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Introduction

Let G be a group and I" a collection of nilpotent subgroups of G satisfying:

(C) PieTl forPel andg e G.

(I) PNQerl for PQeT.

(P)  Np(@Q):-No(P)€T for PQET,

(MM) The minimum and the maximum condition hold for T’
(i.e. each non empty subset of ' contains a minimal and
a mazimal element with respect to inclusion of sets).

Then we call I" a nilpotent subgroup system of G (NSS for short) and the
members of I' we call I'-subgroups of G (here P9 := {29 | x € P}, where
19 := g lxg, is a conjugate of P and Nx(Y) is the normalizer of Y in X).

The set of all nilpotent subgroups of a group is an example of a system
satisfying (C), (I) and (P). Examples of NSS’s are the set of p-subgroups
of a finite group (p a prime), the set of closed unipotent subgroups of an
algebraic group, and the set of maximal cyclic subgroups plus the trivial
group in a free group.

To state our main theorem we introduce a good portion of the notations
used in this paper. Let 3 be a set of subgroups of G.

¥* is the set of maximal elements of ¥ (with respect to inclusion). The
elements of ['* are called mazimal I"-subgroups.

Y, 1s the set of minimal non-trivial elements of . The elements of T,
are called minimal I"-subgroups.



If U is a subgroup of G set XU :={A e ¥ | A<U}.

R(T) := (N pep« P is called the radical of T,

If R(I') =1 the NSS T" is called reduced.

Let P €. Then I'p := {T" € Np(P) | TP €T} is the residue of P in T
It turns out that I'p is an NSS for Ng(P), see Proposition 2.8(1).

Set P° := R(I'p) and call P closed if P = P°.

Note that by (MM) any chain of I'-subgroups is finite. Let rank(I") be
the supremum of the lengths of chains

Pb<P<...<P,

of closed I'-subgroups. (The length of such a chain is n).

Q(P) := (I'.P) is the subgroup of P generated by the minimal I'-subgroups
of P.

P is called decomposable if P = Q(P).

w(P) is the length of a maximal chain in I'P. By Proposition 5.2 this is
well defined. p(P) is called the measure of P. If @ € TP, then u(P/Q) =
w(P)—u(Q). By Proposition 5.4(1), this is the length of any maximal I'-chain
from @ to P.

Let A € I'p. If [P, A]A] = 1, we say that A acts quadratically on P. If A
and P both are decomposable abelian I'-subgroups, [P, A] # 1 and

p(P/Cp(A)) < p(A/Ca(P))

then A is called a non-trivial I'-offender on P. Note here that by Proposition
4.7 both Cp(A) and Cy(P) are I'-subgroups.

Let V' be a normal I'-subgroup of G with V' < Q(Z(R(I")) and put W =
V/Cy((T')). We say that W is a natural SLa-module for T' provided that

(i) W is the set of points and {wCw (S) | S € I'*} is the set of lines of an
affine Moufang plane;

(ii) For each S € I'*, Cs(W) = R(I") and S induces the group of shears on
W with axis Cy (5); and

(iii) (I') induces on W the subgroup of a point stabilizer (of the point 1)
generated by all shears.

We say that N € I'is large in I" provided that N is closed and Cp(N) <
N for all P € T'y.



A theorem of Glauberman’s [5, Theorem 2] characterizes finite two di-
mensional special linear groups as groups acting on p-groups with certain
features. The object of the present paper is to prove the following general-
ization of Glauberman’s Theorem:

Theorem A Let G be a group with an NSST'. Assume:
(a) rank(l') = 1.
(b) V is a normal I'-subgroup of G with V- < Q(Z(R(I'))).
(c) S eT* and [Cq(V),S] < R(T).
(d) S contains a non-trivial I'-offender on V.
(e) R(T") is large in T.
Then V/Cy((I')) is a natural S Ly-module for I

It is well known that an affine Moufang plane is isomorphic to a plane
whose point set consists of the ordered pairs of an alternative field or a skew
field K and whose lines are the point sets L(a,b) := {(z,x-a+b) |z € K}
and L(c) :== {(c,y) | y € K}. Then for example shears with axis L(0) are
the mappings (z,y) — (z,z - d+y) (see [4] page 128 ff. and the literature
quoted there).

For the proof of Theorem A see section 6 and 7 and for other main results
of this paper see section 8.

We would like to thank G. Glauberman for pointing out an error in an
earlier version of this paper.
1 Preliminaries

In this section we collect some elementary results about nilpotent groups.
We start with some well known commutator properties (see for instance [6]).

Proposition 1.1 Leta,b, c be elements, A, B, C' subgroups and N a normal
subgroup of a group. Then

(1) [a> bc] = [CL, C} [av b] Hav b]v C] = [a’ C] [CL, b]c
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(2) lab,c] = [a, c][[a, c],b][b, ] = [a, ]"[b, (]

(3) la,b] = [b,a]™! = [b,a™'][[b,a""], d]

(4) ablb, a] = ba

(5) [1B,C], A] C N and [[C, A], B] € N imply [[A, B],C] C N.
(6) A, B] is a normal subgroup of (A, B).

Proposition 1.2 Let G be a group, V an abelian normal subgroup of G, U
a subgroup of V and g € G with [[V,g],g] = 1. Then the following hold:

(1) {[u.g] | u €U} is a subgroup of V
(2) UU* =UU, g]

(3) UUY = U x [U, g] if and only if U N U? = Cy(g)
(4) Cuus(g) = Cuaus(9)[U, g]

Proof. These properties are applications of Proposition 1.1. O

Proposition 1.3 Let A and B be subgroups and let N be a normal subgroup
of the group G. Then

[N, (A, B)] = ([N, A, [N, B]).

Proof. Obviously the right hand side is contained in the left hand side.
Conversely, by Proposition 1.1(6) M := ([N, A], [N, B]) is a normal subgroup
of (A, B, N) contained in N, as N is a normal subgroup. Now N/M is
centralized by (A, B), whence [N, (A, B)] C M. O

Let A be a group acting on a group D. We say that A acts nilpotently
on D if [D, A k| =1 for some k (where [D, A,0] := D and [D,A,i + 1] :=
[[D, A, ], A]). The minimal such k is called the nilpotence length of A on D.
For a group G let Lo(G) = G and L, 1(G) = [L;(G), G].

Lemma 1.4 (1) Suppose A acts nilpotently on D. Then A/Cs(D) is
nilpotent.



(2) Suppose G acts on D;A < G and B < Ng(A). If A and B act nilpo-
tently on D, so does AB.

(8) Let N be normal in G. Then G is nilpotent if and only if G/N is
nilpotent and G acts nilpotently on N.

(4) Let G = AB, where A and B are nilpotent subgroups of G, and A is
normal in G. Assume N is a normal subgroup of G with N < AN B
such that G/N s nilpotent. Then G is nilpotent.

(5) Let A, B be normal in G such that G/A and G/B are nilpotent. Then
G/AN B is nilpotent.
Proof. (1) See [7, Corollary to Theorem 3.8]

(2) By induction on the nilpotency length of A on D [[D, A], AB,i| = 1 for
some i. Alsoif [D, B, j] =1, then [D, AB, j| C [D, A] and so [D, AB,i+j| =
1.

(3) One direction is obvious. So suppose G/N is nilpotent and G acts
nilpotently on N. Then Li(G) < N for some k and [N, G,i] = 1 for some i.
Thus Li:(G) = 1.

(4) Since N < AN B, both A and B act nilpotently on N. By (2) G acts
nilpotently on NV and so (4) follows from (3).

(5) Let k be the maximum of the nilpotency classes of G/A and G/B.
Then Ly(G) < AN B. O

Proposition 1.5 Let P and @) be nilpotent subgroups of the group G with
Q C PCg(P). Then PQ is a nilpotent subgroup of G.

Proof. Clearly P is normal in PQ) and P(@) acts nilpotently on P. Also
PQ/P = Q/QNP and so PQ/P is nilpotent. Hence the lemma follows from
Lemma 1.4(3). O

Proposition 1.6 Let X be a proper subgroup of the nilpotent group G.
(1) X is contained in a proper normal subgroup of G.

(2) X is a proper subgroup of Ng(X).
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(3) If No(X) = Ng(Ng(X)), then X is normal in G.
(4) (X% is a proper subgroup of G.

Proof. Well-known. a

Proposition 1.7 Let H be a nilpotent group of class k and x,y € H, where
x is an element of order p, p a prime. Then [x,ypk+1] = 1.

Proof. By induction on k , [x,4?"] € Z(H). Then by Proposition 1.1

k41
].

1= [a?, 9" = [2, """ = |2, y"

Proposition 1.8 Let X be a subgroup of the group G and let U and A be
subsets of G with U C X. Then (UA)NX =U(ANX).

Proof. Let uw € U and a € A with ua € X. Then a € AN X, hence
(UANX CUANX). Ifde AnNX thenud € (UA)NX asU(ANX) C X.
Thus U(AN X) C (UA)N X and Proposition 1.8. O

2 Basic Properties of NSS’s

In this section G is a group with an NSS I" with 1 € T.

We remark that (MM) allows us to prove statements about I' by induc-
tion. Namely suppose given a statement S about I'-subgroups. Suppose also
that if P € " and S is true for all Q € I" with Q < P, then § is also true
for P. Then S must be true for all P € T'. Indeed the set of I"-subgroups for
which § is false, does not have a minimal element and so is empty.

Note also that (I) and (MM) imply, that arbitrary intersections of I'-
subgroups are I'-subgroups.

Lemma 2.1 Let P,QQ € I'. Then Np(Q) € T.



Proof. Note that No(P)NP C QNP C Np(Q) and so by Proposition 1.8

(Np(Q)Nq(P)) NP = Np(Q)(No(P)N P) = Np(Q).

By (P) and (I) the left hand side of this equation is in I'. O

Proposition 2.2 Let P,Q € ' such that Q is a minimal element of {T €
['| P<T} orthat P is a mazimal element of {T € I' | T < Q}. Then P is
normal in Q).

Proof. Note that the two conditions are actually equivalent. So suppose
the first. By Lemma 2.1 P < Ng(P) € I' and so @ = Ng(P) by minimality
of Q. a

Proposition 2.3 (1) If A is a nonempty subset of I', then (\yca X €T
and (xea X = Nxea, X for some finite subset Ay of A.

(2) If A is a set of normal T'- subgroups of G, then (A) € T.
(3) If U is a subgroup of G, then T'U is an NSS of U.

(4) P° €T forall P €. In particular, R(I") is a normal I'-subgroup of
G.

(5) If S €' and P € I'S\{S}, then P C (I'pS).
(6) If (A) is nilpotent for A C T, then (A) € T.
(7) R(I') = {Nyer- Nr(T)).

(8) Let S € I'* and A € I'(SCs(S)). Then A< S.

(9) Let S C G be nilpotent and put A = (I'S). Then A € T, T'*S = {A}
and A is normal in Ng(95).

Proof.

(1) By (I) intersections of the members of finite subsets of A are elements
of I'. Then (1) follows from the minimal condition for I' applied to the set of
intersections of the members of finite subsets of I



(2) If N and M are normal I'-subgroups then NAM € I' by (P). Hence
finite products of elements of A lie in I, and (2) follows from the maximal
condition for I'.

(3) is obvious by the definition of an NSS.
(4) is a consequence of (1).
(5) By Proposition 1.6(2) P < Ng(P) and by Lemma 2.1 Ng(P) € T'.

(6) Let S = (A) and without loss A = I'S. Let P € A*. If P is not normal
in S, then Proposition 1.6(c) there exists € Ng(Ng(P)) with P # P*. By
(C) and (P) we get PP* € I'S, a contradiction to the maximality of P. So
P is normal in S. Thus by (2) S = (A) = (A*) €T

(7) Let

A= () Ne(T)={A€T | A< Ng(T)VT € T*}.

Ter*

We claim that |A*| = 1. Indeed, let X, Xy € A* and pick T; € I'* with
X; <T;. By (6), (AT;) € I" and so the definition of A implies (AT;) € A. The
maximality of X; implies X; = (AT;). Hence X; < Ng(Tz) < Ng((ATy)) <
Ng(X3). So X; normalizes X3 and X5 normalizes X;. Thus by (P), X; X5 €
I'. Hence also X; X, € A and X; = X5

So indeed |A*| = 1. Let N be the unique element in A*. Then N is
normal in GG. Let T' € I'*. The definition of A implies that N normalizes T
So by (P), NT € I'. Thus N < T and N < R(I'). Clearly R(I') < N and
(7) holds.

(8) Obviously S is contained in the right hand side of this equation. Let
P € I'(SCs(S)). Then SP is nilpotent by Proposition 1.5 and therefore
SP €T by (6). Hence P C S because S is maximal.

(9) By (6) we get A € T', which implies ['*S = {A}, and by (C) A is
normal in Ng(S5).
O

Definition. A subset A of I' is called a sub-NSS of I' and we write
A < T provided that:

(Suba) If A€ and B € A with A C B then A € A.
(Subb) If A, B € A with (A, B) € T then (A, B) € A.
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(Subc) If A, B € A then AP C A.
Lemma 2.4 Let A <T', then A is an NSS for (A).

Proof. (C) follows from (Subc). Let P,Q € A. Then since (I) holds for
I', PNQ € TI'. So by (Suba), PNQ € A. So (I) holds. By Lemma 2.1, Np(Q)
and Ng(P) are I'-subgroups. So by (Suba), they are also A-subgroups. By
(P) for I', Np(Q)Ng(P) € I' and so by (Subb), Np(Q)Ng(P) € A. Thus
(P) holds. (MM) follows from (MM) for I'. O

Lemma 2.5 Let A <T.
(1) R(A) € A, and R(A) is normal in (A)
(2) If A€ A then AR(A) € A .
(3) A < Tray-
(4) Let A < A. Then
(1)) R(A)NS =R(A)NR(A) for all S € A*.
(i) R(A) NR(A) is the unique mazimal A-subgroup of R(A).
(#ii) A-subgroups of R(A) are contained in R(A).
(5) Let A < A with R(A) € A. Then R(A) < R(A).
(6) Suppose that A < A < Tg(ay and R(A) € A. Then R(A) = R(A).
(7) R(A) is closed in T if and only if R(A)° € A.

Proof.
(1) follows from Proposition 2.3(4) applied to the NSS A.

(2) By (MM) there exists S € A* with A C S. By Proposition 2.3(6)
AR(A) € T" and so by (Subb), AR(A) € A.

3) Follows from (1) and (2).

(
(4) Let S,T € A*. By (2), TR(A) € A and so by Proposition 2.3(6)
also T(R(A) N S) € A. By (I) and (Suba), R(A) NS € I' and so (Subb)



implies T(R(A) N'S) € A. Thus by maximality of T, R(A)NS C T. So
R(A)NS CR(A). So (i) holds. (ii) and (iii) follow from (i).

(5) Follows from (4).

(6) By (5) R(A) < R(A). Note that R(A) € A < A. Thus R(A) is a A-
subgroup of R(I'r(x)) and so by (4)(iii) applied to A < I'r(ay, R(A) < R(A).

(7) If R(A) = R(A)°, then R(A)° € A by (1). So suppose R(A)° € A.
Then by (5) applied to A < I'g(a), R(A)° < R(A). So R(A) is closed. O

Lemma 2.6 Let P € A <T such that P=R(I'p N A). Then

(1) R(A)C P
(2) If T% N A # D, then R(A) is closed.

Proof. Let T = R(A).

(1) Since P € A, Lemma 2.5(2) implies PT" € A. Hence by Lemma
2.1, Np(P) € A. Let S € (I'p N A)*. Then again by Lemma 2.5(2), ST €
A. Hence by Proposition 2.3(6), Np(P)S € I'p N A. By maximality of S,
Nr(P) € S. Thus Np(P) < R(I'eN'A) = P. Since TP is nilpotent we
conclude T' C P.

(2) By Lemma 2.5(3), A <T'z. Thus
(*) FPHASFPQFTSFP

Let @ = R(I'p N I'r). By assumption there exists S € I, N A. Then
S e (pnTy)* and so @ C S. Hence by (Suba), @ € I'p N A. By (%)
we can apply Lemma 2.5(6) (with A = Tp NA and A = I'p N T'7) Thus
Q =R(I'pnNA)=P. Soby (1) (applied to Iy in place of A), T° C P and
thus 7° € A. By Lemma 2.5(7), T'= R(A) is closed. O

Corollary 2.7 Suppose that N € T' is closed and I'y < A < T'. Then
R(A) < N and R(A) is closed.
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Proof. Since N is closed and I'y = I'yNA we have N = R(I'yNA). Also
I'v €Ty € Aand so Iy NA # (). Thus the Corollary follows from Lemma
2.6. O

Definition. If @ is a normal I'-subgroup of G' contained in R(I") we
define

I'/Q={PQ/Q|Pel}.
Note that I'/Q = {P/Q | Q@ < P €'},

Proposition 2.8 Let L € I'. Then the following hold:
(1) T'p resp. T'p/L is an NSS of Ng(L) resp. Ng(L)/L.
(2) L <L
(3) I' = I'rry.

(4) R(FL/L) = R(T)/L.

(5) T'/R(T") is reduced.

(6) L is closed in T if and only if 1 is closed in T'f/L.
(7) If L is closed then L =({S € I'™*| L C S}.

(8) T, CTpo.

(9) If M € T with Ty, < Ty, then Ny (L) < L°. If in addition L° < M,
then L° = Ny (L).

(10) There is some (not necessarily uniquely determined) closed I' -subgroup
M with L C M,T';, C Ty and L° = Ny (L).

(11) L° = Npeo(L).

(12) Let S € T and L be a normal I'-subgroup of S. Then L° = L°° is
closed.
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Proof.

(1) Let P,Q € T';. Then (PN Q)L € PLNQL € T by (I). Hence (P N
Q)L € I" by Proposition 2.3(6) and PNQ € I'y. Similarly Np(Q)Ng(P)L C
Npr(QL)NorL(PL) € T by (P) and therefore Np(Q)Ng(P)L € I" implying
Np(Q)Ng(P) € I',. Condition (MM) is satisfied for I'y, as I'y, C T, and
(C) follows for I';, as (C) holds for I' and thus P/L € ' if P € I';, and
g € Ng(L). Thus I';, and I', /L are NSS’s.

(2) and (3) are obvious.

(4) follows from (I'y/L)* =T1*/L:={S/L|S eI}
(5) is a consequence of (4).

(6) is clear by (5) and (2).

(7) Put D := ({S € I | L C S}. Let T € I'} and pick S € I'
with 7 C S. Then T' C Ng(L) € I'y, by Lemma 2.1 and so T' = Ng(L).
Since D C S we conclude Np(L) € T. As this is true for all T € I'},
Np(L) CR(I'y) = L. Since L C D and D is nilpotent, L = D.

(8) If P € I'y, then there is @ € I'; with P C @, hence PL° € T'Q C T’
by Proposition 2.3(6), and P € I'f..

(9) Note that Ny (L) € I'p, and Ny (L) < M < R(I'ps). Thus by Lemma
2.5(4), Ny (L) < R(Tp) = L°. If L° < M, then L° < Ny (L) < L° and so
L° = Ny(L).

(10) Let M in I' be maximal with respect to L° < M and I'y C I['y.
Note that by (2) and (8) such an M exists. By (2) and (8) applied to M,
L° < M < M°andI'y, CTI'y; CTI'jo. Thus the maximal choice of M implies

M = M°. So M is closed. By (9), Nj(L) = L° and all parts of (10) are
verified.

(11) Follows from (2),(8) and (9).

(12) As S € I'" we get S € I'} . It follows that L° is normal in S and thus
L°° < S. Hence L is normal in L°°. So by (12) L° = Npe (L) = L*°.
O

Lemma 2.9 Let N € T and P,QQ € I'y. If [Cp(N),(P,Q)] C N then
No(P)P €T.
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Proof. By Lemma 2.1 we may assume that Q = Ng(P). So () normalizes
P. Since PN and QN are in I' they are both nilpotent. So P and
act nilpotently on N. By Lemma 1.4(2) P@ acts nilpotently on N. Thus by
Lemma 1.4(1), PQ/Cpg(N) is nilpotent. Also PQ/P = Q/QNP is nilpotent
and so by Lemma 1.4(5) PQ/Cp(N) is nilpotent. Since [Cp(N), PQ] C N
we get that PQ) acts nilpotently on Cp(N). Thus the assertion follows from
Lemma 1.4(3). O

Proposition 2.10 Let G = (A, B), where A and B are nilpotent subgroups
of G. Assume A € I, N is a normal subgroup of G, N C ANB and G/N is
nilpotent. Then G is nilpotent.

Proof. By (MM) A can be chosen maximal fulfilling the assumptions of
the Proposition. Then by nilpotency of G/N and (P) A is normal in G and
Proposition 2.10 follows from Lemma 1.4(4). O

Proposition 2.11 Let S € T'* be fized.

(1) Let T € T*\{S} such that SNT is mazimal. Then SNT is closed.

(2) Let T € T*\{S}, then there exists a closed I'-subgroup P with SNT <
P <S.

Proof. (1) Set P := SNT Then P°Ng(P) € ' by definition of I'p and
1.10(6). Therefore there is X € I' with P°Ng(P) C X. By maximality of
S, S ¢ T and so P < S. Hence by Proposition 1.6(3), P < Ng(P) < XNS.
By maximality of P, X = S. Thus P° < S. Note also that Np(P)P° <Y
for some Y € I'*. Since P < Np(P), Np(P) £ S and so Y # S. Thus by
maximality of P, Y NS = P. Since P° <Y NS we get P° = P and P is
closed.

(2) Let T* € I*\{S} with SNT < SNT* and S NT* maximal. Then
S NT* is closed by (1). O

The following statement is a variant of Baer’s famous theorem [1].

Theorem 2.12 Let X € T such that (X,X9) € T for all g € G, then
(X% eT.
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Proof. Set A := X% and assume (A) ¢ T'. Then there are Q = (AQ) € T’
and R = (AR) € I' with (Q,R) ¢ I". Choose @ and R such that D :=
(A(Q N R)) is maximal. Suppose that ANg(D) = A(Q N R). Then

No(No(D)) < No({ANq(D))) = No(D)

and so by Proposition 1.6(3), Ng(D) = Q. But AQ # A(Q N R), a con-
tradiction. Thus there exists A € A with A £ Ng(D) and A < D. Sim-
ilarly there exists B € A with B < Ng(D) and B £ D. By assumption
(A, B) € I'. By Proposition 2.10, applied with AD,BD and D in place of A,
B and N, P := (A, B, D) is nilpotent. Since D < AD < @ N P, the max-
imality of D implies (Q, P) € I'. Similarly (R, P) <T. But (R,P,Q) ¢ T
and D < P < (R, P) N {(Q, P). This contradiction to the maximality of D
completes the proof of Theorem 2.12. O

3 NSS’ of rank 1 and 2

As in the previous section let G be a group with an NSS T'.

Theorem 3.1 Suppose [I'*| > 1. Then following properties are equivalent:
(a) rank(l') = 1.
(b) SNT =R(T) for S,T € I'* with S #T.
(c) SNSY=R(T) for S € I and g € G\Ng(S).

Proof. Suppose (a) holds. Let S,T € I'* with P = SN T maximal. Then
P is closed by Proposition 2.11. and so R(I') < P < S is a chain of closed
[-subgroups. Since I' has rank 1, we get P = R(I"). Thus SN7T = R(I") for
all S T € I' and so (b) holds.

From (C) we get S9 € I'* for S € I'* and g € G. Thus (b) implies (c).

Suppose that (c¢) holds. Let P be a closed I" subgroup. We will show that
P =R(I') or P € I'* and note that this implies (a).

Assume that [I'%,| = 1. Since P is closed we get P € T'5. Let P < S € T,
Then P < Ng(P) € I'p and so P = Ng(P) and P = S.

Suppose next that [T > 1 and let @ # T € T'. By (P) applied to
the NSS I'p, we may assume that T" does not normalize (). Let Q < S €
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['*. Then Q < Ng(P) € T'p and so by maximality of ), @ = Ng(P).
Thus Ng(P) N Ng(S) < Ng(Q). Since T normalizes P but not @) we get
T ¢ Ng(S). Pick g € T with S # S9. Then P < SN S = R(I') and so
P < R(I"). By Corollary 2.7 R(I') < P and so P = R(I"). O

Lemma 3.2 Suppose that N is large in I' and P,Q € I'y
(1) NQ(P)PEFN
(2) If P € Iy, then No(P) < P and 'y NI'Ng(P) =TP.

Proof. (1) By definition of large, Cp(N) < N. Hence [Cp(N), (P, Q)] < N
and (1) follows from Lemma 2.9.

(2) By (1) and maximality of P*, No(P) < P. The second statement in
(2) just rephrases the first. O

Lemma 3.3 Suppose that N < P € I', N is large and P is closed. Then P
18 large.

Proof. Let P < T € I'p. Then Cr(P) < Np(N) € I'y and since N is large,
Cr(P) < Np(N)NCg(N) < N < P. Thus P is large. O

Lemma 3.4 Let ' be an NSS of rank 1 and P € T with P < R(T").
(1) P is contained in a unique mazimal T'-subgroup P*.
(2) Suppose R(I") is large and x € Q € I". If (P, P*) € I' then x € P*.
Proof. (1) By Theorem 3.1, SNT = R(I') for all S # T € R(I).

(2) By (1) P* = (P, P*)* = P*™ = P**. Thus © € Ng(P*). By Lemma
3.2(2) Ng(P*) < P* and (2) holds. O

Lemma 3.5 Let T be an NSS of rank 1 and S € T'*. Define 11 = UgeG rse.
Then 11 < T, II has rank at most one and II* = S¢ C T'*. If in addition
R(T) is large then I1 has rank 1 and R(IT) = R(T").
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Proof. Clearly II fulfils (Suba) and (Subc). Now let A, B € II with (A, B) €
. If A<R(), then (A, B) < BR(I') € II and so also (4, B) € II. So
suppose A £ R(I') and B £ R(I"). Then by Lemma 3.4(1)
A* = (A, B)" = B*.

Thus (A, B) < A* and (A, B) € II. Thus Il < T. Clearly IT* = S¢ C I'*.

Suppose first that [[I*] > 1. By Theorem 3.1, AN B = R(I") for all
A, B € II* and R(IT) = R(T"). Hence by Theorem 3.1 , IT has rank 1. So the
lemma holds in this case.

Suppose next that [II*| = 1. Then II* = {S}, S is normal in G and II has
rank 0. So we may now assume that that R(I") is large. Since S is normal in
G, Lemma 3.2 implies PS € I for all P € I'. But then P < S by maximality
of S and I'* = S, a contradiction to rank(I') = 1. O

Lemma 3.6 Suppose that I has rank 1. Let K < G with (I'K) ¢ T and
P e TK with P £ R("). Then (P,P*) ¢ T for some x € K.

Proof. Since (I'K) £ T, Proposition 2.3(6) implies @ £ P* for some
Q € T'K. Let x € Q\P*. Then by Lemma 3.4(2), (P, P*) ¢ I. O

Proposition 3.7 Let N € T be closed of co-rank 1, (here the co-rank of N
is the supremum of the lengths of chains of closed I'-subgroup starting with
N).

(1) Let N < 81N Sy with S; # Sy € T*. Then N = S; N Ss.
(2) T'n has rank 1.

(8) Let N < P € I'. Then P lies in a unique mazimal I'-subgroup P*.
Moreover, Ng(P) < Ng(P*),

(4) Let P,S € T" with S € I and N < SN P. Then P C S.
Proof. (1) By Proposition 2.11(2) N < S;N Sy < T < S for some closed

T ¢TI and some S € I'*. Since N has co-rank 1 we conclude that N =T
and so N = S; N S,.
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(2) Let Ql 7é QQ € I'*P and Qz S SZ € I'*. Since <Q1,Q2> ¢ F, Sl 7& SQ.
So by (1) and Theorem 3.1, I'y has rank at most 1. Suppose that I'y has
rank 0. Then since N is closed {N} = I'y. Let N < S € I'". Then
N < Ng(N) € I'y and so N = Ng(N). Hence S = N, a contradiction to
N &1

(3) and (4) are easy consequences of (1) and (2). O

Theorem 3.8 IfI" is reduced of rank 2 then one of the following holds:

1. There are S € I'* and closed P,Q € I'S\{S, 1} such that I'(U'p,T'q) is
reduced.

2. There is an reduced NSS A of G with rank(A) =1 and A <T.

Proof. Suppose first that there are S € I'* and closed P, Q € I'S\{1, S} with
P # Q. Let N := R(I'(I'p,I'g)). By Corollary 2.7, N C PN and N is
closed. Since rank(I') = 2 we get N =1 and 1. holds.

Suppose next that for all S € I'* there is at most one closed P € I'S with
1# P #S. If such a P exists we denote it by P(S). Otherwise let P(S) = 1.
We will show that

() P(S)=P(T) #1forall S,T € I'" with SNT # 1.

If SNT is closed, P(S) =SNT = P(T). So we may assume that SN 7T is
not closed. Then by Proposition 2.8(10) there exists a closed M € I' with
SNT C M and I'spr € I'y. By Lemma 2.5(2) Ng(SNT)M € T So
there exists S € I with Ns(SNT)M C S and similarly choose T. Then
SAT C Ns(SNT) C SNS,SNT ¢ M C SNT and SNT C Nr(SNT) C TNT.
So by downwards induction on S N7T, P(S) = P(S) = P(T) = P(T) # 1.
Thus (*) holds.

Put A = J{T'P(S) | S € I'*}. We claim that A <T'. (Suba) and Sub(c)
are obvious from the definition of A. Let A, B € A and S,T € I'* with
AC P(S)and BC P(T).

To show (Subc) we assume A # 1 # B and (A,B) < T. Pick Q € I'™*
with (A, B) < Q. Then A < SNQ and B < QNT and (*) implies P(S) =
P(Q) = P(T). Thus (A, B) < P(Q) and (A, B) € A. Thus (Subb) holds.
Thus A < T and by Lemma 2.4, A is an NSS.
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Suppose that |A*| > 1. Let A,B € I'* with AN B # 1 and let S,T be
as above. Then by (*), A = P(S) = P(T) = B and by Theorem 3.1, A is
reduced of rank 1. Thus 2. holds in this case.

Suppose that |A*| = 1 and let A be the unique member of A*. Assume
that A = 1. Then P(S) =1 for all S € I and so I' has rank 1, a contra-
diction. Thus A # 1. Let A =T\ T4 U{1}. We claim that A < T'. Let
P<<Swithl#Pel,QeAand SeTl™ Sincel'y <T and Q & 'y,
S ¢ T'y. Thus S € A. Suppose that P € I'y. Then PA € T'. Put PANS # 1
and (*) implies A < S. Thus S € I'4, a contradiction. So P € A and we
conclude that (Suba) holds for A. Clearly (Subb) and (Subc) hold.

We proved A < T'. Since A £ R(I"), A # {1}. Suppose that A has a
unique maximal element B. Then B € I'* and by (*), BN A = 1. Since both
A and B are normal in G, [A, B] = 1. Thus AB is nilpotent and AB € T,
a contradiction to B ¢ I'y. Thus |A*| > 1. By (*) X NY =1 for any two
maximal members of A and so Theorem 3.1 implies that A is a reduced NSS
of rank 1. Thus 2. holds for A in place of A. a

4 Minimal ['-subgroups

In this section we continue to assume that a G is group with an NSS I' and
1 € I'. We consider elements X € I',. Recall that this just means that X is
a minimal non-trivial element of I'. In particular for two different elements
X, Yel,wehave XNY =1.

Proposition 4.1 Assume P €' and X,Y € TP, with X #Y. If Nx(Y') #
1 or[z,y] =1 for somex € X* andy € Y#, then (X,Y) =X x Y.

Proof. If [z,y] = 1, theny € Y NY* and so Y = Y*. So we may assume
Nx(Y) # 1. Using Lemma 2.1 we get X = Nx(Y). Since XY C P, XY
is nilpotent. As Y is normal in XY, Cy(X) # 1. Hence Ny(X) # 1 and
Y = Ny(X). So [X,Y] < XNY =1. 0

Proposition 4.2 Let P € " with P = (X,Y) where X,Y € I'P\{P}.
If X' # 1 then X is a normal subgroup of P (here X' := [X, X] is the
commutator subgroup of X ).
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Proof. Consider a counterexample with P minimal. Then there is y € Y
with XY # X. Set E := (X, X¥). So by Proposition 2.3(6) and Proposition
1.6, F € I'and E < P. Of course X, XY # E and by minimality of P, X
and XY are normal in E. Therefore by Proposition 4.1 F = X x XY. Let
Q := (YP). Then Q is a proper I'-subgroup of P by Proposition 2.3(6) and
Proposition 1.6. Since P = (X,Y), X £ Q and QN X =1as X € I', and
QNX el by (I). Now [X,y] < ENQ and ENQ is normal in F. Since
X x XY = X[X,y] we have 1 # [ XY, XY] = [ XY, [X,y]] < XYN Q. Hence
also X N Q # 1, a contradiction. O

Corollary 4.3 Let P €' and A :={X € 'P, | X' # 1}. Then A is finite
and (A) = Xy x ... x X, where A = {Xy,...,X,}.

Proof. Let X # Y € A. Then by Proposition 4.2 and Proposition 4.1,
(X, Y] =1. Let Z=(A\{X}). Then Z € T and [X,Z] = 1. Thus XN Z
is a proper ['-subgroup of X and so X N Z. Thus the Corollary holds by the
definition of the direct product. (Note also that A is finite by (MM)) O

Define an elementary abelian p-group to be an an abelian group so that
all non-trivial elements have order p. Note that this makes sense for p a
prime or p = oo. Indeed, an elementary abelian co-group is just a torsion
free abelian group.

Proposition 4.4 Let XY € T',, X #Y, H .= (X,Y) € ' and [X,Y] # 1.

Then X and'Y are both elementary abelian p-groups, p = oo or a prime.

Proof. Suppose first Y is not elementary abelian. Let M € I" maximal
with respect to X < M < H. Then by Proposition 2.2, M is normal in
H. Also Y ﬁ M. Since YNM eTandY eI,, YNM = 1. Let
1 # x € X. By Proposition 4.1, Nx(Y) = 1 and so Y # Y*. Hence by
Proposition 4.2, Y is abelian. Since (Y, Y?*) # H we get by induction that
V,Y*] = 1. Let D = YY* N M. Since [Y,2] C D, YY* = YD = Y*D,
Let E € I',D. Then 1 #Y N (EY*) € I'and so Y C EY*. Thus £ = D.
Note that D is isomorphic to Y and (D, X) < M. In particular, Y is not
elementary abelian and so by induction [D, X] = 1. Since [Y,z] < D we get
Y,z] < Z({Y,z)). Let y € Y has order p, p a prime. Then by Proposition
1.1, [y,2?] = [y?,2] = 1 and so by Proposition 4.1 ¥ = 1. Hence for all
z €Y, [P, x] = [z,2P] = 1 and so by Proposition 4.1 2P = 1.
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Hence Y is an elementary abelian p-group and by symmetry X is an
elementary abelian ¢g-group. To show p = ¢ we may assume p # co. Then
by Proposition 1.7 [y, :cpk] = 1 for some positive integer k. So by Proposition
4.1,xpk =1 and q = p. O

Proposition 4.5 Let A; be a I'-subgroup of the decomposable abelian T'-
subgroup A. Then there is a decomposable T'-subgroup As of A with A =
Al X AQ.

Proof. Let K be a decomposable I'-subgroup maximal with A; K = A; X
K. If A= A; K we are done. So suppose A1 K < A. Since A is decomposable,
there exists X € I'yA with X £ AjK. Then AKNX =1and AKX =
(A x K)x X = A; x (K x X). But K < KX and we obtain a contradiction
to the maximal choice of K. O

Proposition 4.6 I'-subgroups of decomposable abelian I'-subgroups are de-
composable.

Proof. Let A be a decomposable abelian I'-subgroup and B a I'-subgroup
of A. By Proposition 4.5 there exists D € T'A with A = Q(B) x D. By
Proposition 1.8 B =Q(B) x (BN D). Also Q(BND) <Q(B)ND =1 and
since BND eI, BND =1and B =Q(B). O

Proposition 4.7 Let A, B € T' such that A is decomposable abelian and
B is generated by abelian T-subgroups. If (A,B) € T, then Ca(B) is a
decomposable abelian T'-subgroup.

Proof. Since Ca(B) = ({Ca(F) | E € I'B,Eabelian } we may by
(I) assume that B is abelian. By Proposition 4.6 we only need to show
Ca(B) € I'. By Proposition 2.3(1) we get C4(B) < D := ),z A® € . Note
that Cy(B) = Cp(B) and that B normalizes D. By Proposition 4.6 D is
decomposable.

If D = Cp(B) = Ca(B) we are done. So suppose [D, B] # 1. Since
DB is nilpotent, there exists d € D with 1 # [d, B] < Cp(B). Then B? <
Cp(B)B < Cg(B). Thus BB? is abelian and BB? € T'. Thus

1#1[d,B] < BB“ND < Cp(B).
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Put E := BBN D. Then E is a non-trivial I" subgroup of Cp(B). By
Proposition 4.5, D = E x F' for some decomposable I" subgroup F' of D.
Then Cp(B) = E x Cp(B). Since F' < A, induction on A shows Cr(B) € T
Hence also Cp(B) € I' and the Proposition is proved. O

Proposition 4.8 Let A, B € I" such that A is decomposable, B an abelian
[-subgroup and A € T'g. Then [B, A] is a T'-subgroup of G.

Proof. Since [B, A] = ([B,E] | E € I'\A) we may by Proposition 2.3(6)
assume that A € I',. If A < B, then since B is abelian [A,B] =1 € I'. We

therefore may assume A € B and so AN B = 1 by minimality of A. Note
that (AP) = A[B, A] and so

(APYN B =[B,Al(ANB) = [B, A].

By Proposition 2.3(6) (A%) € " and so by (I), [B, A] € T. O

5 Measure and the Thompson subgroup

G continues to be a group with an NSS I" with 1 € I'. We define a measure
function and use it to state and prove a variant of the Thompson Replacement
Theorem.

Proposition 5.1 Let X,Y € I' with XY € I'. Let

X=Xo<X1<...< X, =XY
be any maximal chain of I'-subgroups from X to XY . Then

XNY=X)nY<Xin¥<..X,NnNY =Y
1s @ maximal chain of I'-subgroups from X NY to Y.

Proof. Let A be a I' subgroup with X; NY < A < X;,1NY. Since
X < X; < XY, Proposition 1.8 implies X; = X(X; NY). Thus

X; <AX < Xiq.
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X, is a maximal I'-subgroup of X;;; and so by Proposition 2.2 X is
normal in X;,;. Thus AX = AX; is a subgroup of X;;;. Since X;,; is
nilpotent, Proposition 2.3(6) implies AX € I'. By the maximality of the
X;-chain, AX = Xj, for some k € {i,i+ 1}. Thus X; NY = AXNY =
AXNY)=A O

Proposition 5.2 Let X € I'. Then there exists a maximal chain of I'-
subgroups from 1 to X and any two such chains have the same length. We
denote this common length by pu(X).

Proof. The existence of a maximal I'-chain from 1 to X follows from
(MM). Let A and B be maximal I'-subgroups of X. By induction any
maximal I'-chain from 1 to X through A has unique length p(A) + 1. Tt
remains to show that u(A) = p(B). Without loss A # B. By maximality
of A and B, A is normal in X, AB € I' and AB = X. Note that A < X
is a maximal chain from A to X and so by Proposition 5.1, AN B < Bis a
maximal chain from AN B to B. Thus u(B) = u(AN B) + 1 = p(A). O

Abusing the term we call p of Proposition 5.2 a measure function on I’
and p(A) is called the measure of A.

Proposition 5.3 p(P) = u(P9) for all P €T and g € G.

Proof. This follows from (C) and Proposition 5.2. O

Proposition 5.4 Assume X,Y €T .

(1) Suppose X <Y, then any maximal I'-chain from X to Y has length
p(Y/X) = p(Y) = p(X).

(2) Suppose XY € T. Then u(XY) = pu(X)+ u(Y)—pu(XNY).

Proof. (1) follows from Proposition 5.2.

(2) By (1) w(XY/X) = u(XY) — pu(X). By (1) and Proposition 5.1,
pw(XY/X) = uwY/X NY). Again by (1) p(Y/XNY) = p(Y) —pu(XNY).
Thus (2) holds.

O
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Definition. For P € I' let A(P) be the set of all decomposable abelian I'-
subgroups of P with maximal measure. Let J(P) := (A(P)), the Thompson-
subgroup of P (compare with the introduction of [5]).

Then J(P) is a I'-subgroup of P by Proposition 2.3(6).

Proposition 5.5 Let V' be a decomposable abelian I'-subgroup of G and A €
'y with A € A(AV). Then Cy(A) =V NA and p(A/Ca(V)) > u(V/Cy(A))

Proof. By Proposition 4.7 and (P), Cy(A)A is an decomposable abelian
['-subgroup of P. The maximality of u(A) implies Cy(A) < A and thus
Cy(A)=VNA Thus VNCu(V)=VNA=Cy(A) and by maximality of
A, Proposition 4.7 and Proposition 5.4:

1A) =2 p(VCa(V)) = p(VCa(V)/Ca(V)) + u(Ca(V))
p(V/Cy (A) + u(Ca(V)).

O
The next lemma is our version of the Thompson Replacement Theorem.

Lemma 5.6 Let A,V be decomposable abelian T'-groups with A € T'y N
A(AV). Let x € Ny(Ny(A)A) and define

D = ((AA") N V)(A N A7),
Then

(1) D € A(AV) and (x)Ny/(A)A C Ng(D).

(2) If [V, A] # 1, then [V, D] # 1.

Proof. (1) Let P = Ny(A)A. Since z normalizes P, both A and A® are
normal in P. Thus AA* = (A, A%). Since A is abelian, AN A* C Z(AA®).
By Proposition 4.6 both AA* NV and AN A* are decomposable I'-groups
and so D is an abelian decomposable I'-group. Also [z, A] C VN (AA®) C D
and so x € Ng(D). Note that

(") u(AA") = u(A) + p(A”) — (AN A®) = 2u(A) — p(A N A®).

Also AA* C VA and so AA* = AA*NVA = A(V N AA*) = AD.
Moreover, DN A= (VNAANA*) and VN AC Cy(x) C AN A*. Thus
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DNA=AnNA* Hence u(AA*) = u(DA) = (D) + p(A) — u(An A®).
Comparing with (*) we obtain u(A) = p(D) and so D € A(AV).

(2) Suppose that [V, D] = 1. Then ANA* < Cy (V) and so by Proposition
55, ANA* = ANV. Hence D < V. Since D € A(AV) we get V = D C
P C Ng(A). Thus A= A*=ANA* <D and [V, A] = 1. Thus (2) holds.

O

Proposition 5.7 Let V be a decomposable abelian I'-subgroup of G and
P ey withV C P and J(P) £ Cq(V). Then there exists A € A(P) such
that [[V, A, Al =1# [V, A] < A.

Proof. Since J(P) % C¢(V) there exists A € A(P) with 1 # [V, A]. Choose
such an A with Ny (A) maximal.

Suppose that V' does not normalize A. Then V' £ Ny (A)A and so by
Proposition 1.6(2) there exists © € Ny (Ny(A)A) with z & Ny (A). Let D
be defined as in Lemma 5.6. Then D € A(AV), [V, D] # 1 and (z)Ny(A) <
Ny (D), contradiction to the maximal choice of Ny (A).

Thus V normalizes A, [V, A] < A and [[V, A], A] = 1. O

Lemma 5.8 Let A, B be abelian T'-subgroups with [A,B] < AN B. Let
a € A. Suppose that B is decomposable and Cg(a) € I'. Then [a, B] € I' and

p(la, B]) = w(B/Cp(a)).

Proof. By Proposition 4.5 there exists a I'-subgroup D of B with B
Cgp(a) x D. Then [D,a] < AN B < Cy4(D) and so by Proposition 1.2(2)
DD* = D[D,a] € T. Moreover, DD*NA = (DN A)D,a] and DN A <
Cp(a) = 1. [D,a] = DD*N A € T'. In particular, D N [D,a] = 1 and so
by Proposition 1.2(3), D N D* = Cp(a) = 1. Thus 2u(D) = u(DD*) =
u(D) + pu([D, a]) and

pu(la, Bl) = p(la, D)) = p(D) = u(B/Cp(a)).
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6 Glauberman’s Theorem, Part 1

In this section we begin the proof of Theorem A stated in the introduction.
Assume G, V, S, A, " have the meaning and the properties mentioned there.

Proposition 6.1 Set Il :=J, ,'S9. Let T € II".

(1) 11 is an NSS of rank 1.
(2) TI* = SG C T*.
(3) R(IT) = R(T).

(4) [Ca(V), (ID] < R(T).
(5) Let P € T(TC(V)), then P < T.
(6) R(I') = Cr(V).
Proof. By (a) (that is assumption (a) of Theorem A), I" has rank 1. By (e)
R(T) is large. So (1),(2) and (3) follow from Lemma 3.5.
(4) By (c) [C(V),S] < R(I"). Thus (4) follows by conjugation.

(5) By (4) [P,T] < [TC&(V),T] < TR(I') < T. Thus P < Ne(T). By
(e), R(T") is large and so by Lemma 3.2 PT € I'. Since T € II* = S¢ C I'*,
P<T.

(6) Let R € IT*. By (4) [T NCs(V),R] < R(I') < R. Thus Cr(V) <
= Nger= Nr(R). By (I) and (MM) E € I' and by Proposition 2.3(8),
< R(II) = R(T). O

Lemma 6.2 There exists a non-trivial quadratic I'-offender E in S on V
with C\/(E) =VnNE.

Proof. By (d) there exists a non-trivial I'-offender A in S on V. Since
V <R(I), AeTly. Let B=Cxs(V)V and D = Cy(A)A. By Proposition
4.7, B € T'. Since A is an offender on V', u(V/Cy(A)) < u(A/Ca(V)). But
this is equivalent to pu(B) < u(D). We will show that

(*) J(AV) £ Cay (V).
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Since AV = AB, Cay(V) = Ca(V)B = B. From p(D) > u(B), we get
D e A(AB) and D £ B, since 1 # [A, V] < [B, D].

Thus (*) holds. The existence of E now follows from Proposition 5.7 and
Proposition 5.5. O

Notation.

A := EY where F is as in Lemma 6.2

E,F € A such that u([V, E][V, F]) is minimal with respect to (E, F) ¢ T".
W .= [V, E|[V, F].

H = (E,F)R(D).

Z = [V,E|N[V, F].

A:=AH.
q:=p(A/Cy(V)) for A € A.
m = p([V, Al).

Notice that Cy(V), [V, A], W and Z are decomposable abelian subgroups
by Proposition 4.5 - Proposition 4.8, (P) and (I). Hence the measure of
these groups is defined. Note that by Proposition 5.4 and the choice of E, F,
1(Z) is maximal with respect to (E, F') ¢ T'. The existence of F' € A with
(E, F) ¢ T is guaranteed by Lemma 3.6. In view of Lemma 3.4(1) we denote
by D* the unique member of I'* which contains D provided D € I' with
D #« R(T"). Observe that by Proposition 6.1(6), A ¢ R(I") for all A € A.

Proposition 6.3 Let A, B € A
(1) (A, B) ¢ T if and only if A* # B*.

(2) If A* + B*, then (A, A%) ¢ T for all b € B\R(T).
(3) If A* + B*, then [V, A] # [V, B].

Proof. (1) If (A,B) € I then A* = (A, B)* = B*. If A* = B* then
(A, By € I" by Proposition 2.3(6). Hence (1).

(2) Let b € B with (A, A’) € I". Then by Lemma 3.4(2), b € A*N B*. So
by Theorem 3.1(2), b € R(I").

(3) Assume [V, A] = [V,B]. By (c), A and B are quadratic and so
[V, A],B] = [[B,V],A] = 1. Thus [[A4, B],V] = 1 by Proposition 1.1 (5)
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and [A, B] C Cg(V). Let b € B\R(T'). Then A’ € ACq(V) < A*Cg(V) and
so by Proposition 6.1(5), A®* < A*, a contradiction to (2). O

Proposition 6.4 Let A€ A and a € A\R(I"). Then
(1) [V, A] = Z x [WW,a] = Ciw(a) = Ciw(A).

(2) (B,B*) ¢ T and [V,B]|NCy(a) = [V,A]N[V,B] = Z for all B € A
with (A, B) ¢ T.

Proof. By Lemma 3.6 there is B € A with (A, B) ¢ I". So by Proposition
6.3 (B,B*) ¢ I'. Hence W = [V, A|[V, B] = [V, B][V, B%| by minimality of
w(W). Put D := Cly,p(a). Then by Proposition 5.4, Proposition 1.2, and
quadratic action,

Cw(a) = D x [[V,B],a] = [V, A] = Cw(A).
Also [W,a] = [[V, B, a] and
D =1[V.B|NCwl(a) = [V, BN [V, A] = Cw(B) N Cw(A) = Cw ({4, B)).

Since H centralizes Z, Z < D. The maximality of u(Z) now implies
Z=D. O

Proposition 6.5 Let A,B € A with (A,B) ¢ T, w € [V,B|\Z, and a €
A\R(T"). Then

(1) W = [V, B] x [w, A].

(2) V = WCy(A).

(3) ¢ = pV/Cv(A)) = w(W/Cw(A) = p(A/Ca(V)) = ul[w, A]) =
p(lV; dl).

Proof. (1) By Proposition 4.8, W € I". Since V' is decomposable, also W is
decomposable and by Proposition 4.7 Cy(A) € T. Hence also Cy (A)A € T
and we can assume [V, A] = Cw(A) € A. Then ANW = [V,A]. By
Proposition 6.4(2), [w,a] # 1 for alla € A\R(T") and so Cy(w) = ANR(T) €
I'. From Lemma 5.8 we conclude [w, A] € I" and
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(") pllw, A]) = p(A/Ca(V)) = ¢.
Note that u([V, B]) = m = u([V; A]) = p(Cw(A)) and so

(™) w(V/Cv(A)) Z n(W/Cw(A)) = p(W/[V, B).

By (*),(**) and since A is an offender, u([w,A]) > w(W/[V,B]). By
Proposition 6.4 [w,A] N [V,B] < [w,A]NZ = 1 and we conclude that
w([w, Al) = p(W/[V,B]) and W = [V, B] x [w, A]. So (1) holds.

(2) We also conclude that the inequalilty in (**) actually is an equality.
So u(V/Cy(A)) = u(W/Cw(A)). Hence (2) holds.

(3) By Proposition 6.4, Cy(a) = Cw(A) € I'. So by Lemma 5.8, [W,a] €

[ and p([W,a)) = pn(W/Cw(A)) = q. By (2), [V,a] = [W,a] and all parts of
(3) are proved. O
Proposition 6.6 Let A,B € A with (A,B) ¢ T and X := [V, A]. Then:

(1) If B € A with (A, BY €T then' S = {[V, A]} U[V, B|*.

(2) If M,N € 3 with M # N then MAN = Z.

(3) W=Upyes M

(4) For D€ A put D= DR(T). Let D € A with D* = A*, then D = A.

(5) Let A= {B| B e A}. Then A = {A} U {B"}.

(6) H = (C,D)R(T) for all C,D € AH with C # D.

(1) V = Cy(H)W and V = Jpe, Cr(D).

Proof. Let A, B € A with (A,B) ¢ I'. Then W = [V, A|[V,B] = [V, B] x
[w, A] for w € [V, B]\Z by Proposition 6.5 and [V, A]N[V, B] = Z by Propo-
sition 6.4. Therefore w*Z = w[V, A}, which shows

() W=V, AlulJV B"

a€A

By Lemma 3.6 we can apply (*) to an element of A¥ in the role of B and
o (3) holds.

Also [V, B N[V, B]* = Z for a;,ay € A with aja;" ¢ R(T') by Proposi-
tion 6.4. Let C' € A. Then there is D € {A} U B4 with [V, Cin[V,D] > Z.
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Hence by maximality of u(Z2), (C,D) € I', C* = D* and (C,K) ¢ T for
K € ({A} U B4Y\{C}. But then by (*)

V,cN\Z C W\ J{IV,K]| D # K € {A}yu B*} C [V, D]

and [V, C] = [V, D]. Thus (1) and (2) hold.

(4) Let d € D. By (1) [V,B]* = [V, B] for some a € A. Thus da €
N¢(B*) and so da € R(I"). Hence d € AR(I') = A. Thus (4) holds.

(5) Let C' € A with C' # A. By (4), C* # A* and by Proposition 6.3(3),
V,C| # [ A]. So by (1), [V,C] = [V, B]* for some a € A. By Proposition
6.3(3), C* = B* and so by (4) C' = Be.

(6) By (5), H is doubly transitive on A. Since H = (E, F), (6) holds.

(7) Since H = (A, B) R(I"), we have Cy(H) = Cy(A) N Cy(B). Since
u(V/Cv(A)) = q we get u(V/Cy(H)) < 2q. Since u(W/Cw(H)) = 2q, the
first part of (7) holds.

Let v € V. Then v = cw with ¢ € Cy(H) and w € W. By (1), w € [V, C]
for some C' € A. Sov € Cy(H)[V,C] < Cy(C). O
Lemma 6.7 Lett € G and B € A. Suppose that one of the following holds:

1.te AecAand |[V,t)NCy(B) # 1.

2. W(Cy(B)/(Cv(B) N Cy(B))) <q.

Then (B, B") € T.

Proof. Suppose that 1. holds. Then by Proposition 1.2(2) Cy(B') C
[V, t|Cy(B). By Proposition 6.5(3), u([V,t]) = ¢ and so 1. implies 2.

So we may assume that 2. holds. Then
u((V. BI/([V. BIn Cv(T))) < q.

Since [V, BJNCy (t) < [V, B]N[V, B]t and u([V, B]/Z) = q, the maximality
of u(Z) implies (B, B*) € T.

Lemma 6.8 Let A€ A. Then AC BR(I') C H for some B € A.
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Proof. Let a € A\C4(V). By Proposition 6.6(7) there exists B € A with
V,a] N Cy(B) # 1. By Lemma 6.7, (B, B*) € I'. Thus by Lemma 3.4(2),
a € B*. Hence A C B* and A* = B*. Since R(I') < Cg(V), Proposition
6.6(5) implies [V,a| C Cy(B). By Lemma 6.7 a € B* and so A* = B*. So
by Proposition 6.6(5), BR(I") is independent from the choice of a. Hence
[V,A] C Cy(B). Let A= BY for g € G. Then A € AY and so by symmetry
[V, B] < Cy(A). Thus [V, A][V, B] C Cy(AB).

Let D € A\AB".

Put T = (A, B, D), U = [V,T] = [V, A|[V, B[V, D] and Y = [V, A][V, B]N
Cy(D). Then Y is centralized by A, B and D and so Y C Cy(T). Since
u(V/Co(D)) = q = [V, BICv(D)/Cy(D)), IV, A|[V, B] = [V,BJY. Let
a € Aandw € [V, D]\Z. Note that Z C [V, D|NCy(B) < Y. By Proposition
6.5(1), [w,B]Z = [V,B] and so [V, A][V,B] = [w,B]Y. Hence [w,a]Y =
[w,b]Y for some b € B. Let t = b~'a. Then w'Y = wY. Since wY C
[V,D]Y C Cy(D), wY = w'Y C Cy(D'). Hence Z < (w)Z C [V, D] N
Cu(D') and so u([V, DI/([V, D] N Cy (DY) < .

Thus by Lemma 6.7, (D, D') € T and by Lemma 3.2(2), t € D*. Hence
te DNnB*=R(I'"). Soa=0bt € BR(I') C H. 0

Theorem 6.9 (I') = H and I'" = {AR(I') | A € A}.

Proof. Let P € I'*. By Lemma 6.8, H = (A)R(I") and so H is normal in
G. So P normalizes W = [V, H| and Z = Cw(H). As PV is nilpotent, P
centralizes some 1 # wY in W/Z. By Proposition 6.6(3), w € [V, A] for some
A € A. Thus P C Ng([V, A]). By Proposition 6.3(3) P C Ng(A*) and so
by Lemma 3.2, P = A*. By Proposition 6.6(5), A acts transitively on A \ A,
whence P = ANp(B) for B € A with (A, B) ¢ I'. But Np(B) < Np(B*) =
PnB*=R(I') and so P = AR(I"). O

7 Glauberman’s Theorem, Part 11

In this section we complete the proof of Theorem A. We continue to use the
notations from the previous section. In addition we define:

Vo = W/Z, written additively.
Vi = [V,E]/Z and V, = [V, F]/Z.
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We view Vj as a left module over the endomorphism ring End(Vp). In
particular if a, 0 € End(Vp) and v € Vp, then (ad)(v) = a(d(v)). For h € H
define oj, € End(Vp) by op(wZ) = whZ for w € W. Note that oy = ooy
From Proposition 6.6 we obtain:

(i) Vi = Cy(E) = [Vo, E] = [Vo, q] for all a € E\Cg(Vp).
(i) Vs = Cu(F) = [V, F] = [Vi, b] for all b € F\Cp(Vp).
(iii) Vo =V @ Va.
(iv) For g € H with o,(V1) # Vi there is a € E with og4,(V1) = Va.
Take b € F fixed such that o,(V1) # V4 and set 8 := 0, — 1 € End(V}).

Similarly set x, = 0, — 1. Moreover for ¢« = 1,2 let m; be the projection from
Vo on V; according to the direct sum decomposition Vo = Vi @ V5.

Proposition 7.1 The following equations hold, where a,c € E:
(1) op = m + m + 3.
(2) 04 =71+ T2+ Xa-
(3) XaT1 = ToXa = B = m 3 = 0.
(4) Bmi = mf = B and TiXa = XaT2 = Xa-
(5) B2 = XaXe = 0.
(6) mo, =T + Xa-
(7) Xac = Xa + Xe and Xo-1 = —Xa-
Proof. Straightforward.. a

Proposition 7.2 There exists a; € E such that (X, 0) |v,= idy, .

Proof. By (iv) there exists a € E such that o,,(V1) = V5. Now Proposition
7.1 affords

T10pa = (M104)0p = (M1 + Xao) (71 + T2+ B) = 71 + Xa + Xaf

and 0 = 04 |1,= idv;, + (Xaf3) 13- Let a1 = a™'. a
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Proposition 7.3 For every a € E\Cg(Vy) there exists a € A such that
(xoB) [vi=((xaB) Ivi) "

Proof. Let g = b~tab. A straightforward calculation shows

(*) Og = (7T1 + Xa — Xaﬂ) + (7"2 + ﬁ Xa — ﬁXaﬁ)

By Proposition 6.6 o4,(V;) # V4. Hence by (iv) there is ¢ € E such that
04c(V1) = Vo. Then moy = (moc)o, = (11 + Xc)o,. Using (*) we compute

0 = m10ge [y =idv; — (XaB) [y —(XeBXaB) vi -

Multiplying this equation with ((x./3) |v;)~" from the right we obtain

(Xcﬁ) |V1: ((Xaﬁ) |V1>71 - ZdVl‘

By Proposition 7.2 there exists a; € E such that (x4, 3) |v,= id. Let @ = ca;.
Then xp = X + Xa, We compute (xof) [vi= ((xa8) |1y) " O

In Proposition 7.4 and Proposition 7.5 we pick a fixed v; € Vi with v; # 0.
Proposition 7.4 Let a,a’ € E. Define
X, = (0o — 1) € End(Vy) and z,:=X,(v1).
There is a unique coset a"Cr(Vy) with X, (2.) = xar. Define
To+ Xy = Taw and X, Ty = Taar-

Set D :={x, | a € E}. Then (D,+,") is a Cayley-Dickson-Division-Algebra
or a skew field with (D,+) ~ E/Cg(Vp).

Proof. For each v € Vi¥ we have Y5(v) = {x,(v) | a € E} = V4 by
Proposition 6.5. As elements of 4 are not singular we get a~*a’ € Cr(V})
if xa(v) = X, (v). Hence for v,v" € V;\{0} there is a unique coset a”"Cg(V})
with %, (v) = v'. Thus the product z, - z, for a,a’ € E is well defined.
Now the proof of Glauberman [5, (IX) on page 7 f] shows that (D, +,-) is an
alternative division ring or a skew field. Thus Proposition 7.4 follows from
2]. O
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Proposition 7.5 Let D be as in Proposition 7.4. Then {Vi} UV}E is a
congruence partition of an affine plane over D.

Proof. By Proposition 6.6 {V;} U V,F is a congruence partition. Let ag € F.
Then (Xo,Xo)(v1) = =(0Xa)(01) + (94, 0X,)(01) for a € E. Hence 04,(V3) =

{(XaoXa) (1) + (BXa)(v1) | @ € E}. Now X,(v1) < aCp(Vo) < (6X,)(v1)
define bijective maps between D ~ E/Cg(Vy), V1 and Va which induce a bi-

jective map between V and D x D. Then o,,(V2) is mapped on {(Xq,Xas Xa) |
a € E} and we get Proposition 7.5 (see [4, page 131 f]). O

Proposition 7.6 By Proposition 7.5 we may view Vy as an affine plane
over D. Then E induces the group of shears with axis Vi on Vy and H = L
induces the subgroup of a point-stabilizer of Vi generated by all shears.

Proof. Since E is transitive on all lines through 0 different from V; by Propo-
sition 6.6, E' contains all shears by [4, page 122]. As H is transitive on the
lines through 0 we get Proposition 7.6. O

Theorem A now follows from Proposition 7.6 and Theorem 6.9.

8 Strong NSS’s

We say that an NSS I' is strong provided that
(Z) QAZ(N))#1foralll# N eT.

Throughout this section we assume that G is a group with a reduced
strong NSS I with 1 € I'. In addition to our previous notations we let

©:={N eI'\I'" | N is large in '}

Lemma 8.1 Let rankI' =2, N € O, V =Q(Z(N)), PeIy and Z € T
with Z normal in P. Then:

(1) Let 1 # D € T' be normal in Ng(N). Then D° = N and Ng(D) =
Ne(N)

(2) Ng(V) = Ng(N).
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(4) If ZCV and R(Uy NT%) # N, then [Ce(V), P] C Cp(V) = N.

Proof. (1) Note that I'y < I'p. So by Corollary 2.7, D° is closed and
contained in N. Since 1 # D < D° < N < § € I'" and T is reduced of
rank 2, D° = N. So Ng(D) C Ng(N). By assumption Ng(N) < Ng(D) and
(1) holds.

(2) follows from (1) applied to D = V.

(3) Put T = R(I'y NT'z) and suppose T « N. Since N < T we get
N < T. Since I'y has rank 1, Proposition 3.7(3) implies (['y NT'z)* = {P}.

(4) Since Z C V, Cq(V) € Na(N)NNg(Z) andso Ca(V) € No((Tw)z)*) =
N¢(P). Thus
[Ca(V), P] C Cp(V).

Suppose that Ng(N) < Ng(P) and let @ € I'y. By definition of O,
Cp(N) < N and thus [Cp(N),(P,Q)] < N. So by Lemma 2.9, QP €
I Thus Q € I'p and I'y < I'p. Corollary 2.7 implies P < P° < N, a
contradiction. Thus Ng(N) £ Neg(P).

Let g < Ng(N)\Ng(P) Then CP(V) - NP(N) N Cg(Zg) - NP(PQ),
whence Cp(V)Cp(V)? C Np(P?)Nps(P) € I'. Pick @ € I'}, with

Np(P?)Nps(P) C Q.

If @ # P, then Cp(V) C PNQ C N, by Proposition 3.7(1).
If @ = P, then Cp(V)? C PYNP = N, again by Proposition 3.7(1). Since
N = N9 we get Cp(V) < N. O

Theorem 8.2 Let G be a group with a reduced strong NSS T of rank 2. Let
Neo, Sely, V:i=QZ(N)) and Z := Cy(J(S)). Then 1 # Z € T.

Moreover,
(1) If J(S) < N, then J(S)° = N and Ng(J(S)) = Ng(N).

(2) If J(S) £ N and N = Z°, then N = Q(Z(P))° for any P € T* with
S <P.

(3) If N # Z°, then V/Cy((T'y)) is a natural SLy-module for T'y and
S =J(S)N.
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Proof. Since V' # 1 and VJ(S) is nilpotent, Z # 1. By Proposition 4.7
zZel.

(1) Follows from Lemma 8.1(1).

(2) Suppose that (I'Ce(Z2))* = {T'} for some T. Then T is normal in
N¢(Z). Since N = Z° is large, we get from Lemma 3.2 that T < @ for all
Q €TI%. Thus T < Z° = N, a contradiction since J(S) < T and J(S) # N.

Thus there exist L,Q € I'Cq(Z)* with L # Q. Then (L,Q) ¢ I'. Put
M = Q(Z(P))°. Note that N C LNQ, and both LNy;(N) and QN (N) are
in I'. Thus NNy (N) € LNy (N)NQNy(N) € N, by Proposition 3.7(1).
Thus 1 # M C N. Since M < P, Proposition 2.8(12) implies M is closed
and as rankG =2, M = N.

(3) From rank(I") = 2, Proposition 3.7(1) and Theorem 3.1 we get PNQ =
N and rank(I'y) = 1 for P,Q € I, with P # Q. Suppose N = R(I'y NT'z).
Then by Lemma 2.6 (applied with A = 'y NIz, A =Tz and P = N),
Z° =R(I'z) € N and Z° is closed. Thus

142 CZ°<NgT™

Since rank(I') = 2 we get N = Z°, a contradiction. Therefore N # R((I'y N
I'z)). In particular, Ty NT'z # 'y and so 'y Z I'.

Moreover, by Lemma 8.1(4) [C(V),S] C N = Cg(V).

Assume J(S) € N. Then Z =V and I'y C I'z, a contradiction. Thus
J(S) € N = Cs(V). Pick A € A(S) with A £ Cs(V). Then by Proposition
5.5 A is a non-trivial I'-offender on V. By Proposition 3.7(2) I'y has rank 1.
By definition of ©, N is large in ['y.

We verified that all the the assumptions of Theorem A are satisfied for
Ng(N), Ty, S,A and V. Hence V/Cy ((I'y)) is a natural S Le-module for I'y.
By Theorem 6.9, S = AR(I'y) = AN and so S = J(S)N. O

Theorem 8.3 Suppose rank(I') = 2, N € © and S € I', with Ng(S) €
Ng(N). Put V.=Q(Z(N)). Then V/Cy((I'n)) is a natural SLy-module for
I'y.

Proof. Suppose that J(S) < N. Then using Theorem 8.2(1)
Ng(S) < Ng(J(S)) < Na(J(5)°) = Na(N),

35



a contradiction to the assumptions.

Hence J(S) € N. Set Z := Cy(J(S)). Suppose that Z° = N. By Propo-
sition 3.7(3) S lies in a unique maximal I'-subgroup P. Then by Theorem
8.22, Ng(S) C Ng(P) < Ng(QZ(P))° = Ng(N), a contradiction.

Hence Z° # N and Theorem 8.3 follows from Theorem 8.2(3) O

Theorem 8.4 Suppose rank(I') = 2, S € I'* and |©S| > 2. Then there
is N € ©S such that V/Cy((I'n)) is a natural SLs-module for 'y, where
V =Q(Z(N))

Proof. Let N € ©S. By Proposition 3.7(3), S is the unique maximal I'-
subgroup containing Ng(N). Hence Ng(N) € I'y. If Ng(Ng(N)) £ Na(N)
we are done by Theorem 8.3.

So we may assume that Ng(Ng(N)) < Ng(N) for all N € ©S. In
particular Ng(Ng(N)) < Ng(N) and so Ng(N) = S. Thus S € 'y and
Ng(S5) < Ng(N).

Since |©S]| > 3 there exists N € OS5 with N # J(S)° and N # QZ(5)°.
Thus by Theorem 8.2 J(S) £ N and N # Z°. So Theorem 8.4 follows from
Theorem 8.2(c) O

The following theorem deals with a situation which had been considered
more detailed for finite groups in [3].

Theorem 8.5 Let rank(I') = 2,5 € I'" and M,N € ©S with M # N.
Assume there is P € Iy, NIy with

where Z = Q(Z(J(P))). Then N is a natural S La-module for T'y. Moreover
P = MN and P is of nilpotency class 2.

Proof. For L € {M,N} set Vi, := Q(Z(L)). As (M,N) C PNS and
rank(I') = 2 we get P C S by Proposition 3.7(4).
Since rank(T') = 2, (M, N) ¢ {M,N}. Thus by Lemma 3.2(2),

I', N[ Ng(P) =TP.

Suppose that J(P) C L. Then Vi, C Z and so by (*) Ng(L) C Ng(P). Thus
', CT'yNT'Ng(P) =TP and L = P, a contradiction.
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Thus J(P) € L. Let X = Q(Z(P)). Then
1£2X<ZnNV, CVp.

By (*) Ng(X) € Ne(P), and so T;NTx € I',ATNg(P) and R(T;NTx) = P.
Thus by Lemma 8.1(4), Cs(V;) C L. So we can apply Theorem 8.2(c) and
Vi/Cv, ((I'L)) is a natural S Ls-module for I'y.

Let {K,L} = {M,N}. By Theorem 6.9 KL = P = AL and L =
Cp(Vy) for all A € A(P) with A £ L. Moreover X = Cy,(A) = VN
Vi = Cv, (T'))[VL, A]. Since X N X9 = 1 for g € G\Ng(P) we conclude
Cy,((I'r)) = 1. Thus by Proposition 6.5(3)

4= p(X) = 5u(Ve) = u(X) = p(A/AN L),

In particular, u(VL(ANL) = u(A) and so VL,(ANL) € A(L) N A(P). Using
this and symmetry in K and L, A(K)UA(L) C A(P). Suppose that A(K) =
A(L), then I', UT'x C T' k). Thus by Corollary 2.7 R(I' (k) is closed and
contained in L N K, a contradiction to rank(I') = 2. So A(K) # A(L) and
interchanging K and L if necessary we assume A(K) € A(L).

So we can choose A € A(K).

Suppose for a contradiction that [Vk, V7] = 1. Then VgV, < K N L.
As AL = P ¢ Cg(Vk) we get [Vi, L] = X. Let W € V*\{Vk}. Then
Ve, W] € (VkNVy)Nn(WnNV,) = 1. Since A normalizes [A N W, L] and
[ANW, L] < WnNV we get [ANW, L] = 1 and so ANW < ANWNV,, = 1. Now
(W) =q=2u(A/ANL) implies p(W(ANL)) > u(A). Thus [ANL, W] # 1
and so by Proposition 6.5(3) applied to (ANL)Vy, [ANL, W] =V, NW and
W(A)[1(CA(W)) = p(W) = 2u(X). Thus CA(W)W € A(L).

Let a € A\L. Since W centralizes C4 (W), also W* centralizes Cs(W).
Since W, W C Vo n W NW* = 1 we conclude that Cx(W)WW?* is a
decomposable abelian T'-subgroup. Since Cy(W)W € A(P), Ca(W)W =
Ca(W)We. Thus

VN W =[ANL,W]=[ANL W =V, n W,

a contradiction to V; "W N W?e = 1.

Therefore [V, Vi] # 1 and so Vy £ M and Vs £ N.

Let h € (I'y)\Ng(P). Note that M = Vy(NNN"). Hence QZ(NNN") <
QZ(M) = V. But Viy centralizes N and so

QZ(N N N") < Cy,, (Vi) N Cyy, (N?) = Vi N Vy NV =1
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By the assumptions of this section, I' is strong and so N N N* = 1. Thus
M:VM,N:VNandP:VMVN:MN.NowP’:X:MﬁNandP
has class 2. a

Theorem 8.6 Suppose that I1 is a G-invariant subset of © such that

(i) Nyeq A? =1 for all A € 11.
(i1) If S € I with |©S NII| > 2, then |©S| = 2.
(i) Whenever X,Y € Il with X € YY and X # Y then R(I'(X,Y)) € II.
Let 1, be an arbitrary orbit for G on 11 and define 11, = {R(T'(A, B)) |
A, B e 1l, with A # B}. Then
(1) 11, =11,

(2) 11, is the set of points, flp 1s the set of lines of a projective Moufang
plane m and (I1,) = (IL,) induces the group generated by all the elations
on .

(3) Ca(m) < Ca((IL,)).

We remark that using knowledge of the automorphism group of a Moufang
plane it should not be to difficult to show that G only has two orbits on II.
Proof. From (i) we get

(1.) N 4G forall N €11

We say X,Y € 1II are incident if X #Y and (X,Y) € I'. We show next

(2.) If X,Y are incident then X € 'y and Y € I'y.

Indeed by (ii) ©(X,Y) = {X,Y} and so X and Y are normal in (X,Y).
For X,Y €Il with X # Y write XY := R(I'(X,Y)).

(3.) F £ E foral E,F €1l

Otherwise let g € G\ Ng(FE). Then |@E@| = 2 and so by (iii) F =

EE9 = F9. Since {F} = OE\ {E}, F9 = Fforall g € G. Thus F <G, a
contradiction to (1.), proving (3.)
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Let A € IL. By (1.) there exists B € A® with A # B. By (iii) AB € ©.
Let D=AB el

Suppose that A and B are incident. Then (A, B) € T and D = (A, B).
By (ii), |©D| = 2. Since A # B we may assume A = D. Hence B < A.
Since A and B are conjugate u(A) = u(B) and we conclude that A = B, a
contradiction.

We proved

(4.) No two distinct conjugate elements of Il are incident.

Suppose C' € II is incident with A and B, Then (A, B) < I'c and so
C < D. Since ©AD ={A, D} and A £ D, C = D. Thus

(5.) AB is the unique element of 11 incident with A and B.

Let ¥(A) =1INT4\ {A}, the set of elements of II incident with A. Let
Ea:=U{TAE | E € 3(A)}.

(6.) Let A< X € Z4. Then there exists a unique X* € I'* with X < X*
and a unique E € X(A) with O(X*) = {E, A} and X < AE.

Pick F € ¥(A) with X < EA and P € T'* with FA < P. Suppose there
exists @ € I with X < @ but (Q # P. Choose such a () with PN() maximal.
Then by Proposition 2.11(1), PN Q is closed. Since A < PN, Lemma 3.3
implies that P N Q is large. So PNQ € ©OP. But OP = {A, E} and we
conclude that £ = PN Q, but then A < E, a contradiction to (3.).

(7.) 24 < T4, E4is an NSS of rank 1 for No(A), =% = {AE | E €
Y(A)} and R(E,4) = A.

Clearly =% = {AF | E € ¥(A)}, and (Suba) and (Subc) are fulfilled.
Let X,Y € Z4 with (X,Y) € I We need to show that (X,Y) € Z4. If
X < AorY < A this is obvious. We may assume A < X and A <Y. Pick
Q € I'* with (X,Y) < Q. Let E,F € $(A) with X < EA and Y < FA.
By (6.), ©(Q) = {A,E} = {A,F} and so E = F. Thus (X,Y) < EA and
(X,Y) € 24

By Theorem 3.1 it remains to show that |=%| > 1. Otherwise we conclude
that ¥4 = {K} for some K, and K = AA9 for all g with A # A9 and then
K <G, a contradiction to (1.). This completes the proof of (7.).

(8.) Let 1 # X € I'A. Then Nyp(X) C Np(A).

Suppose not and pick @ € Np(X) with @ £ Ng(A). Pick g € Q with
A#£ A9 Let E € X(A).
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Suppose that X & L for some L € X(A).

If AYis incident with L, then both A and AY are incident with L and so
L = AA9. By (6) applied to L in place of A, X < AN A9 < L.

Thus neither A9 nor A9 ' are incident with L. In particular L # L9.
Note that X normalizes L and L9 and so also F' := LL9. By Lemma 3.2(1)
applied to L in the place of N, we get XLF € I'. By X « L and (6.), XL
lies in a unique maximal I'-subgroup of G. Hence (AL, XLF) € I' and (ii)
implies A = F. Thus L? is incident with A and so A9 ' is incident with L,
a contradiction.

Thus X < L for all L € X(A). Let Y := [ X(A4). Then X <Y and so
Y # 1. Since Ng(A) < Ng(Y') we have Ng(Y) £ Ng(L).The claim we just
proved applied to (Y, L) in place of (X, A) yields Y < K for all K € X(L)
and all L € ¥(A). Thus Y < A9 for all g € G and (i) implies Y = 1, a
contradiction.

(9.) Let E € ¥(A) and Vo = Q(Z(A)). Then [Ce(Va), EA] < A.

Let FF € ¥(A) and put X = Q(Z(AF)). Since A and F are large,
X < AN F. Since T is strong, X # 1. By (8.) applied to F' in place
of A, Ng(X) < Ng(F). Since X < Vy we conclude that Cg(Va) < Ng(F)
for all I € ¥(A). So by (6.) Cg(Va) < Ng(P) for all P € =%. Define
U := ({Nga(P) | P € Z4}. Then U € =, and by Proposition 2.3(8),
U=R(E4) =A. But [Ce(Va), FA] < Ce(Va)NEA < U and so (9.) holds.

(10.) Let E € X(A). Then J(EA) £ EN A.

If J(EA) < EN A then J(E) = J(A). Then Ng(E) < Ng(J(A)) and so
Nea(J(A)) £ Ni(A), a contradiction to (8.)

By (10.) and interchanging A and F if necessary
(11.) we can choose A € 11 and E € ¥(A) with J(EA) £ A.

By (8.) and Proposition 5.5 there exists a non-trivial offender in EA
on Vy. Let Hy =: (E4). Note that Cy,(Ha) < Cy,(E) < E and so by
(8.) Cy,(Ha) = 1. We conclude that the Hypothesis of Theorem A holds for
Ng(A),Z4, V4 and EA. So Vy is a natural SLs-module for =4. In particular,

(12.) E acts transitively on X(A)\ {E}, Ng(A) acts transitively on 3(A)
and CEA(VA) =A.

By (8.), Va £ E. Let X € A(AE). By Proposition 6.5(3), (X NA)V4 €
A(AE) and we reestablish symmetry in A and E. Let R := (Vg, V}) for
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some h € Hy with Vi # VE Then AN ENE" < C4(R) and so by (8.),
ANENE"=1. It follows that N = Vi and so N is a natural SLy-module
for =y for all N € II. - -

It follows from (12.) that AA9 € E¢ and FE9 € A® for all g € G. Thus
A% and E€ form a projective plane.

By (12.) we have (N, N)-transitivity. Then [4, page 130] shows that we
have got a projective Moufang plane.

Let C4 be the kernel of the action of G on A®. Then clearly C4 also acts
trivially on E¢. Moreover [C4, A] < ANCy < Ca(E) < ANE and (8.)
implies [Cy, A] = 1. O
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