Eigenvalues of the Orr-Sommerfeld Equation in an Unbounded Domain

Milan Miklavčič

Communicated by D. D. Joseph

1. Introduction

The main purpose of this paper is to prove that in the space $\left(L^{2}(0, \infty)\right)^{4}$ the generalized Orr-Sommerfeld equation [10] has only finitely many eigenvalues when the mean flow exponentially approaches a constant. This surprising fact was discovered by numerical studies of eigenvalues for Blasius mean flow [4, 9]. It has been proven [10] that when the mean flow approaches a constant slowly enough, the generalized Orr-Sommerfeld equation can have infinitely many eigenvalues. There is also a nontrivial condition [10] (involving the Reynolds number) which implies that the Orr-Sommerfeld equation has no eigenvalues. The proof given here is based on Lemma 2, which can be considered a generalization of some standard results [e.g. 3, 11].

Given are several properties of, and bounds for eigenvalues which can be used to estimate the critical Reynolds number and to help in the numerical search for eigenvalues.

An expectation [12] that eigenvalues should not be imbeded in the continuous spectrum [10] is also proven. These facts may suggest a way [3, 10] to obtain a spectral resolution. One can show, however, that there can exist (finitely many) spectral singularities not corresponding to eigenvalues, i.e. -1 can be an eigenvalue of $R Q_{0}(\sqrt{-R z})$ (see Section 3) even if z is not an eigenvalue of the generalized Orr-Sommerfeld equation. In such a case it is still possible to define a spectral resolution in a suitable subspace [3,10]. If the Reynolds number is sufficiently small, then the corresponding operator is spectral. This can easily be seen from $[3,7,10]$. Since these spectral results are rather far from what one would want $[1,2,12]$ and since the proofs are very cluttered, details will not be presented.

In Section 2 the main theorem is given. The idea of the proof is worked out in Section 3 and the proof of the main theorem is presented in Section 4.

I wish to thank Michael Williams for suggesting the problem and I am grateful to David Isacson for a critical reading of the manuscript.

2. The Main Theorem

The generalized Orr-Sommerfeld equation is given by [6, 10]

$$
\begin{gather*}
\frac{\partial u_{1}}{\partial t}-\frac{1}{R} \frac{\partial^{2} u_{1}}{\partial y^{2}}+h(y) u_{1}+v_{1}^{\prime}(y) u_{2}+i \alpha p=0 \tag{1}\\
\frac{\partial u_{2}}{\partial t}-\frac{1}{R} \frac{\partial^{2} u_{2}}{\partial y^{2}}+h(y) u_{2}+\frac{\partial p}{\partial y}=0 \tag{2}\\
\frac{\partial u_{3}}{\partial t}-\frac{1}{R} \frac{\partial^{2} u_{3}}{\partial y^{2}}+h(y) u_{3}+v_{3}^{\prime}(y) u_{2}+i \beta p=0 \tag{3}\\
i \alpha u_{1}+i \beta u_{3}+\frac{\partial u_{2}}{\partial y}=0 \tag{4}\\
u_{j}(0, t)=0 \quad \text { for } \quad j=1,2,3 \tag{5}
\end{gather*}
$$

where $h(y)=\left(\alpha^{2}+\beta^{2}\right) / R+i \alpha v_{1}(y)+i \beta v_{3}(y)$ and the primes denote derivatives. $u=u(y, t)=\left(u_{1}, u_{2}, u_{3}\right)$ and $p=p(y, t)$ denote the velocity and pressure of the fluid at a point $y \geqq 0$ and time $t \geqq 0$ respectively; R as usual is the Reynolds number. v_{1} and v_{3} are the x and z components of the mean flow while α and β are the wave numbers in the x and z directions of the mean flow.

Throughout $\mathscr{H}\left(\mathscr{H}^{j}\right)$ denotes the Hilbert space $L^{2}(0, \infty)$ (j-fold product of $\left.L^{2}(0, \infty)\right)$. The set of all complex-valued functions which are absolutely continuous on $[0, a]$ for every $a>0$ is denoted by $\mathscr{A} \mathscr{C}$.

A map (u, p) from the interval $(0, \infty)$ into \mathscr{H}^{4} is said to be a solution of equations (1-5) if for each $t \in(0, \infty)$ the following conditions are satisfied [10]:
(i) $u_{j}, p, \frac{\partial u_{j}}{\partial y} \in \mathscr{H} \cap \mathscr{A} \mathscr{C}, \quad \frac{\partial^{2} u_{j}}{\partial y^{2}} \in \mathscr{H}$ for $j=1,2,3$ and $u=\left(u_{1}, u_{2}, u_{3}\right)$
(ii) u is continuously differentiable in t
(iii) $\frac{\partial u_{2}}{\partial t} \in \mathscr{A} \mathscr{C}$ and $\frac{\partial^{2} u_{2}}{\partial t \partial y}=\frac{\partial^{2} u_{2}}{\partial y \partial t}$
(iv) (u, p) satisfy equations (1-5)
(v) $\lim _{t \rightarrow 0^{+}} u(t)$ exists.
\mathscr{S}_{0} is the set of all such maps. $(u, p) \in \mathscr{S}_{0}$ is an eigenvector if $u(t)=e^{-z t} u_{0}$ and $p(t)=e^{-z t} p_{0}$ for some $z \in \mathbb{C}, u_{0} \in \mathscr{H}^{3} \backslash\{0\}$ and $p_{0} \in \mathscr{H}$. The set of all such z is denoted by $\sigma_{0 s}$.

The main theorem may now be stated.
Theorem 1. Suppose:
(i) $v_{1}, v_{3} \in \mathscr{A} \mathscr{C}$,
(ii) the limits $\lim _{y \rightarrow \infty} v_{1}(y)=\bar{v}_{1}$ and $\lim _{y \rightarrow \infty} v_{3}(y)=\bar{v}_{3}$ exist and are finite,
(iii) $v_{1}-\bar{v}_{1}, v_{3}-\bar{v}_{3}, v_{1}^{\prime}, v_{3}^{\prime} \in \mathscr{H}$,
(iv) $\alpha^{2}+\beta^{2} \in \mathbb{C} \backslash(-\infty, 0], \quad R>0$.

Let $\lambda=\sqrt{\alpha^{2}+\beta^{2}}, \operatorname{Re}(\lambda)>0, \mu=\lambda^{2} / R+i \alpha \bar{v}_{1}+i \beta \bar{v}_{3}$ and $g_{1}=\alpha\left(\bar{v}_{1}-v_{1}\right)+$ $\beta\left(\bar{v}_{3}-v_{3}\right)$. Then
a) If $g_{1}, g_{1}^{\prime} \in L^{1}(0, \infty)$, then for every $z \in \sigma_{0 s}$

$$
|z-\mu| \leqq R\left(\left\|g_{1}\right\|_{1}+\frac{2|\lambda|+1}{(\operatorname{Re}(\lambda))^{2}}\left\|g_{1}^{\prime}\right\|_{1}\right)\left(\left\|g_{1}\right\|_{1}+\left(\frac{2|\lambda|}{(\operatorname{Re}(\lambda))^{2}}+1\right)\left\|g_{1}^{\prime}\right\|_{1}\right)
$$

b) If for some $\varepsilon>0 \int_{0}^{\infty} e^{\varepsilon x}\left|g_{1}^{\prime}(x)\right| d x<\infty$, then $\sigma_{0 s}$ is finite.
c) If g_{1} and λ are real valued, then for every $z \in \sigma_{0 s}$

$$
\operatorname{Re}(z-\mu)>-\frac{1}{\lambda} \inf _{p \in[2, \infty]}\left(\frac{\lambda}{2}\right)^{\frac{1}{p}}\left\|g_{1}^{\prime}\right\|_{p}
$$

d) If $g_{1}^{\prime} \in \mathscr{A} \mathscr{C}, g_{1}^{\prime \prime} \in \mathscr{H}, \lambda>0$ and if $g_{1}(x)>0,2 \lambda^{2} g_{1}(x)+g_{1}^{\prime \prime}(x) \geqq 0$ for all $x \in(0, \infty)$, then $\operatorname{Im}(z-\mu)<0$ for every $z \in \sigma_{0 s}$.

Remark: If $v_{3}=0$ and v_{1} is the usual Blasius mean flow, then the assumptions in parts a and b are satisfied. If, in addition, $\alpha>0$ and $\beta \in \mathbb{R}$ then the assumptions in parts c and d are also satisfied.

3. Preliminaries

In this section the stage is set for the proof of parts a and b of the Main Theorem. The main idea is represented in the following lemmas. The notation used is standard [8]; for $a \in \mathbb{R}$ let $\mathscr{V}(a)=\{z \in \mathbb{C} \mid \operatorname{Re}(z)>a\}$.

Lemma 1. Suppose:
(i) $T, A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ are operators on a Banach space $X, R \in(0, \infty)$. Set $S=\frac{1}{R} T+B_{1} A_{1}+\ldots+B_{n} A_{n}$.
(ii) There exists a family of operators $K(z)$ on X for $z \in \overline{\mathscr{V}}(0)$ such that $K(z)(T+$ $\left.z^{2}\right) f=f$ for all $f \in \mathscr{D}(T)$ and all $z \in \overline{\mathscr{V}}(0)$.
(iii) There exists a family of operators $C_{i}(z)$ on X for $z \in \overline{\mathscr{V}}(0) \backslash\{0\}, i=1, \ldots, n$ such that $C_{i}(z) \supset A_{i} K(z)$ and Range $\left(B_{j}\right) \subset \mathscr{D}\left(C_{i}(z)\right)$ for all $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$ and all $i, j \in\{1, \ldots, n\}$.
(iv) There exists a family of operators $Q_{i j}(z)$ on X for $z \in \overline{\mathscr{V}}(0) \backslash\{0\}, i, j \in\{1, \ldots, n\}$ such that $Q_{i j}(z)>C_{i}(z) B_{j}$ and $\left.\left\|Q_{i j}(z)\right\| \leqq q_{i j} / \mid z\right\}<\infty$ for all $z \in \mathscr{\mathscr { V }}(0) \backslash\{0\}$ and all $i, j \in\{1, \ldots, n\}$.
Then for every $z \in \sigma_{p}(S)$

$$
|z| \leqq R \sum_{i j} q_{i j}^{2}
$$

Lemma 2. If assumptions (i) through (iv) of Lemma 1 are satisfied and if there is an $\varepsilon>0$ such that $Q_{i j}(z)$ are holomorphic families of compact operators on X for $z \in \mathscr{V}(-\varepsilon)$ and $i, j \in\{1, \ldots, n\}$, then $\sigma_{p}(S)$ is a finite set.

Proof. Suppose that $z \in \sigma_{p}(S) \backslash\{0\}$. Let $f \neq 0$ be such that

$$
\sum_{i=1}^{n} B_{i}\left(A_{i} f\right)=\left(z-\frac{1}{R} T\right) f
$$

Then

$$
\begin{gathered}
R K(\sqrt{-R z}) \sum_{i=1}^{n} B_{i}\left(A_{i} f\right)=-f, \quad \operatorname{Re}(\sqrt{-R z}) \geqq 0 \\
R A_{j} K(\sqrt{-R z}) \sum_{i=1}^{n} B_{i}\left(A_{i} f\right)=-A_{j} f, \text { for } j=1, \ldots, n \\
R C_{j}(\sqrt{-R z}) \sum_{i=1}^{n} B_{i}\left(A_{i} f\right)=-A_{j} f \\
R \sum_{i=1}^{n} Q_{j i}(\sqrt{-R z})\left(A_{i} f\right)=-A_{j} f
\end{gathered}
$$

Let $x=\left(A_{1} f, \ldots, A_{n} f\right) \in X^{n}$ and let $Q_{0}(\xi)$ be the matrix $\left\{Q_{i j}(\xi)\right\}_{i j}$. Clearly, $x \neq 0$ and

$$
1 \leqq\left\|R Q_{0}(\sqrt{-R z})\right\|^{2} \leqq \frac{R}{|z|} \sum_{i j} q_{i j}^{2}
$$

which proves Lemma 1. Lemma 2 is now obvious [8].
Now several operators on \mathscr{H} will be introduced. For $z \in \mathscr{V}(0)$ and $g \in \mathscr{H}$, define $F_{z}, G_{z} \in \mathscr{B}(\mathscr{H})$ by

$$
\left(F_{z} g\right)(x)=\int_{0}^{x} e^{z(s-x)} g(s) d s
$$

and

$$
\left(G_{z} g\right)(x)=\int_{x}^{\infty} e^{z(x-s)} g(s) d s
$$

The operator T is defined by $T f=-f^{\prime \prime}$ for $f \in \mathscr{D}(T)=\left\{f \mid f, f^{\prime} \in \mathscr{H} \cap \mathscr{A} \mathscr{G}\right.$, $\left.f^{\prime \prime} \in \mathscr{H}, f(0)=0\right\}$.

For $z \in \mathbb{C}$ and $x, y \in[0, \infty)$ define

$$
k(z, x, y)=\int_{0}^{\min \{x, y\}} e^{z(2 s-x-y)} d s
$$

Observe that $|k(z, x, y)| \leqq \frac{1}{|z|}$ for $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$. If $\varepsilon \in(0, \infty), \delta \in[0, \varepsilon)$ and $z \in \mathscr{V}(-\delta)$ then

$$
\begin{equation*}
|k(z, x, y)| \leqq \frac{1}{\varepsilon-\delta} e^{\varepsilon(x+y)} \tag{6}
\end{equation*}
$$

If $\xi \in \mathbb{C} \backslash\{0\}, \varepsilon \in(0, \infty), \delta \in[0, \varepsilon)$ and $z \in \mathscr{V}(|\xi|-\delta)$, then

$$
\begin{equation*}
\left|\frac{k(z+\xi, x, y)-k(z, x, y)}{\xi}-\frac{\partial k(z, x, y)}{\partial z}\right| \leqq|\xi|\left(\frac{3}{\varepsilon-\delta}\right)^{3} e^{\varepsilon(x+y)} \tag{7}
\end{equation*}
$$

Define the family of operators $K(z)$ for $z \in \overline{\mathscr{V}}(0)$ by $\mathscr{D}(K(z))=\{f \in \mathscr{H} \mid$ for all $x \in[0, \infty) \lim _{s \rightarrow \infty} \int_{0}^{s} k(z, x, y) f(y) d y \equiv g(x)$, and $\left.g \in \mathscr{D}(T)\right\}$,

$$
(K(z) f)(x)=\lim _{s \rightarrow \infty} \int_{0}^{s} k(z, x, y) f(y) d y \text { for } f \in \mathscr{D}(K(z))
$$

Integration by parts gives $K(z)\left(T+z^{2}\right) f=f$ for every $f \in \mathscr{D}(T)$ and every $z \in \overline{\mathscr{V}}(0)$. Note that if $z \in \mathbb{C}$ and $e^{-z(\cdot)} f(\cdot) \in L^{1}(0, \infty)$, then $k(z, x, \cdot) f(\cdot) \in L^{1}(0, \infty)$ for all $x \in[0, \infty)$.

Suppose that $h_{1}, h_{2} \in \mathscr{H}$ and that $\lambda, \lambda_{1} \in \mathscr{V}(0)$. In \mathscr{H} define operators A and B in the following way:
Case I: $\quad A=h_{1}, \quad B=h_{2}$,
Case II: $\quad A=h_{1}, \quad B=G_{\lambda_{1}} h_{2}$,
Case III: $\quad A=h_{1} F_{\lambda,}, \quad B=h_{2}$,
Case IV: $\quad A=h_{1} F_{\lambda}, \quad B=G_{\lambda_{1}} h_{2}$.
$G_{\lambda_{1}} h_{2}$ is a product of operators $G_{\lambda_{1}}$ and the multiplication operator h_{2}.
Case I. Define the family $C(z)$ for $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$ by $\mathscr{D}(C(z))=\{f \in \mathscr{H} \mid$ for all $x \in[0, \infty) \lim _{s \rightarrow \infty} \int_{0}^{s} k(z, x, y) f(y) d y \equiv g(x)$, and $\left.g h_{1} \in \mathscr{H}\right\}$,

$$
(C(z) f)(x)=h_{1}(x) \lim _{s \rightarrow \infty} \int_{0}^{s} k(z, x, y) f(y) d y \text { for } f \in \mathscr{D}(C(z))
$$

Clearly, $C(z) \supset A K(z)$ for all $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$.
For $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$ define the family $Q(z)$ by

$$
(Q(z) f)(x)=h_{1}(x) \int_{0}^{\infty} k(z, x, y) h_{2}(y) f(y) d y, \quad f \in \mathscr{H}
$$

Clearly, $\|Q(z)\| \leqq\left\|h_{1}\right\|_{2}\left\|h_{2}\right\|_{2} /|z|$, Range $(B) \subset \mathscr{D}(C(z))$ and $C(z) B \subset Q(z)$ for all $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$.

Case II. Define the family $C(z)$ as in Case I. For $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$ define the family $Q(z)$ by

$$
\begin{aligned}
(Q(z) f)(x) & =h_{1}(x) \int_{0}^{\infty} k(z, x, y)\left(\int_{y}^{\infty} e^{\lambda_{1}(y-s)} h_{2}(s) f(s) d s\right) d y \\
& =h_{1}(x) \int_{0}^{\infty}\left(\int_{0}^{y} k(z, x, s) e^{\lambda_{1}(s-y)} d s\right) h_{2}(y) f(y) d y, f \in \mathscr{H} .
\end{aligned}
$$

Thus $\|Q(z)\| \leqq \frac{\left\|h_{1}\right\|_{2}\left\|h_{2}\right\|_{2}}{|z| \operatorname{Re}\left(\lambda_{1}\right)}, \quad$ Range $(B) \subset \mathscr{D}(C(z))$ and $C(z) B \subset Q(z)$ for all $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$.

Case III. Now, define the family $C(z)$ for $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$ by $\mathscr{D}(C(z))=\{f \in \mathscr{H}\}$ for all $x \in[0, \infty), \lim _{s \rightarrow \infty} \int_{0}^{s} k(z, x, y) f(y) d y \equiv g(x)$ and if $h(x)=\int_{0}^{x} e^{\lambda(s-x)} g(s) d s$ then $\left.h h_{1} \in \mathscr{H}\right\}$,

$$
(C(z) f)(x)=h_{1}(x) \int_{0}^{x} e^{\lambda(t-x)}\left(\lim _{s \rightarrow \infty} \int_{0}^{s} k(z, t, y) f(y) d y\right) d t, \quad f \in \mathscr{D}(C(z)) .
$$

Clearly, $C(z) \supset A K(z)$ for all $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$.
For $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$ and $f \in \mathscr{H}$ let

$$
\begin{aligned}
(Q(z) f)(x) & =\int_{0}^{x} h_{1}(x) e^{2(s-x)}\left(\int_{0}^{\infty} k(z, s, y) h_{2}(y) f(y) d y\right) d s \\
& =\int_{0}^{\infty} h_{1}(x)\left(\int_{0}^{x} k(z, s, y) e^{\chi(s-x)} d s\right) h_{2}(y) f(y) d y
\end{aligned}
$$

Again $\|Q(z)\| \leqq \frac{\left\|h_{1}\right\|_{2}\left\|h_{2}\right\|_{2}}{|z| \operatorname{Re}(\lambda)}$, Range $(B) \subset \mathscr{D}(C(z))$ and $C(z) B \subset Q(z)$ for all $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$.

Case IV. Let the family $C(z)$ be as in Case III. For $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$ and $f \in \mathscr{H}$ define

$$
\begin{aligned}
(Q(z) f)(x) & =h_{1}(x) \int_{0}^{x} e^{\lambda_{(t-x)}}\left(\int_{0}^{\infty} k(z, t, y)\left(\int_{y}^{\infty} e^{\lambda_{1}(y-s)} h_{2}(s) f(s) d s\right) d y\right) d t \\
& =\int_{0}^{\infty} h_{1}(x)\left(\int_{0}^{x} d t \int_{0}^{y} d s k(z, t, s) e^{\lambda(t-x)+\lambda_{1}(s-y)}\right) h_{2}(y) f(y) d y
\end{aligned}
$$

Thus $\|Q(z)\| \leqq \frac{\left\|h_{1}\right\|_{2}\left\|h_{2}\right\|_{2}}{|z| \operatorname{Re}(\lambda) \operatorname{Re}\left(\lambda_{1}\right)}, \quad \operatorname{Range}(B) \subset \mathscr{D}(C(z)) \quad$ and $\quad C(z) B \subset Q(z)$ for all $z \in \overline{\mathscr{V}}(0) \backslash\{0\}$.

If, in addition, there is an $\varepsilon>0$ such that $\int_{0}^{\infty}\left|h_{i}(x) e^{\varepsilon x}\right|^{2} d x<\infty$, then inequalities (6) and (7) imply that in all of the above cases $Q(z)$ can be extended to a holomorphic family of compact operators for $z \in \mathscr{V}(-\varepsilon)$.

3. Proof of the Main Theorem

Parts a and b. It has been shown [10] that

$$
\sigma_{0 s}-\mu\left(\sigma_{p}\left(D_{11}\right) \cup \sigma_{p}\left(D_{22}\right)\right.
$$

where

$$
\begin{gathered}
D_{11}=\frac{1}{R} T-i g_{1} \\
D_{22}=\frac{1}{R} T-i g_{1}-2 i \lambda G_{\lambda} g_{1}^{\prime} F_{\lambda}+i g_{1}^{\prime} F_{\lambda}
\end{gathered}
$$

Therefore, it is enough to prove the following theorem.
Theorem 2. Suppose that $\phi_{1}, \phi_{2}, \phi_{3} \in L^{2}(0, \infty) \cap L^{1}(0, \infty), \quad R \in(0, \infty)$ and $\lambda, \lambda_{1} \in \mathscr{V}(0)$. Set $S=\frac{1}{R} T+\phi_{1}+G_{\lambda_{1}} \phi_{2} F_{\lambda}+\phi_{3} F_{\lambda}$. Then
a) For every $z \in \sigma_{p}(S)$

$$
|z| \leqq R\left(\left\|\phi_{1}\right\|_{1}+\frac{\left\|\phi_{2}\right\|_{1}}{(\operatorname{Re}(\lambda))^{2}}+\frac{\left\|\phi_{3}\right\|_{1}}{(\operatorname{Re}(\lambda))^{2}}\right)\left(\left\|\phi_{1}\right\|_{1}+\frac{\left\|\phi_{2}\right\|_{1}}{\left(\operatorname{Re}\left(\lambda_{1}\right)\right)^{2}}+\left\|\phi_{3}\right\|_{1}\right)
$$

b) If, in addition, there is an $\varepsilon>0$ such that $\int_{0}^{\infty}\left|\phi_{i}(x)\right| e^{\varepsilon x} d x<\infty, i=1,2,3$ then $\sigma_{p}(S)$ is finite.

Proof. Define

$$
\begin{gathered}
A_{1}=\left|\phi_{1}\right|^{\frac{1}{2}}, \quad B_{1}=\operatorname{sgn}\left(\phi_{1}\right)\left|\phi_{1}\right|^{\frac{1}{2}} \\
A_{2}=\left|\phi_{2}\right|^{\frac{1}{2}} F_{\lambda}, \quad B_{2}=G_{\lambda_{1}} \operatorname{sgn}\left(\phi_{2}\right)\left|\phi_{2}\right|^{\frac{1}{2}} \\
A_{3}=\left|\phi_{3}\right|^{\frac{1}{2}} F_{\lambda}, \quad B_{3}=\operatorname{sgn}\left(\phi_{3}\right)\left|\phi_{3}\right|^{\frac{1}{2}}
\end{gathered}
$$

where $\operatorname{sgn}(\phi)(x)=\phi(x) /|\phi(x)|$ if $\phi(x) \neq 0$ and 1 otherwise. B_{2} is considered as a product of operators. Hence

$$
S=\frac{1}{R} T+B_{1} A_{1}+B_{2} A_{2}+B_{3} A_{3}
$$

Define the families $C_{i}(z), Q_{i j}(z)$ as in the above cases. An application of Lemma 1 and Lemma 2 completes the proof.

Parts c and d. Suppose that $\lambda>0$ and that g_{1} is a real valued function. If $z \in \sigma_{p}\left(D_{11}\right)$, then

$$
\frac{1}{R} T f-i g_{1} f=z f, \quad f \in \mathscr{D}(T) \backslash\{0\}
$$

so that

$$
\begin{aligned}
& \|f\|_{2}^{2} \operatorname{Im}(z)=-\left(g_{1} f, f\right) \\
& \|f\|_{2}^{2} \operatorname{Re}(z)=\frac{1}{R}\left\|f^{\prime}\right\|_{2}^{2}
\end{aligned}
$$

If $z \in \sigma_{p}\left(D_{22}\right)$, then

$$
\frac{1}{R} T f-i g_{1} f-2 i \lambda G_{\lambda} g_{1}^{\prime} F_{\lambda} f+i g_{1}^{\prime} F_{\lambda} f=z f, \quad f \in \mathscr{D}(T) \backslash\{0\}
$$

Hence

$$
\begin{aligned}
\|f\|_{2}^{2} \operatorname{Re}(z) & =\frac{1}{R}\left\|f^{\prime}\right\|_{2}^{2}-\operatorname{Im}\left(g_{1}^{\prime} F_{\lambda} f, f\right) \\
& >-\|f\|_{2}^{2} \frac{1}{\lambda} \inf _{p \in[2, \infty]}\left(\frac{\lambda}{2}\right)^{\frac{1}{p}}\left\|g_{1}^{\prime}\right\|_{p}
\end{aligned}
$$

which proves part c . This bound is somewhat weaker than those obtained in the bounded domain [5]; however, it does not require that $g_{1}^{\prime} \in L^{\infty}(0, \infty)$. Assuming, in addition, that $g_{1}^{\prime} \in \mathscr{A} \mathscr{C}$ and $g_{1}^{\prime \prime} \in \mathscr{H}$ gives

$$
\begin{aligned}
-\|f\|_{2}^{2} \operatorname{Im}(z) & =\left(g_{1} f, f\right)+2 \lambda\left(g_{1}^{\prime} F_{\lambda} f, F_{\lambda} f\right)-\operatorname{Re}\left(g_{1}^{\prime} F_{\lambda} f, f\right) \\
& =\left(g_{1} f, f\right)+2 \lambda\left(g_{1}^{\prime} F_{\lambda} f, F_{\lambda} f\right)-\left(\left(\lambda g_{1}^{\prime}-\frac{1}{2} g_{1}^{\prime \prime}\right) F_{\lambda} f, F_{\lambda} f\right) \\
& =\left(g_{1}\left(F_{\lambda} f\right)^{\prime},\left(F_{\lambda} f\right)^{\prime}\right)+\left(\left(\lambda^{2} g_{1}+\frac{1}{2} g_{1}^{\prime \prime}\right) F_{\lambda} f, F_{\lambda} f\right)
\end{aligned}
$$

which proves part d . Note that this equality can also give bounds on $\operatorname{Im}(z)$, which are similar to those in [5].

References

1. Antar, B. N., \& J. A. Benek, Temporal eigenvalue spectrum of the Orr-Sommerfeld equation for the Blasius boundary layer. Phys. Fluids 21 (1978), 183-189.
2. Gustavsson, L. H., Initial-value problem for boundary layer flows. Phys. Fluids 22 (1979), 1602-1605.
3. Huige, G. E., Perturbation theory of some spectral operators. Comm. Pure Appl. Math. 24 (1971), 741-756.
4. Jordinson, R., Spectrum of eigenvalues of the Orr-Sommerfeld equation for Blasius flow. Phys. Fluids 14 (1971), 2535-2537.
5. Joserf, D. D., Eigenvalue bounds for the Orr-Sommerfeld equation. J. Fluid Mech. 33 (1968), 617-621.
6. Joserf, D. D., Stability of Fluid Motions I, II. Springer-Verlag, New York, 1976.
7. Kato, T., Wave operators and similarity for some non-selfadjoint operators. Math. Annalen 162 (1966), 258-279.
8. Kato, T., Perturbation Theory for Linear Operators, 2nd edition. Springer-Verlag, New York, 1976.
9. Mack, L. M., A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73 (1976), 497-520.
10. Miklavčič, M., \& M. Williams, Stability of mean flows over an infinite flat plate. Arch. Rational Mech. Anal. 80 (1982) 57-69.
11. Reed, M., \& B. Simon, Methods of Modern Mathematical Physics IV. Academic Press, New York, 1978.
12. Salwen, H., \& C. E. Grosch, The continuous spectrum of the Orr-Sommerfeld equation. Part 2. Eigenfunction expansions. J. Fluid Mech. 104 (1981), 445-465.

Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, New York 12181

