Orr-Sommerfeld Equation

$$i\alpha RU''\phi + (\zeta R - \lambda^2 - i\alpha RU)(\phi'' - \lambda^2 \phi) + \phi'''' - \lambda^2 \phi'' = 0 \quad \text{on } [0, \infty)$$

where:

- (1) $\phi \in C^4([0,\infty))$ is called an eigenvector and it has to satisfy: $\phi(0) = \phi'(0) = 0, \ \phi \neq 0$ and $\phi(x), \phi'(x), \phi''(x), \phi'''(x)$ coverge to 0 as $x \to \infty$
- (2) $\zeta \in \mathbb{C}$ is called an **eigenvalue**
- (3) $\alpha, \beta \in \mathbb{C}$ are called wave numbers, $\lambda^2 = \alpha^2 + \beta^2$, $i^2 = -1$
- (4) R > 0 is called the Reynolds number
- (5) $U \in C^2([0,\infty))$ is the flow

Theorem (Milan Milavčič) If for some $\varepsilon > 0$

$$\sup_{x\geq 0} e^{\varepsilon x} |U'(x)| < \infty$$

then the Orr-Sommerfeld equation has only finitely many eigenvalues. If, in addition,

$$\sup_{x\geq 0} e^{\varepsilon x} |U''(x)| < \infty$$

then there exists c > 0, which depends only on U, such that the Orr-Sommerfeld equation has no eigenvalues if $|\alpha|R < c$.