Supplemental Material for Section 3.6: The Formula for $\frac{d}{d x} x^{r}$ When r Is a Rational Number

One of the major applications of the Chain Rule is to show that for any rational number r (Recall that a rational number is one that can be written as the quotient of two integers.) and for any $x>0$ the formula for the derivative of the function x^{r} is $\frac{d}{d x} x^{r}=r x^{r-1}$. For example $\frac{d}{d x} x^{\frac{7}{3}}=\frac{7}{3} x^{\frac{4}{3}}$. We begin with a special case $r=\frac{1}{n}$ where $n \in \mathbb{N}$. To employ the Chair Rule in this special case, let $g(x)=x^{\frac{1}{n}}$ and let $f(x)=x^{n}$. Then clearly $f \circ g(x)=f(g(x))=\left(x^{\frac{1}{n}}\right)^{n}=x$. The derivative of the right hand side is clearly 1 . We would like to use the Chain Rule to compute the derivative of the right hand side, but first, according to the hypothesis of the Chair Rule, we must show that g is differentiable. From what we've learned about derivatives, we need to show that the graph of $y=g(x)$ has a tangent line at each of its points. This fact will be established using geometry. Begin with a point P on the graph of $y=g(x)=x^{\frac{1}{n}}$ other that $(0,0)$. Reflect the graph in the line $y=x$. The resulting graph is that of $y=x^{n}$, which we know is differentiable. Consequently there is a line tangent to $y=x^{n}$ and the reflected version of P. Now reflect that tangent line in the line $y=x$ and clearly it becomes a line tangent to $y=g(x)$ at P. Consequently g is differentiable and we may apply the chain Rule. This entire geometric process is demonstrated with the square root function and the point $(2, \sqrt{2})$ in figure 1 below. This geometric argument establishes Proposition 1.
Proposition 1. The function $f(x)=x^{\frac{1}{n}}$ is differentiable at each x in its domain except for $x=0$.

Now that the differentiability of g has been established, we may apply the Chain Rule to compute the derivative of $f \circ g$. For any x in the domain of g by the Chain Rule we have,

$$
\frac{d}{d x} g^{n}(x)=n g^{n-1}(x) g^{\prime}(x)
$$

But because $g^{n}(x)=x$ as was pointed out above, the derivative of the composition can also be computed without the Chain Rule. We know $\frac{d}{d x} g^{n}(x)=$

Figure 1:
$\frac{d}{d x} x=1$. Equating the two expressions for $\frac{d}{d x} g^{n}(x)$ we get that

$$
1=n g^{n-1}(x) g^{\prime}(x)=n\left(x^{\frac{1}{n}}\right)^{n-1} g^{\prime}(x)=n x^{1-\frac{1}{n}} g^{\prime}(x)
$$

Solving this equation for $g^{\prime}(x)$ yields

$$
g^{\prime}(x)=\frac{1}{n} x^{\frac{1}{n}-1} \text { or } \frac{d}{d x} x^{\frac{1}{n}}=\frac{1}{n} x^{\frac{1}{n}-1} .
$$

Note that the exponent $\frac{1}{n}-1$, is negative (except for $n=1$) indicating why x can't be 0 . Also Note that this formula is the same as $\frac{d}{d x} x^{n}=n x^{n-1}$ with n replaced by $\frac{1}{n}$. We now proceed to show that the same formula holds if n is replaced by any rational number. For any rational number r there are two integers, m and n with n positive such that $r=\frac{m}{n}$. We will now use the Chain Rule to prove the following assertion.
Theorem 1. Let r be a rational number and let $x>0$. Then $\frac{d}{d x} x^{r}=r x^{r-1}$.
Proof. First note that $x^{r}=x^{\frac{m}{n}}=\left(x^{\frac{1}{n}}\right)^{m}$, a composition with outer function $f(x)=x^{m}$ and inner function, $g(x)=x^{\frac{1}{n}}$. We know the derivative of the outer function, $f^{\prime}(x)=m x^{m-1}$, and by Proposition 1, we also know the derivative of the inner function, $g^{\prime}(x)=\frac{1}{n} x^{\frac{1}{n}-1}$. Thus by the Chain Rule

$$
\frac{d}{d x} x^{r}=\frac{d}{d x}\left(x^{\frac{1}{n}}\right)^{m}=m\left(x^{\frac{1}{n}}\right)^{m-1} \frac{1}{n} x^{\frac{1}{n}-1}=\frac{m}{n} x^{\frac{m}{n}-\frac{1}{n}+\frac{1}{n}-1}=r x^{r-1} .
$$

