and
|D1 n DQ/(Dl n D2 n Dll)Q3| = 2, |M3/M§Q3‘ < 2. But |Sym(5)/Sym(5)'| = 2, hence C/Qg =1
and the lemma is proved. O

Thus up to isomorphism there exists a unique Jy-triangle of groups.

6 Amalgams of Modules

In this section we prove a number of results to be used in the next section where a Jy-triangle of
groups will be constructed inside GL1333(C). The following lemma is of crucial importance.

Lemma 6.1 Let (My, My, Ms) be a triangle of groups, H be a group and A be a subgroup of Aut H.
Suppose that for all 1 < i < 3, there exist homomorphisms «; : M; — H and elements a; € A such
that

Q1|5 02 = 3]s, Q2| My 03 = 1|, and sl a1 = @2,
-1
x Q309 x a1 * aq * «
Put Mgy = My | Mjy = M3, My = M%) and B* = B*'. Then

(i) The following two statements are equivalent:

(al) There exist b; € A, 1 < i <3, such that

aibi‘Mij = ajbj|Mij7 fOT all 1 7& .7
(a2) azaras € Ca(Ms3)Ca(Mi3)Ca(Miy).

(il) B* < My, N M50 My, and asaiaz € Ca(B*). In particular, (a2) and (al) hold if

()  Ca(B*) = Ca(My3)Ca(Mi3)Ca(Miy).
(iii) Assume that (al) holds and that each o;,1 < i < 3, is one to one. Put M} = M™% [f

M;nM; = M%ibi foralll < i< j <3, then (My, M3, M) is a triangle of groups isomorphic
to (Mla MQ; M3)
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Proof. Replacing as by asas, as by a3a2_1 and a; by azai;as we may assume that ay = a3 = 1.
(i) Replacing b; by b;by*, for all i, we see that (al) is equivalent to :

(1) a1l = asbs| s, 01lan, = oba|a, and asbe|an, = asbs|an, for some by, bs € A.
Since aq|nars = aslans, @1, = @2lan, and as|an, = asar|an,, (1) is equivalent to
(2) by € Ca(Mj3), by € Ca(M;iy) and aybabs ' € C (M) for some by, bs € A.

Now (2) is obviously equivalent to (a2).

(ii) Since a2 = a3 = 1,2|p = a1|p = a3|p and so B* < M75 N M5 N Ms,. Moreover, since
2| My = Q3| Mp01, We get a1|p = anar|p and a; € Ca(B*).

(iii) is obvious. O

Lemma 6.2 Let K be a field, G be a group, H be a subgroup of finite index m in G, W be a finite
dimensional KG-module and U be a non-zero finite dimensional K H-module. Suppose that each of
the following statements holds:

(i) U is isomorphic to a K H-submodule of W ;

(ii) dimgW =m - dimgU;

(ili) At least one of W and U Q iy KG is irreducible as a KG-module.
Then W 2 U Qg KG as KG-modules.

Proof. By (i) and the universality property of induced modules, there exists a non-zero K H-
homomorphism ® : U Q) KG — W. By (iii) ® is onto (in the first case) or one-to-one (in the
second case). By (ii) dimg W =m - dimg U = dimg U Q) -y KG and so @ is an isomorphism. 0O

Fundamental to our construction of a Jy-triangle inside GL1333(C) is the concept of ”amalgam
of modules”. Amalgams of modules are a special case of sheaves ( see for example [14]) and can be
discussed in broad generality, but we will restrict ourselves to what is needed in this paper.

Definition 6.3 Let H be a group and Hy and Hs subgroups of H with H = (Hy, Ha). Put Hy =
Hy N Hy and let K be a field.

(i) An amalgam of K-modules for Hy «— Hy — Hs is a tuple (Wo, W1, Wa, ¢1, ¢2), where W; is
a KH;-module, 0 < i <2 and ¢; : Wy — W, is a KHy-monomorphism, 1 <1i < 2. Such an
amalgam of modules is denoted by

Wy, & w, B ws.

(ii) A faithful KH-completion for Wi & Wo % Wy is a tuple (W,41,12), where W is a KH-
module and, for 1 <i <2, ¢; : W; — W are K H;-monomorphisms with ¢111 = ¢a. Such
a completion is denoted by

Wy A w2 w,,
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Let W be as in part (ii) of the above definition. In abuse of notation, we will refer to W itself as
a completion of the amalgam of modules.

We following elementary lemma is at the heart of the construction of Jy.

Lemma 6.4 Let W1 bl Wo 2 Wy be an amalgam of K-modules for Hy «— Ho — Hy. Assume that
each of the following three statements holds:

(1) W; is irreducible for 0 <i < 2.

(2) There exists a normal elementary abelian subgroup Q of H contained in Hy with Cw,(Q) =0
and a hyperplane A in @Q such that Cw,(A) is one dimensional for 0 <i < 2.

(3) Put N; = Ny, (A) for 0 <i <2 and N = Ng(A). Then NoNn N’ = (No N N{)(No N Nj) and
N = NoN'.

Then Wy «— Wy — Wh has a faithful and irreducible K H-completion W of dimension |H/N|.
Moreover, the Wedderburn components for @Q on W are 1-dimensional and the action of H on these
Wedderburn components is isomorphic to the action on AY.

Proof. Let 0 < 4 < 2 and put X; = Cw,(A4). Then from (1) and (2), X, is a Wedderburn
component for @ on W; and so W; 2 X; @k, K H;. Since X; is one dimensional, N/ centralizes X.
Let 1 < j < 2. Clearly Xg)j = Xj and No N N7 centralizes X; and Xo. By (3), No N N’ centralizes
Xo. Define the K N-module X by X = X, as K-vector space and 29 = 2" whenever z € X, g € N
and h € Ny with N'g = N’h. Since N = NyN’ such h always exists and since N’ N Ny centralizes
Xy this is well defined. Put W = X @xny KH . As W; 2 X, Qg n, KH; we conclude that W is a
faithful K H-completion of W7 «— Wy — Wy, Clearly X is a Wedderburn component for Q on W,
Ny (A) = N, W is irreducible and dim W = |H/N|. O

7 A Js-triangle in GLy333(C)

In this section (Mj, Ms, M3) is an arbitrary Jy-triangle of groups and C is the field of complex
numbers. Our goal is to define a Jy-triangle inside G L1333(C).

The following notations will be used throughout this section. Let 1 < ¢,j < 3 with ¢ # j. If
X is an CM;-module, then R;;(X) is the restriction of X to M,;; if ¥ is an CM;;-module then
I'(Y) =Y ®cm,; CM; ( the module for CM; induced from Y') and Ro(Y') is the restriction of Y to
B; and if Z is an CB-module, then I7(Z) = Z ®cp CM;;.

In what follows X,(i) will always denote an CM;-module, Y;(ij) an CM;;-module and Z; an
CB-module. If G is a group, H < G, U is an CH-module and W is an CG-module we write
U — W or W « U provided that U is isomorphic to a CH-submodule of W. (We remark that in
all cases below the CH-submodule of W isomorphic to U will be unique).

Put L = O%(B).

Let X;(1) be an irreducible 45-dimensional CM;/Q-module given by [7] regarded as an CM;-
module. Then clearly

(1) X;(1) is irreducible of dimension 45 and Cjy, (X1(1)) = Q1.
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The next three statements follow from 3.12.

(2) Put Y1(12) = Ry2(X1(1)). Then Y7(12) is irreducible of dimension 45 and Cyy,,(Y1(12)) =
Q1N Maa.

(3) Restricted to M3, X;(1) is the direct sum of irreducible CM;3-modules Y;(13) and Y5(13), of
dimension 3 and 42, respectively. Moreover, Cpy,, (Y1(13)) = Oz 3(Mas) and Chy,, (Y2(13)) = Q1.

(4) For i = 1,2 put Z; = Ro(Y;(13)). Then Z; and Z, are irreducible of dimension 3 and 42,
respectively. Moreover, restricted to B, Y7(12) is isomorphic to Z; & Zs.

Let A/Q3 be the subgroup isomorphic to Alt(5) in M3/Qs. By 5.1 (ANMi3)/Qs = Alt(4). Thus
AN Mz < Os3(M3) and so by (3), AN M3 centralizes Y;(13). Moreover, M3 = AM;3 and thus
there exists an CM3z-module X;(3) such that

(5) X1(3) is irreducible of dimension 3, Chaz,(X1(3))/Qs = Alt(5) and X;(3) is isomorphic to
Y71(13) as an CM;3-module.

By (4) and (5)

(6) Put Y1(23) = Ra3(X71(3)). Then Y7(23) is irreducible of dimension 3 and restricted to B
isomorphic to Zj.

Put X;(2) = I2(Y1(23)). There are 15 2-spaces of V(2) containing V;(2) and 140 = 155 — 15
2-spaces of V(2) which do not contain V7(2). Hence the orbits of Mis on My/Msz have length 15
and 140. Moreover, 15 = |M;2/B| , Y1(12) is irreducible of dimension 45 = 15-3 = |M12/B|-dim Z;
and so by 6.2, Y1(12) = I'%(Z;). Since Z; = Ro(Y1(23)) the definition of X;(2) now implies

(7) Y1(23) — X1(2), X1(2) is 465-dimensional and is as an CMjs-module isomorphic to the direct
sum of Y7(12) and a 420 dimensional CMjz-module Y5(12).

We remark that X;(2) and Y2(12) are irreducible. With some effort this could be proved directly
at this stage, but we prefer to prove this later on ( see (17) and (29)) in shorter but indirect way.

Put X5(3) = I3(Y2(13)). By 3.12 the restriction of Y3(13) to L is an irreducible module U.
Hence X5(3) restricted to L is the sum of five irreducible CL-modules Uy = U, Us,...,Us. By (3)
Cr(Uy) = Q1NL. Since Z(Q3) < @1 NL < Q3 and Z(Q3) is the only proper Ms-invariant subgroup
properly contained in @3, we have Cp(X2(3)) # Cr(U1). Also M35 acts primitively on {Uy,...,Us}
and hence Cr(U;) # CL(U;) for i # j and we conclude:

(8) X>2(3) is the direct sum of five pairwise non-isomorphic 42-dimensional CL-modules naturally
permuted by Ms/L = Sym(5).

By 5.1 (i) the orbits of My3, Mas and B on M3/M;3 have lengths 1 and 4; 3 and 2; and 1, 2 and
2, respectively. Thus (8) and Clifford theory implies the following four statements:

(9) X2(3) is irreducible of dimension 210.

(10) Restricted to Mi3, X2(3) is isomorphic to the direct sum of Y5(13) and Y3(13), where Y5(13)
is an irreducible CMs3-module of dimension 168.
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(11) Restricted to M3, X5(3) is the direct sum of irreducible CMs3-modules Y5(23) and Y3(23)
of dimension 126 and 84, respectively.

(12) Restricted to B, ¥2(23) is isomorphic to the direct sum of Zs and an irreducible 84-dimensional
CB-module Z3. Put Z, = Ry(Y3(23)). Then Z; is an irreducible 84-dimensional CB-module and
Zy % Z3. Moreover, restricted to B, Y3(13) is isomorphic to the direct sum of Z3 and Z,.

Note that by definition (see (4)), Zz is isomorphic to Y3(13) as an CB-module, by (3) Y3(13) —
X1(1), and by definition (see (2)) Y7(12) is isomorphic to X;(1) as an CMjs-module. Moreover, by
(7) Y1(12) — X;1(2). Hence as CB-modules

Zy 2 Y5(13) — X1(1) 2 Y1 (12) — X1 (2).

Hence by (12), Y3(23) «— Zy — X;(2). By (11) Y2(23) is irreducible of dimension 126 = 3 - 42 =
|Mas/B| - dim Z3 and we conclude from 6.2 that Y2(23) = I?3(Z3). As Zy — X;(2), the univer-
sal property of induced representations implies that there exists a non-zero CMs3-homomorphism
from Y5(23) (& I?3(Z2)) to X1(2). As Y2(23) is irreducible, this homomorphism is one-to-one. So
Y2(23) — X;(2). Then by (12) Z3 — Y3(23) and so Z3 — X;(2). Since dim Z3 > dim Y;(12) and
Zs3 is irreducible, by (7) we get Z3 — Y5(12). We record:

(13) Y3(23) — X1(2) and Z5 — Y3(12).

By 5.1 we can pick t € Q1 \ My. Then clearly ¢ normalizes B and Mjs. So if T is one of B
and Mps and W is an CT-module, then T acts on W by w — w9 for all w € W,g € T and we
obtain a new CT-module denoted by W*. Put B = B(t) and M5 = Mi5(t). Since B/L normalizes
B/L = Cy x Cy in M3/ L = Sym(5), clearly B/L = Dg and has orbits of length 1 and 4 on Ms/Ms3.
In particular, B interchanges the two orbits of length 2 for B on Ms/Mjs. Thus (8) - (12) imply

(14) Z, = Z% and B acts irreducibly on Y3(13).

Let X = Y2(12) ®cyp, CMi2 and Y = Z3®cp CB. By (13) Z3 — Y2(12) and by (12)
Z3 — Y3(13). Hence the universal property of induced modules implies the first part of the following
statement (the second part is still to be proved):

(15) X « Y — Y¥3(13) and Cy,(12)(Q1 N Q2) =0.

Our nearest goal is to invoke 6.4 to find a faithful M;-completion for the amalgam X «— Y —
Y3(13) of C-modules for My — B — M3. We start by proving the second part of (15) which
is equivalent to the claim that @ N Q2 acts fixed-point freely on Y3(12) and immediately implies
that Q1 = (Q1 N Ma,t) acts fixed-point freely on Y. For this notice that by 5.1 (vi) Q3 N Q2 is a
hyperplane in Q2. Furthermore, by definition (see (6)), Y1(23) = Ra3(X1(3)) and so by (5) @3 and
so also Q3N Q3 centralize Y7(23). Since X1(2) = I%(Y1(23)) and Ny, (Q2NQ3) = Mag by 5.1, every
hyperplane of Q2 which centralizes a non-zero vector in X;(2) is (Q2 N Q3)™ for some m € My and
the vectors centralized by such a hyperplane form a 3-space in X;(2). By 5.1 (vi) Q1 N Q2 lies in
15 hyperplanes of Q2 and by (1), (2) Q1 N Q2 centralizes the 45-dimensional space Y7(12) in X1(2).
Since 45 = 15 - 3, this and (7) imply that Q1 N Q2 acts fixed-point freely on Y2(12) and the claim
follows.

Recall that Y5(13) restricted to B is isomorphic to Y and Y restricted to B is the direct sum of
two irreducible non-isomorphic CB-modules Z3 and Z;. Hence both Y and Y5(13) are irreducible

168-dimensional modules. Let A be a hyperplane in @; with d © dim Cy(A) # 0. Since @1

28



centralizes neither Y nor Y3(13), Cy(A4) is a Wedderburn component for @1 on Y and Y3(13).
Hence d - |AP| = 168 = d - |AM13]. By 3.6 there are two M;-orbits on the set of hyperplanes in Q1,
one is indexed by the octads and the other one by complementary pairs of dodecads in S. Suppose
that A is from the former of the orbits. Recall that M3 is the stabilizer in M; of a trio 5 and Bis
the stabilizer of 7 and an octad « contained in 7. By Ds(Matay) there are exactly two orbits S;
and S of Mi3 on the octads with length less than or equal to 168. Here Sy is the three octads in 7°
and Sy contains the octads which are disjoint from exactly one octad in 7. Since B acts transitively
neither on 57 nor on Sy, this is a contradiction. Thus A corresponds to a complementary pair of
dodecads and by 3.10 (i), |AM3| = |AB| = 168, d = 1 and |AM:2| = 840. In particular, X is
irreducible and Cx(A) is 1-dimensional. By 3.10 (ii) we can apply 6.4 and obtain a CM;-module
Xo(1) such that

(16) X — Xo(1) « Y3(13), X5(1) is irreducible of dimension 1288, the Wedderburn components
for Q1 on X5(1) are 1-dimensional and the action of M;/Q; on these Wedderburn components is
isomorphic to the action of M;/Q; on pairs of complementary dodecads.

Put Y3(12) = Y5(12)!. Then by definition, X = Y5(12) @ Y3(12) as CM;s-module. Moreover,
by (12) and (14) Z3 % Z% and since X is irreducible we get

(17) Y3(12) and Y3(12) are irreducible of dimension 420, Z, — Y3(12), Y5(12) % Y2(12), Y2(12) —
Xg(l) and Y3(12) — Xg(l)

(16) and 3.10 (i) imply the following two statements:

(18) Restricted to Miz, X2(1) is isomorphic to the direct sum of Y3(13), Y4(13) and Y5(13), where
Y4(13) and Y5(13) are irreducible CMj3-modules of dimension 672 and 448, respectively.

(19) B acts irreducibly on Y;(13).

By (12) and (17) Y3(23) « Z4y — Y5(12) and we will use 6.4 to find a faithful Ms-completion
for this amalgam of C-modules for Ms3 < B — Mjs. By (15), Cy,12)(Q1 N Q2) = 0 and as ¢
normalizes Q1 N Qz2, Cy,(12)(Q1 N Q2) = 0 = Cy,12)(Q2) = Cz,(Q2). Let A be a hyperplane in Q@
with CZ4 (A) 75 0.

The hyperplanes in @2 are described in 2.8. Suppose that A corresponds to a 2-space in V(2).
Then by 2.8e the orbits of Mss on AM2 have lengths 1, 42 and 112. If A is normal in My, then
since Y3(23) is irreducible, Q2 inverts Y5(23). This is a contradiction, since by (8) and (11) Q2
interchanges two of the three irreducible L-submodules in Y3(23) . Moreover, 112 > dim Y3(23)
and hence the only possibility to consider is that |A*23| = 42. In this case by 2.8 B does not act
transitively on AM23 contradicting the irreducibility of Z,.

So A € H(s). By 2.8 (iii) the orbits of M3 on H(s) have lengths 84, 112 and 672. It follows that
|AM23] = 84, Oy, (23)(A) is 1-dimensional, |AB| = 84, |AM12] = 420 and Cly,(12)(A) is 1-dimensional.
By 2.8 (iv) we can apply 6.4 and so there exists an CMz-module X5(2) such that

(20) Y3(23) — X2(2) « Y3(12), X2(2) is irreducible of dimension 868, the Wedderburn components
for Q2 on X5(2) are 1-dimensional and the action of Ms/Q2 on these Wedderburn components is
isomorphic to the action of Ms/Q2 on H(s).

In particular, 2.8 (iii) yields the following three statements:

(21) Restricted to Magz, X2(2) is isomorphic to the direct sum of Y35(23), Y,4(23) and Y5(23), where
Y4(23) and Y5(23) are irreducible CMaz-modules of dimension 112 and 672, respectively.

29



(22) Restricted to My, X2(2) is isomorphic to the direct sum of Y3(12) and Y4(12), where Y;(12)
is an irreducible CM/5-module of dimension 448.

(23) Put Z5 = Rp(Y4(23)) and Zg = Ro(Y4(12)). Then Z5 and Zs are irreducible of dimension
112 and 448, respectively. Moreover, restricted to B; X5(2) is isomorphic to the direct sum of Z4,
Zs, Zg and Zr; Y5(23) is isomorphic to the direct sum of Zg and Z7; and Y3(12) is isomorphic to the
direct sum of Z4, Zs and Z;. Here Z; is an irreducible CB-module of dimension 224.

Put Zg = Z and Zg = ZL. By (14), Z4 = Z% and by definition ( see after (17)) Y3(12) = Y2(12)".
By (23) Y3(12) = Z, @ Z5 @ Z7 as an CB-module and since t? = 1 we conclude that

(24) Restricted to B, Y3(12) is isomorphic to the direct sum of Z3, Zg and Zy.

Put X3(3) = I3(Y4(23)). Note that by (23) and (17) Zs — Y3(12) — X5(1) and that by (22)
and (23) dim Y5(13) = 448 > 2112 = 2 - dim Z5. Thus by (19) and since |B/B| = 2, Z5 4 Y5(13).
Further by (12) Zs # Y3(13) and so by (18), Zs — Y4(13). Since Y;(13) is irreducible of dimension
672 = 6- 112 = |My3/B| - dim Zs, 6.2 implies Y3 (13) = I'3(Z5). Thus

(25) Yi(13) — X5(3).

We claim that L acts irreducibly on Y;(23). For this let A be a hyperplane in @y with
Cy,(23)(4) # 0. By (20) and (21), |[AM23| = 112 and A corresponds to a pair (W,s), where W
is a 4-space in V(2) and s is a non-degenerate symplectic form on W. Let U be the 2-space in
V(2) normalized by Mas. Since |AM23| = 112 the proof of 2.8 (iii) implies U < W and s|y is non-
degenerate. Let U = (uq,u2) and W = U + (v1, v2) with s(u;,v;) = 0. Note that each hyperplane
of @2 corresponds to a vector in V(2) A V(2) and, in particular, Q2 N L corresponds to u; A us and
A corresponds to u; A us + v1 A ve. Thus the third hyperplane of Q2 containing A N L corresponds
to v1 A vg and A is the unique element of H(s) containing AN L. Thus N(A) = NL(ANL) and
Cy, (23 (AN L) = Cy,(23)(A) is 1-dimensional. Since Nz, (A) = Npr, (U, W, s) acts as GL(U) on U
and Chp,, (U) = LQ2, Maz = N, (A)L. Thus [(ANL)E| = |AF| = 112 and L acts irreducibly on
Y4(23).

Since L is normal in M5 we conclude from the definition of X3(3) that X3(3) is the direct
sum of ten irreducible CL-modules of dimension 112. Suppose these ten irreducibles are pairwise
isomorphic. As Y;(13) has dimension 6 - 112, we conclude from (25) that Y;(13) is the direct sum of
six isomorphic irreducible CL-submodules. Let H be a hyperplane in @1 N Q3 with Cy,13)(H) # 1.
Since Q1 N Q3 < L, Cy,(13)(H) is at least 6-dimensional and H lies in at least six hyperplanes of Q1
corresponding to complementary pairs of dodecads. On the other hand all three hyperplanes of Q1
containing ()1 N Q3 correspond to octads. Hence H is contained in at least nine hyperplanes of Q1,
a contradiction to |Q1/H| = 8.

Thus X3(3) is not the direct sum of isomorphic CL-modules. Since M3 is maximal in My, M3
acts primitively on the cosets of M3 in M3 and we conclude

(26) X3(3) is irreducible of dimension 1120, Y;(23) is an irreducible Wedderburn component for
L on X3(3) and N]Mg (Y4(23)) = M23.

Put Y5(23) = I1?3(Zg). By definition, Z5 — Y4(23) — X3(3) and Zg = Z{. Thus 6.2 and (26)
imply:

(27) Y5(23) — X35(3), Y5(23) is irreducible of dimension 336 and Zg % Zs.
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By (24) and (7), Zg — X1(2). So by (27) and 6.2, Y5(23) — X1(2). By (13) Y2(23) — X;(2) and
by (7) Y1(23) — X1(2). Since dim X;(2) = 465 = 3+126+336 = dim Y7 (23)+dim Y5(23)+dim Y5(23)
we conclude:

(28) Restricted to Mas, X71(2) is isomorphic to the direct sum of Y7(23), Y3(23) and Y5(23).
Since Y1(23),Y2(23), Y5(23), Y1(12) and Y5(12) are all irreducible, by (7) and (28) we get
(29) X1(2) is irreducible.

By (2), (3) and (4), Y1(12) = Z, @ Z», by (24) Y2(12) = Zs @ Zs @ Zo and by (12) Ya(23) =
Z5 P Z3 as CB-modules. Hence using (7) and (28) we get

(30) Restricted to B, X1(2) is isomorphic to the direct sum of Z;, Zs, Z3, Zg and Zy. Restricted
to B, Y5(23) is isomorphic to the direct sum of Zg and Zy.

In particular, Zg — Y5(23) — X3(3) and since Zg = Z% we get Z; — X3(3) and thus by (26),
Zy % Zy. Moreover, by (23), Z; — Y3(23) and by 6.2, I?3(Z;) = Y5(23). Hence Y5(23) — X3(3).
By definition of X3(3), ¥4(23) — X3(3) and by (27), Y5(23) — X3(3). Therefore:

(31) Z7 22 Zy and restricted to Mag, X3(3) is isomorphic to the direct sum of Y;4(23),Y5(23) and
Ys(23).

Put X(1) = X1 (1) @ X2(1), X(2) = X1(2) @ X2(2) and X (3) = X1(3) @ X2(3) @ X3(3). Then
by the definition of ¥;(23), (11), (21), (28) and (31):

(32) X(2), X(3) and @?:1 Y;(23) are isomorphic as CMag-modules.

By (6), (12), (23) and (30) each of the Y;(23)’s can as CB-module be decomposed into a direct
sum of some of the Zs. Hence by (32):

(33) X(2), X(3) and @?:1 Z; are isomorphic as CB-modules.

Note that Mjs has orbits of length 6 and 4 on Ms/Msys. Hence by (25) and (26), X5(3) =
Y1(13) p Y*(13) as CM;3-modules, where Y:#(13) is an irreducible 448-dimensional CM;3-module.
Let Z be the restriction of Y#(13) to B. Then by (26) and (33), Z is irreducible and restricted to B
isomorphic to Z; @ Zo. Hence 6.2 implies that Z = Zg @cp CB. By (24) and (17), Zy — Y5(12) —
X»(1) and hence Z is isomorphic to a CB-submodule of X5(1). From 3.10 (i) and (18) we conclude
Y5(13),Y(13) and Z are isomorphic as CB-modules. Let H be a hyperplane in Q; with Cz(H)#0
and N and Ny the normalizers of H in M3 and B, respectively. By 3.10 (iii), N = NoN’. Let D and
D be the centralizers of H in Y5(13) and Y(13), respectively. Then D and D? are 1-dimensional
and so N’ centralizes D and D?®. Since D and D? are isomorphic as CNg-modules, we conclude that
D and D® are isomorphic as CN-modules. Thus Y5(13) & D@cy CMi3 = D*Q@cy CM;3 = Y#(13).
We have proved:

(34) Restricted to Mi3, X3(3) is isomorphic to the direct sum of Y;(13) and Y5(13). Restricted to
B, Y5(13) is isomorphic to the direct sum of Z7 and Zy.

From (3), (5), (10), (18) and (34) we conclude that:

(35) X(1), X(3) and @7_, Yi(13) are isomorphic as CMjz-modules.
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From (33) and (35)
(36) X(1), X(2), X(3) and @?:1 Z; are isomorphic as CB-modules.

By (17) and 3.10 (i), X2(1) restricted to Mo is isomorphic to the direct sum of Y2(12), Y3(12)
and Y,*(12), where Y;*(12) is a 448-dimensional CMjz-module. It follows from (36) that both Y;(12)
and Y} (12) are isomorphic to Zg as CB-modules. In particular, Y/(12) is irreducible. Let H be
a hyperplane in Q2 with Cz,(H) # 0. Let N and Ny be the normalizers of H in My and B
respectively. Then N/Q2 = Sym(6), |N/No| = |Mi2/B| = 15, N = NgN’ and as in the proof of
(34) we get Y4(12) =2 Y*(12). Thus

(37) X5(1) restricted to Mo is isomorphic to the direct sum of Y2(12), Y3(12) and Y3(12).
Now (2), (7), (22) and (37) imply:
(38) X(1), X(2) and @?:1 Y;(12) are isomorphic as CM;2-modules.

We are now able to construct a completion of the Jy-triangle in GL1333(C). Let {i,j,k} =
{1,2,3}. Then by (32), (35) and (38) X (i) and X(j) are isomorphic as CM;;-modules. Let X
be a 1333-dimensional vector space over C. Then there exist monomorphisms «; : M; — GL(X),
1 < <3, and inner automorphisms a; of GL(X) such that

a1G2|ays = 3| My, @2a3|0r, = 1|y, and @31 |, = Q2| M-

Thus the assumptions of 6.1 are fulfilled with H = GL(X) and A = Inn(GL(X)). Note that if
Y is one of B*, M3, M5 and M7, then X is the direct sum of pairwise non-isomorphic, absolutely
irreducible CY-modules and so Cgrx)(Y) consists of exactly those linear transformations which
act as non-zero scalars on each of the irreducible CY-submodules. By 6.1b (ii), B* < Y and so
Carx)(Y) < Carx)(B*). It is now easy to verify that Ca(B*) = Ca(M33)Ca(M3)Ca(Mfy).
Thus by 6.1 (i), (al) in 6.1 holds. Put M; = M. Then by 6.1 (iii)

Theorem 7.1 There exist subgroups M, My, M5 of GL1333(C) such that (My, M3, M3) is a Jy-
triangle isomorphic to (M7, Ma, M3).

8  Faithful Completions of Js-triangles

This section is devoted to study completions of Jy-triangles. Let (My, Ms, M3) be a Jy-triangle of
groups with a faithful completion M. Let S be a Sylow 2-subgroup of B, Z, = Z(S), M4 = Cp,(Z4)
and M, the subgroup of M generated by M4, Moy and Masy.
We will use the definitions introduced in 2.4 and 2.3 with respect to I = {1,2,3,4} and T; =
Let R = Cp(Z4), Q5 = O*(R), Qs = O2(Q}) and Z3 = Z(Q3). Let V(2),V1(2) and V3(2) be as
in 5.1 (ii).

Lemma 8.1 (i) Q4 & 2?12, Z(Q4) = Zy, Q4/Qq = Cs and Q}/Q4 acts fized-point freely on
Q4/Z4.
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(i1) Q3 is normal in My and My/Q% = Aut Matss.
(111) Mi4 = Mi N M4 fO’f’ all 1 < ) < 3.

(iv) Myy ~ 217614263 Sym(6), Moy ~ 2176+3(26(Sym(3) x L3(2))) and Mgy ~ 2128+ (Sym(5) x
Sym(4)).

Proof. First notice that Z, is non-trivial since it is the centre of S which is a 2-group. Since
Zy < Z(M4), M;y < M, N M; < OMZ(Z4) = M;4 and so (111) holds. Put Y; = Og,g(MM) for
1 <¢ < 3. Let us locate Z; in M7 and determine My4. Consider M; as the semidirect product of
Q1 and Ky where K1 & Matoy and 1 is the irreducible Todd module for K;. One can see, for
instance from 3.7 (i) that a Sylow 2-subgroup of K7 acts faithfully on Q1 N My and hence Z; < Q;.
Let K74 be the stabilizer in K of a sextet H and R4 = O2(K14). Since Ry4 stabilizes all octads
and trios incident to H, Ry4 is contained in S. On the other hand by 3.7 (iv) Rj4 centralizes a
unique non-zero vector in ()7 and clearly this is the vector which corresponds to H in the sense of
3.6 (ii). Thus |Z4] = 2, Zs = Cgq,(R14) and Mis = Ny, (H). By 3.2 (iii) and 3.7 (iv) we have
that M, ~ 2116+4263. Sym(6). Now Y; normalizes all the trios and octads adjacent to H and so
Y7 < RQ;. Also, RY;/Y; is a Sylow 2-subgroup of Mj4/Y; and so Q5 = O?(R) = O2(0?(Y1))).
One can see from 3.7 (iv) that O2(0?%(Y7))) = {[Q1, R14], R14) is extraspecial of order 213, a Sylow
3-subgroup of Y7 acts fixed-point freely on O3(0?%(Y1)))/Z4 and so (i) follows.

Since Q9 is isomorphic to /\2(1/(2)*)7 and S is a Sylow 2-subgroup of Ms, by 2.8 Z; cor-
responds to a 2-subspace in V(2)* and dually to a 3-space V4(2) in V(2) with V3(2) < V4(2).
Thus Mss = Ny, (Va(2)) and from 3.2 (ii) together with standard properties of Q2 we have
Moy ~ 216+3(26(Sym(3) x L3(2))). Note that Yo < Car,(Vi(2)) < Miss = B. Thus similar
to the above, Q; = 0?(Y2) and May/Qj ~ Oy x 23L3(2). Since Q3 < S, Z; < Z3 and so by 5.1
(vii), M3y ~ 2128844 (Sym(5) x Sym(4)). Thus Y3 < L < B (recall that L = O?(B)). As above
Q; = O?(Y3) and M3,/Q; ~ 2471 Sym(5). Since Q = O%(Y;) for 1 < i < 3, we conclude that Q}
is normal in M4 for all 1 <+4¢ < 3 and so @} is normal in M,. In particular all statements but the
last one in (ii) are proved. It is now straightforward to verify that (Mi4/Q}, Mas/Q%, M34/Q3}) is
an Aut Matas-triangle of groups (compare 4.1) and thus by 4.6 My/Q} = Aut Matss, completing
the proof of the lemma. O

Lemma 8.2 (i) M12Q1, My3 and My4 are normalizers in My of an octad, a trio and a sextet,
which are pairwise adjacent.

(ii) Mia, Ma3 and May are the normalizers in My of 1-space, 2-space and 3-space in a flag in
V(2).
(iii) M3 and Mag are the normalizers in Mz of 1- and 2-subsets in the 5-set (3), which are

disjoint; Msy is the normalizer in M3 of a 1-space in Zs.

(iv) Mig, Moy and Msy are the normalizers in My of a hexad, an octet and a pair, which form a

flag.
(v) T is geometric.

Proof. (i) - (iv) follow from 8.1 and 5.1.

(v) We will appeal to 2.5. Let {a1, a2, a3} be a flag of type {i,7,k}. If i = 3 and j = 4, then by
(iil) My3Mys = M3 and so any two vertices of type 4 and k in I'*(M3) are adjacent. Hence ay and
az are adjacent. So we may assume that a; = M; and ay = Ma. Since V1(2) = Cy(9)(Q1 N My) is
1-dimensional, any 1 N Ms-invariant proper subspace of V(2) contains V;(2). Now a3 is adjacent to
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M; and its type is different from 2. So Q1 < Mg, Vi, (2) is Q1 N My-invariant and V4 (2) < V,,(2).
Hence by (ii) a1 and a3 are adjacent in I'*(az) and (v) follows from 2.5. O

Recall that / abc = |cMve|. We remark that for all nd-paths (a,b,c), cMba is completely deter-
mined by a,b, the type of ¢ and Z abc. Furthermore, if a and d are both adjacent to b and ¢, put

b
Lacd=|dMae|.
Recall also that 1) — 13 — ... — n} stands for a path (a1,aq,...,ar) of type ng —mng — ... — ny.

Given T — 2, define Ry(b) by {b, Ra(b)} = b«

For b of type 2, let V(b) be a natural 5-dimensional GF(2)My/Qp-module such that Qy is iso-
morphic to A2 V(b)*, the exterior square of the dual of V(b). For ¢ € T'(b) let V(b) = Cv)(Qc)
and note that V,(b) is a 1-space in V (b), if ¢ is of type 1, a 2-space if ¢ has type 3 and 3-space if ¢
is of type 4. Similarly, put V*(b) = Cy )+ (Qc) = {¢ € V(b)* | ¢(V.(b)) = 0} and note that V;*(b) is
a 4-, 3- and 2-space, respectively.

For ¢ of type 3 let Q(c) (see 5.1) be the M.-set of size 5 with M./C (2(c)) =2 Sym(5). For
a € I'1(c) let Q,4(c) be the element of Q(c) fixed by M, and for b € I'y(c) let ,(c) be the subset of
size 2 in Q(c) fixed by Mp,.

If @ and b are adjacent, D,(b) denotes the orbit-diagram for the orbits of My, on T'(b). We will
use these diagrams only for b of type 1 or 4, in which case they can be found in before 3.1 and 4.7.

Let a be a fixed vertex of type 1. For b, ¢ of type 1, b # ¢, write b ~ ¢ if b and ¢ are adjacent to a
common vertex of type 3, and let d(b, ¢) be the distance between b and ¢ in (I'1, ~). Let Xo(a) = {a}
and Xi(a) ={beTl|a~ b}

Throughout this section we will often use 5.1 and 8.2 without further reference.

Lemma 8.3 Leta € I'y and a; € T';(a),2 <i < 4. Then

(i) For k= 3,4, ay is adjacent to ay, if and only if Z,, < Qa, N Q4 and if and only if Qq, N Qq <
Mo, N Q..

(i) as is adjacent to aq if and only if Z,, < Zs, and if and only if Qu, N Qo < Qa; N Q4.
(i) Za, < Quy if and only if £ azaas # 1344.

Proof. (i) Without loss @ = M and az = Ms. Suppose that Z,, < Q2NQ1. Then Q3 centralizes
Za, - Since My, is maximal in My, Ny, (Zx) = My, and thus Qs fixes ai. Now Q2Q1 = O2(M12Q1)
and so O2(M12Q1) fixes a. But this easily implies that a is adjacent to Ms. Suppose next that
Qo N Q1 < MyN Q. Since [Q1,Qa,] < Q1 N Qq, we conclude that Q,, normalizes My N Q7 and
S0 Qq, < M12Q1. As above ay, is adjacent to Ms. Hence one direction of (i) is proved. The other
direction is obvious.

(ii) is proved similar to (i).

as

b c
For (iii) assume that / agaas # 1344. Then by D,,(a) there exists a path Y _4-3-%in
I'(a). Hence Z,, < Z. < Qy N Q1 < Qay N Q1. =

Lemma 8.4 (i) Given a,pathg —1- § with b # d. Then (QeNQ:)(QaNQ.) = Q. if Ta(bed) =0,
and (Qp N Qe)(QuNQe) = Qe N My, if x € Ta(bed).

(ii) Given a path fl —1- g with Ty(bed) =@. Then (Qp N Q) (Qa N Qe) = Qe
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a b c
(iii) Given a path 1 — 4 — 3 with /abc = 96. Then Q, N M. = Qo N Qp, Mue = Mupe, (Qa N
Qb)(Qc N Qb) = Qb; Qa NZ.= Zy and |(Qa N QC)ZC/ZC| =24

Proof. (i) Since Mp, is maximal in M., Ny (QoNQc) = My and so QpNQ. # QaNQ.. Suppose
that (QpNQ:)(QaNQc) # Q.. Since the three hyperplanes of Q. containing @, N Q. are conjugated
under My, we conclude that (Qp N Q.)(Qa N Q) < Q. N M, for some x € T'y(bc). Thus by 8.3
RS F(de) Since |QC/Qb N Qc‘ =4, (Qb N Qc)(Qd N Qc) = Qc N M,.

(ii) Similar to (i).

(iii) Since Z abc = 96, it is easy to see that Q, N M. < Q. Since @, does not fix ¢, @, does
not normalize @y N Q.. Thus Q, N Qy £ Qp N Q.. Since Qf acts irreducibly on Qy/Qp N Qo,
Qb = (Qa N Qb)(Qc N Qb) In particular, Qa N Qc has order |Qa N Qb'/lQb/Qc N le = 27/22 =25

Suppose that Q, N Z, # Zy. Since Q; acts irreducibly on Z./Z, we conclude that Z, < Q,. But
then @, centralizes Z. and @), < M,., a contradiction. Hence Q, N Z. = Z;, which implies that
Mgy = Mgy and also that |(Qq N Q) Ze/Zc| = |(Qa N Qe)/Zp| = 2°/2 = 2%, O

b c b c
Lemma 8.5 Given a path 1 —3— 4 or 2 —3— 4. Then b is adjacent to c.

P’I"OOf. Let i € {1, 2} Then M;3My3 = Mjz. So if g € Ms, then M;sg = M;3h for some h € Mys.
Thus M;g is adjacent to My. O

a b c
Lemma 8.6 (i) There exists a unique class of nd-paths 1 — 3 — 1. Moreover, for any such path
Mabc/Qb = L3(2) X Sym(?’); QaMabc = Mab; Mac = abe and Qa N Qc = Zb~

(ii) M, acts transitively on X1(a) and (T'1,~) is connected.
(iii) |X1(a)| =22-3-5-11-23 = 15,180.

Proof. (i) Q. acts transitively on the four elements of I'1(b) \ {a} and so all but the last two
statements of (i) follow. Since M, is maximal in M, Nas, (QuNQp) = Map. Since Q,NQy = QoNM,,
Mae < Npp, (QaNQp) = Meyp. Since (Qq, Qc)Qp/Qp = Alt(5) and since (Qq, Q.) centralizes Q, N Q.,
Qa N Qc = Zp.

(ii) By (i) M, is transitive on X;(a). Let ¢ € Xy (a) and b € I's(ac). Then (Mg, My.) = M), and
so (My, M.y = (M,, M) = M and hence (I'1, ~) is connected.

(iii) |X1(a)| =4 - |T3(a)| = 22-3-5-11-23. 0

a b c
Lemma 8.7 There exists a unique class of nd-paths 1 — 3 — 2. Moreover for any such path,
Mabc/Qb = L3(2) XSym('?))’ Macha = Maln Machc = Mbc; QamMc = Qame; QcmMa = Qchby
Qa N Qc = Zb; (Qa N MC)QC = 02(Mbc)7 (Qc N Ma)Qa = OQ(Mab) and Mac = abc-

Proof. Q. acts transitively on the four elements of I'y(b) \ T'2(a) and Q. acts transitively on
the two elements of T';(b) \ T'1(c¢). Furthermore (Qq,Q.)Q»/Qs = Sym(5) and since Q, N Q.. is
centralized by (Qg,Q.) we conclude that Q, N Q. = Zp. In particular, M. < Ny, (Zp) = Map.
Moreover, by an order argument @, = (Qp NQ,)(Qp N Q) and the remaining statements are readily
verified. O

b c d
Lemma 8.8 Given a path i — 2 — 3 withi =3 or 4. Then Z, £ Qg if and only if Viy(c)NVy(c) = 0.

Proof. Note that Q. € Q4, Qc = (Zy | © € T';(c)) and M4 acts transitively on {x € T';(c) |
Vz(c)NVy(e) = 0}. Hence it suffices to show that Z, < Qg whenever z € T';(¢) with V,(c)NVy(c) # 0.
Pick y € T'1(c) with V,(c) < Va(c)NVa(c), ie. y € T'i(zed). Thenby 8.3 Z, < QyNQ. < QaNQ..0
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a b c d e
Lemma 8.9 There exists a unique class of nd-paths 1 — 3 — 2 — 3 — 1 with Vy(c) N Vy(c) = 0.
Moreover, for any such path |Mae| = |Mapeae| = 21 - 32, |Zo N M| = 4, Qu N Qe = 1, MyeQo =
NMa (Zb N Me); Mach = Mpcq and Mach/Qc = Sym<4) X Sym(4)

Proof. By 8.7 Myp.Q. = M. and so there exists a unique class of nd-paths (11 — § - 5 - § with
Vo(c) N Va(c) = 0. By 8.8 Zp £ Qq and so Z,, acts transitively on the two elements of 'y (d) \ 'y ().
Thus the uniqueness assertion in the lemma is proved and Z, N M, = 8/2 = 4. In particular,
|Mapede| = |Mape| /(£ bed - £ ede) = 219 - 32 . 7/(2% - 7-2) = 21 . 32, Moreover, Mupeqe Zy = Maped-
By 8.7, (Qu N M.)Q. = O2(Mp.) and thus Q, N M, acts transitively on the 2-spaces in V;(c) + Vy(c)
which intersect V,(c) trivially (there are 16 such 2-spaces). Hence Mpcy = Maupea@ec = MabedeQe,
|Qu N M./Qq N Meg| = 2% |Qa N Mg| = 2°/2% = 2% and |Qq N M.ge| = 2% Tt follows that
| MapedeQa/Qal = 210 -32. Since |[Myy/Qq| = 21°-3%-7 and My, acts transitively on the 7 subgroups
of order 4 in Z, |NMab(Zb N Me)/Qa| =210.32 S0 MapedeQa = N, (Zb N Me).

Since Vp(c) N Vy(c) = 0, Ty(bed) = @ and so Z, N Z; = 1. By 8.7, Q. N Q. = Zg and so
ZyNQe = ZyNZy = 1. In particular, Q, N M, £ Q. and since M,, normalizes Q), N M, we conclude
MpeQe # M. By symmetry M,.Q, # M,. By 3.4 the only group between Ny, (Z,NM,) and M, is
Mgy, Hence M,e < My. By symmetry My. < My. Since ZyQq = QcQa, Mpq < Nar,(QcQa) = Meg,
Myg = Mycq and Mye = Mapeae- Hence Mach/Qc = Mabcdch/Qc = Mbcd/Qc = Sym(4) XSym(4)
It remains to prove that Q, N Q. = 1. As V,(¢c) N Vy(c) =0, @y N Quq < Q. By 8.7, Qu N M. < Qy
and so

QaergQamedeerg(Qach)m(Qech):ZbﬂZd:]“ o

b c d
Lemma 8.10 Given an nd-path 4 — 3 — 4. Then Q acts transitively on T'4(c)\{b}, MpcaQ} = Meca,

QN Qa/Zc| =2%, QuNQa < Qe, Qe = (QuNQe)(QaNQe), (QyNMg)Q%/Qh = O2(Mqye/Q) and
Myca = Cm, (Zg) = Myq.

Proof. Since Z, < Z. < Qp and Q; acts fixed-point freely on Qp/Zp, Q; acts transitively on
Z./Zy. Now [Z.,Qy] = Z and so Q; acts transitively on Z. \ Z, and so also on T'4(c) \ {b}. In
particular, My.qQ; = M. and by symmetry, Mp.qQ% = M.q. Since |Qp N Qc/Z.| = 213/2%+3 = 28
and |Q./Z.] = 212, 2* < |Qy N Q. N Qu/Z.] < 28, where 2% occurs exactly then Q. = (Q. N
Qp)(Qe N Qg). Since My, is a maximal subgroup of M., Qy N Q. # Q4 N Q.. Moreover, the
elements of order 5 in Mj.q act fixed-point freely on Q./Z. and so also on @, N Q. N Q4/Z.. Thus
1Qy N Qe N Qa/Z] = 2* and (Qy N Q.)(Qy N Q.) = Q.. Since Q.Qq = O2(M.q) we conclude
(Qy N Qc)Qaq = Oa(My.). Clearly, (Qp N Mg)QY4/Qh < O2(My./Q}). Now since @ is extraspecial,
(Ze, Qv N My) = [Z:,Cq,(Za)] = Zy £ Zq and so Qp N My inverts Q5/Qq. Since (Zt?z) = Z,,
Cwn,(Za) < Ny (Ze) = My and so Myg < Cip, (Zg) < Co,y . (Za) = Mipeq. o

a b c d
Lemma 8.11 There exists a unique class of nd-paths 1 — 4 — 3 — 4 with / abc = 96. Moreover, for

any such path MapeaQly = Mea, Mapea = Crr,(Za) = Maa, MabedQa/Qa = Cit, /0, (ZaQa/Qa) and
Z4Qa/Qq is in the class of non 2-central involutions of My/Qq.

Proof. Let 1— sz — 3 bean nd-path with Z abe = 96. By 8.10 Q)5 acts transitively on I'y(c) \ {b}.
In particular, the existence and uniqueness statements hold with |Maped| = |Mas|/(£ abe - £ bed) =
921.33.5/(96 - 6) = 215 3. 5.

By 8.10 (Q» N My)Q5/Q4 = O2(Mac/Q%) and by 4.7 QvQ./Qp acts regularly on {a | a €
I'y(b), Zabc = 96}. Hence MgapeaQ = Meq. Note that Z; < Z. and Zy # Z,. By 8.4 (iii),

36



QoNZ. = Zy. Thus Z; £ Q, and d is not adjacent to a. Since Mypeq centralizes Z; and has
order divisible by 5, Z4Q./Q. is in the class of non 2-central involutions in M,/Q, = Matss (see
31) Thus |CMa/Qa (Zan/Qa)| =29.3.5. Since Qs N M., <Qp by 84 (111) and CMb (Zd) = Mpea
by 8.10 we have Cq,(Z4) = Qo N Miycd = Cq,n0,(Z4) and as Qy is extraspecial |Qq N Mpeq| =
|Qa N Qb|/2 = 25, Thus |Mabcha/Qa| = |Mabcd|/26 =27.3. 9, Mabcha/Qa = CVMa/Qa (Zan/Qa)
and Mgypeq = CMG (Zd) = Myq. O

a b c d e
Lemma 8.12 There exists a unique class of nd-paths 1 — 4 — 3 — 4 — 1 with /abc = 96 = / edc.

MOT@OU@Ty fOT any such pa'th' Mae = abcde s Qaer = 17 Mae/(Qmed) = Sym(5)7 |(Qmed)/ZC‘ =
24 and |M,.| =2 -3 5.

Proof. The uniqueness statement follows from 8.11. By 8.10, |(Q» N Q4)/Z.| = 2*. By 8.4
(i), [(Qu N Q) Zc/Z.| = 2. By 8.10 with the roles of b and d interchanged, (Q4 N M;)Q;/Q; =
O2(Mpe/Q;) and so by 4.7 Qq N My, acts transitively on the 32 elements  in I'; (b) with Z zbc = 96.
Thus My. = Mape(Qa N Mp). Suppose (Qq N Qc)Ze. = Qy N Qq. Then My, = Mape(Qa N M)
normalizes (Qq N Qc)Z:/Z.. A contradiction, since by 8.1 Mp. does not normalize a subgroup of
order 2% in Q./Z.. So (Qu N Qc)Ze # Qp N Qq. Since 5 divides [Muped|, Qu N Qe N Qu < Ze.

Since OQ(Mcd/QZ) dee/Qz =1, Qa NMege < Qd- Slmllaﬂy Qa nM, < Qb- By 8.10 Qmed <
Q.. Hence Qu N Mege < Qo N Qe N Qu < Zeo. By 8.4 (iii), Qu N Zo < Zp and thus Qu N Meoge = Zp.
By symmetry Q. N Mype = Zg. By 8.11 Mypeq = Myq and so Q. N M, = Q. N Mype = Z4. Thus
Meoe < Cpri,(Z4) = Meq and Mye = Mypede. By symmetry, Q, N M. = Z;, and so Q, N Q. = 1. Note
that Mye/O2(Mge) =2 Sym(5) and Oa(Mye) < Qp N Qq and so My /(Qp N Qq) = Sym(5). a
Lemma 8.13 I' has five classes of nd-paths 1- il;, —1- § — 1. The classes can be described as
follows:

Class 1: Lbed =42, e € X1(a) and |T'1(d) N X1(a)| = 3.

Class 2: Lbed = 42, e ¢ X1(a) and there exists a unique f € T'y(a) NTy(e). For f we have
Lafe =16, Mae/Q} = Sym(6) and MoeQo = Myy. n

Class 3: £Lbed =56 and T'1(d) C X1(a).

m

a l j e
Class 4: /bed = 1008 and there exists an nd-path 1 — 3 — 2 1 with Vi(j) N Vi (4) = 0.

f h
Class 5: /bed = 2688 and there exists an nd-path 1—1- Lg’) — 4 — 1 with fyg,h € T'(c) and
Lafg=96 = /ehg.

Proof. By 8.6 (i), Ma.Q. = M. and so by Dy(c), £ bed determines the nd-path (a, b, ¢,d) up to
conjugacy.

Since Q.Qq/Qq acts regularly on the four elements of I'1(d) \ {c¢} we conclude that @, N Q.
acts transitively on I'1(d) \ {c} provided that (Qy, N Q.)(Qa N Qc) = Q. and has two orbits if
(QyNQ:)(QaN Q) is a hyperplane in Q.. Thus 8.4 (i) implies:

a b c d e
(*) For r = 56,1008 and 2688 there exists exactly one class of nd-paths 1 —3 — 1 — 3 — 1 with
/ bed = r, and for r = 42 there exist at most two classes of such paths.

Assume now that Zbed = 42. Then by Dy(c) there exist f € T'4(bed) and g € T'a(bed). Note

that f and g are adjacent. By 8.5, f is adjacent to a and e. Replacing g by R.(g) if necessary, we
may assume that g is adjacent to a (see 2.6 applied to I'(b)). Then by Dy(c), f and g are uniquely
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determined by (a,b,c,d) and so Mypeq < M. Consider D, (f). Exactly three of the five elements
in I'y(d) are adjacent to g. If e is adjacent to g then Zafe =60 and e € X;(a). If e is not adjacent
to g, then Zafe =16, Muse/Q} = Sym(6), QN Me = Qu N Qf, QuMase = Moy and, since Mgy is
maximal in Mg, Mae < N, (Qa N Me) = N, (Qa N Q) = Mgyy. Thus (a,b,c¢,d,e) is in Class 1 if
e is adjacent to g and in Class 2 if e is not adjacent to g.

Assume next that /bed = 56. Then by Dy(c) there exists f € T'y(bed) and a and e are adjacent
to f. Since T'a(bed) = @, Dy(f) shows that Zafd = 96 and T'1(d) C X1(a). So (a,b,c,d,e) is in
Class 3.

b f g h d

Assume now that /Zbed = 1008. Then by Dy(c) there exists an nd-path 3 — 2 — 3 — 2 — 3
in T'(¢) with R.(f) # h. Using 2.6 and replacing f by R.(f) and h by R.(h), if necessary, we
assume that a is adjacent to f and e is adjacent to h. Note ¢ € T'1(fgh) and f # R.(h), which
means that Qf(g) N Qp(g) #90. In I'(g) we find a unique nd-path 5 —1-2- If - S with
Ri(f) = j = Ri(h) (indeed if Q¢(g) = {1,2} and Qxn(g) = {1,3}, then Q;(g9) = {4,5}, Qi(g) =3
and Qx(g) = 2). In I'(f) there exists a unique vertex [ of type 3 adjacent to a and i (indeed,
[ is defined by Vi(f) = V.(f) + Vi(f)) and similarly there exists a unique m € I's(ehk). Since
R;(f) = j = Ri(h), l and m are both adjacent to j. Furthermore, a is adjacent to f and j = R;(f).
Thus by 2.6 applied to I'(l), @ and j are not adjacent and by symmetry e and j are not adjacent.
Suppose that there exists € I'y(ljm). By 8.5 x is adjacent to ¢ and k and we see in I'(j) that
is adjacent to g and so also to f and c¢. Moreover, a and z are adjacent to [ and thus a and x are
adjacent. So x is adjacent to a and ¢, Vi(f) = Va(f) + Ve(f) < Va(f) and b is adjacent to z. By
symmetry x is adjacent to d and so x € T'4(bed), a contradiction to Z bed = 1008 and Dy(c¢). Thus

a l m e
no such z exists and we found an nd-path 1 — 3 — 9 — 3 — 1 with Vi(4) N Vin(j) = 0. Hence
(a,b,c,d,e) is in Class 4.

bof hood
Assume finally that Z bed = 2688. Then by Dy(c) there exists an nd-path 3 — 4 — § —4—3in

I(c) with /b L g=8=1/d & g. By 8.5, a is adjacent to f and e is adjacent to h. Since /b L g=2=8
we conclude from D, (f) that Zafg = 96 and by symmetry, / ehg = 96. Hence (a,b,c,d,e) is in
Class 5. 0

Lemma 8.14 M, has exactly three orbits Xa(a), Xs(a) and X4(a) on {e € Ty | d(a,e) = 2}.
Moreover we can choose notation so that

(i) |Xa(a)] =2%-7-11-23 = 28,336 and My, ~ 2176163 Sym(6) if e € Xa(a),
(i) |X3(a)|=27-3-5-7-11-23 = 3,400,320 and M. ~ 2'2(Sym(3) x Sym(3)) if e € X3(a),
(iii) |X4(a)| =211-32.7-11-23 = 32,643,072 and M. ~ 23T4Sym(5) if e € X4(a).

Proof. 8.13, 8.9 and 8.12. a

a b c d e
Lemma 8.15 Given apathl —4 —1— 3 — 1 withd(a,e) = 3. Then /abc = 16 and / bed = 2880.

Proof. Clearly d(a,c) = 2 and so Zabe = 16. If d is adjacent to b, b is adjacent to e and by
D, (b), d(a,e) < 2, a contradiction. Thus Z bed # 15.

Let x € T's(bc) and suppose that Zzcd = 56. Then by 8.13, I'; () < X;(e). On the other hand
by Da(b), X1(a) NT1(z) #OD. Thus X;(a) N X;(e) # @ and d(a,e) < 2, a contradiction.

Thus Zxed # 56 for all « € T'3(be). Suppose that Zbed = 720. Then by Dy(c) there exists an

b x d c
nd-path 4 — 3 — 1-3in T'(c) with £z Yy d =8. Thus by D,(c), Zxed = 56, a contradiction.
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b T d
Suppose that /bed = 180. Then there exists an nd-path 4 — 2 — 3 in I'(¢). Since Z abe = 16,
replacing x by R.(x), if necessary, we may assume that / abx = 60 (compare D, (b)), in which case

a T d e
there exists y € I's(abz). So we found an nd-path 1 — 39231 Since d(a,e) = 3, I'1 (yxd) =0,
and so Vy(x) N Vy(z) = 0. By 8.9 and 8.13 Class 4, d(a, e)=2, a contradiction.
Thus /Z bed = 2880 and the lemma is proved. a
a b c d e
Lemma 8.16 There exists a unique class of nd-paths 1 — 4 — 1 — 3 — 1 with Zabc = 16 and
a h f e
/ bed = 2880. Moreover, for any such nd-path there exists an nd-path 1 — 3 — 2 — zgl — 1 with
Va(f)NVy(f) =0 and / fge = 56.
a b c d
Proof. By 8.13 Class 2, M,.Q. = My, and so there exists a unique class of nd-paths 1 —4 —1 — 3
with Z abc = 16 and Z bed = 2880. Moreover, I's(bed) =0 and so by 8.4 (ii), (QsNQ.)(QaNQ.) = Q.
Since Q. acts transitively on I'1 (d) \ {c}, the uniqueness part of the lemma is proved.
b f d
By Dy(c) there exists an nd-path 4 — 2 — 1- 3 in I'(c). Replacing f by R.(f), if necessary, we
may assume that Zabf = 60 (compare D, (b)), in which case there exists h € I'3(abf). Note that d
is adjacent to e and g and so e and g are adjacent by 8.5. Since Z bed = 2880 we see from Dy(c) that
I5(beg) =0 and so Vi (f) NVy(f) = Ve(f). Moreover, since Z abc = 16, ¢ and h are not adjacent. So

Ve(f) £ Va(f) < Vo(f) and Vi (f) N Vy(f) = 0.
Since / bed = 2880, d is not adjacent to f. On the other hand both d and f are adjacent to ¢
and we see from the Dy(g) that / fgd = 84 and hence / fge = 56. a

a b c
Lemma 8.17 Given a path 2 — 1 — 1 with ¢ = Ry(a). Then
(i) QuNQe=QvNQ. and QN Q. is maped to \* Vi (c) under the isomorphism Q. — A’ V*(c).
(i) [Qc, V(a)] = Vi(a).

Proof. Since Q,NQy is centralized by Qp and ¢ = Rp(a) we have Q,NQp = Q.NQp = QuNQpNQ..
Note that A’ Vi (c) is the unique proper Mp.-submodule in A’ V*(c). Thus Qp N Q. is maped to
/\2 V(). Moreover, since My, = Mgy we also conclude that Q. N Q. = Qp N Q¢. Thus (i) holds.

(ii) holds since V,(a) is the unique proper Mgyp.-submodule in V' (a). O

b d
Lemma 8.18 (i) There exists a unique class of nd-paths 1-3-2-4—1with Vo(e)NVy(c) =0
and / cde = 56. Moreover, for any such path d(a,e) = 3, |Mge| = 2032, Mye = Mapede,

K]

e h a
Qo N M, =1 and there exists an nd-path 1 — 3 — 9 — 4 — 1 with Vi(g) NVi(g) = 0 and
/ gia = 56.
(i) Put Xs(a) = eMe. Then |Xs(a)| = 2'1-3-5-7-11-23 = 54,405120.

l e

a j k
(iii) Given a path 1 — A-1- 3—1. Thenec€ U?:o Xi(a).
Proof. (i) and (ii) By 8.7, (Qa, N M.)Q. = O2(My.) and so Q, N M, acts transitively on the
64 elements of {x € Ty(c) | Vu(c) N Vi(c) = 0}. Hence there exists a unique class of nd-paths

a b c d

1 —3—2— 4 with Vu(c) N Vg(c) = 0. Moreover, we see in M./Q. that Mp.q/Q. is a complement
to OQ(Mcd/QC) = QdQC/QC in Mcd/Qc~ Thus Mcd = Mbchd~ By 8.7 Mbc - Machc and so
Meqg = MyeaQa = (MapeQc) N Ma)Qaq = Mapea@QcQq. We claim that Z;,(Q. N Qq) = Q.. Indeed,
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identifying Q. with A%V (c)* we have Z, = A Vy(¢)* and Q. N Qq = V(c)* A Va(c)* and the claim
follows from V(C)* = ‘/b(c)* &) Vd(C)*. Since Zp < Muped, Meq = Maped@QcQd = Mapea@q. In
particular, the uniqueness statement is proved.

Put K = Mgpede- Let z be the number of paths as in (i) starting with a. Then z = |T'3(a)] -
Labe- Lbed- Lede=(3-5-11-23)-4-64-56=21-.3.5-7-11-23 and so |K| = |M,|/z = 210 - 32.

Since / cde = 56, / ede = 240 and so by D.(d) there exists a unique f € T'y(cd) with /Z edf = 16.
Moreover, if we define g = Ry(c) then there exists h € T's(gde). Since Vy(c) < Va(c), Vi(e) £ Vi(c)
and so there exists a unique element ¢ € I's(bcf), namely i is determined by V;(c) = V(c) + Vi (c).
Then ¢ is adjacent to a by 8.5 and, since g = Rys(c), to g as well. Since V;(c) N Vy(c) = 0 and
Vi(e) < Vi(e) we have Vi(c) N Va(c) = Vi(c). Conjugation under Qs yields V;(g) N Va(g) = V¢(g).
Since / fde = 16, f is not adjacent to h and so since Vi,(g) < Vu(g), Vi(g) N Vi(g) = 0. Consider

the nd-path - { - § ~1in I'(i). By Dy(3) since Ry(g) = ¢, we have £ gic =7 and Z gib = 28.
Now one can see from D.(i) that T'; (ic) and I'3(ic) are points and lines of the projective plane of
order 2 with the natural incidence relation. In view of this observation and indexes in Dy (i), every
element from {z | z € T'1(ib), £ giz = 14} is adjacent to ¢. Hence / gia = 56. In particular, the path
(e, h, g,i,a) has all the properties stated in the lemma.

Since [Qi N My, V(g)] = [Qi 1 My, Vi(g) + Vi(9)] < Vi(g) N Vi(g) = 0 we have

QiNMy <Qq

and so Zp N My < Q. N Qg. Identify Q. with A’V (e)*. By 8.17 (i), Q. N Qg = A’ Vi (c) and so

ZyNQeNQy = N Vo) N A*Vi(e)* = A’ (Va(e) N V3(e)*) = A*Vi(o)" = Zi.

Hence Z, N My, = Z;. Since Vi(9) N Vi(g) = 0, Z; = N> Vi(9)* £ V(9)* A Va(g)* = Qg N Q.
Moreover, Q4N M. < Qp and thus Z; £ M.. Since f, g, h and 7 are uniquely determined in terms of
(a,b,¢,d,e), K < My, and, in particular, Z,NM, = Z,NK < Z; N M, = 1. From Q, N M, < Qy,
QyN My < Q. and (see 8.7) Q, N Q. = Z;, we conclude that Q, N K = 1. Recall that |K| = 219 .32,
Since K < Mgy and [Mupi /Qu| = |Map/Qal/T = 219 - 32 we have KQq = Mp;.

Suppose, that Q. N M, # 1 and pick a Sylow 2-subgroup R of K. Then Cg,~am, (R) # 1 and
since Cg, (R) = Cq,(RQ.) = Z; we get Z; < M., a contradiction.

Hence Q, N M, = 1. Since Q, N M, # 1 for all y € T'; with d(a,y) <2, d(a,e) = 3.

Suppose K # M,.. Then by 3.4, M,.Q, is equal to one of M,, My, or M,;. Suppose Mype # K.
Then MapeQq = Myp. In particular, |Mape /K| = 7 and s0 Mape = O?3(Mype) K. From / abc = 4
we conclude O%3(M;) < M,.. Now also K < M, and so Mg, < M,.. Note that Q. N M, =
Zy(Qe N Qa) N M, = QN Qq and so My < Npp(Qe N Qq) = Meg. Thus M., = M4 and
Mape = Mapee = Mapeqe = K, a contradiction.

Thus Mgpe = K and My.Qq = My;. On the other hand, by 8.7 My, < Mgy, and as seen above
Q: N My, < Qg. In particular, Q; N M, < Q; N My, = Q; N Qy. Since Z; acts transitively on the two
elements in I'1 (k) \ T'1(gh), Q: N Qg = Z;(Qs N M.). Thus Mye = Myie < Nu, (Qi N Q) = Myg, a
contradiction, since 3% divides |Mye| = [Mqa;i/Qa| but not |M;g].

Thus Mge = Mapede = Mabedefgri and (i) and (ii) hold.

(iii) follows from 8.16, 8.15, 8.14 and (i). O

Lemma 8.19 Given an nd-path (f —4—-1—-4— i Then e € X (a) for some 0 <1 <5.
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a b c d e b f d
Proof. Consider first a path 1 — 2 — 4 — 2 — 1. Then by Dy(c) there exists a path 2 — 3 — { -2
in I'(c). Pick i € T'4(abf) and h € I's(gde). Then by 8.5 i is adjacent to g and we found a path

a 7 h e
1-4-1-3-1 Soby8.18 (i), ¢ € X(a), for some 0 < < 5.
h d

Consider now an nd-path 1— Z 1 i -1 By Dy(c) there exists a path Z — é — i —-3—-4
in I'(¢). If d(a,c) <1 or d(c,e) <1 we are done by 8.18 (iii). So suppose that Zabc = 16 = / cde.
Then by D, (b) and D.(d) we have Zabf # 96 # / edh and there exist ¢ € T's(abf) and j € T'a(hde).
Then by 8.5 both 7 and j are adjacent to g and we are done by the first paragraph of the proof. O

C

b d e f
Lemma 8.20 Let 4 — 3 — 4 — 3 — 4 be an nd-path with [Zy,Z¢] # 1. Then /cde = 160,
Qv N Qy = Zg, Qv N M, acts transitively on the four elements in {a € Tu(e) | [Zp, Zs] # 1},
Mg Qa/Qa = Sym(3) x C2 and (Qp N Qa N Mf)Q?/Q? =(QaN Mf)Q?/Q? = OQ(Mef/Q;),

Proof. By D.(d), if Zcde # 160, then there exists a € I'y(cde). Hence Z.Z. < Q, and
[Z., Z.] =1, a contradiction.

Thus Zcde = 160 and by D.(d) there exists a unique nd-path 39— ’11 ~ 2 -3 I'(d),
such that Rp(g) = 4, in which case h is not adjacent to c¢. Moreover, by 8.5 b is adjacent to g
and f is adjacent to i. Notice that Vi(g) N Va(g) = Ve(g), Va(g) € Ve(g) and Vi(g) < Va(g).
Thus Vi, (g9) € Vi(g) and so h is not adjacent to b. By symmetry, h is not adjacent to f. Hence
Zy LQrNQi =QnNQy. Put R=Q,N Q. We compute in Qg:

RNOQy = (QvNQy) N (@nNQy) = (Va(9)" AVI(9)) N (Valg)* AVi(9)") = (Vu(9)" N Vi(9)") AVi(g)™

Since Vi,(g)* N Vi(g)* has order two we conclude that the subgroups of order two in RN Q) are
all of the form Zs for some § € T'y(gh) = T4(ghi) with V3(g)* N Vi(g)* < Vs(g)* < Vi(g)*. Notice
that for any such d there exists v € I's(bgd) and so Z, < Z,, < Q5.

Suppose that RN Qy N Qy # Zg and pick § € T'y(ghi) \ {d} with Z; < RN Qy N Qs. Then
Zy < Qs and similarly, Zy < Qs. Thus Z, and Z; are both contained in the elementary abelian
group Qg4 N Qs, a contradiction.

Thus RNQyNQ ¢ = Zy. Since |R| = 2% and |RNQ,| = 2% = |[RNQ¢| we get |[R/(RNQy)(RNQy)| =
2. Since [RN Qp, Qp N Qf] < ZyNR =1 we have [[RN Q) (RN Qf),Qb N Qf] = 1. Now R is a
natural QF (2)-module for M;,/Q:Q, = L4(2) and so no element of M;, acts as a transvection on
R. Thus @ N Qf < CM“;(R) = Qng Now by 8.17 (11) [QngaV<Z)] < Vh(i% [Qf7v(z)] < Vf(i)v
QiQyNQf, V()] <Vi(i)NVu(i) =1 and so QuQ; N Q¢ < Q;. By symmetry, Q,Q; N Q» < Q4 and
thus

Zg<QpNQy < (QiQyNQy) N(QiQyNQy) =QpNQuNQiNQr=QuNRNQs = Zy.
Since |Qp N Qq| =27 = |Q N Qq| and |Qq| = 213 we conclude
Qi=(QvNQa)(QrNQa) < (QvNQa)Qe. (*)

By 8.10 (Qb N Md)QZ/Q; = Og(Mcd/Q:;) and MdeQZ = Mcd~ Thus MbcdeQ; = Mcde~ Also
(QvN Ma)Qi N Mpeac Q) = ((QuNMa) N (Mpeae @) Q) = (Qv N Me)Qj; and and (Qy N M, )Q5/ Q) =
O2(Meq/Q%) N Mege/ Q. Thus by 4.8, MygeQa/(Qp N Me)Qq = Sym(3) x Cz and (Qp N M.)Qa/Qq
has order two and inverts Q5/Qq. Since Q5Q./Qe = Alt(4) and since by (*), QuQe/Qe = (Qp N
Q4)Q./Qe we conclude that Q, N M, acts as a dihedral group of order eight on Z, with Z, mapping
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onto the centre of the Dg. Hence Qp N M, acts transitively on {«a € T'y(e) | [Zb, Za] # 1}, [@b N
My, Z) = Qs My, Cy (Zy)Zf] < Zg, Qu N My < Qg and MygrQa/Qq = Sym(3) x Ca.

Since by (*) (Qy N Mf)Q} = (Qv N QaN My)Q%G = (QaN My)Q%, the last statement follows from

8.10. O
) a b c d e f g

Lemma 8.21 There exists a unique class of nd-paths 1 — 4 — 3 — 4 — 3 — 4 — 1 such that

Labc =96 = L gfe and [Zy, Zy| # 1. Moreover, for any such path, Ch,,(Za) = Maag = Mabedesg,

|Madg| = 24; Manga = 1; QdﬂMadg = Zd7 Maded/Qd = Sym(?’) X 027 g ¢ U?:() X’L(a) and there

B
exists an nd-path p zi —3-2-3— if -3- i with |Maag/Map| =3, a € T'1(d) and Zg < Qo N Mgy,.

Proof. By 8.11 there exists a unique class of nd-paths T - Z — § — Zil with Z abc = 96. Moreover,
by the same lemma Mpca@) = Mea, MapcaQa/Qa = Cnri,10.(Za) and Mapea = Cur,(Za) = Maa.
Thus CVMa_q (Zd) = Madg = Mabcdefg~

By 8.20 / cde = 160, QyNQy = Z4 and QN M, acts transitively on Z,\ M. Thus our path from b
to f is unique up to conjugation and MygrQa/Qa = Sym(3) x Ca. By 4.7 Oo(Ms/Q}) acts regularly
on {a €T (f)| Lefa=32}. By 8.20 Og(Mef/Q}) =(QyNQgN Mf)Q}/Q} =(QaN Mf)Q’}/Q},
so Qp N Qg N My is transitive on the same set and Qq N My, < Q. Similarly Qq N Qf N My is
transitive on the set {ov € T'1(b) | £ cbar = 32} and Qg N My, < Qp. Since (QpNQa)N(QrNQa) = Zg
the uniqueness follows and M,qyQ4/Qa = Sym(3) x Cs. Notice that Cq,nn,(Za) < Qp N Mgy <
QyNQy = Zgand so Qy N My = Zg. Thus Qq N Magg = Qv N Qa N Qy = Z4. Furthermore,
|Madg| = |Map|/(96-6-160-4-32) = 24, Q,N M. < Qp and so QaNMgg = QuNQpNMy = Q.NZg = 1.
Hence Cg,nn,(Za) =1 and Q, N M, = 1.

Suppose that g € X;(a) for some 0 < ¢ < 5. Since |Q, N My| =1, i = 5. It follows from 8.18
that M,, has an elementary abelian normal subgroup A of order 25. If Z, is in A, then 26 divides
|Crt,, (Za)| and if Zg £ A, 23 divides |Ca(Zq)| and so 2* divides |C4(Z4)Za|, and in any case we
get contradiction to |[Maqq| = 24. Thus g € X;(a) for all 0 <1 < 5.

By D.(d) there exist three nd-paths of type 3 —2 — 1 — 3 from ¢ to e in I'(d). Moreover they
are transitively permuted by M q.. Since the elements of order three in Q7 act fixed-point freely on
Qa/Zg and since Z, < Qq, Q5N My < Qq. Thus 03(Madg) £ Q5 and |[Meqe/Q}|3 = 3 implies that
M,q4 acts transitively on those three nd-paths. Let (c, h,i,¢e) be one of them. Then h is adjacent

to b and since Z abc = 96, D, (b) yields a unique nd-path 1- Els - 5 —1- }21 in I'(b) with R;(h) = k.
Let m be the unique vertex of type 3, adjacent to j, h and i. Since k = R;(h), m is adjacent to k.
Since Z gfe =96 and i is adjacent to e and f, Dy(f) shows that there exists a unique n € I's(gf).
Put p = (a,l,k,m,i,n,g). Then Myq = Maagni; and so |Maqe/Mpq| = 3. Since h and i are adjacent
to d, Zg < Maagni = Mpq and Zy < @;. Thus the lemma holds (with o =4 and 8 = n). O
a b c d e f g
Lemma 8.22 There exists a unique class of nd-paths ¢ =1 — 3 — 2 — 3 — 1 — 3 — 1 with
g & U?:o Xi(a). Moreover, for any such path |M,| = 24 and M,/O2(M,) = Sym(3).

Proof. The existence of such a path has been established in 8.21.
Suppose there exists « € I'y(bed). Then by 8.5 z is adjacent to a and e, a contradiction to 8.19.

So Vi(c) N V4(c) = 0 and the path 1— § - § — 1is as in 8.9.

Suppose that Z; N M, N Qs # 1 and pick « € T's(de) with Z, < ZzN M, N Q. Then z is
adjacent to ¢ and Z, < Q.. Since Q.NM, < Qp we get Z, < Qp. Thus by 8.8, V,.(¢)NV,(c) #0. In
particular, there exists y € I'y (bex). Since Z, < Qy, 8.3 (iii) implies also that / fex # 1344 and so

T z u f
by Dy(e) there exists a path 4 — 3 — 4 — 3 in I'(e). Then g is adjacent to u. Put v = Ry(c). Since
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¢ is not adjacent to a, 2.6 applied to I'(b) implies that v is adjacent to a. Clearly v is also adjacent
t
to . By D.(z) there exists a path 2-3-1-3in I'(z). Then u is adjacent to ¢ and g. Pick

s € T'4(avw). Then s is adjacent to ¢ and we found a path 1—4- i — 4 1. Since g & U?:o Xi(a)
this must be an nd-path, a contradiction to 8.19.

Hence Zg N M, N Qs = 1. If Zdef # 2688, then Dy(e) and 8.3 (iii) imply |Zq N Qf| > 4.
By 8.9, |Zg N M,| = 4. Since |Zy| = 8, the latter means that Z; N Qs N M, # 1. So Zdef =
2688, |Zd n Qf| = 2 and by 8.9, M,.Q. = N]\/Ide(Zd N Ma). Put X = CMd,e(Zd)~ Then by 3.5
Mges X = Ny, (Za N Q) and Mgep/Qe = Sym(4). It follows that Mgy acts transitively on
{A< Zy | |Al = 4,ANn Q5 = 1}. Moreover, Ny, ;(A)/Qc = Sym(3) for any such A. Thus both
Nu,. (Zg N M,) and M, act transitively on {f € T's(e) | Zdef = 2688,Z; N M, N Qs = 1} and
MuerQe/Qe = Sym(3) = Maes/O2(Mger). Moreover, Q. = (Zg N My)(Qe N Q) and so Zg N M,
acts transitively on T';(f) \ {e}. Thus our nd-path from a to g is unique up to conjugacy and
M,yQ./Qc = Sym(3) = M,/Os(My). Finally, |[Mabcdesg| = [Mae|/(3 - 2688 - 4) = 24 and the lemma
is proved. O

Let Xg(a) = gMa, where g is as in 8.21 or equally well as in 8.22.

Lemma 8.23 (i) Let g € X¢(a). Then |[Myg| =2%-3-11-23, M,, has two orbits on I's(g) and
acts transitively on {{p, p?s} | p € Ta(g)}.

(i) |Xg(a)| =2'8-32.5.7 = 82,575, 360.

Proof. Let (a,b,c,d,e, f,g) and p be as in 8.21. Then by 8.21 and 8.22, |M,q,| = 24 = |M,],
Madag/Zq = Sym(3) x Ca, [Mpa| = 8, Cn,,(Za) = Maag, Mp/O2(M,) = Sym(3) and Mg N Q4 = 1.
Put A = M, N Qq, then by 8.21, Zg < A. Hence A is a nontrivial normal 2-subgroup of M,
and Cpy,(A) < My is a 2-group. Since |Oz(M),)| = 4 we get that A is elementary abelian of
order 4 and that M, = Sym(4). Thus Mg, is a dihedral group of order 8 and so Nyy,, (M) <
Cr,,(Z4). In particular, Mg is a Sylow 2-subgroup of M,,. Moreover, there exists ¢ in M with
(a,b; ¢, dye, f,9)" = (g, f,e,d,c,b,a). Notice that ¢t € My and so ¢ normalizes Myqy. Thus we may
assume that M(ﬁp = Mgp.

We claim that AN A = Z;. Clearly Z; < AN A'. By 821 « is adjacent to d and since
t € My, also o' is adjacent to d. Since d(a, g) > 2, a # af. We claim that Q, N Q% < Q4. Indeed if
I3(adat) = O, ie. if Lada' = 16, then Q,NQ?, < Ox(Muygat) < Qa, and if § € T's(adat) 8.6 implies
QaﬁQg = Zs5 < Qq. By 8.21, Qdeag = Z; and so AN At SMagﬂQaﬁQg SMangd < Zg.

In particular, A # A'. Put E = O3(Maq,). Since Myaq/Zq = Sym(3) x Cs, |E| = 4. Moreover,
t normalizes E and so A # E # A', E = Cy and M,q, is a dihedral group of order 24. Let
D = O3(Mady) and note that ED = Cyy,,(ZaD). Since D centralizes Zg, 3.1 implies Cyy, /q, (D) =
C3 x L3(2). Now a subgroup of L3(2) with a centralizer of an involution a cyclic group of order four
clearly is a cyclic group of order four and so Cyy,, (D) = DE. In particular, D is a Sylow 3-subgroup
of M,,. Note that all involutions in M, are contained in AU A" and so conjugate into Z; under M,
and M;,, respectively. Thus M,, has a unique class of involutions. Let z be any involution in Mg,
and put C(z) = MaagNCh,,(2). If 3 divides |C(2)], z € Cp,, (D) = DE and z € Z;. Hence exactly
one of the following holds: z € Mgy, |C(2)| = 2 or C(2) = 1. Moreover, if C(z) = (y) for one of the
twelve involutions y € Maay \ Za, then z is one of the ten involutions in Cyy,, (y) \ Magg. Thus, if r
is the number of involutions in My, i.e. 7= |Myy/Mgaql, then 7 = 13 4+ 12 - 10 4 24s = 133 + 24s
for some non-negative integer s. On the other hand, since |M,/Q,| = 2'°-3%-5.7-11-23, r divides
5-7-11-23 and we conclude that r = 11-23 or r = 5-7 - 23. The latter case is impossible by
Burnside’s p-complement theorem for p = 23 and so r = 11 - 23.
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Hence |M,,| = 23-3-11-23. In particular M,q, and M, are maximal {2, 3, 5, 7}-subgroups of M.
Since both My, and Mg, are {2, 3,5, 7}-groups we conclude that My ;g = Maqq and Mg, = M.

Since [T'2(aBg)| = 3 we can choose « € I'y(afg) with Mg, < M,. Since the non-trivial elements of
odd order in Mg, act fixed-point freely on I's(g) we conclude that Myg, = Map = Magy = Mag(z,y}
where y = Ry(x). In particular, |Mag/Mag.| = 759 and the lemma is proved. O

We remark that using the list of maximal subgroups of Mate4 or the classification of groups with
dihedral Sylow 2-subgroups it is not difficult to see that M,, for g € X¢(a) is isomorphic to Lo(23).
But we will not need this fact.

Lemma 8.24 Let g € T'y with d(g,a) = 3. Then g € X5(a) U Xg(a).

Proof. Pick e € T'y with d(e,a) =2 and e ~ g. If e € X5(a), then g € X5(a) by 8.18 (iii). If
e € X3(a) then g € X5(a) U Xg(a) by 8.22.

a b c d
So we may assume that e € X4(a). In particular, by 8.13 there exists an nd-path 1 —4 — 3 — 4

e f d h i § f
—1-3—1 with Z abc = 96 = / ede. By Dg(e) there exists a path 4 — 2 — 3 — 9~ 3in T'(e). Note
that Z cde = 32 and so by 4.7 there exists k € I's(deh) with Z cdk = 40. Thus by D.(d) there exists
I € Ty(cdk). Then [ is adjacent to b by 8.5. By D,(b) and Z abc = 96 there exists m € T's(abl) and

k h i
so a ~ . Considering the path 3 — 2 — 3-2-3in T'(e) we see in Dg(e) that Z kef # 2688. Thus
by 8.13 applied to (g, f,e, k,1), I € X,(g) for some 0 < r < 3. Thus, by the first paragraph of the
proof ( applied to (g,l,a)) in place of (a,e, g), a € X5(g) U X6(g) and the lemma is established. O

Lemma 8.25 Let z € I'y. Then d(a, z) < 3. In particular, T'y = U?:o Xi(a).

Proof. Suppose not. Since (I'1, ~) is connected, there exists z € 'y with d(a, z) = 4.

a b c d e f z
We claim that there does not exist an nd-path 1 —4 —1—3 — 1 — 3 — 1. If such a path exists
then d(a,e) = 3 and d(c,z) = 2. By 8.15 and 8.13 this means that Zabc = 16, Zbcd = 2880 and
c € Xo(2) UX3(2) UXy(2).

b c
Suppose first that ¢ € X5(z). Then there exists p € T'y(cz) and we found an nd-path (i —4-1
— 4 — 1. Hence by 8.19, d(a, z) < 3, a contradiction.

Suppose next that ¢ € X3(z) and choose an nd-path 1-3- S — 3 — 1 with Vg(h) NV;(h) = 0.
By Dy(c) there exists j € I'a(cg) with Zbcj # 384. Replacing j by R.(j) if necessary, we may
assume that j = Ry(h) for some k € T'y(gh). (Indeed, we may assume Q.(g) = 1,Qn(g9) = {1,2}
and Q;(g) = {2,3} or {4,5}. Replacing j by R.(j) in the first case we may assume that the second
case holds and so k € T';(g) with Qx(g) = 3 does the trick.) Pick I € T'y(khi). Then [ is adjacent
to j and z. Since ¢ € X3(z), I'4(cz) =0 thus [ is not adjacent to c. Let A = {V,(j)/V.(j) | = €
Ts(cj), Va(j) < Ve(d) + Vi(5)} and © = {V,.(4)/Ve(j) | € T'3(cj), £ bex # 2880}. Then A is the set
1-spaces in a 3-subspace of V' (j)/V.(j). Moreover, since / bcj # 384 we get from Dy(c), that © is
the set of 1-spaces in a 3- or 4-subspace of V(5)/V.(j). Thus |©NA| > 3 and there exists m € I's(cj)
with m # g, Z bem # 2880 and V,,,(j) < Ve(y) + Vi(4). In particular, V;,,(j) N Vi(4) = Vi, (j) for some
n € Ly(mjl). If n =k, Vy(j) = Vi(j) + Ve(j) = Vin(j), a contradiction to m # g. Thus n # k and
there exists a unique o € I's(kjn). Since V,(j) = Vi(j) + Vo (§) < Vi(4), o is adjacent to I. Since
h = Ry (j), o and 7 are both adjacent to [ and h. Hence there exists p € I';1(ihol). Put ¢ = R,(h).
Since n is adjacent to j and o, n is not adjacent to h = Ry (j) by 2.6 applied to I'(0). Since also
p € I'(0), n is adjacent to ¢ = R,(h). Similarly, since z is not adjacent to h, we see in I'(¢) that z is
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adjacent to ¢q. Hence there exists r € I's(ngz) and we found an nd-path1 —4—-1-3 —-1-3-1
with / bem # 2880, a contradiction to the second paragraph of the proof.

Suppose finally that ¢ € X4(z) and choose an nd-path 1-4- g — 4 1with Z cgh = 96 = / zih.
Regard T'3(cg) as l-spaces and T's(cg) as the isotropic 2-spaces of a four dimensional symplectic
space S over GF(2). With the help of Dy(c) we will show that there exists y € I's(cg) such that
/ bem # 2880 for all m € I's(cgy). Indeed, if Z beg # 1440 choose y such that y is adjacent to b. If
£ beg = 1440, there exists u € I'a(cg) such that v € I's(cg) is perpendicular to w in S if and only if
£ bev # 2880. Choose y = u in this case. By 4.7 there exists m € I's(cgy) with £ ghm = 40. Hence
by Dj,(g) there exists n € I'1(mgh). Then n is adjacent to h and ¢ and since Z zih = 96, there exists

r € I's(hnz) and again we found an nd-path 1- fl —1-3—-1-3—1 with Zbem #+ 2880, a
contradiction.

This completes the proof of the claim. Pick g € T'; with ¢ ~ z and d(g,a) = 3. By 8.24,
g € X5(a) U Xg(a). By the claim g € X5(a) and so g € Xg(a). Pick an nd-path 1- § - § —1
with d(e,a) = 2. Let j € I's(ghz). Then by 8.23 there exists ¢ € M,, such that j* is adjacent to f
and so f! ' is adjacent to j. Replacing (e, f) by (¢!, f' ') we may assume that f is adjacent to j.
Since Vy4(j) < Vi(5) N Vi(4), there exists k € I'y(fjh). Then k is adjacent to e and z and we get a
contradiction to the claim applied with the roles of @ and z interchanged. O

Theorem 8.26 Let M be a faithful completion of the Jy-triangle of groups (M, Ms, M3) and let
My be as above. Then

(i) M has seven orbits on M /M. The lengths of these orbits are 1; 22-3-5-11-23 = 15,180; 2%.7-
1123 = 28,336; 27-3.5.7.11-23 = 3,400, 320; 211.32.7.11.23 = 32, 643,072; 2'1.3.5.7.11.23 =
54,405,120 and 2'8.32.5.7 = 82,575, 360.

(ii

(iii

) M| =2%1.3%.5.113.23.29-31-37-43 = 86,775,571, 046,077, 562, 880.
1s simple.

) M i pl

(iv) Let 1+ z € Z(My). Then Cp(z) = My.

Proof. (i) follows from 8.25, 8.6, 8.14, 8.18 and 8.23 and (ii) follows from (i).

(iii) Let N be a normal subgroup of M. If NN M; # 1 for some 1 < i < 3 we conclude that
Z4 < Z; < N (notice that Z; = @1 and Zy = @Q3). Hence Q2 = <Zi\42> <N, M; = 341) <N
and for j = 2,3, M; = (Mfgj]) < N. Thus M = N. So suppose that M; N N = 1 for all i. Let
1 <i<j<3. Then M;; is a maximal subgroup of M; and M; is not isomorphic to an overgroup
of M;; in Mj;. Thus M;N N M;N = M;; N and so M/N is a faithful completion of a Jy-triangle. By
(ii) |IM] = |M/N| and so N = 1.

(iv) Let t € Cp(2) and put a = My, b = Myt = a® and ¢ = My. Then z € Q, N Qp and
so by 8.21, 8.18, 8.12 and 8.9, b € X;(a) for some 0 < 7 < 2. It is now easy to check that
{d€T4(b) | Za < QaNQp}t =T4(a,b). Thus ¢,ct € T'y(a) and Z, = Z! implies ¢ = ¢* and t € My.0
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