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1. Introduction 

The main purpose of this paper is to prove that in the space (L2(0, 00)) 4 
the generalized Orr-Sommerfeld equation [10] has only finitely many eigenvalues 
when the mean flow exponentially approaches a constant. This surprising fact 
was discovered by numerical studies of eigenvalues for Blasius mean flow [4, 9]. 
It has been proven [10] that when the mean flow approaches a constant slowly 
enough, the generalized Orr-Sommerfeld equation can have infinitely many 
eigenvalues. There is also a nontrivial condition [10] (involving the Reynolds 
number) which implies that the Orr-Sommerfeld equation has no eigenvalues. 
The proof given here is based on Lemma 2, which can be considered a generaliza- 
tion of some standard results [e.g. 3, 11]. 

Given are several properties of, and bounds for eigenvalues which can be 
used to estimate the critical Reynolds number and to help in the numerical search 
for eigenvalues. 

An expectation [12] that eigenvalues should not be imbeded in the continuous 
spectrum [10] is also proven. These facts may suggest a way [3, 10] to obtain a 
spectral resolution. One can show, however, that there can exist (finitely many) 
spectral singularities not corresponding to eigenvalues, i.e. --1 can be an eigen- 

value of RQo(~------~z) (see Section 3) even if z is not an eigenvalue of the generalized 
Orr-Sommerfeld equation. In such a case it is still possible to define a spectral 
resolution in a suitable subspace [3, 10]. I f  the Reynolds number is sufficiently 
small, then the corresponding operator is spectral. This can easily be seen from 
[3, 7, 10]. Since these spectral results are rather far from what one would want 
[1, 2, 12] and since the proofs are very cluttered, details will not be presented. 

In Section 2 the main theorem is given. The idea of the proof is worked out 
in Section 3 and the proof of the main theorem is presented in Section 4. 

I wish to thank MICHAEL WILLIAMS for suggesting the problem and I am 
grateful to DAVID ISAACSON for a critical reading of the manuscript. 
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2.  The  M a i n  T h e o r e m  

The generalized Orr-Sommerfeld equation is given by [6, 10] 

8Ul 1 B2ul 
Jr h(y) ul + v'1(y) u: + i~p = O, (1) 

Bt R ~y2 

8 U  2 1 ~ 2 U  2 ~p 
Bt R By 2 + h(y)u2 +--~y = O, (2) 

~u3 1 6~2U3 
Bt R By 2 + h(y) u 3 + v'3(y ) u 2 + iflp = 0, (3) 

Bu2 
io~u, + iflu3 + ~ = 0, (4) 

u~(0, t) = 0 for j = 1, 2, 3 (5) 

where h(y) = (~2 -k fl2)/R + iocv~(y) + iflva(y) and the primes denote derivatives. 
u -~ u(y, t) = (ul, Uz, ua) and p = p(y, t) denote the velocity and pressure 
of the fluid at a point y ~ 0 and time t ~ 0 respectively; R as usual is the 
Reynolds number, v~ and v3 are the x and z components of the mean flow while 
0~ and fl are the wave numbers in the x and z directions of the mean flow. 

Throughout  3r denotes the Hilbert space L2(0, oo) (j-fold product 
of L2(0, o,0). The set of all complex-valued functions which are absolutely con- 
tinuous on [0, a] for every a > 0 is denoted by d ~ .  

A map (u, p) from the interval (0, cx~) into ~f~4 is said to be a solution of equa- 
tions (1-5) if for each t E (0, oo) the following conditions are satisfied [10]: 

~Uj ~2Uj 
(i) uj, p , - - ~ y E ~ A ~ ,  --~y2 E 3/f for j =  1 ,2 ,3  and u = ( u i ,  u2, u3) 

(ii) u is continuously differentiable in t 

8/ /2  _ - ~ 2 U  2 B2U2 

(iii) - ~  E ~ and ~t By By Bt 

(iv) (u, p) satisfy equations (1-5) 

(v) lim u(t) exists. 
t--~-0 + 

SPo is the set of all such maps. (u, p) E 6% is an eigenvector if u(t) = e -~t Uo 
and p ( t ) = e  -~tpo for some zE(3,  U o E ~ 3 \ ( 0 }  a n d p o E ~ .  The set of all 
such z is denoted by Cro~. 

The main theorem may now be stated. 

T h e o r e m  1. Suppose: 

(i)  vl, v3 E ~r 

(ii) the limits lira v~(y) = -vl and lim v3(y) = 5 3 exist and are finite, 
y---~ oo y-+ oo 

(iii) vl - -  v l ,  v3 - -  v3, v~, v3 E ~g', 
(iv) 0~ z + f12 E (3 \ (--  co, 01, R > 0. 
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Let 2 = 1/~- -q- f12, Re (;t) > 0, # = ~2/R + io~-v x -k ifl'v3 and gl = o~('vl -- v~) -q- 
fl(va --  va). Then 

a) I f  gl, gx E LI(O, c~), then for every z E ao~ 

Iz -- 1~[ <= R \llg~ Ih + ~Ree IIg~ 

b) I f  for some e > 0 T e~ Ig~(x) l dx < o~, then ao~ is finite. 
0 

c) I f  gl and 2 are real valued, then for every z E ao~ 

' 
Re ( z  - - / z )  > - -  - -  in f  P II g[ I[,. 

pE [2,oo1 

d) I f  g~ E dog, g~' E ~r , 2 > 0 and i f  g~(x) ~ 0, 2~.2g~(x) q- g~'(x) >: 0 for all 
x E (0, ~ ) ,  then Im (z -- /z)  <: 0 for every z E ~ro~. 

R e m a r k :  I f  v3 = 0 and v~ is the usual Blasius mean flow, then the assumptions 
in parts a and b are satisfied. If, in addition, o~ > 0 and fl E ~ then the assumptions 
in parts c and d are also satisfied. 

3 .  P r e l i m i n a r i e s  

In this section the stage is set for the proof  of parts a and b of  the Main  Theo- 
rem. The main idea is represented in the following lemmas. The notat ion used is 
standard [8]; for a E R let ~ ( a )  ---- (z E C I Re (z) > a}. 

L e m m a  1. Suppose: 

(i) T, A1 . . . . .  An, B1 . . . . .  B n are operators on a Banach space X, R E (0, oo). 
1 

Set S = --~ T + B~A1 -k ... + BnAn. 

(ii) There exists a family of  operators K(z) on X for z E ~ ( 0 )  such that K(z) (T -k  

z2) f = f for all f E ~ (T)  and all z E ~e'(O). 

(iii) There exists a family of  operators Ci(z) on X for zE ~(0 )  \ {0), i = 1 . . . . .  n 

such that Ci(z) .-3 A,K(z) and Range (Bj) C ~(Ci(z)) for all z E ~ ( 0 )  \ {0} 
and all i, j E {1 . . . . .  n). 

(iv) There exists a family of  operators Qo(z) on X for z E ~T(0) \ {0}, i, j E {1 . . . . .  n} 
such that Qi~(z) ~ Ci(z) Bj and Ilaij(z)[I ~ q~/lzl < oo for all zE ~ (0 )  \ {0} 
and all i, j E {1 . . . . .  n}. 

Then for every z E %(S) 

lzl ~ R E q~" 
ij 
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Lemma 2. I f  assumptions (i) through (iv) of Lemma 1 are satisfied and if there is 
an e > 0 such that Qo(z) are holomorphic families of compact operators on X for 
z E ~(--e)  and i, j E (1 . . . . .  n}, then ap(S) is a finite set. 

Proof. Suppose that z E (rp(S) \ (0}. Let f=~ 0 be such that 

i=1 -- --~ T) f .  ~ Bi(Aif)= (z 1 

Then 

s , ( A : ) =  --f, Re O, 
i = l  

RAjK(I/----~z) 2 B , (A , f )= --Ajf, for j = 1 . . . . .  n, 
i = l  

RCj (I/------'~z) ~'~ B,(Aif) = --Ajf,  
i = 1  

R ~ Qji(~/---'~-Rzz)(A,f) = --Aft. 
,=I 

Let x = (All,  .. . .  A , f )  E X" and let Qo(~) be the matrix {Q0(~)}0- Clearly, x 4 :0  
and 

R 
1 <= I[RQo (]/~'-~-~z)tl z <= - ~  "~ij q~" 

which proves Lemma 1. Lemma 2 is now obvious [8]. 
Now several operators on o~ will be introduced. For z E "/:(0) and g E og:, 

define F~, G~ E ~(o~f ') by 

and 

x 

(rzg) (x) = f e~('-X>g(s) ds 

c~ 
(Gzg) (x) = f eZ(X-S)g(s) ds. 

x 

The operator T is defined by T f =  -- f"  for f E  ~ ( T ) =  (.flf ,  f ' E  J/:/% ~r 
f ' "  E ,~ ,  f(O) = 0}. 

For z E C and x, y E [0, ~xz) define 

min{x,y} 

k(z, x, y) = f e ~(2"-~-y) ds. 
0 

1 
Observe that [k(z, x, y)[ --< ~ -  for z E r \ (0}. I f  ~ E (0, ~ ) ,  ~ E [0, e) and 

zE r then 

1 
(6) I k(z, x, y)] ~ e -  ~ e~(X+Y)" 
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I f ~ E  C\{0} ,  ~E(0, oo), ~E [0,~) and zE~e'(l~ el -- ~), then 

k(z -f- ~, x, y) -- k(z, x, y) Ok(z, x, y) < [~l e ̀(x+yl (7) 
~z = " 

Define the family of operators K(z) for z E ~ (0 )  by N(K(z)) = {fE 3r176 for all 

x E [0, ~ )  lim / k(z, x, y)f(y) dy ~ g(x), and g E N(T)}, 
s -+oo 0 

(K(z) f )  (x) = lim f k(z, x, y) f(y) dy for f E  N(K(z)). 
s - -* '~  0 

Integration by parts gives K ( z ) ( T q - z 2 ) f = f  for every f E N ( T )  and every 
z E ~e=(0). Note  that if z E C and e-Z(')f(.) E LI(0, oo), then k(z, x, .)f(.) E LI(O, oo) 
for all x E [0, oo). 

Suppose that ha, hz E ~ and that 3., 21 E ~e'(0). Irt ~ define operators A and 
B in the following way: 

Case I: A = hi, B = h2, 

Case II: A = hi, B = G~lh2, 

Case III: A = haFa, B = h2, 

Case IV: A = hl Fa, B = Gal h2. 

Ga~hz is a product of operators G~ and the multiplication operator h2. 

Case L Define the family C(z) for z E ~ (0 )  \ {0} by N(C(z)) ---- {fE o~g'l for 

all x E [0, ~ )  lira / k(z, x, y) f  (y) dy -~ g(x), and gh~ E ~} ,  
s--~ oo 0 

$ 

(C(z)f) (x) = h~(x) lim f k(z, x, y)f(y) dy for f E  N(C(z)). 
s--->, eo 0 

Clearly, C(z) ) AK(z) for all z E ~e'(0) \ {0}. 
For z E ~7(0) \ {0} define the family Q(z) by 

(Q(z)f) (x) = hi(x) 7 k(z, x, y) h2(y)f(y) dy, f E  ~ .  
0 

Clearly, II a(z)II ----- II ha I1~ II hz II~/[ z I, Range (B) ( N ( C ( z ) )  and C(z) B C Q(z) for 
all z E ~ (0 )  \ {0}. 

Case 11. Define the family C(z) as in Case I. For z E -/7(0) \ {0} define the family 
Q(z) by 

(Q(z)f) (x) = hi(x) f k(z, x, y) e a~f-v-~) hz(s)f(s) ds dy 
0 

) = h~(x) [ k(z, x, s) e ~`(~-y) ds h2(y)f(y) dy, fE  .~ .  
6 



226 M. MIKLAV(~It~ 

Thus IIQ(z)ll < lib, 112 Ilh~ Ih Range (B) C ~(C(z)) and C(z) B Q Q(z) for all 
= ]z] Re (21)' 

z E ~ ( 0 )  \ (0}. 

Case IlL Now, define the family C(z) for z E ~7(0) \ (0} by ~(C(z)) = ( fE J~/tr 
/ x 

for all xE [0, oo), lim k(z,x,y)f(y)dy-~g(x)andifh(x) = f ea(S-X) g(s)ds 
s -~oo  0 0 

then hhl E ~'f~}, 

(C(z)f) (x) = hi(x) / e  ~(t-~) (lira f k(z, t, y)f(y) dy tit, 
0 \ s -~oo  0 

Clearly, C(z)~ AK(z) for all z E 
For z E ~(0)  \ (0} and f E  o~ 

x 

(Q(z)f) (x) = f h~(x) 
0 

Again [[Q(z)[[ 

E r  \ (0). 

f E ~(C(z)). 

~(0) \ {0). 
let 

e~(~'-x) ( :  k(z, s, y) h2(y) f(y) dy) ds 

(of ) = f hi(x) k(z, s, y) e a(s-x) ds h2(y)f(y) dy. 
0 

[[ht]la [[hz]t2 Range (B) ~ ~(C(z)) and C(z) B C Q(z) for all 
I z I Re (,~) ' 

Case IV. Let the family Cfz) be as in Case III. For z E ~r \ {0} and f E  
define 

(: )) (Q(z)f) (x) = hi(x) / e ~(t-x) k(z, t, y) f e ~l('-s) hz(s)f(s) ds dy dt 
0 \ y  

(of oi ) = f h,(x) dt dsk(z, t ,s)e a('-:~ h2(y)f(y)dy. 
0 

Ilh~lh lib2112 
Thus ]/Q(z)[[ ~ [z] Re (2) Re (21)' Range (B) C ~(C(z)) and C(z) B (Q(z )  

for all z 6 ~e-(0) \ {0}. 

If, in addition, there is an e > 0 such that ? lhi(x) e~X[ z dx < c~, then inequa- 
0 

lities-(6) and (7) imply that in all of the above cases Q(z) can be extended to a 
holomorphic family of compact operators for z 6 ~e'(--e). 

3. Proof of the Main Theorem 

Parts a and b. It has been shown [10] that 

ao~ -- ~ C trp(Dll) kJ trp(D22) 
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where 
1 

Dil = "-~ T - -  igl, 

1 
D22 = "~ T - -  igl - -  2i2Gag'lFa + ig~F~. 

Therefore, it is enough to prove the following theorem. 

Theorem 2. Suppose that r r r E L2(0, cx~)/5 Ll(0, e~), R E (0, oo) and 
1 

2, 21 E ~r Set S = - ~  T § r + G~,dPzF~ + 4~aF~. Then 

a) For every z E %(S)  

Izl < R IIr + (Re (2))-----------~ + II~lh + + II%lll �9 

b) If, in addition, there is an e > 0  such that ? l~bi(x)l e'X dx < oo, i =  1 ,2 ,3  
0 

then ap(S) is finite. 

Proof. Define 
1 I 

A1 = 1r T, B1 = sgn (r162 T,  
1 1 

A2 = I~b21T Fa, B2 = Gz~ sgn (r 1r T,  
1 1 

Aa = 1r Fa, B3 = sgn (Ca) [Ca 1 T,  

where sgn (r (x) = r ~b(x) l if r ~= 0 and 1 otherwise. B2 is considered as 
a product of operators. Hence 

1 
S = "-~ T + B1A1 + B2A2 -Jr BaAa. 

Define the families C~(z), Qo(z) as in the above cases. An application of  
Lemma 1 and Lemma 2 completes the proof. 

Parts c and d. Suppose that 2 > 0 and that gl is a real valued function. If  
zE ap(Dll), then 

1 
-~  T f  --  i g l f  = zf, f E ~ ( T )  \ (0}, 

so that 
I[fll~ Im (z) = --(gl f ,  f ) ,  

1 
][fl]~ Re (z) = ~ [[f'][2 z. 

If  z E %(D22), then 

1 
- g  T f  - -  ig, f - -  2iZC~g~F~f+ i g ;F~ f  = zf ,  f E  ~(T)  \ {0}. 
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Hence 

p 

IIf[I 2 Re (z) = -~-Iff'H 2 - Im (glFaf, f )  

1 
> - - [ [ f l [ ~ - -  inf P ' ;t pet2.~] T Ilgillp 

which proves par t  c. This bound  is somewhat  weaker than those obtained in the 
bounded  domain  [5]; however, it does not  require that  g~ E L~(0, cx~). Assuming, 
in addition, that  g~ E d ~  and g'l' E o,~ gives 

- [Iflh z Im (z) = (g l f f )  -k 22(g~Faf Faf) -- Re (g~F~f,f) 

-~ ( g l f ,  f ) - 1 -  22(g~Fzf, Faf)-- ( (2g I T gI ] Far Faf) 
tr 

which proves par t  d. Note  that  this equality can also give bounds  on Im  (z), 
which are similar to those in [5]. 
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